JP3248233B2 - Activated sludge treatment method - Google Patents
Activated sludge treatment methodInfo
- Publication number
- JP3248233B2 JP3248233B2 JP11156592A JP11156592A JP3248233B2 JP 3248233 B2 JP3248233 B2 JP 3248233B2 JP 11156592 A JP11156592 A JP 11156592A JP 11156592 A JP11156592 A JP 11156592A JP 3248233 B2 JP3248233 B2 JP 3248233B2
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- aeration tank
- returned
- heated
- aeration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は有機性排水を好気的に処
理する活性汚泥処理法、特に余剰汚泥の発生量を低減す
ることができる活性汚泥処理法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an activated sludge treatment method for aerobically treating organic wastewater, and more particularly to an activated sludge treatment method capable of reducing the amount of excess sludge generated.
【0002】[0002]
【従来の技術】有機性排水の好気的処理法としての活性
汚泥処理法は、原水を返送汚泥とともに曝気槽に導入し
て曝気処理し、曝気液を固液分離して、分離汚泥の一部
を曝気槽に返送する方法である。この方法は比較的低コ
ストで効率よく有機物を分解できるが、難脱水性の余剰
汚泥が大量に発生し、その処理に困難を伴う。2. Description of the Related Art Activated sludge treatment as an aerobic treatment method for organic wastewater involves introducing raw water into an aeration tank together with return sludge, performing aeration treatment, and separating aerated liquid into solid and liquid to form a separated sludge. This is a method of returning the part to the aeration tank. This method can efficiently decompose organic substances at a relatively low cost, but generates a large amount of surplus sludge that is difficult to dehydrate, and it is difficult to treat the sludge.
【0003】活性汚泥処理における余剰汚泥量を低減さ
せる方法を機能別に大別すると、次のように分けられ
る。 1)曝気槽内の汚泥濃度を高め、SRTを長くすること
により自己分解する汚泥量を多くし、余剰汚泥量を減少
させる。 2)曝気槽内の水温を高めることにより自己分解する汚
泥量を多くし、余剰汚泥量を減少させる。 3)曝気槽内に活性汚泥以外の生物、例えば原生動物や
嫌気性細菌を増殖させ、その微生物により汚泥を分解さ
せる。 4)余剰汚泥を、別途高温高圧下の物理学的処理や、酵
素剤、酸化剤等の薬品処理を行って汚泥を分解する。さ
らに分解時の溶出液を活性汚泥処理する。[0003] Methods of reducing the amount of excess sludge in activated sludge treatment are roughly classified according to their functions as follows. 1) Increasing the sludge concentration in the aeration tank and increasing the SRT to increase the amount of sludge to be self-decomposed and reduce the amount of excess sludge. 2) Increasing the temperature of water in the aeration tank increases the amount of self-decomposing sludge and reduces the amount of excess sludge. 3) Organisms other than activated sludge, such as protozoa and anaerobic bacteria, are grown in the aeration tank, and the sludge is decomposed by the microorganisms. 4) Excess sludge is separately subjected to physical treatment under high temperature and high pressure and chemical treatment such as an enzymatic agent and an oxidizing agent to decompose the sludge. Further, the eluate at the time of decomposition is treated with activated sludge.
【0004】上記1)の方法では、汚泥の自己分解量は
増加するが、汚泥の性状によっては固液分離槽での固液
分離が不十分となり、処理水に多量の汚泥が混入する可
能性がある。また曝気槽の通気量を大幅に高める必要も
あり、ランニングコストが増加するという問題点があ
る。In the method 1), the amount of self-decomposition of the sludge increases, but depending on the properties of the sludge, the solid-liquid separation in the solid-liquid separation tank becomes insufficient, and a large amount of sludge may be mixed into the treated water. There is. In addition, it is necessary to greatly increase the ventilation amount of the aeration tank, and there is a problem that the running cost increases.
【0005】上記2)の方法は汚泥の自己分解速度を高
める方法としては最も有効で、種々の性状の汚泥に適用
できるが、実際に曝気槽内の水温を高くすることは、特
に高温排水でない限り実用的でない。仮に水温を高くし
た場合でも、水温上昇により通気量が増加してランニン
グコストが増加するとともに、汚泥が分散状態となりや
すく、処理効率が低下するという問題点がある。The above method 2) is most effective as a method for increasing the rate of self-decomposition of sludge, and can be applied to sludge of various properties. However, actually increasing the temperature of water in an aeration tank is not particularly high-temperature drainage. Not as practical as possible. Even if the water temperature is increased, there is a problem that the air flow increases due to the increase in the water temperature, the running cost increases, the sludge tends to be dispersed, and the treatment efficiency decreases.
【0006】また上記3)、4)の方法においても効果
は十分に認められているが、処理フローや装置が複雑化
し、通気動力、熱源または薬品等のランニングコストが
大幅に増加するという問題点がある。このように従来の
方法では、余剰汚泥の低減によるランニングコストの低
減メリットが十分に生かされていないのが現状である。Although the effects of the above methods 3) and 4) are sufficiently recognized, there is a problem that the processing flow and the equipment become complicated, and the running cost of the ventilation power, heat source, chemicals, etc., is greatly increased. There is. As described above, in the conventional method, at present, the advantage of reducing the running cost by reducing the excess sludge is not fully utilized.
【0007】一方、特開昭55−34175号には、余
剰汚泥を60〜100℃で加熱処理したのち、好気性消
化する方法が開示されている。しかし、この方法では、
加熱温度が高いため細胞が破壊されて液中のCODが高
くなり、そのため専用の消化槽を必要とするという問題
点がある。On the other hand, Japanese Patent Application Laid-Open No. 55-34175 discloses a method in which excess sludge is heat-treated at 60 to 100 ° C. and then aerobically digested. But with this method,
Since the heating temperature is high, the cells are destroyed and the COD in the liquid becomes high, and thus a dedicated digester is required.
【0008】[0008]
【発明が解決しようとする課題】本発明の目的は、上記
問題点を解決するため、曝気槽の負荷量、処理効率およ
び処理性能を低下させることなく余剰汚泥の発生量を低
減することができ、しかも操作が簡単で、ランニングコ
ストの上昇が小さい活性汚泥処理法を提案することであ
る。SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems by reducing the amount of excess sludge generated without reducing the load on the aeration tank, the processing efficiency and the processing performance. Another object of the present invention is to propose an activated sludge treatment method which is easy to operate and has a small increase in running cost.
【0009】[0009]
【課題を解決するための手段】本発明は、原水を返送汚
泥とともに曝気槽に導入して曝気処理し、曝気液を固液
分離して、分離汚泥の一部を返送汚泥として曝気槽に返
送する活性汚泥処理法において、返送汚泥の一部を35
〜55℃で曝気したのち、曝気槽に返送することを特徴
とする活性汚泥処理法である。According to the present invention, raw water is introduced into an aeration tank together with return sludge, subjected to aeration treatment, aerated liquid is separated into solid and liquid, and a part of the separated sludge is returned to the aeration tank as return sludge. In the activated sludge treatment method, a part of the returned sludge is
This is an activated sludge treatment method characterized by returning to an aeration tank after aeration at ~ 55 ° C.
【0010】本発明において、採用する活性汚泥処理法
は、原水を返送汚泥とともに曝気槽に導入して曝気処理
し、曝気液を固液分離して、分離汚泥の一部を返送汚泥
として曝気槽に返送する方法であり、これらの工程のみ
からなる標準活性汚泥処理法のほか、ステップエアレー
ション等のモディファイドエアレーション、ならびに好
気処理や硝化脱窒法との組合せなどの変形も含まれる。In the present invention, the activated sludge treatment method employed is such that raw water is introduced into an aeration tank together with return sludge, subjected to aeration treatment, aerated liquid is separated into solid and liquid, and a part of the separated sludge is returned as return sludge. The method includes a standard activated sludge treatment method including only these steps, a modified aeration such as a step aeration, and a modification such as a combination with an aerobic treatment and a nitrification denitrification method.
【0011】本発明においては、原水を活性汚泥処理法
により曝気処理し、固液分離したときに生じる分離汚泥
の一部を返送汚泥として曝気槽に返送する際、返送汚泥
のすべてをそのまま曝気槽に返送するのではなく、曝気
槽のMLSSを維持するのに必要な量の返送汚泥を加温
曝気することなく曝気槽へ返送し、残りの返送汚泥を加
温曝気槽において加温曝気したのち、曝気槽に返送す
る。In the present invention, when a part of the separated sludge generated when the raw water is aerated by the activated sludge treatment method and solid-liquid separated is returned to the aeration tank as return sludge, the entire returned sludge is directly used in the aeration tank. Instead of returning the sludge to the aeration tank without heating and aeration, the amount of returned sludge required to maintain the MLSS in the aeration tank is returned to the aeration tank without heating, and the remaining returned sludge is heated and aerated in the heating aeration tank. , Return to aeration tank.
【0012】加温曝気槽における加温曝気の温度は35
〜55℃、好ましくは35〜40℃とする。また滞留時
間は10〜100時間、好ましくは12〜72時間が望
ましい。加温曝気する返送汚泥の量は、曝気槽のMLS
Sによって決まるが、一般的には返送汚泥の10〜30
%程度が好ましい。加温曝気槽における加温は通常蒸
気、加熱器などにより行われるが、熱交換器を利用して
温水、高温排水、高温の嫌気性処理水などによって行う
こともできる。The temperature of the heating and aeration in the heating and aeration tank is 35.
To 55 ° C, preferably 35 to 40 ° C. The residence time is desirably 10 to 100 hours, preferably 12 to 72 hours. The amount of returned sludge to be heated and aerated is determined by the MLS in the aeration tank.
S, but generally 10-30 of returned sludge
% Is preferable. Heating in the heating aeration tank is usually performed by steam, a heater, or the like, but can also be performed by using a heat exchanger with hot water, high-temperature drainage, or high-temperature anaerobic treated water.
【0013】[0013]
【作用】本発明の活性汚泥処理法においては、返送汚泥
の一部を35〜55℃の比較的低温で加温曝気すること
により、汚泥の自己分解速度が高くなり、汚泥容量が減
少する。このとき細胞破壊によるBODの上昇は起こら
ず、汚泥の自己分解速度だけが上昇する。加温曝気によ
り汚泥の分離性は悪くなるが、加温曝気しない返送汚泥
とともに曝気槽で曝気処理することにより、分離性が改
善され、これにより余剰汚泥の発生量は少なくなる。In the activated sludge treatment method of the present invention, a part of the returned sludge is heated and aerated at a relatively low temperature of 35 to 55 ° C., thereby increasing the self-decomposition rate of the sludge and reducing the sludge capacity. At this time, the BOD does not increase due to cell destruction, and only the autolysis rate of the sludge increases. Although the separation of sludge is deteriorated by the heating and aeration, the separation is improved by performing the aeration treatment in the aeration tank together with the return sludge that is not heated and aerated, thereby reducing the amount of excess sludge generated.
【0014】また本発明では、返送汚泥の一部を比較的
低温で加温曝気するので、既設の装置に小型の加温曝気
槽を備えるだけで簡単に実施できる。また通気動力も少
なくて済むので、ランニングコストの上昇は小さい。返
送汚泥の10〜20%を加温曝気する場合では、加温曝
気槽は曝気槽容量の5〜10%で済む。さらに、返送汚
泥の一部を加温するため加温汚泥量は少なく、加温した
汚泥を曝気槽に返送しても曝気槽全体の水温はあまり上
昇せず、このため処理性能および処理効率は低下しな
い。Further, in the present invention, a part of the returned sludge is heated and aerated at a relatively low temperature. Therefore, the present invention can be easily implemented only by providing a small-sized heated aeration tank in an existing apparatus. Also, since the power for ventilation is small, the increase in running cost is small. In the case where 10-20% of the returned sludge is heated and aerated, the heated aeration tank needs only 5-10% of the capacity of the aeration tank. Furthermore, the amount of the heated sludge is small because part of the returned sludge is heated, and even if the heated sludge is returned to the aeration tank, the water temperature of the entire aeration tank does not rise so much, so that the processing performance and the processing efficiency are reduced. Does not drop.
【0015】[0015]
【実施例】次に本発明の実施例について説明する。図1
は実施例の活性汚泥処理法を示すフロー図である。図に
おいて、1は曝気槽、2は固液分離槽、3は加温曝気槽
である。Next, an embodiment of the present invention will be described. FIG.
FIG. 2 is a flowchart showing an activated sludge treatment method of an example. In the figure, 1 is an aeration tank, 2 is a solid-liquid separation tank, and 3 is a heated aeration tank.
【0016】処理方法は、まず原水を原水供給管4から
曝気槽1に導入して、槽内の活性汚泥と混合し、散気管
5から散気される空気により曝気処理する。曝気液は連
絡管6から固液分離槽2に導入して固液分離し、分離水
は処理水として処理水管7から排出する。固液分離槽2
で分離した分離汚泥の一部は返送汚泥として曝気槽1に
返送し、残部は余剰汚泥として余剰汚泥排出管8から系
外に排出する。In the treatment method, first, raw water is introduced into the aeration tank 1 from the raw water supply pipe 4, mixed with the activated sludge in the tank, and aerated by the air diffused from the diffusion pipe 5. The aerated liquid is introduced into the solid-liquid separation tank 2 from the connecting pipe 6 to be separated into solid and liquid, and the separated water is discharged from the treated water pipe 7 as treated water. Solid-liquid separation tank 2
A part of the separated sludge separated in the above is returned to the aeration tank 1 as return sludge, and the remaining part is discharged from the excess sludge discharge pipe 8 outside the system as surplus sludge.
【0017】曝気槽1に返送する返送汚泥の一部は連絡
管9から加温曝気槽3に導入して加温曝気し、残部は返
送汚泥管10からそのまま曝気槽1に返送する。加温曝
気槽3に導入した返送汚泥は、35〜55℃の温度に加
温して、散気管11から散気される空気により加温曝気
する。加温曝気により自己分解した汚泥は返送汚泥管1
2から曝気槽1に返送する。返送汚泥管10、12から
曝気槽1に返送された返送汚泥は原水と混合して曝気処
理され、原水中の有機物の分解に利用される。A part of the returned sludge to be returned to the aeration tank 1 is introduced into the heated aeration tank 3 through the connecting pipe 9 and heated and aerated, and the rest is returned to the aeration tank 1 as it is from the returned sludge pipe 10. The returned sludge introduced into the heating aeration tank 3 is heated to a temperature of 35 to 55 ° C. and heated and aerated by air diffused from the diffusion pipe 11. Sludge self-decomposed by heating and aeration is returned to sludge pipe 1
2 to the aeration tank 1. The returned sludge returned from the returned sludge pipes 10 and 12 to the aeration tank 1 is mixed with raw water and aerated to be used for decomposing organic substances in the raw water.
【0018】実施例1 活性汚泥の自己分解速度と運転水温との関係を、グルコ
ース資化汚泥を用いてクーロメーター法により測定し
た。結果を図2に示す。図2から、自己分解速度増加率
は水温の上昇に伴って増加し、55℃で最大となること
がわかる。また自己分解速度増加率は、35℃では20
℃の約1.8倍、55℃では約2.7倍であることがわ
かる。Example 1 The relationship between the self-decomposition rate of activated sludge and the operating water temperature was measured by a coulometer method using glucose assimilation sludge. The results are shown in FIG. From FIG. 2, it can be seen that the rate of increase in the autolysis rate increases with increasing water temperature and reaches a maximum at 55 ° C. In addition, the rate of increase of the autolysis rate is 20 at 35 ° C.
It can be seen that the temperature is about 1.8 times that of the temperature and about 2.7 times the temperature at 55 ° C.
【0019】実施例2 図1に示す処理フローにおいて、加温曝気槽3で加温曝
気する返送汚泥の割合とその時の余剰汚泥の減少割合と
を、標準的な活性汚泥の動力学定数(汚泥への転換率、
自己分解速度定数、温度係数等)を用いて計算した。計
算例(運転条件)および計算式は次の通りである。Example 2 In the processing flow shown in FIG. 1, the ratio of the returned sludge heated and aerated in the heated aeration tank 3 and the reduction ratio of the excess sludge at that time are determined by the standard kinetic constant of activated sludge (sludge). Conversion rate,
(Automatic decomposition rate constant, temperature coefficient, etc.). Calculation examples (operating conditions) and calculation formulas are as follows.
【0020】(計算例) 原水条件: 水温(Q) ;1000m3/d 水温 ;20℃ BOD(C);1000mg/l SS ;0mg/l 曝気槽: BOD負荷量 ;1.0kg−BOD/m3・d 保持MLSS(M);4000mg/l 容量(V) ;1000m3 返送汚泥: 返送汚泥容量;500m3/day 返送MLSS;8000mg/l 加温曝気槽: 滞留時間;24hr 水温;35℃ 処理水: 排水量;1000m3/day 動力学定数: 汚泥転換率(Y);0.5g−MLSS/g−BOD 20℃の自己分解速度定数(Kd(20)); 0.06g−MLSS/g−MLSS・d 温度係数(θ) ;1.05(Calculation example) Raw water conditions: water temperature (Q); 1000 m 3 / d water temperature; 20 ° C. BOD (C); 1000 mg / l SS; 0 mg / l aeration tank: BOD load; 1.0 kg-BOD / m 3 · d retention MLSS (M); 4000 mg / l capacity (V); 1000 m 3 returned sludge: returned sludge capacity; 500 m 3 / day returned MLSS; 8000 mg / l heated aeration tank: residence time; 24 hr water temperature; 35 ° C. treatment Water: Discharge rate; 1000 m 3 / day Kinetic constant: Sludge conversion rate (Y); 0.5 g-MLSS / g-BOD Autolysis rate constant at 20 ° C. (Kd (20)); 0.06 g-MLSS / g- MLSS · d Temperature coefficient (θ): 1.05
【0021】(使用計算式) 余剰汚泥量(ΔSS)(Calculation formula for use) Excess sludge amount (ΔSS)
【数1】 T℃における自己分解速度定数(Kd(T))(Equation 1) Autolysis rate constant at T ° C (Kd (T))
【数2】 (Equation 2)
【0022】上記のように設定した運転条件において、
加温曝気槽で加温曝気する加温曝気汚泥の割合を種々に
設定し、各割合ごとの加温曝気槽3容量、曝気槽1内水
温、余剰汚泥発生量(自己分解量)および加温曝気槽3
を設置しない従来法に対する余剰汚泥の減少率(%)な
どを計算した。結果を表1に示す。Under the operating conditions set as described above,
Various ratios of the heated aerated sludge to be heated and aerated in the heated aeration tank are set, and the heating aeration tank 3 capacity, the water temperature in the aeration tank 1, the amount of excess sludge generated (self-decomposition amount) and the heating are set for each ratio Aeration tank 3
The rate of reduction (%) of surplus sludge was calculated with respect to the conventional method without installation. Table 1 shows the results.
【0023】[0023]
【表1】 [Table 1]
【0024】表1に示すように、原水水温20℃の条件
で、返送汚泥の20%を35℃に加温した加温曝気槽で
1日間の滞留で曝気したのち、曝気槽へ返送した場合、
標準従来法(返送汚泥の全量をそのまま曝気槽に返送し
た場合)に対する余剰汚泥の減少率は45%となり、返
送汚泥の10%を加温曝気した場合は23%になるとい
う結果が得られた。また返送した曝気槽本体の水温上昇
は1〜2℃であり、活性汚泥処理の処理効率および処理
性能には影響はでないと考えられる。As shown in Table 1, under the condition that the raw water temperature is 20 ° C., 20% of the returned sludge is aerated in a heated aeration tank heated to 35 ° C. for 1 day, and then returned to the aeration tank. ,
The reduction rate of the excess sludge was 45% compared to the standard conventional method (when the entire amount of returned sludge was returned to the aeration tank as it was), and the result was 23% when 10% of the returned sludge was heated and aerated. . Further, the water temperature rise of the returned aeration tank body is 1 to 2 ° C., and it is considered that there is no influence on the treatment efficiency and the treatment performance of the activated sludge treatment.
【0025】実施例3 図1に示す処理フローにおいて、実際に加温曝気して余
剰汚泥量などを測定し、実施例2で予想された計算結果
と同等の結果が得られるかを確認した。原水としては、
石油精製工程から排出されるBOD 4000mg/
l、TOC(全有機炭素)2200mg/l、SS 4
0mg/lの排水を用いた。Example 3 In the processing flow shown in FIG. 1, the amount of excess sludge was measured by actually heating and aeration, and it was confirmed whether a result equivalent to the calculation result expected in Example 2 was obtained. As raw water,
BOD 4000mg /
1, TOC (total organic carbon) 2200 mg / l, SS 4
0 mg / l wastewater was used.
【0026】試験装置は、曝気槽1本体が10 lit
er、加温曝気槽3が1 literであり、曝気槽1
運転水温は25℃、加温曝気槽3は37℃に調整した。
曝気槽1の負荷量は1.3kg−BOD/m3・d、滞
留時間は3日間(対原水に対し)とし、返送汚泥量は原
水量の50%とした。加温曝気槽3における加温曝気汚
泥の割合は20%とし、滞留時間は72時間とした。曝
気槽1内MLSS濃度は5000mg/lに調整するた
め、余剰汚泥の引抜きを行った。加温曝気槽3内MLS
S濃度は9000〜11000mg/lであった。In the test apparatus, the main body of the aeration tank 1 is 10 liters.
er, the heating aeration tank 3 is 1 liter and the aeration tank 1
The operating water temperature was adjusted to 25 ° C, and the temperature of the heated aeration tank 3 was adjusted to 37 ° C.
The load of the aeration tank 1 was 1.3 kg-BOD / m 3 · d, the residence time was 3 days (relative to raw water), and the amount of returned sludge was 50% of the raw water amount. The proportion of the heated aerated sludge in the heated aeration tank 3 was 20%, and the residence time was 72 hours. Excess sludge was extracted in order to adjust the MLSS concentration in the aeration tank 1 to 5000 mg / l. MLS in heated aeration tank 3
The S concentration was 9000 to 11000 mg / l.
【0027】以上の条件で、12日間の連続運転を行っ
た結果、次の結果が得られた。 余剰汚泥量 :平均2.4g−VSS/d 汚泥転換率 :0.18g−MLSS/g−BOD 処理水TOC:平均176mg/lThe following results were obtained as a result of continuous operation for 12 days under the above conditions. Excess sludge amount: average 2.4 g-VSS / d Sludge conversion rate: 0.18 g-MLSS / g-BOD treated water TOC: average 176 mg / l
【0028】比較例1 実施例3と同一原水を用い、加温曝気槽3を設置しない
従来法で10日間の連続運転を行った。運転条件は、曝
気槽運転水温が25℃、負荷量が1.3kg/m3・
d、返送汚泥量は原水量の50%とした。結果は次の通
りである。 余剰汚泥量 :平均4.4g−VSS/d 汚泥転換率 :0.33g−MLSS/g−BOD 処理水TOC:平均181mg/lComparative Example 1 The same raw water as in Example 3 was used, and a continuous operation was performed for 10 days by the conventional method without installing the heating and aeration tank 3. The operating conditions are as follows: aeration tank operating water temperature is 25 ° C., and load is 1.3 kg / m 3.
d, Return sludge amount was 50% of raw water amount. The results are as follows. Excess sludge amount: average 4.4 g-VSS / d Sludge conversion rate: 0.33 g-MLSS / g-BOD treated water TOC: average 181 mg / l
【0029】実施例3および比較例1から、加温曝気槽
を設置することで、余剰汚泥量は設置しない場合に比べ
て55%に低減し、計算上の予想とほぼ同程度の結果が
得られることがわかる。From Example 3 and Comparative Example 1, by installing a heated aeration tank, the amount of excess sludge was reduced to 55% as compared with the case where no sludge was installed, and a result almost equivalent to the expected value obtained by calculation was obtained. It is understood that it is possible.
【0030】[0030]
【発明の効果】以上の通り、本発明によれば、活性汚泥
処理法において返送汚泥の一部を35〜55℃で曝気し
たのち原水の曝気槽に返送するようにしたので、曝気槽
の負荷量、処理効率および処理性能を低下させることな
く、しかも簡単な操作で、低ランニングコストで余剰汚
泥の発生量を低減することができる。As described above, according to the present invention, in the activated sludge treatment method, a part of the returned sludge is aerated at 35 to 55 ° C. and then returned to the aeration tank of the raw water. The amount of excess sludge generated can be reduced at a low running cost with a simple operation without lowering the amount, the processing efficiency and the processing performance.
【図1】実施例の活性汚泥処理法を示すフロー図であ
る。FIG. 1 is a flowchart showing an activated sludge treatment method of an example.
【図2】実施例1の結果を示すグラフである。FIG. 2 is a graph showing the results of Example 1.
1 曝気槽 2 固液分離槽 3 加温曝気槽 4 原水供給管 5、11 散気管 6、9 連絡管 7 処理水管 8 余剰汚泥排出管 10、12 返送汚泥管 DESCRIPTION OF SYMBOLS 1 Aeration tank 2 Solid-liquid separation tank 3 Heating aeration tank 4 Raw water supply pipe 5, 11 Aeration pipe 6, 9 Communication pipe 7 Treatment water pipe 8 Excess sludge discharge pipe 10, 12 Return sludge pipe
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−11994(JP,A) 特開 昭57−1491(JP,A) 特開 昭53−26465(JP,A) 特開 昭52−62962(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 3/12 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-11994 (JP, A) JP-A-57-1491 (JP, A) JP-A-53-26465 (JP, A) JP-A 52-1994 62962 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C02F 3/12
Claims (1)
て曝気処理し、曝気液を固液分離して、分離汚泥の一部
を返送汚泥として曝気槽に返送する活性汚泥処理法にお
いて、 返送汚泥の一部を35〜55℃で曝気したのち、曝気槽
に返送することを特徴とする活性汚泥処理法。1. An activated sludge treatment method in which raw water is introduced into an aeration tank together with return sludge and subjected to aeration treatment, and aeration liquid is separated into solid and liquid, and a part of the separated sludge is returned to the aeration tank as return sludge. An activated sludge treatment method comprising aerating a part of sludge at 35 to 55 ° C and returning the sludge to an aeration tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11156592A JP3248233B2 (en) | 1992-04-30 | 1992-04-30 | Activated sludge treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11156592A JP3248233B2 (en) | 1992-04-30 | 1992-04-30 | Activated sludge treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05305294A JPH05305294A (en) | 1993-11-19 |
JP3248233B2 true JP3248233B2 (en) | 2002-01-21 |
Family
ID=14564605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11156592A Expired - Fee Related JP3248233B2 (en) | 1992-04-30 | 1992-04-30 | Activated sludge treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3248233B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997033836A1 (en) * | 1996-03-12 | 1997-09-18 | Ebara Research Co., Ltd. | Method and apparatus for treating water |
JP2002177979A (en) * | 2000-12-11 | 2002-06-25 | Mitsubishi Kakoki Kaisha Ltd | Waste water treatment equipment |
JP5197901B2 (en) * | 2001-07-23 | 2013-05-15 | 三菱化工機株式会社 | Waste water treatment apparatus and waste water treatment method |
JP4581593B2 (en) * | 2004-09-22 | 2010-11-17 | 栗田工業株式会社 | Organic wastewater treatment method |
JP2006247493A (en) * | 2005-03-09 | 2006-09-21 | Maezawa Ind Inc | Wastewater treatment apparatus |
JP4495051B2 (en) * | 2005-08-23 | 2010-06-30 | 株式会社神鋼環境ソリューション | Activated sludge treatment method and activated sludge treatment apparatus therefor |
JP2007196208A (en) * | 2005-12-28 | 2007-08-09 | Sumitomo Heavy Ind Ltd | Wastewater treatment apparatus and wastewater treatment method |
JP2007196207A (en) * | 2005-12-28 | 2007-08-09 | Sumitomo Heavy Ind Ltd | Wastewater treatment apparatus and wastewater treatment method |
JP2007275847A (en) * | 2006-04-11 | 2007-10-25 | Sumitomo Heavy Industries Environment Co Ltd | Wastewater treating apparatus and wastewater treating method |
JP4702748B2 (en) * | 2006-07-07 | 2011-06-15 | 株式会社ハウステック | Water treatment equipment |
-
1992
- 1992-04-30 JP JP11156592A patent/JP3248233B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05305294A (en) | 1993-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3351047B2 (en) | Treatment method of biological sludge | |
US5582732A (en) | Biological method of waste water treatment | |
EP0417098A1 (en) | Method of sewage treatment. | |
JP3248233B2 (en) | Activated sludge treatment method | |
JP2005066381A (en) | Organic wastewater treatment method and treatment equipment | |
JP2007105631A (en) | Method and device for treating organic waste water | |
JPH0722757B2 (en) | Biological removal method of nitrogen and phosphorus and its treatment device | |
JP3959843B2 (en) | Biological treatment method for organic drainage | |
JP3591086B2 (en) | Biological treatment of organic wastewater | |
KR20010035160A (en) | Waste Water Disposal System And Method | |
JP3921693B2 (en) | Organic wastewater treatment method | |
JP2001212592A (en) | How to remove nitrogen from wastewater | |
CN111138044B (en) | A garbage leachate treatment system | |
JPH0698358B2 (en) | Treatment method for human waste | |
JPS621496A (en) | Two-stage microbiological treatment of organic dirty waste water | |
KR100460851B1 (en) | Sewage and wastewater treatment apparatus which is no need internal recycle | |
JPH08103786A (en) | Aerobic treatment of organic wastewater | |
CN111807611A (en) | A2O process-based sewage nitrogen removal method | |
JP2003071487A (en) | Method and apparatus for treating organic wastewater | |
JP2002059200A (en) | Method of treating sewage and sludge | |
CN111204862A (en) | Biochemical treatment device for treating high organic nitrogen wastewater | |
KR0165170B1 (en) | Nitrogen Removal Method of Acrylonitrile Butadiene Styrene Wastewater | |
Shin et al. | Nutrient removal processes for low strength wastewater | |
CN220951396U (en) | Device for controlling embedded particle short-cut nitrification and denitrification | |
JP3206102B2 (en) | Method for treating wastewater containing ammoniacal or organic nitrogen compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071109 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081109 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081109 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091109 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101109 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101109 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111109 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |