[go: up one dir, main page]

JP3493783B2 - Aerobic treatment of organic wastewater - Google Patents

Aerobic treatment of organic wastewater

Info

Publication number
JP3493783B2
JP3493783B2 JP02539095A JP2539095A JP3493783B2 JP 3493783 B2 JP3493783 B2 JP 3493783B2 JP 02539095 A JP02539095 A JP 02539095A JP 2539095 A JP2539095 A JP 2539095A JP 3493783 B2 JP3493783 B2 JP 3493783B2
Authority
JP
Japan
Prior art keywords
sludge
treatment
aeration tank
liquid
aerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02539095A
Other languages
Japanese (ja)
Other versions
JPH08215695A (en
Inventor
英斉 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP02539095A priority Critical patent/JP3493783B2/en
Publication of JPH08215695A publication Critical patent/JPH08215695A/en
Application granted granted Critical
Publication of JP3493783B2 publication Critical patent/JP3493783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、有機性排液を好気性微
生物を含む生物汚泥の存在下に生物処理する方法、特に
好気性生物処理系における余剰汚泥を減容化することが
できる有機性排液の生物処理方法に関する。 【0002】 【従来の技術】活性汚泥処理法などのように、好気性微
生物の作用を利用して有機性排液を好気条件で処理する
好気性生物処理方法は処理コストが安く、処理性能も優
れているため一般に広く利用されているが、離脱水性の
余剰汚泥が大量に生成する。この余剰汚泥は処理BOD
量の約30〜60%にも達し、その処理は困難である。
従来、このような余剰汚泥は投棄処分されていたが、そ
の処分場の確保が困難となり、汚泥の減容化が必要とな
っている。 【0003】汚泥を減容化するために特公平5−619
94号には、余剰汚泥をpH2.5以下、温度50℃以
上で可溶化したのち曝気槽に返送する有機性汚水の処理
方法が記載されている。 【0004】 【発明が解決しようとする課題】しかし、このような従
来の方法では汚泥の減容化は可能であるが、難生物分解
性の有機物が生成して処理液の色度やCODMnが上昇
し、処理水質が悪化するという問題点がある。 【0005】本発明の目的は、上記問題点を解決するた
め、汚泥の減容化を行うとともに、処理水質の悪化を防
止することができる有機性排液の好気性処理方法を提案
することである。 【0006】本発明者の研究によれば、従来法における
処理液の水質悪化の原因は、汚泥を可溶化処理するとき
のpHが低すぎる場合または温度が高すぎる場合に生成
する難生物分解性の有機物によるものであることが判明
した。そして弱酸性かつ比較的低温で加熱処理すること
により、難生物分解性の有機物を生成させることなく、
上記目的を達成できることがわかり、本発明を完成し
た。 【0007】 【課題を解決するための手段】本発明は、有機性排液を
曝気槽において、好気性微生物を含む生物汚泥の存在下
に好気性生物処理する方法であって、有機性排液を曝気
槽に導入して、好気性微生物を含む生物汚泥の存在下に
好気性生物処理する好気性生物処理工程と、曝気槽の混
合液を固液分離し、分離液を処理液として排出し、分離
汚泥の少なくとも一部を曝気槽に返送する固液分離工程
と、曝気槽内の混合液または分離汚泥の一部を引抜き、
この引抜汚泥に触媒および酸化剤を添加することなく、
pH2.8〜5、温度40〜90℃の条件で15分間〜
2時間可溶化処理したのち、曝気槽に返送する可溶化処
理工程とを有することを特徴とする有機性排液の好気性
処理方法である。 【0008】本発明において処理の対象となる有機性排
液は、通常の好気性生物処理法により処理される有機物
を含有する排液であるが、難生物分解性の有機物または
無機物が含有されていてもよい。このような有機性排液
としては、下水、し尿、食品工場排水その他の産業排液
などがあげられる。 【0009】本発明における好気性生物処理は、有機性
排液を好気性微生物を含む生物汚泥の存在下に好気性生
物処理を行う。このような処理としては、有機性排液を
曝気槽で活性汚泥と混合して曝気し、混合液を固液分離
装置で固液分離し、分離汚泥の一部を曝気槽に返送する
標準活性汚泥処理法における好気性生物処理が一般的で
あるが、これを変形した他の処理でもよい。 【0010】本発明では、このような好気性生物処理に
おける処理系から生物汚泥の一部を引抜き、この引抜汚
泥を可溶化処理する。生物汚泥を引抜く場合、固液分離
装置で分離された分離汚泥の一部を引抜くのが好ましい
が、曝気槽から混合液の状態で引抜いてもよい。分離汚
泥から引抜く場合、余剰汚泥として排出される部分の一
部または全部を引抜汚泥として引抜くことができるが、
余剰汚泥に加えて、返送汚泥として曝気槽に返送される
汚泥の一部をさらに引抜いて可溶化処理するのが好まし
く、この場合余剰汚泥の発生量をより少なくすることが
でき、条件によっては余剰汚泥の発生量をゼロにするこ
ともできる。この点については、後で詳しく述べる。 【0011】本発明では可溶化処理は従来の方法に比べ
て穏和な条件、すなわちpH2.8〜5、好ましくは3
〜4、温度40〜90℃、好ましくは60〜80℃で、
15分間〜2時間、好ましくは30分間〜1時間行う。
このような条件で可溶化処理することにより、難生物分
解性有機物の生成を抑制して汚泥をBOD化することが
できる。可溶化処理はバッチ式でも連続式でも行うこと
ができ、連続式の場合上記処理時間は帯留時間である。
pHの調整には塩酸、硫酸、硝酸等の無機酸などを使用
することができる。可溶化処理の継続によりpHが上記
範囲外になるときは、さらに上記の酸を添加して所定p
Hに維持することができるが、上記pH範囲内で所定時
間処理を行った場合、上記pH範囲外でさらに処理を行
ってもよい。 【0012】可溶化処理した処理汚泥は水酸化ナトリウ
ム、水酸化カリウムなどのアルカリにより中和した後、
あるいは中和することなく好気性生物処理工程の曝気槽
に導入して好気性生物処理を行う。これにより可溶化処
理によってBOD化された成分が炭酸ガス等に無機化さ
れて除去され、系全体から排出される余剰汚泥の量が低
減する。この場合、可溶化処理における難生物分解性有
機物の生成が抑制されているので、色度やCODMnは低
く、高処理水質が得られる。 【0013】上記の処理では弱酸性かつ比較的低温で処
理を行うため、処理装置に対する腐食性は小さくなり、
作業に対する危険性も軽減される。また可溶化処理後の
中和に要するアルカリの量も少なくなり、通常は曝気槽
のアルカリ度(炭酸ガス)により中和できるため、中和
を行わないでそのまま曝気槽に返送することも可能であ
る。 【0014】上記の処理においては、可溶化処理する汚
泥の量を多くするほど汚泥の減容率は高くなる。ただ
し、可溶化処理した汚泥中の有機物を生物分解する際に
汚泥が増殖するので、単に余剰汚泥を可溶化処理しただ
けでは余剰汚泥をゼロにすることはできないが、増殖す
る汚泥量が見かけ上ゼロになるように過剰の汚泥を引抜
いて可溶化処理する場合には、系全体から生じる余剰汚
泥の量をゼロにすることもできる。この場合、可溶化処
理する汚泥の量が多くなると、生物処理性能が低下する
場合があるが、このようなときには、汚泥を担持するた
めの担体を曝気槽内に設け、一定量の汚泥量を保持する
ことにより、生物処理性能を高く維持することができ
る。 【0015】本発明における汚泥減容化の原理を図を用
いて説明する。図1は汚泥減容化の原理を説明するため
の模式図である。図において、1は好気性生物処理系、
2は可溶化処理系である。好気性生物処理系1は、活性
汚泥処理装置のように、有機性排液を生物汚泥と接触さ
せて好気的に分解する処理系であり、曝気槽と固液分離
装置とが別々に設けられるが、これらを含めた全体の処
理系として図示されている。可溶化処理系2は混合液ま
たは濃縮液の状態で引抜かれる引抜汚泥を可溶化処理す
る処理系として図示されている。可溶化処理により汚泥
は加水分解され、BOD源になる。 【0016】図1の好気性生物処理系1には、好気性生
物処理を行うために一定量の生物汚泥3aが保持されて
いる。このような好気性生物処理系1に被処理液4を導
入して好気性生物処理を行うと、被処理液4に含まれる
BODは生物汚泥3aに同化され、その増殖により新た
に生成汚泥3bが生成する。一方、系内の生物汚泥3a
は自己分解により、自己分解分3cが消失する。従って
定常状態では、生成汚泥3bと自己分解分3cの差が増
殖汚泥3dとして増殖する。 【0017】増殖汚泥3dを余剰汚泥として可溶化処理
系2で処理する場合を、図1に破線5で示しているが、
増殖汚泥3dを可溶化処理して好気性生物処理系1に戻
すと、可溶化処理により生成するBODが汚泥に転換し
て、別の生成汚泥3eが生成し、この分が実質的な汚泥
増殖分となり、余剰汚泥として排出されなければならな
い。これに対し、増殖汚泥3dよりも多い量の引抜汚泥
3fを好気性生物処理系1から引抜き、可溶化処理系2
で可溶化処理してBODに転換し、可溶化処理汚泥6を
好気性生物処理系1に戻すことにより、可溶化処理で生
成したBODから別の生成汚泥3gが生成する。この場
合、引抜汚泥3fと生成汚泥3gの差が無機化部分3h
となる。 【0018】ここで増殖汚泥3dよりも多い量の引抜汚
泥3fを可溶化処理してBODに転換することにより、
増殖汚泥3dのみを可溶化処理する場合よりも、無機化
部分が多くなり、汚泥減容化率は高くなる。増殖汚泥3
dと無機化部分3hが等しくなるように、引抜汚泥3f
の量を決めると、余剰汚泥は実質的にゼロになる。増殖
汚泥3dが無機化部分3hより多い場合は、その差が実
質的な増加部分3iとなり、余剰汚泥7として系外に排
出される。8は好気性生物処理系1の処理液である。 【0019】上記好気性生物処理系1における曝気槽容
量をV、その生物汚泥濃度をX、汚泥収率をY、被処理
液流量(処理液流量)をQ、被処理液の有機物濃度をC
i、処理液の有機物濃度をCe、生物処理された有機物
濃度を(Ci−Ce)、汚泥自己分解定数をKd、余剰
汚泥排出量をq、可溶化処理槽への引抜量をQ′、可溶
化処理された汚泥が生物汚泥に再変換された割合をkと
すると、物質収支は次の〔1〕式で表される。 【数1】 V dX/dt=Y Q(Ci−Ce)−V Kd X−q X−Q′X+k Q′X 〔1〕 【0020】〔1〕式において、V dX/dtは好気性生物
処理系1における生物汚泥3aの変化量、Y Q (Ci−C
e)は生成汚泥3bの量、V Kd Xは自己分解分3cの
量、q Xは余剰汚泥7の排出量、Q′Xは引抜汚泥3fの
量、k Q′Xは生成汚泥3gの量を示している。ここでQ
(Ci−Ce)/V=LV(槽負荷)、q/v=1/SRT(余剰汚泥
滞留時間比)、Q′/V=θ(可溶化処理系への生物汚泥
の循環比)、(1−k)=δ(無機化率)とおくと、定
常状態では、〔1〕式は次の〔2〕式のように簡略化さ
れる。 【数2】 Y LV/X=Kd+1/SRT+δθ 〔2〕 【0021】可溶化処理系2が存在しない通常の好気性
生物処理系では、〔2〕式の第3項(δθ)がないの
で、汚泥負荷を一定としたとき第2項で余剰汚泥(X/S
RT)が決定される。これに対して可溶化処理を組合せた
処理系では、〔2〕式から明らかなように、第3項の値
により余剰汚泥が減容化する。そして第3項の値が第2
項の値に匹敵するような条件下では、余剰汚泥を排出し
なくても(1/SRT=0)、汚泥負荷を通常の値に設定
することが可能である。 【0022】 【実施例】次に本発明の実施例について説明する。図2
および図3はそれぞれ別の実施例の好気性処理装置を示
す系統図であり、図2は固液分離装置の分離汚泥を可溶
化処理する例、図3は曝気槽内の混合液を可溶化処理す
る例を示している。図2において、好気性生物処理系1
は曝気槽11および固液分離装置12から構成されてい
る。曝気槽11には被処理液路13、返送汚泥路14お
よび可溶化処理汚泥路26が連絡し、また底部には散気
装置15が設けられて、空気供給路16が連絡してい
る。曝気槽11から固液分離装置12に連絡路17が連
絡している。固液分離装置12には、処理液路18およ
び分離汚泥排出路19が連絡し、分離汚泥排出路19か
ら返送汚泥路14が分岐している。20は必要により設
けられる余剰汚泥排出路である。 【0023】可溶化処理系2は可溶化処理槽21から構
成され、可溶化処理槽21には汚泥引抜路22および酸
供給路23が連絡し、内部には加熱器24および攪拌器
25が設けられている。また可溶化処理槽21から曝気
槽11に可溶化処理汚泥路26が接続している。 【0024】図2の処理装置による有機性排液の好気性
生物処理方法は、被処理液路13から有機性排液を曝気
槽11に導入し、返送汚泥路14を通して返送される返
送汚泥および曝気槽11内の活性汚泥と混合し、空気供
給路16から供給される空気を散気装置15から散気し
て好気性生物処理を行う。これにより、排液中の有機物
は生物酸化反応によって分解される。曝気槽11内の混
合液(反応液)の一部は連絡路17を通して固液分離装
置12に導入し、沈降分離により分離液と分離汚泥とに
分離する。分離液は処理液として処理液路18から系外
に排出し、分離汚泥は分離汚泥排出路19から取出し、
その一部は返送汚泥として返送汚泥路14から曝気槽1
1に返送し、残部の一部または全部は引抜汚泥路22を
通して可溶化処理槽21に導入して可溶化処理を行う。 【0025】可溶化処理槽21では、酸供給路23から
酸を添加して槽内液のpHを前記値に調整するととも
に、加熱器24により加熱して前記温度に維持し、前記
時間可溶化処理する。これにより汚泥が加水分解されて
BOD化する。可溶化処理汚泥は可溶化処理汚泥路26
から曝気槽11に連続的に戻し、好気性生物処理する。
これにより可溶化処理により変換されたBOD成分が分
解除去され、好気性生物処理系1から生じる余剰汚泥が
減容化する。余剰汚泥が生じる場合は余剰汚泥排出路2
0から系外へ排出する。 【0026】図3では、曝気槽11内の混合液の一部を
引抜汚泥として汚泥引抜路22から引抜いて可溶化処理
槽21に導入するように構成されている。酸供給路23
は汚泥引抜路22に接続している。図3の装置による処
理方法は、曝気槽11内の混合液の一部を引抜汚泥とし
て引抜汚泥路22から引抜き、この引抜汚泥に酸供給路
23から酸を加えてpHを前記値に調整した後、可溶化
処理槽21に導入して可溶化処理を行う。他の操作は図
2の場合と同様である。 【0027】実施例1 ペプトンと酵母エキスを主成分とする合成廃水を、ML
SS 5000mg/lの曝気槽でBOD負荷0.2g
−BOD/g−汚泥・日で処理し、この曝気槽から引抜
いた汚泥に、硫酸を加えてpHを0.5〜5に調整し、
温度80℃で1時間可溶化処理を行った。処理汚泥のB
OD化率(g−BOD/g−汚泥)および難生物分解性
有機物の生成率(g−CODMn/g−汚泥)を図4に示
す。図4の結果から、処理汚泥のBOD化率はpH5か
らpH2にpHが低下するに従って0.47から0.6
に徐々に大きくなるが、pH2以下では約0.6で一定
していることがわかる。一方難生物分解性有機物の生成
率はpH5からpH2.8の範囲では0.01以下でほ
とんど難生物分解性有機物の生成が認められないが、p
H2.8よりpHが小さくなるに従って急激に上昇し、
pH2.5以下の強酸性領域で難生物分解性有機物が急
激に生成されることがわかる。以上のことから、pH
2.8〜5の範囲では難生物分解性有機物をほとんど生
成させることなく、高いBOD化率を得られることがわ
かる。 【0028】実施例2 実施例1と同様の汚泥に硫酸を加えてpHを2.9に調
整し、20〜100℃で1時間可溶化処理を行った。処
理汚泥のBOD化率および難生物分解性有機物の生成率
を図5に示す。図5の結果から、処理汚泥のBOD化率
は40〜60℃に処理温度が上昇するに従って急激に大
きくなり、その後は約0.6で一定していることがわか
る。一方難生物分解性有機物の生成率は90℃を超える
と急激に上昇することがわかる。以上のことから、温度
40〜90℃の範囲では難生物分解性有機物をほとんど
生成させることなく、高いBOD化率を得られることが
わかる。 【0029】比較例1 図2の処理装置において、ただし可溶化処理は行わない
で好気性生物処理を行った。すなわち、食品工場排水
(BOD=1000ppm,SS=100ppm)を1
3の曝気槽において、槽負荷1kg−BOD/m3、汚
泥負荷0.2kg−BOD/kg−MLSS/日で処理
を行った。処理水質はCODMnとして20mg/lが得
られ、余剰汚泥は一日あたり0.4kg排出された。 【0030】実施例3 図2の処理装置により比較例1と同様の排水を好気性生
物処理した。すなわち、比較例1の生物処理条件下で、
活性汚泥を固液分離装置から一日0.8kg引抜き、1
0000mg/lの汚泥に対して硫酸を10000mg
/l添加した。pHは2.9であった。この引抜汚泥を
60℃で1時間保温し、中和後に曝気槽に連続的に返送
した。汚泥負荷を比較例1と同様に維持するために系外
へ排出した余剰汚泥量は一日0.12kgとなり、余剰
汚泥量は比較例1の約1/3になった。処理水質はCO
Mnとして22mg/lであり、汚泥の減容化処理を行
っていない比較例1と同程度の処理水質が得られた。 【0031】実施例4 可溶化処理の条件を変更して、実施例3と同様にして好
気性生物処理を行った。すなわち、活性汚泥を固液分離
装置から一日0.8kg引抜き、10000mg/lの
汚泥に対して硫酸を3000mg/l添加した。pHは
4.8であった。この引抜汚泥を80℃で1時間保温
し、中和後に曝気槽に連続的に返送した。汚泥負荷を比
較例1と同様に維持するために系外へ排出した余剰汚泥
量は一日0.12kgとなり、余剰汚泥量は比較例1の
約1/3になった。処理水質はCODMnとして21mg
/lであり、汚泥の減容化処理を行っていない比較例1
と同程度の処理水質が得られた。 【0032】比較例2 添加する硫酸50000mg/l(pH2.2)に変更
した他は実施例3と同様にして運転を行った。余剰汚泥
量は一日あたり0.12kgの値になり同様な値が得ら
れたが、処理水質はCODMnとして80mg/lとな
り、顕著な悪化が確認された。 【0033】比較例3 可溶化処理の温度を100℃に変更した他は実施例3と
同様にして運転を行った。余剰汚泥量は一日あたり0.
10kgの値になり、減容効果はあったものの、処理水
質は悪化し、CODMnとして120mg/lとなった。
また汚泥のバルキングがひどくなり、沈降性は極度に悪
化した。 【0034】 【発明の効果】本発明によれば、曝気槽内の混合液また
は分離汚泥の一部に触媒および酸化剤を添加することな
く、温和な酸性および加熱条件で可溶化処理したのち曝
気槽に返送するようにしたので、難生物分解性の有機物
を生成させることなく汚泥の減容化を行うことができる
とともに、処理水質の悪化を防止して高処理水質を得る
ことができ、また装置に対する腐食性や作業に対する危
険性も低く、中和のためのアルカリも少なくなる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for biologically treating an organic effluent in the presence of biological sludge containing aerobic microorganisms, and more particularly, to a method for treating waste water in an aerobic biological treatment system. The present invention relates to a biological treatment method for organic wastewater capable of reducing sludge volume. [0002] An aerobic biological treatment method, such as an activated sludge treatment method, in which an organic effluent is treated under aerobic conditions by utilizing the action of an aerobic microorganism has a low treatment cost and a low treatment performance. Is widely used because of its superiority, but it generates a large amount of excess sludge capable of dewatering. This excess sludge is treated BOD
As much as about 30-60% of the volume, its processing is difficult.
Conventionally, such excess sludge has been dumped and disposed of. However, it is difficult to secure a disposal site and sludge volume reduction is required. [0003] To reduce the volume of sludge, Japanese Patent Publication No. 5-619
No. 94 describes a method for treating organic wastewater in which excess sludge is solubilized at a pH of 2.5 or less and a temperature of 50 ° C. or more, and then returned to an aeration tank. [0004] However, although the volume of sludge can be reduced by such a conventional method, organic matter that is hardly biodegradable is generated, and the chromaticity and COD Mn of the processing solution are reduced. And the quality of treated water deteriorates. [0005] An object of the present invention is to solve the above problems by reducing the volume of sludge and proposing an aerobic treatment method for organic wastewater that can prevent deterioration of treated water quality. is there. According to the study of the present inventor, the cause of the deterioration of the water quality of the treatment liquid in the conventional method is the poor biodegradability generated when the pH at the time of solubilizing the sludge is too low or the temperature is too high. Was found to be due to organic matter. And by heat treatment at a weak acidity and relatively low temperature, without producing hard biodegradable organic matter,
It has been found that the above object can be achieved, and the present invention has been completed. [0007] The present invention is a method for treating aerobic organic wastewater in an aeration tank in the presence of biological sludge containing aerobic microorganisms. Is introduced into the aeration tank, and an aerobic biological treatment step in which aerobic biological treatment is performed in the presence of biological sludge containing aerobic microorganisms, and the mixture in the aeration tank is solid-liquid separated, and the separated liquid is discharged as a processing liquid. , A solid-liquid separation step of returning at least a part of the separated sludge to the aeration tank, and extracting a part of the mixed liquid or the separated sludge in the aeration tank,
Without adding catalyst and oxidizing agent to this drawn sludge ,
pH 2.8 ~ 5, temperature 40 ~ 90 ° C for 15 minutes ~
An aerobic treatment method for organic effluent, comprising: a solubilization treatment step of performing solubilization treatment for 2 hours and then returning to an aeration tank. The organic effluent to be treated in the present invention is an effluent containing an organic substance which is treated by a usual aerobic biological treatment method, but contains an organic substance or an inorganic substance which is hardly biodegradable. You may. Such organic effluents include sewage, night soil, food factory effluents and other industrial effluents. In the aerobic biological treatment of the present invention, the organic effluent is subjected to aerobic biological treatment in the presence of biological sludge containing aerobic microorganisms. In such treatment, the organic wastewater is mixed with activated sludge in an aeration tank and aerated, the mixed liquid is separated into solid and liquid by a solid-liquid separator, and a part of the separated sludge is returned to the aeration tank. Aerobic biological treatment in the sludge treatment method is general, but other treatments modified from this may be used. In the present invention, a part of the biological sludge is extracted from the treatment system in such aerobic biological treatment, and the extracted sludge is solubilized. When extracting biological sludge, it is preferable to extract a part of the separated sludge separated by the solid-liquid separator, but it may also be possible to extract the mixed sludge from the aeration tank. When extracting from the separated sludge, part or all of the part discharged as excess sludge can be extracted as extracted sludge,
In addition to the excess sludge, it is preferable to further extract and solubilize a part of the sludge returned to the aeration tank as return sludge.In this case, the amount of excess sludge generated can be reduced, and depending on conditions, the excess sludge may be reduced. Sludge generation can be reduced to zero. This will be described in detail later. [0011] In the present invention, the solubilization treatment is performed under milder conditions as compared with the conventional method, that is, pH 2.8 to 5, preferably 3
4, at a temperature of 40 to 90 ° C, preferably 60 to 80 ° C,
It is carried out for 15 minutes to 2 hours, preferably for 30 minutes to 1 hour.
By performing the solubilization treatment under such conditions, it is possible to suppress the generation of the hardly biodegradable organic substance and convert the sludge into BOD. The solubilization treatment can be performed in a batch system or a continuous system. In the case of the continuous system, the treatment time is a retention time.
In order to adjust the pH, an inorganic acid such as hydrochloric acid, sulfuric acid, and nitric acid can be used. When the pH is out of the above range due to the continuation of the solubilization treatment, the above acid is further added and the pH is adjusted to a predetermined value.
H can be maintained, but when the treatment is performed for a predetermined time within the above-mentioned pH range, further treatment may be performed outside the above-mentioned pH range. The treated sludge that has been solubilized is neutralized with an alkali such as sodium hydroxide or potassium hydroxide.
Alternatively, it is introduced into an aeration tank in an aerobic biological treatment step without neutralization to perform aerobic biological treatment. Thereby, the components converted into BOD by the solubilization treatment are inorganicized into carbon dioxide gas or the like and removed, and the amount of excess sludge discharged from the entire system is reduced. In this case, since the generation of the hardly biodegradable organic matter in the solubilization treatment is suppressed, the chromaticity and COD Mn are low, and high treated water quality can be obtained. In the above treatment, the treatment is carried out at a weak acidity and at a relatively low temperature.
The danger to work is reduced. In addition, the amount of alkali required for neutralization after the solubilization treatment is also reduced, and can be usually neutralized by the alkalinity (carbon dioxide) of the aeration tank. Therefore, it is possible to return to the aeration tank without neutralization. is there. In the above treatment, as the amount of sludge to be solubilized increases, the sludge volume reduction rate increases. However, since the sludge multiplies when biodegrading organic matter in the solubilized sludge, excess sludge cannot be reduced to zero simply by solubilizing the excess sludge, but the amount of sludge that grows is apparent. When the excess sludge is withdrawn and solubilized so as to be zero, the amount of excess sludge generated from the entire system can be reduced to zero. In this case, when the amount of the sludge to be solubilized increases, the biological treatment performance may decrease.In such a case, a carrier for supporting the sludge is provided in the aeration tank, and a fixed amount of the sludge is supplied. By keeping the biological treatment performance, high biological treatment performance can be maintained. The principle of sludge volume reduction in the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram for explaining the principle of sludge volume reduction. In the figure, 1 is an aerobic biological treatment system,
2 is a solubilization treatment system. The aerobic biological treatment system 1 is a treatment system in which an organic effluent is brought into contact with biological sludge to decompose aerobically, such as an activated sludge treatment device, and an aeration tank and a solid-liquid separation device are separately provided. However, it is illustrated as an entire processing system including these. The solubilization treatment system 2 is illustrated as a treatment system for solubilizing drawn sludge that is drawn in a state of a mixed solution or a concentrated solution. Sludge is hydrolyzed by the solubilization treatment and becomes a BOD source. The aerobic biological treatment system 1 of FIG. 1 holds a certain amount of biological sludge 3a for performing aerobic biological treatment. When the liquid 4 to be treated is introduced into the aerobic biological treatment system 1 and subjected to the aerobic biological treatment, the BOD contained in the liquid 4 to be treated is assimilated into the biological sludge 3a, and the sludge 3b is newly generated by the multiplication thereof. Is generated. On the other hand, biological sludge 3a in the system
The self-decomposition part 3c disappears by self-decomposition. Therefore, in a steady state, the difference between the generated sludge 3b and the self-decomposed component 3c multiplies as multiplication sludge 3d. The case where the sludge 3d is treated as excess sludge in the solubilization treatment system 2 is shown by a broken line 5 in FIG.
When the proliferating sludge 3d is solubilized and returned to the aerobic biological treatment system 1, the BOD generated by the solubilization process is converted into sludge, and another generated sludge 3e is generated. And must be discharged as excess sludge. On the other hand, a larger amount of the extracted sludge 3f than the multiplication sludge 3d is extracted from the aerobic biological treatment system 1, and the solubilization treatment system 2
To convert it to BOD, and return the solubilized sludge 6 to the aerobic biological treatment system 1, whereby another 3 g of generated sludge is generated from the BOD generated by the solubilization treatment. In this case, the difference between the extracted sludge 3f and the generated sludge 3g is the mineralized portion 3h.
It becomes. Here, a larger amount of the extracted sludge 3f than the multiplied sludge 3d is solubilized and converted to BOD,
As compared with the case where only the proliferating sludge 3d is solubilized, the amount of mineralized parts increases, and the sludge volume reduction rate increases. Proliferating sludge 3
d so as to make the mineralized portion 3h equal to d.
Once the amount is determined, the excess sludge will be virtually zero. When the amount of the proliferating sludge 3d is larger than that of the mineralized portion 3h, the difference becomes a substantial increase portion 3i, and is discharged out of the system as excess sludge 7. Reference numeral 8 denotes a treatment liquid of the aerobic biological treatment system 1. In the aerobic biological treatment system 1, the capacity of the aeration tank is V, the biological sludge concentration is X, the sludge yield is Y, the flow rate of the liquid to be treated (the flow rate of the treatment liquid) is Q, and the organic matter concentration of the liquid to be treated is C.
i, the organic matter concentration of the treatment liquid is Ce, the biologically treated organic matter concentration is (Ci-Ce), the sludge self-decomposition constant is Kd, the surplus sludge discharge amount is q, and the withdrawal amount to the solubilization treatment tank is Q '. Assuming that the rate at which the solubilized sludge is converted back to biological sludge is k, the material balance is expressed by the following equation [1]. VdX / dt = YQ (Ci-Ce) -VKdX-qX-Q'X + kQ'X [1] In the formula [1], VdX / dt is an aerobic biological treatment. The amount of change in biological sludge 3a in system 1, YQ (Ci-C
e) is the amount of generated sludge 3b, V Kd X is the amount of self-decomposition 3c, q X is the amount of excess sludge 7 discharged, Q'X is the amount of extracted sludge 3f, and k Q'X is the amount of generated sludge 3g. Is shown. Where Q
(Ci-Ce) / V = LV (tank load), q / v = 1 / SRT (excess sludge residence time ratio), Q '/ V = θ (circulation ratio of biological sludge to the solubilization treatment system), ( If 1−k) = δ (inorganization ratio), in a steady state, the equation [1] is simplified as the following equation [2]. Y LV / X = Kd + 1 / SRT + δθ [2] In a normal aerobic biological treatment system in which the solubilization treatment system 2 does not exist, there is no third term (δθ) in the formula (2). When sludge load is constant, excess sludge (X / S
RT) is determined. On the other hand, in the treatment system combined with the solubilization treatment, the excess sludge is reduced by the value of the third term as is apparent from the equation (2). And the value of the third term is the second
Under conditions comparable to the value of the term, it is possible to set the sludge load to a normal value without discharging excess sludge (1 / SRT = 0). Next, an embodiment of the present invention will be described. FIG.
3 is a system diagram showing an aerobic treatment apparatus according to another embodiment, FIG. 2 is an example of solubilizing the separated sludge of a solid-liquid separation apparatus, and FIG. 3 is a solubilization of a mixed solution in an aeration tank. It shows an example of processing. In FIG. 2, aerobic biological treatment system 1
Is composed of an aeration tank 11 and a solid-liquid separation device 12. The aeration tank 11 communicates with the liquid passage 13 to be treated, the return sludge passage 14 and the solubilized sludge passage 26, and a diffuser 15 is provided at the bottom, and the air supply passage 16 communicates therewith. A communication path 17 communicates from the aeration tank 11 to the solid-liquid separation device 12. The treatment liquid path 18 and the separated sludge discharge path 19 communicate with the solid-liquid separation device 12, and the return sludge path 14 branches off from the separated sludge discharge path 19. Reference numeral 20 denotes a surplus sludge discharge passage provided as needed. The solubilization treatment system 2 is composed of a solubilization treatment tank 21, which is connected to a sludge extraction passage 22 and an acid supply passage 23, and a heater 24 and a stirrer 25 are provided inside. Have been. Further, a solubilization treatment sludge passage 26 is connected from the solubilization treatment tank 21 to the aeration tank 11. In the aerobic biological treatment method for organic effluent by the treatment apparatus shown in FIG. 2, the organic effluent is introduced into the aeration tank 11 from the liquid passage 13 to be treated, and the return sludge returned through the return sludge passage 14 and It mixes with the activated sludge in the aeration tank 11 and diffuses the air supplied from the air supply path 16 from the diffuser 15 to perform aerobic biological treatment. Thereby, the organic matter in the wastewater is decomposed by the biological oxidation reaction. A part of the mixed liquid (reaction liquid) in the aeration tank 11 is introduced into the solid-liquid separator 12 through the communication path 17 and separated into a separated liquid and a separated sludge by sedimentation. The separated liquid is discharged as a processing liquid from the processing liquid path 18 to the outside of the system, and the separated sludge is taken out from the separated sludge discharge path 19.
A part of it is returned to the aeration tank 1 from the returned sludge passage 14 as returned sludge.
1 and a part or all of the remaining part is introduced into a solubilization tank 21 through a drawn sludge passage 22 to perform a solubilization treatment. In the solubilization tank 21, the pH of the solution in the tank is adjusted to the above-mentioned value by adding an acid from the acid supply path 23, and the temperature is maintained at the above-mentioned temperature by heating with the heater 24. To process. Thereby, the sludge is hydrolyzed to BOD. The solubilized sludge is converted to the solubilized sludge channel 26.
To the aeration tank 11 continuously to perform aerobic biological treatment.
Thereby, the BOD component converted by the solubilization treatment is decomposed and removed, and the volume of excess sludge generated from the aerobic biological treatment system 1 is reduced. Excess sludge discharge channel 2 when excess sludge is generated
Discharge from 0 to outside the system. In FIG. 3, a part of the mixed solution in the aeration tank 11 is drawn out from the sludge extraction passage 22 as extracted sludge and introduced into the solubilization treatment tank 21. Acid supply path 23
Is connected to the sludge extraction passage 22. In the treatment method using the apparatus shown in FIG. 3, a part of the mixed solution in the aeration tank 11 is withdrawn from the drawn sludge passage 22 as drawn sludge, and an acid is added to the drawn sludge from the acid supply passage 23 to adjust the pH to the above value. After that, it is introduced into the solubilization tank 21 and solubilized. Other operations are the same as those in FIG. Example 1 Synthetic wastewater containing peptone and yeast extract as main components was subjected to ML
0.2g BOD load in SS 5000mg / l aeration tank
-BOD / g-sludge treated per day, the sulfuric acid is added to the sludge extracted from the aeration tank to adjust the pH to 0.5 to 5,
A solubilization treatment was performed at a temperature of 80 ° C. for 1 hour. B of treated sludge
FIG. 4 shows the OD conversion rate (g-BOD / g-sludge) and the production rate of hardly biodegradable organic matter (g-COD Mn / g-sludge). From the results shown in FIG. 4, the BOD conversion rate of the treated sludge was 0.47 to 0.6 as the pH decreased from pH 5 to pH 2.
It can be seen that it gradually increases, but is constant at about 0.6 at pH 2 or less. On the other hand, the production rate of the hardly biodegradable organic substance is 0.01 or less in the range of pH 5 to pH 2.8 and almost no formation of the hardly biodegradable organic substance is observed.
As the pH becomes lower than H2.8, it rises rapidly,
It can be seen that a hardly biodegradable organic substance is rapidly generated in a strongly acidic region having a pH of 2.5 or less. From the above, pH
It can be seen that in the range of 2.8 to 5, a high BOD conversion rate can be obtained with almost no formation of hardly biodegradable organic substances. Example 2 The same sludge as in Example 1 was adjusted to pH 2.9 by adding sulfuric acid, and subjected to a solubilization treatment at 20 to 100 ° C. for 1 hour. FIG. 5 shows the BOD conversion rate of the treated sludge and the generation rate of the hardly biodegradable organic matter. From the results shown in FIG. 5, it can be seen that the BOD conversion rate of the treated sludge increases rapidly as the treatment temperature increases to 40 to 60 ° C., and thereafter becomes constant at about 0.6. On the other hand, it can be seen that the production rate of the hardly biodegradable organic matter rapidly increases when the temperature exceeds 90 ° C. From the above, it can be seen that a high BOD conversion rate can be obtained in the temperature range of 40 to 90 ° C. with almost no generation of hardly biodegradable organic substances. Comparative Example 1 In the treatment apparatus shown in FIG. 2, an aerobic biological treatment was performed without performing a solubilization treatment. That is, the wastewater from the food factory (BOD = 1000 ppm, SS = 100 ppm) is 1
In the aeration tank of m 3, the bath load 1kg-BOD / m 3, it was treated with sludge load 0.2kg-BOD / kg-MLSS / day. The treated water quality was 20 mg / l as COD Mn , and 0.4 kg of excess sludge was discharged per day. Example 3 The same wastewater as in Comparative Example 1 was subjected to aerobic biological treatment using the treatment apparatus shown in FIG. That is, under the biological treatment conditions of Comparative Example 1,
0.8 kg of activated sludge is withdrawn daily from the solid-liquid separator.
10000mg sulfuric acid for 0000mg / l sludge
/ L was added. pH was 2.9. The extracted sludge was kept at 60 ° C. for 1 hour, and was returned to the aeration tank continuously after neutralization. In order to maintain the sludge load in the same manner as in Comparative Example 1, the amount of excess sludge discharged outside the system was 0.12 kg per day, and the amount of excess sludge was about 1/3 of Comparative Example 1. The treated water quality is CO
D Mn was 22 mg / l, and a treated water quality equivalent to that of Comparative Example 1 in which the sludge volume reduction treatment was not performed was obtained. Example 4 An aerobic biological treatment was carried out in the same manner as in Example 3, except that the conditions for the solubilization treatment were changed. That is, 0.8 kg of activated sludge was withdrawn per day from the solid-liquid separator, and 3000 mg / l of sulfuric acid was added to 10,000 mg / l of sludge. pH was 4.8. The extracted sludge was kept at 80 ° C. for 1 hour, and returned to the aeration tank continuously after neutralization. In order to maintain the sludge load in the same manner as in Comparative Example 1, the amount of excess sludge discharged outside the system was 0.12 kg per day, and the amount of excess sludge was about 1/3 of Comparative Example 1. The treated water quality is 21mg as COD Mn
Comparative Example 1 in which no sludge volume reduction treatment was performed
The same quality of treated water was obtained. Comparative Example 2 The operation was carried out in the same manner as in Example 3 except that the added sulfuric acid was changed to 50,000 mg / l (pH 2.2). The surplus sludge amount was 0.12 kg per day, and a similar value was obtained. However, the treated water quality was 80 mg / l as COD Mn , and remarkable deterioration was confirmed. Comparative Example 3 The operation was carried out in the same manner as in Example 3 except that the temperature of the solubilization treatment was changed to 100 ° C. The surplus sludge amount is 0 per day.
The value was 10 kg, and although there was a volume reducing effect, the quality of the treated water deteriorated and the COD Mn became 120 mg / l.
In addition, sludge bulking became severe, and sedimentation property was extremely deteriorated. According to the present invention , the catalyst and the oxidizing agent are not added to a part of the mixture or the separated sludge in the aeration tank.
Since it is solubilized under mild acidic and heating conditions and returned to the aeration tank, sludge can be reduced in volume without generating non-biodegradable organic substances, and the quality of treated water can be reduced. Higher treated water quality can be obtained by preventing deterioration, the corrosiveness to the apparatus and the danger to work are low, and the amount of alkali for neutralization is also reduced.

【図面の簡単な説明】 【図1】汚泥減容化の原理を説明するための模式図であ
る。 【図2】実施例の好気性処理装置を示す系統図である。 【図3】他の実施例の好気性処理装置を示す系統図であ
る。 【図4】実施例1の結果を示すグラフである。 【図5】実施例2の結果を示すグラフである。 【符号の説明】 1 好気性生物処理系 2 可溶化処理系 3a 生物汚泥 3b,3e,3g 生成汚泥 3c 自己分解分 3d 増殖汚泥 3f 引抜汚泥 3h 無機化部分 3i 増加部分 4 被処理液 6 可溶化処理汚泥 7 余剰汚泥 8 処理液 11 曝気槽 12 固液分離装置 13 被処理液路 14 返送汚泥路 15 散気装置 16 空気供給路 17 連絡路 18 処理液路 19 分離汚泥排出路 20 余剰汚泥排出路 21 可溶化処理槽 22 汚泥引抜路 23 酸供給路 24 加熱器 25 攪拌器 26 可溶化処理汚泥路
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram for explaining the principle of sludge volume reduction. FIG. 2 is a system diagram showing an aerobic treatment device of an embodiment. FIG. 3 is a system diagram showing an aerobic treatment device of another embodiment. FIG. 4 is a graph showing the results of Example 1. FIG. 5 is a graph showing the results of Example 2. [Description of Signs] 1 Aerobic biological treatment system 2 Solubilization treatment system 3a Biological sludge 3b, 3e, 3g Produced sludge 3c Self-decomposition 3d Proliferation sludge 3f Extracted sludge 3h Mineralized part 3i Increased part 4 Liquid to be treated 6 Solubilization Processed sludge 7 Excess sludge 8 Processing liquid 11 Aeration tank 12 Solid-liquid separator 13 Liquid to be processed 14 Returned sludge path 15 Air diffuser 16 Air supply path 17 Connection path 18 Processing liquid path 19 Separated sludge discharge path 20 Excess sludge discharge path 21 solubilization tank 22 sludge extraction path 23 acid supply path 24 heater 25 stirrer 26 solubilization treatment sludge path

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C02F 3/12 C02F 11/00 - 11/20 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) C02F 3/12 C02F 11/00-11/20

Claims (1)

(57)【特許請求の範囲】 【請求項1】 有機性排液を曝気槽において、好気性微
生物を含む生物汚泥の存在下に好気性生物処理する方法
であって、 有機性排液を曝気槽に導入して、好気性微生物を含む生
物汚泥の存在下に好気性生物処理する好気性生物処理工
程と、 曝気槽の混合液を固液分離し、分離液を処理液として排
出し、分離汚泥の少なくとも一部を曝気槽に返送する固
液分離工程と、 曝気槽内の混合液または分離汚泥の一部を引抜き、この
引抜汚泥に触媒および酸化剤を添加することなく、pH
2.8〜5、温度40〜90℃の条件で15分間〜2時
間可溶化処理したのち、曝気槽に返送する可溶化処理工
程とを有することを特徴とする有機性排液の好気性処理
方法。
(57) [Claims 1] A method for aerobic biological treatment of organic wastewater in an aeration tank in the presence of biological sludge containing aerobic microorganisms, wherein the organic wastewater is aerated. An aerobic biological treatment process in which the mixture is introduced into a tank and aerobic biological treatment is carried out in the presence of biological sludge containing aerobic microorganisms.The mixed liquid in the aeration tank is solid-liquid separated, and the separated liquid is discharged as a processing liquid and separated. A solid-liquid separation step of returning at least a part of the sludge to the aeration tank; extracting a mixed liquid or a part of the separated sludge in the aeration tank; and adding a catalyst and an oxidizing agent to the extracted sludge without adding a catalyst and an oxidizing agent.
Aerobic treatment of an organic effluent, comprising: a solubilization treatment step of performing solubilization treatment at 2.8 to 5 and a temperature of 40 to 90 ° C. for 15 minutes to 2 hours, and then returning to an aeration tank. Method.
JP02539095A 1995-02-14 1995-02-14 Aerobic treatment of organic wastewater Expired - Fee Related JP3493783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02539095A JP3493783B2 (en) 1995-02-14 1995-02-14 Aerobic treatment of organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02539095A JP3493783B2 (en) 1995-02-14 1995-02-14 Aerobic treatment of organic wastewater

Publications (2)

Publication Number Publication Date
JPH08215695A JPH08215695A (en) 1996-08-27
JP3493783B2 true JP3493783B2 (en) 2004-02-03

Family

ID=12164562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02539095A Expired - Fee Related JP3493783B2 (en) 1995-02-14 1995-02-14 Aerobic treatment of organic wastewater

Country Status (1)

Country Link
JP (1) JP3493783B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4290854B2 (en) * 2000-05-29 2009-07-08 株式会社神鋼環境ソリューション Waste water treatment apparatus and waste water treatment method
JP4572587B2 (en) * 2004-06-08 2010-11-04 栗田工業株式会社 Biological treatment method for organic wastewater
JP4495051B2 (en) * 2005-08-23 2010-06-30 株式会社神鋼環境ソリューション Activated sludge treatment method and activated sludge treatment apparatus therefor

Also Published As

Publication number Publication date
JPH08215695A (en) 1996-08-27

Similar Documents

Publication Publication Date Title
JP2973761B2 (en) Aerobic treatment of organic wastewater
WO2004026774A1 (en) Method of reducing volume of sludge and apparatus therefor
US5762809A (en) Process for treating a medium containing organic constituents
KR100546991B1 (en) Organic wastewater treatment method and apparatus
JP2007105631A (en) Method and device for treating organic waste water
JP3493783B2 (en) Aerobic treatment of organic wastewater
JP3591086B2 (en) Biological treatment of organic wastewater
JP3493769B2 (en) Aerobic treatment of organic wastewater
DE69729249D1 (en) wastewater treatment processes
JP3611292B2 (en) Wastewater treatment method
JPH02273600A (en) Process for purifying water
JPH08103786A (en) Aerobic treatment of organic wastewater
JP2007105630A (en) Method for treating organic waste water
JP3442204B2 (en) Organic wastewater phosphorus removal and recovery method
JP3525458B2 (en) Aerobic treatment of organic wastewater
JP3511430B2 (en) Organic wastewater treatment method
JP3311925B2 (en) Organic wastewater treatment method
JP3348455B2 (en) Aerobic treatment of nitrogen and / or phosphorus deficient organic effluent
JP3373137B2 (en) Organic wastewater biological treatment method
JP2002059200A (en) Method of treating sewage and sludge
JPH0788495A (en) Aerobic treatment of organic wastewater
JP3400622B2 (en) Method and apparatus for treating organic sewage
JPH09155384A (en) Anaerobic treatment of organic wastewater
JPH0985298A (en) Method for decreasing quantity of organic sludge
JP2001259679A (en) Biological treatment method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees