JP3900796B2 - Method and apparatus for treating organic wastewater - Google Patents
Method and apparatus for treating organic wastewater Download PDFInfo
- Publication number
- JP3900796B2 JP3900796B2 JP2000179944A JP2000179944A JP3900796B2 JP 3900796 B2 JP3900796 B2 JP 3900796B2 JP 2000179944 A JP2000179944 A JP 2000179944A JP 2000179944 A JP2000179944 A JP 2000179944A JP 3900796 B2 JP3900796 B2 JP 3900796B2
- Authority
- JP
- Japan
- Prior art keywords
- treatment
- solid
- liquid
- organic wastewater
- solubilization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、有機性固形物を含有する有機性廃水、例えば、食品工場や薬品工場などから排出される有機性固形物を含有する有機性廃水を生物学的反応を利用して処理する方法及びその処理装置に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
従来より、この種の有機性廃水の一般的な処理方法として、まず、好気性消化法、嫌気性メタン発酵法などの好気性または嫌気性の微生物分解により有機性汚泥中の有機成分を生物学的に消化して、有機物を炭酸ガス、メタンガスなどのガス成分にまで分解し、次いでかかる生物学的消化により生じた微生物バイオマス(微生物菌体が主体)及び未処理の残存汚泥を含んだ処理液を沈殿槽などで固液分離して上澄としての処理水と濃縮液(汚泥)を得、その汚泥は適宜の方法で処理されている。たとえば、図15に示すように、生物処理槽6に導入された下水などの有機性廃水が、生物処理槽6において好気性条件にて、微生物による酸化分解反応である生物酸化によって、二酸化炭素もしくは水などの無機物に分解され、生物処理槽6にて処理された廃水は、沈殿槽25にて処理水Aと汚泥Bに固液分離され、汚泥Bの一部は微生物源として生物処理槽6に返送されるとともに、残りの汚泥は余剰汚泥Cとして処理されているのが一般的である。
【0003】
ところが、油脂、蛋白質などの有機性固形物を含む廃水(例えば、豆腐、湯葉などの製造に伴う廃水)を通常の活性汚泥処理方法でそのまま処理すると、発泡が発生し、うまく処理することができない。そこで、浮上分離などの固液分離方法により発泡の原因となる固形分を分離した後、活性汚泥処理されている。この方法によれば、固形分を分離することはできても、固形分に含まれる蛋白質などが貯槽に貯留中に腐敗して悪臭を発するという公害が発生するため、腐敗を防止するための特別の処理プロセスが必要である。
【0004】
本発明は従来の技術の有するこのような問題点に鑑みてなされたものであって、その目的は、油脂、蛋白質などの有機性固形物を含有する有機性廃水を、簡単な方法で処理することが可能な低コストの有機性廃水の処理方法及びその処理装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために本発明は、発泡あるいは腐敗の原因となる有機性固形物(油脂、蛋白質など)を含有する有機性廃水を固液分離装置で固形分と上澄液に分離し、この固形分を可溶化処理装置で可溶化処理して発泡性あるいは腐敗性物質を分解し、次いで、生物処理装置または後処理装置で処理することとしている。
【0006】
このように、本発明によれば、複雑・高価な処理設備を用いることなく、発泡あるいは腐敗を抑制して有機性廃水を処理することが可能である。
【0007】
【発明の実施の形態】
本発明は、有機性固形物を含有する有機性廃水を処理する方法において、被処理有機性廃水を第一固液分離装置で固形分と上澄液に固液分離し、該固形分を可溶化処理装置で可溶化処理し、可溶化処理後の処理液と上記上澄液を生物処理装置で生物処理することを特徴とする有機性廃水の処理方法をその要旨とする。
【0008】
本発明は、第一固液分離装置で分離した有機性固形物を可溶化処理装置で可溶化処理することによって発泡性物質を分解し、次いで生物処理するという特徴を有しており、簡単にして確実に発泡現象を抑制して有機性廃水を処理することができる。
【0009】
そのための処理装置としては、第一固液分離装置に後続する処理液経路に生物処理装置を配し、第一固液分離装置から可溶化処理装置を経て生物処理装置に至る処理液経路を設けた構成のものが好ましい。
【0010】
固液分離装置とは、例えば、沈殿装置、浮上分離装置、遠心分離装置、膜分離装置のごときものをいう。
【0011】
生物処理装置としては、好気性生物処理あるいは嫌気性生物処理のいずれの方式のものも適用できる。好気性生物処理に用いられる曝気処理装置は、曝気手段を具備するものであれば散気方式でも機械曝気方式でもよい。曝気処理は、好気性消化分解が許容されるよう、好ましくは、0.1〜0.5vvm(vvm=曝気量/曝気槽容量/min.)の通気量で室温下にて実施されるが、負荷によっては、これを上回る通気量で、より高温にて処理してもよい。被処理液は、好ましくは、5.0〜8.0のpHに調整されるとよい。また、曝気処理装置には、好気的消化分解を促進するために、酵母等の微生物や、フロック形成を促進するための硫酸アルミニウム、ポリ塩化アルミニウム、塩化第二鉄、硫酸第一鉄などの凝集剤を添加してもよい。好気性生物処理には、曝気処理装置以外の好気的処理の可能な装置を使用することもできる。また、嫌気性生物処理に用いられる装置としては、槽内の液を循環することにより攪拌する方法、生成ガスを循環曝気することにより攪拌する方法、攪拌翼などの攪拌機を設置する方法、活性微生物固定手段を有する方法など、活性微生物と処理対象有機性廃水とを効率的に接触させる手段を具備したものであれば、使用可能である。
【0012】
可溶化処理では、好熱菌(例えば、バチルス・ステアロサーモフィラス等の菌体を添加してもよい)によって汚泥の分解が行われるが、酵素分解(例えば、プロテアーゼ、リパーゼ、グリコシターゼなどを単独または組み合わせて添加したもの)などの種々の方法と組み合わせて実施してもよい。可溶化処理法として、オゾン法、超音波法、破砕法、熱アルカリ法、紫外線法、超臨界法、亜臨界法、酸化剤投入法、触媒酸化法などを用いてもよい。
【0013】
可溶化処理装置における可溶化条件としては、熱および好熱菌による可溶化を促進するために、例えば、以下のような条件を採用することができる。
(1)温度:50〜90℃
(2)汚泥濃度:1000mg/リットル以上、好ましくは5000mg/リットル以上
(3)pH:5〜9、好ましくは、7〜8
(4)環境:好気または微好気条件
(5)時間:有機性固形物の可溶化が盛んである(可溶化率が高い数値を示す)被処理有機性廃水の水力学的滞留時間(HRT)に基づいて決定する。HRTは、流入液量と反応槽の有効容積に基づいて求められるもので、次の関係式で表される。
【0014】
HRT=反応槽容積(リッター)/単位時間当たりの流入液量(リッター/hr)
また、処理水の水質を向上するために、生物処理装置に後続する処理液経路に第二固液分離装置を設けることが好ましい。第一固液分離装置と第二固液分離装置は、同じ種類の装置でもよく、異なる種類の装置でもよい。
【0015】
また、生物処理装置における生物処理を円滑に実行するために、生物処理装置での微生物の保持量に応じて、第二固液分離装置で分離された汚泥の一部を生物処理装置に返送することが好ましい。第二固液分離装置を設けない場合は、生物処理装置内に微生物を保持するため、担体などを投入するとよい。
【0016】
さらに、余剰汚泥の量を低減するために、第二固液分離装置で分離された汚泥の一部を可溶化処理装置に返送することが好ましい。
【0017】
第一固液分離装置で分離された固形分を可溶化処理する可溶化処理装置と第二固液分離装置で分離された汚泥の一部を可溶化処理する可溶化処理装置が異なれば、固形物の性状に応じて運転条件を別個に設定できるので好ましい。
【0018】
そして、可溶化処理装置での処理汚泥量を適正量にする(処理汚泥量を低減する)ために、第一固液分離装置または第二固液分離装置で分離された汚泥の一部を、濃縮装置で濃縮した後に可溶化処理装置に返送することが好ましい。濃縮装置とは、例えば、遠心濃縮装置のごときものをいう。
【0019】
また、被処理有機性廃水を第一固液分離装置で固形分と上澄液に固液分離し、該固形分を可溶化処理装置で可溶化処理し、可溶化処理後の処理液を後処理装置で後処理し、後処理後の処理液と上記上澄液を生物処理装置で生物処理することもできる。後処理装置とは、通常の活性汚泥装置、膜分離活性汚泥装置のごときものをいい、このように、可溶化された処理液を後処理装置で後処理することにより、生物処理装置へ流入する処理液の有機物負荷を低減でき、発泡性をより抑制できるという効果がある。また、後処理後の処理液と第一固液分離装置で分離された上澄液を生物処理装置で生物処理すれば、さらに処理水の水質を向上しうる。この生物処理装置に後続する処理液経路に第二固液分離装置を設け、第二固液分離装置で分離された汚泥の一部を生物処理装置に返送し、あるいは、第二固液分離装置で分離された汚泥の一部を可溶化処理装置に返送し、または、第二固液分離装置で分離された汚泥の一部を、濃縮装置で濃縮した後に可溶化処理装置に返送すれば、同上効果があるので好ましい。
【0020】
さらに、係る有機性廃水の処理方法において、後処理後の処理液に生物処理を施さずに外部に放出する方法によれば、既存の生物処理装置の生物処理に全く影響を与えずに有機性廃水の処理装置を運転できるという効果がある。
【0021】
また、被処理有機性廃水を第一固液分離装置で固形分と上澄液に固液分離し、該上澄液を生物処理装置で生物処理し、上記固形分を可溶化処理装置で可溶化処理し、可溶化処理後の処理液を後処理装置で後処理し、後処理後の処理液を第二固液分離装置で汚泥と処理水に固液分離し、第二固液分離装置で分離された汚泥の一部を可溶化処理装置に返送することもできる。この方法によれば、可溶化処理液の水質を良好に維持できるという効果がある。この第二固液分離装置で分離された処理水を第一固液分離装置で分離された上澄液に加えたものを生物処理装置で生物処理すれば、処理水の水質を極めて良好に維持することができるという効果がある。生物処理装置に後続して第三固液分離装置を設ければ、処理水の水質を極限にまで高めること(清浄化)ができる。
【0022】
【実施例】
以下に本発明の実施例を説明する。図1は、本発明の有機性廃水の処理方法を適用することができる有機性廃水処理装置の一実施例の概略構成図である。
【0023】
図1に示すように、原廃水が経路1を経て第一固液分離装置(沈殿槽)2に導入され、有機性固形物と上澄液に固液分離される。有機性固形物は経路3を経て可溶化槽4に導入される。可溶化槽4では、高温条件で嫌気的もしくは好気的に有機性固形物の可溶化が行われる。この場合、高温条件にて用いられる嫌気性もしくは好気性微生物の接種菌体(好熱菌)は、例えば、従来の嫌気性もしくは好気性消化槽から微生物を培養することによって得られるものである。また、可溶化槽4の最適温度は、好ましくは、50〜90℃の温度範囲となるような条件で操作するが、その高温処理対象である有機性固形物を分解する好熱菌の種類によって異なるものであり、例えば、下水余剰汚泥から分離した好熱菌の場合には、微生物(好熱菌)による可溶化反応と熱による物理化学的な熱分解の両作用が同時に効率よく十分に生じうるように、高温条件における温度を55〜75℃の温度範囲、好ましくは約65℃で操作するようにする。いずれにしても、微生物(好熱菌)による可溶化反応と熱による物理化学的な熱分解の両作用が同時に効率よく十分に生じうるように、微生物の種類に応じて、50〜90℃の温度範囲となるように設定すればよい。ただし、好気条件における可溶化の方が、可溶化が速なるので好ましい。
【0024】
また、可溶化槽4で好気的に微生物処理するための装置としては、従来の散気管を具備してなるもの、嫌気性で微生物分解をするための装置としては、槽内の液を循環することにより攪拌する方法、生成ガスを循環曝気することにより攪拌する方法、攪拌翼などの攪拌機を設置する方法、活性微生物固定手段を有する方法など、活性微生物と処理対象汚泥とを効率的に接触させる手段を具備したものであれば、使用可能である。この場合、可溶化槽としては、バッチ式、または連続式のいずれでも使用可能である。
【0025】
このように、可溶化槽4で可溶化した処理液は、経路5を経て生物処理槽6に導入され、経路7を経て第一固液分離装置2から排出される上澄液とともに、生物処理槽6にて好気性生物処理が行われる。なお、好気性生物処理とは、生物酸化によって有機物が二酸化炭素もしくは水などの無機物に分解されることをいい、用いられる好気性微生物は、下水浄化のための活性汚泥法において用いられるグラム陰性またはグラム陽性桿菌、例えば、シュードモナス属およびバチルス属であり、これらの接種菌体は、通常の下水浄化処理プラントから得られるものである。この場合、生物処理槽6の温度は、10〜50℃、通常は、20〜30℃の温度範囲となるように操作するが、より効率よく処理するには、高温の方が好ましく、例えば、下水余剰汚泥から分離した中温菌を用いる場合には、35〜45℃の温度範囲で操作するようにする。いずれにしても、微生物による酸化分解反応が効率よく十分に生じうるように、上記温度範囲の中から最適な温度条件を選択して操作するようにする。なお、この場合、生物処理槽6としては、バッチ式または連続式のいずれでも使用可能である。
【0026】
ついで、このように生物処理槽6で処理された処理水は、経路8を経て第二固液分離装置(沈殿槽)9に導入されて固液分離され、固液分離された上澄液は経路10を経て放流先の放出基準に従い、必要であれば、硝化脱窒もしくはオゾン処理などの三次処理を施し、河川放流または修景用水などとして利用される。
【0027】
一方、第二固液分離装置9で分離された汚泥の一部は、経路11を経て経路5に合流して生物処理槽6に返送されるようになっている。なお、経路11を経て送られる汚泥量は生物処理槽6での微生物の保持量により決定される。
【0028】
図2は、図1の処理装置において、第二固液分離装置9で分離された汚泥の一部を経路12を経て可溶化槽4に返送するようにしたものである。このようにすることで、余剰汚泥量の低減を図ることが可能である。
【0029】
図3は、図2の処理装置において、第二固液分離装置9から可溶化槽4に至る経路12に濃縮装置13を設けたものである。このようにすることで、可溶化槽4での汚泥処理量を適正に調整(汚泥処理量を低減)しうるので、可溶化槽が過大になることなく、設備コストの増加を抑えることができる。
【0030】
次に、図1に示すような構成の処理装置において、以下のような実験条件で可溶化することにより、発泡状況、可溶化率および可溶化槽排気ガス中のCO2 濃度の調査を行ったので、説明する。
(1)実験条件
a.実験装置の大きさ
第一固液分離装置の容量 1リットル
生物処理槽の容量 40リットル
第二固液分離装置の容量 7リットル
可溶化槽の容量 2リットル
b.曝気量
生物処理槽 0.1vvm
可溶化槽 0.5vvm
c.pH 原水pHを塩酸で8以下にした。
d.曝気槽の温度 20℃
e.HRT
生物処理槽 4日
可溶化槽 1日
f.被処理水の種類 豆腐製造工場の廃水
g.被処理水量 10リットル/日
h.可溶化槽の温度 65℃
可溶化槽の処理量 2リットル/日
i.第二固液分離装置から生物処理槽へは、10リットル/日返送した。また、実験装置のポンプ、配管の目詰まりが起きないように、原廃水は、0.3mmのメッシュの篩いを予め通して夾雑物を除去しておいた。
j.実験手順
実験開始当初は、可溶化槽に植菌せずに、熱による可溶化のみを行った。そして、実験開始から9日目に、可溶化槽に汚泥可溶化好熱性細菌(バチルスステアロサーモフィラス)SPT2−1株の培養液200ミリリットルを種菌として添加した。
(2)各種調査結果
▲1▼ 発泡状況
実験開始から15日目に以下の表1に示す各処理液の適量を2リットルのメスシリンダに分取して散気管にて曝気し、発泡状況を調査した。メスシリンダへの通気量は、0.5リットル/min.とした。表1にその発泡状況を示す。
【0031】
【表1】
【0032】
表1に明らかなように、第一固液分離装置で分離した有機性固形物は、曝気により、壊れにくい粘性のある大気泡となったが、可溶化処理することにより大気泡の生成は少なくなり、原廃水程度まで発泡性は改善された。生物処理槽での生物処理後には、処理水は上澄液により希釈されるため、泡の積層は認められなかった。
▲2▼ 可溶化率
可溶化槽における可溶化率の推移を図4に示す。図4の横軸は実験日数を示し、縦軸は可溶化率(%)を示す。可溶化率は、以下の式で定義される数値である。
【0033】
可溶化槽への投入汚泥の固形物濃度をAとし、可溶化処理後の汚泥中の固形物濃度をBとした場合、
可溶化率=((A−B)/A)×100
図4に示すように、汚泥可溶化好熱性細菌の植菌をしない9日目までは、固形物はほとんど可溶化されないが、実験開始から9日目における好熱性細菌の添加により70%以上の固形物の可溶化が確認された。
▲3▼ CO2 濃度
図5は、可溶化槽の排気ガス中のCO2 濃度の推移を示す。図5の横軸は各実験日における実験時間を示し、縦軸は可溶化槽の排気ガス中のCO2 濃度(ppm)である。図5において、各符号「□」、「○」、「●」、「▲」、「■」は、それぞれ、実験開始から5日目、8日目、11日目、15日目、18日目を示す。好熱菌の添加の効果により、11日目以降ではCO2 の発生が顕著であり、好熱菌が活発に活動していることが推定される。なお、「●」、「▲」、「■」の推移図において、CO2 濃度の増減が見られるが、CO2 濃度が上昇する直前、すなわち、図5において、点aが有機性固形物を可溶化槽に添加した時点を示す。 図6、図7は、本発明の有機性廃水の処理方法を適用することができる有機性廃水処理装置の別の実施例の概略構成図である。
【0034】
図6に示すように、第一固液分離装置2で分離された固形分を可溶化処理する可溶化槽14と第二固液分離装置9で分離された汚泥の一部を可溶化処理する可溶化処理槽4が異なれば、固形物の性状に応じて運転条件を別個に設定できるので好ましい。
【0035】
図7に示すように、第一固液分離装置2から可溶化槽14に至る経路15に濃縮装置16を設ければ、可溶化槽14での汚泥処理量を適正に調整(汚泥処理量を低減)しうるので、可溶化槽が過大になることなく、設備コストの増加を抑えることができる。
【0036】
図8は、本発明の有機性廃水の処理方法を適用することができる有機性廃水処理装置のさらに別の実施例の概略構成図である。
【0037】
図8に示すように、原廃水が経路1を経て第一固液分離装置(沈殿槽)2に導入され、有機性固形物と上澄液に固液分離される。有機性固形物は経路3を経て可溶化槽4に導入される。可溶化槽4で高温条件で嫌気的もしくは好気的に可溶化された処理液は後処理装置(後曝気槽)17に導入され、可溶化された有機物は後処理装置17において生物化学的酸化により無機化される。後処理された処理液は、経路18を経て生物処理槽6に導入される。この有機性廃水処理装置によれば、生物処理槽6に流入する処理液の有機物負荷が低減され、発泡性をより抑制できるという効果がある。
【0038】
図9は、図8の生物処理槽6に後続する処理液経路に第二固液分離装置9を設け、第二固液分離装置9で分離された汚泥の一部を経路19を経て生物処理槽6に返送し、図10は、図9の第二固液分離装置9で分離された汚泥の一部を経路20を経て可溶化槽4に返送し、図11は、図9の第二固液分離装置9で分離された汚泥の一部を経路20を経て濃縮装置21で濃縮した後に可溶化槽4に返送するように構成したものである。
【0039】
図12は、図8の後処理後の処理液を生物処理槽6に導入せずに外部に放出するもので、この有機性廃水処理装置によれば、既存の生物処理槽6の生物処理に影響を与えることがないという効果がある。
【0040】
図13は、図12の後処理装置17に後続する処理液経路に第二固液分離装置(沈殿槽)22を設け、第二固液分離装置22で固液分離された汚泥の一部を経路23を経て可溶化槽4に返送するようにしたものである。この有機性廃水処理装置によれば、図12の有機性廃水処理装置に比べ、可溶化処理液の水質をより向上しうるという効果がある。
【0041】
図14は、図13の第二固液分離装置22で分離された処理水を経路24を経て第一固液分離装置2で分離された上澄液に加えたものを生物処理槽6で生物処理するように構成したものである。このようにすることで、処理水の水質を極めて良好に維持することができるという効果がある。
【0042】
【発明の効果】
本発明は上記のように構成されているので、次の効果を奏する。
【0043】
請求項1記載の発明によれば、油脂、蛋白質などの有機性固形物を含有する有機性廃水を、簡単な方法で処理することが可能な低コストの有機性廃水の処理方法を提供することができる。
【0044】
また、処理水の水質を向上することができる。
【0045】
さらに、生物処理装置内の微生物量を適正に維持することができる。
【0046】
請求項2記載の発明によれば、余剰汚泥量を低減することができる。
【0047】
請求項3記載の発明によれば、固形物の性状に応じて可溶化処理装置の運転条件を別個に設定できるという効果がある。
【0048】
請求項4記載の発明によれば、可溶化処理装置を過大にすることなく、可溶化処理することができる。
【0049】
請求項5記載の発明によれば、生物処理装置へ流入する処理液の有機物負荷が低減され、発泡性をより抑制できるという効果がある。
【0050】
また、処理水の水質を向上することができる。
【0051】
さらに、生物処理装置内の微生物量を適正に維持することができる。
【0052】
さらに、請求項6記載の発明によれば、余剰汚泥量を低減することができる。
【0057】
請求項7記載の発明によれば、請求項1記載の処理方法を実施するに好適な処理装置を提供することができる。
【0060】
請求項8記載の発明によれば、請求項2記載の処理方法を実施するに好適な処理装置を提供することができる。
【0061】
請求項9記載の発明によれば、請求項3記載の処理方法を実施するに好適な処理装置を提供することができる。
【0063】
請求項10記載の発明によれば、請求項4記載の処理方法を実施するに好適な処理装置を提供することができる。
【0064】
請求項11記載の発明によれば、請求項5記載の処理方法を実施するに好適な処理装置を提供することができる。
【0067】
請求項12記載の発明によれば、請求項6記載の処理方法を実施するに好適な処理装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の有機性廃水の処理方法を適用することができる有機性廃水の処理装置の一実施例の概略構成図である。
【図2】本発明の有機性廃水の処理方法を適用することができる有機性廃水の処理装置の別の実施例の概略構成図である
【図3】本発明の有機性廃水の処理方法を適用することができる有機性廃水の処理装置のさらに別の実施例の概略構成図である。
【図4】本発明の有機性廃水の処理方法を実施した場合において、可溶化率の推移を示す図である。
【図5】本発明の有機性廃水の処理方法を実施した場合において、可溶化槽の排気ガス中のCO2 濃度の推移を示す図である。
【図6】本発明の有機性廃水の処理方法を適用することができる有機性廃水の処理装置のさらに別の実施例の概略構成図である。
【図7】本発明の有機性廃水の処理方法を適用することができる有機性廃水の処理装置のさらに別の実施例の概略構成図である。
【図8】本発明の有機性廃水の処理方法を適用することができる有機性廃水の処理装置のさらに別の実施例の概略構成図である。
【図9】本発明の有機性廃水の処理方法を適用することができる有機性廃水の処理装置のさらに別の実施例の概略構成図である。
【図10】本発明の有機性廃水の処理方法を適用することができる有機性廃水の処理装置のさらに別の実施例の概略構成図である。
【図11】本発明の有機性廃水の処理方法を適用することができる有機性廃水の処理装置のさらに別の実施例の概略構成図である。
【図12】本発明の有機性廃水の処理方法を適用することができる有機性廃水の処理装置のさらに別の実施例の概略構成図である。
【図13】本発明の有機性廃水の処理方法を適用することができる有機性廃水の処理装置のさらに別の実施例の概略構成図である。
【図14】本発明の有機性廃水の処理方法を適用することができる有機性廃水の処理装置のさらに別の実施例の概略構成図である。
【図15】従来の有機性廃水の処理装置の概略構成図である。
【符号の説明】
2…第一固液分離装置
4、14…可溶化槽
6…生物処理槽
9、22…第二固液分離装置
13、16、21…濃縮装置
17…後処理装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating an organic wastewater containing organic solids, for example, an organic wastewater containing organic solids discharged from a food factory or a pharmaceutical factory using a biological reaction, and The present invention relates to the processing apparatus.
[0002]
[Background Art and Problems to be Solved by the Invention]
Conventionally, as a general treatment method of this kind of organic wastewater, first, the organic components in organic sludge are biologically decomposed by aerobic or anaerobic microbial decomposition such as aerobic digestion method and anaerobic methane fermentation method. Digested to decompose organic matter into gas components such as carbon dioxide and methane gas, and then treated liquid containing microbial biomass (mainly microbial cells) generated by such biological digestion and untreated residual sludge The liquid is separated into solid and liquid in a sedimentation tank or the like to obtain treated water and concentrated liquid (sludge) as a supernatant, and the sludge is treated by an appropriate method. For example, as shown in FIG. 15, organic wastewater such as sewage introduced into the
[0003]
However, if wastewater containing organic solids such as fats and oils (for example, wastewater associated with the production of tofu, yuba, etc.) is treated as it is with a normal activated sludge treatment method, foaming occurs and treatment cannot be performed well. . Therefore, activated sludge treatment is performed after the solid content causing foaming is separated by a solid-liquid separation method such as flotation separation. According to this method, although the solid content can be separated, there is a pollution that proteins contained in the solid content rot during storage in the storage tank and generate a bad odor. Is necessary.
[0004]
The present invention has been made in view of such problems of the prior art, and its purpose is to treat organic wastewater containing organic solids such as fats and oils by a simple method. It is an object of the present invention to provide a low-cost organic wastewater treatment method and a treatment apparatus for the same.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention separates organic waste water containing organic solids (oils and fats, proteins, etc.) that cause foaming or rot into solids and supernatants with a solid-liquid separator, This solid content is solubilized with a solubilization apparatus to decompose the foamable or spoilage substance, and then processed with a biological treatment apparatus or a post-treatment apparatus.
[0006]
Thus, according to the present invention, it is possible to treat organic wastewater while suppressing foaming or decay without using complicated and expensive treatment equipment.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a method for treating organic wastewater containing organic solids, wherein the organic wastewater to be treated is solid-liquid separated into a solid content and a supernatant by a first solid-liquid separation device, and the solid content is allowed. The gist of the treatment method is organic wastewater, which is solubilized by a solubilizing apparatus and biologically treating the solubilized processing solution and the supernatant by a biological processing apparatus.
[0008]
The present invention is characterized in that the organic solid separated by the first solid-liquid separator is solubilized by a solubilizer and then the foamable substance is decomposed and then biologically treated. Therefore, it is possible to reliably treat the organic wastewater while suppressing the foaming phenomenon.
[0009]
As a processing apparatus therefor, a biological treatment apparatus is arranged in a treatment liquid path following the first solid-liquid separation apparatus, and a treatment liquid path is provided from the first solid-liquid separation apparatus to the biological treatment apparatus via the solubilization treatment apparatus. Those having the above configuration are preferable.
[0010]
The solid-liquid separation device means, for example, a precipitation device, a flotation separation device, a centrifugal separation device, or a membrane separation device.
[0011]
As the biological treatment apparatus, any type of aerobic biological treatment or anaerobic biological treatment can be applied. The aeration treatment apparatus used for the aerobic biological treatment may be an aeration method or a mechanical aeration method as long as it has an aeration means. The aeration treatment is preferably performed at room temperature with an aeration rate of 0.1 to 0.5 vvm (vvm = aeration amount / aeration tank capacity / min.) So that aerobic digestion degradation is allowed. Depending on the load, it may be processed at a higher temperature with an air flow exceeding this. The liquid to be treated is preferably adjusted to a pH of 5.0 to 8.0. In addition, in the aeration apparatus, in order to promote aerobic digestion and decomposition, microorganisms such as yeast, aluminum sulfate, polyaluminum chloride, ferric chloride, ferrous sulfate, etc. for promoting floc formation A flocculant may be added. For the aerobic biological treatment, a device capable of aerobic treatment other than the aeration treatment device can be used. In addition, as an apparatus used for anaerobic biological treatment, a method of stirring by circulating the liquid in the tank, a method of stirring by circulating aeration of the generated gas, a method of installing a stirrer such as a stirring blade, an active microorganism Any means having a means for efficiently bringing the active microorganisms into contact with the organic waste water to be treated, such as a method having a fixing means, can be used.
[0012]
In the solubilization treatment, sludge is decomposed by thermophilic bacteria (for example, cells such as Bacillus stearothermophilus may be added), but enzymatic decomposition (for example, protease, lipase, glycosidase, etc.) is performed. You may implement in combination with various methods, such as what was added individually or in combination. As the solubilization treatment method, an ozone method, an ultrasonic method, a crushing method, a thermal alkali method, an ultraviolet ray method, a supercritical method, a subcritical method, an oxidizing agent charging method, a catalytic oxidation method, or the like may be used.
[0013]
As solubilization conditions in the solubilization treatment apparatus, for example, the following conditions can be adopted in order to promote solubilization by heat and thermophilic bacteria.
(1) Temperature: 50-90 ° C
(2) Sludge concentration: 1000 mg / liter or more, preferably 5000 mg / liter or more (3) pH: 5-9, preferably 7-8
(4) Environment: aerobic or slightly aerobic condition (5) Time: Hydrodynamic residence time of organic wastewater to be treated (solubilization rate of organic solids is high) HRT). HRT is obtained based on the amount of influent and the effective volume of the reaction tank, and is represented by the following relational expression.
[0014]
HRT = reactor volume (liter) / flow rate per unit time (liter / hr)
Moreover, in order to improve the quality of treated water, it is preferable to provide a second solid-liquid separation device in a treatment liquid path following the biological treatment apparatus. The first solid-liquid separation device and the second solid-liquid separation device may be the same type of device or different types of devices.
[0015]
Further, in order to smoothly execute the biological treatment in the biological treatment device, a part of the sludge separated by the second solid-liquid separation device is returned to the biological treatment device according to the amount of microorganisms retained in the biological treatment device. It is preferable. In the case where the second solid-liquid separation device is not provided, a carrier or the like may be added in order to retain microorganisms in the biological treatment device.
[0016]
Furthermore, in order to reduce the amount of excess sludge, it is preferable to return a part of the sludge separated by the second solid-liquid separation device to the solubilization treatment device.
[0017]
If the solubilization treatment device that solubilizes the solid content separated by the first solid-liquid separation device and the solubilization treatment device that solubilizes a part of the sludge separated by the second solid-liquid separation device are different, It is preferable because the operating conditions can be set separately according to the properties of the object.
[0018]
And in order to make the amount of treatment sludge in the solubilization treatment apparatus an appropriate amount (to reduce the amount of treatment sludge), a part of the sludge separated by the first solid-liquid separation device or the second solid-liquid separation device, It is preferable to return to the solubilization apparatus after concentrating with a concentration apparatus. The concentrating device refers to a device such as a centrifugal concentrating device, for example.
[0019]
In addition, the organic waste water to be treated is solid-liquid separated into a solid content and a supernatant liquid by the first solid-liquid separation device, the solid content is solubilized by the solubilization processing device, and the treatment liquid after the solubilization treatment is processed afterwards. It can also post-process with a processing apparatus and can biologically process the processing liquid after a post-processing, and the said supernatant liquid with a biological processing apparatus. The post-treatment device refers to a normal activated sludge device or a membrane-separated activated sludge device. In this way, the solubilized treatment liquid is post-treated by the post-treatment device and flows into the biological treatment device. There is an effect that it is possible to reduce the organic load of the treatment liquid and to further suppress foamability. Further, if the post-treatment treatment liquid and the supernatant separated by the first solid-liquid separation device are biologically treated by the biological treatment device, the quality of the treated water can be further improved. A second solid-liquid separation device is provided in the treatment liquid path following this biological treatment device, and a part of the sludge separated by the second solid-liquid separation device is returned to the biological treatment device, or the second solid-liquid separation device If part of the sludge separated in
[0020]
Further, in the method for treating organic wastewater, according to the method of releasing the treatment liquid after the post-treatment without performing the biological treatment, the organic treatment can be performed without affecting the biological treatment of the existing biological treatment apparatus. There is an effect that the wastewater treatment apparatus can be operated.
[0021]
In addition, the organic wastewater to be treated is solid-liquid separated into a solid and a supernatant with a first solid-liquid separator, the supernatant is biologically treated with a biological treatment device, and the solid content can be treated with a solubilization treatment device. After the solubilization treatment, the treatment liquid after the solubilization treatment is post-treated by the post-treatment device, and the treatment liquid after the post-treatment is solid-liquid separated into sludge and treated water by the second solid-liquid separation device. A part of the sludge separated in
[0022]
【Example】
Examples of the present invention will be described below. FIG. 1 is a schematic configuration diagram of an embodiment of an organic wastewater treatment apparatus to which the organic wastewater treatment method of the present invention can be applied.
[0023]
As shown in FIG. 1, raw wastewater is introduced into a first solid-liquid separation device (precipitation tank) 2 via a
[0024]
In addition, as a device for aerobically treating microorganisms in the
[0025]
In this way, the treatment liquid solubilized in the
[0026]
Then, the treated water treated in the
[0027]
On the other hand, a part of the sludge separated by the second solid-
[0028]
2 shows a part of the sludge separated by the second solid-
[0029]
FIG. 3 shows a processing apparatus of FIG. 2 in which a concentrating
[0030]
Next, in the treatment apparatus configured as shown in FIG. 1, the state of foaming, the solubilization rate, and the CO 2 concentration in the solubilization tank exhaust gas were investigated by solubilization under the following experimental conditions. So I will explain.
(1) Experimental conditions a. Size of experimental apparatus Capacity of first solid-liquid separation apparatus Capacity of 1 liter
Solubilization tank 0.5vvm
c. pH The raw water pH was adjusted to 8 or less with hydrochloric acid.
d.
e. HRT
j. Experimental procedure At the beginning of the experiment, only solubilization by heat was performed without inoculating the solubilization tank. On the 9th day from the start of the experiment, 200 ml of a culture solution of sludge solubilized thermophilic bacterium (Bacillus stearothermophilus) SPT2-1 strain was added to the solubilization tank as an inoculum.
(2) Results of various investigations (1) Foaming conditions On the 15th day from the start of the experiment, the appropriate amount of each treatment solution shown in Table 1 below was dispensed into a 2 liter graduated cylinder and aerated with an air diffuser. investigated. The air flow rate to the measuring cylinder was 0.5 liter / min. Table 1 shows the foaming situation.
[0031]
[Table 1]
[0032]
As is apparent from Table 1, the organic solid separated by the first solid-liquid separation device became viscous large bubbles that were hard to break by aeration, but the generation of large bubbles was small by solubilization treatment. The foamability was improved to the level of raw wastewater. After the biological treatment in the biological treatment tank, the treated water was diluted with the supernatant liquid, and thus no foam layering was observed.
(2) Solubilization rate The transition of the solubilization rate in the solubilization tank is shown in FIG. The horizontal axis in FIG. 4 indicates the number of days of experiment, and the vertical axis indicates the solubilization rate (%). The solubilization rate is a numerical value defined by the following formula.
[0033]
When the solid matter concentration of the sludge charged into the solubilization tank is A, and the solid matter concentration in the sludge after the solubilization treatment is B,
Solubilization rate = ((A−B) / A) × 100
As shown in FIG. 4, the solid matter is hardly solubilized until
(3) CO 2 concentration FIG. 5 shows the transition of the CO 2 concentration in the exhaust gas of the solubilization tank. The horizontal axis of FIG. 5 shows the experimental time on each experimental day, and the vertical axis is the CO 2 concentration (ppm) in the exhaust gas of the solubilization tank. In FIG. 5, the symbols “□”, “O”, “●”, “▲”, and “■” indicate the fifth, eighth, eleventh, fifteenth, and eighteenth days from the start of the experiment, respectively. Showing eyes. Due to the effect of the addition of thermophile, CO 2 is remarkably generated after the 11th day, and it is estimated that the thermophile is actively active. In the transition graphs of “●”, “▲”, and “■”, the CO 2 concentration increases and decreases, but immediately before the CO 2 concentration increases, that is, in FIG. The time when added to the solubilization tank is shown. 6 and 7 are schematic configuration diagrams of another embodiment of the organic wastewater treatment apparatus to which the organic wastewater treatment method of the present invention can be applied.
[0034]
As shown in FIG. 6, a part of sludge separated by the
[0035]
As shown in FIG. 7, if a concentrating device 16 is provided in the
[0036]
FIG. 8 is a schematic configuration diagram of still another embodiment of the organic wastewater treatment apparatus to which the organic wastewater treatment method of the present invention can be applied.
[0037]
As shown in FIG. 8, the raw waste water is introduced into the first solid-liquid separator (precipitation tank) 2 via the
[0038]
9 is provided with a second solid-
[0039]
FIG. 12 shows that the processing liquid after the post-treatment shown in FIG. 8 is discharged to the outside without being introduced into the
[0040]
13 is provided with a second solid-liquid separation device (precipitation tank) 22 in the treatment liquid path following the
[0041]
FIG. 14 shows the
[0042]
【The invention's effect】
Since this invention is comprised as mentioned above, there exists the following effect.
[0043]
According to the first aspect of the present invention, there is provided a low-cost organic wastewater treatment method capable of treating organic wastewater containing organic solids such as fats and oils by a simple method. Can do.
[0044]
Moreover, the quality of treated water can be improved.
[0045]
Furthermore, the amount of microorganisms in the biological treatment apparatus can be properly maintained.
[0046]
According to invention of
[0047]
According to invention of
[0048]
According to the fourth aspect of the invention, the solubilization treatment can be performed without making the solubilization treatment apparatus excessive.
[0049]
According to the invention described in
[0050]
Moreover, the quality of treated water can be improved.
[0051]
Furthermore, the amount of microorganisms in the biological treatment apparatus can be properly maintained.
[0052]
Furthermore, according to the invention described in
[0057]
According to the invention described in
[0060]
According to the invention described in
[0061]
According to invention of
[0063]
According to invention of
[0064]
According to the invention described in
[0067]
According to invention of
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an embodiment of an organic wastewater treatment apparatus to which an organic wastewater treatment method of the present invention can be applied.
FIG. 2 is a schematic configuration diagram of another embodiment of an organic wastewater treatment apparatus to which the organic wastewater treatment method of the present invention can be applied. FIG. 3 shows the organic wastewater treatment method of the present invention. It is a schematic block diagram of another Example of the processing apparatus of the organic wastewater which can be applied.
FIG. 4 is a graph showing the transition of the solubilization rate when the organic wastewater treatment method of the present invention is carried out.
FIG. 5 is a graph showing changes in CO 2 concentration in the exhaust gas of the solubilization tank when the organic wastewater treatment method of the present invention is carried out.
FIG. 6 is a schematic configuration diagram of still another embodiment of an organic wastewater treatment apparatus to which the organic wastewater treatment method of the present invention can be applied.
FIG. 7 is a schematic configuration diagram of still another embodiment of an organic wastewater treatment apparatus to which the organic wastewater treatment method of the present invention can be applied.
FIG. 8 is a schematic configuration diagram of still another embodiment of an organic wastewater treatment apparatus to which the organic wastewater treatment method of the present invention can be applied.
FIG. 9 is a schematic configuration diagram of still another embodiment of an organic wastewater treatment apparatus to which the organic wastewater treatment method of the present invention can be applied.
FIG. 10 is a schematic configuration diagram of still another embodiment of an organic wastewater treatment apparatus to which the organic wastewater treatment method of the present invention can be applied.
FIG. 11 is a schematic configuration diagram of still another embodiment of an organic wastewater treatment apparatus to which the organic wastewater treatment method of the present invention can be applied.
FIG. 12 is a schematic configuration diagram of still another embodiment of an organic wastewater treatment apparatus to which the organic wastewater treatment method of the present invention can be applied.
FIG. 13 is a schematic configuration diagram of still another embodiment of an organic wastewater treatment apparatus to which the organic wastewater treatment method of the present invention can be applied.
FIG. 14 is a schematic configuration diagram of still another embodiment of an organic wastewater treatment apparatus to which the organic wastewater treatment method of the present invention can be applied.
FIG. 15 is a schematic configuration diagram of a conventional organic wastewater treatment apparatus.
[Explanation of symbols]
2 ... 1st solid-
Claims (12)
さらに前記第二固液分離装置で分離された汚泥の一部を生物処理装置に返送することを特徴とする有機性廃水の処理方法。In a method for treating organic wastewater containing organic solids comprising fats or oils, the organic wastewater to be treated is solid-liquid separated into a solid content and a supernatant by a first solid-liquid separator, and the solid content is separated. Solubilization treatment with thermophilic bacteria in a solubilization treatment device decomposes foaming or spoilage substances, biological treatment of the treatment liquid after the solubilization treatment and the above supernatant with a biological treatment device, treatment after biological treatment The liquid is solid-liquid separated into treated water and sludge by the second solid-liquid separator,
Furthermore, a part of sludge separated by said 2nd solid-liquid separator is returned to a biological treatment apparatus, The processing method of organic wastewater characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000179944A JP3900796B2 (en) | 2000-06-15 | 2000-06-15 | Method and apparatus for treating organic wastewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000179944A JP3900796B2 (en) | 2000-06-15 | 2000-06-15 | Method and apparatus for treating organic wastewater |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002001384A JP2002001384A (en) | 2002-01-08 |
JP3900796B2 true JP3900796B2 (en) | 2007-04-04 |
Family
ID=18681125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000179944A Expired - Lifetime JP3900796B2 (en) | 2000-06-15 | 2000-06-15 | Method and apparatus for treating organic wastewater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3900796B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5016839B2 (en) * | 2006-04-19 | 2012-09-05 | 高砂熱学工業株式会社 | Organic wastewater treatment system |
JP4579866B2 (en) * | 2006-06-05 | 2010-11-10 | 住重環境エンジニアリング株式会社 | Waste water treatment apparatus and waste water treatment method |
JP2008012409A (en) * | 2006-07-04 | 2008-01-24 | Sumiju Kankyo Engineering Kk | Waste water treatment apparatus and waste water treatment method |
JP4579878B2 (en) * | 2006-07-13 | 2010-11-10 | 住重環境エンジニアリング株式会社 | Waste water treatment apparatus and waste water treatment method |
JP2008178841A (en) * | 2007-01-26 | 2008-08-07 | Tokiwa Reitou Shokuhin Kk | Method for treating yu (tofu whey) and liquid fertilizer and deodorization liquid produced by this method |
JP6403504B2 (en) * | 2014-09-03 | 2018-10-10 | 水ing株式会社 | Method and apparatus for treating organic wastewater containing fats and oils |
JP2016221491A (en) * | 2015-06-03 | 2016-12-28 | オルガノ株式会社 | Organic wastewater treatment method and organic wastewater treatment equipment |
-
2000
- 2000-06-15 JP JP2000179944A patent/JP3900796B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002001384A (en) | 2002-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1302446B1 (en) | Method for sludge reduction in a waste water treatment system | |
JP3360076B2 (en) | Organic wastewater treatment method | |
JPH0910791A (en) | Activated sludge treatment method and activated sludge treatment apparatus therefor | |
JP3900796B2 (en) | Method and apparatus for treating organic wastewater | |
JP4404976B2 (en) | Organic wastewater treatment method and organic wastewater treatment apparatus | |
JPH05277486A (en) | Anaerobic treatment method for organic wastewater | |
JP3591086B2 (en) | Biological treatment of organic wastewater | |
JP3959843B2 (en) | Biological treatment method for organic drainage | |
JP4406749B2 (en) | Organic wastewater treatment method and organic wastewater treatment apparatus | |
JP2002361279A (en) | Method and apparatus for treating waste water | |
JP3816357B2 (en) | Novel microorganisms and organic wastewater treatment equipment using the same | |
JPH0975978A (en) | Activated sludge treatment method and activated sludge treatment apparatus therefor | |
KR20020023665A (en) | Method and apparatus of treating organic waste water | |
JP2008155075A (en) | Wastewater treatment method and treatment apparatus | |
JP2003334589A (en) | Wastewater treatment method and treatment apparatus therefor | |
JP2007209889A (en) | Surplus sludge treatment method | |
JPH10128376A (en) | Method for treating organic waste water | |
JP2001058196A (en) | Method and apparatus for treating organic waste | |
JP5438883B2 (en) | Method for treating organic wastewater and chemicals used in the method | |
JPH0788495A (en) | Aerobic treatment of organic wastewater | |
JP3333127B2 (en) | Organic wastewater treatment method | |
JP2003340485A (en) | Method for treating organic waste water and apparatus therefor | |
JP2002186988A (en) | Wastewater treatment device and method for treating wastewater | |
JP2024099484A (en) | Methods for Treating Organic Wastewater | |
JP2002166289A (en) | Method and apparatus for treating organic wastewater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050513 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050819 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051012 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061006 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061222 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061225 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3900796 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100112 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100112 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110112 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110112 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130112 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130112 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130112 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140112 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |