JPH0622117B2 - Zinc alkaline battery - Google Patents
Zinc alkaline batteryInfo
- Publication number
- JPH0622117B2 JPH0622117B2 JP60020374A JP2037485A JPH0622117B2 JP H0622117 B2 JPH0622117 B2 JP H0622117B2 JP 60020374 A JP60020374 A JP 60020374A JP 2037485 A JP2037485 A JP 2037485A JP H0622117 B2 JPH0622117 B2 JP H0622117B2
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- battery
- negative electrode
- alloy
- mercury
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title claims description 30
- 229910052725 zinc Inorganic materials 0.000 title claims description 30
- 239000011701 zinc Substances 0.000 title claims description 30
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 23
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 20
- 229910052793 cadmium Inorganic materials 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 3
- 239000007773 negative electrode material Substances 0.000 claims description 3
- 238000005260 corrosion Methods 0.000 description 17
- 230000007797 corrosion Effects 0.000 description 16
- 230000000694 effects Effects 0.000 description 15
- 229910052753 mercury Inorganic materials 0.000 description 12
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 12
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 12
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 229910052745 lead Inorganic materials 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 229910052738 indium Inorganic materials 0.000 description 6
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 6
- 229910001923 silver oxide Inorganic materials 0.000 description 6
- 239000000654 additive Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000002301 combined effect Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 235000011118 potassium hydroxide Nutrition 0.000 description 3
- -1 zinc halide Chemical class 0.000 description 3
- ZULTYUIALNTCSA-UHFFFAOYSA-N zinc hydride Chemical compound [ZnH2] ZULTYUIALNTCSA-UHFFFAOYSA-N 0.000 description 3
- 229910000051 zinc hydride Inorganic materials 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical group CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910000474 mercury oxide Inorganic materials 0.000 description 2
- UKWHYYKOEPRTIC-UHFFFAOYSA-N mercury(ii) oxide Chemical compound [Hg]=O UKWHYYKOEPRTIC-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- BHHYHSUAOQUXJK-UHFFFAOYSA-L zinc fluoride Chemical compound F[Zn]F BHHYHSUAOQUXJK-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000005324 grain boundary diffusion Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/42—Alloys based on zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質として亜鉛、電解液としてアルカ
リ水溶液、正極活物質として二酸化マンガン,酸化銀,
酸化水銀,酸素,水酸化ニッケル等を用いる亜鉛アルカ
リ電池の負極の改良に関するものである。TECHNICAL FIELD The present invention relates to zinc as a negative electrode active material, an alkaline aqueous solution as an electrolyte, and manganese dioxide, silver oxide as a positive electrode active material.
The present invention relates to improvement of the negative electrode of a zinc-alkaline battery using mercury oxide, oxygen, nickel hydroxide, etc.
従来の技術 亜鉛アルカリ電池の共通した問題点として、保存中の負
極亜鉛の電解液による腐食が挙げられる。従来、亜鉛に
5〜10重量%程度の水銀を添加した汞化亜鉛粉末を用
いて水素過電圧を高め、実用的に問題のない程度に腐食
を抑制することが工業的な手法として採用されている。
しかし近年、低公害化のため、電池内の含有水銀量を低
減させることが社会的ニーズとして高まり、種々の研究
がなされている。例えば、亜鉛中に鉛,カドミウム,イ
ンジウム,ガリウムなどを添加した合金粉末を用いて耐
食性を向上させ、汞化率を低減させる方法が提案されて
いる。これらの腐食抑制効果は、添加元素の単体の効果
以外に複数の添加元素による複合効果も大きく、インジ
ウムと鉛あるいはこれにさらにガリウムを添加したも
の、さらにはガリウムと鉛を添加した亜鉛合金などが従
来、有望な系として提案されている。2. Description of the Related Art A common problem with zinc alkaline batteries is corrosion of the negative electrode zinc during storage by the electrolytic solution. Heretofore, it has been adopted as an industrial method to increase hydrogen overvoltage by using zinc fluoride powder obtained by adding about 5 to 10% by weight of mercury to zinc to suppress corrosion to such an extent that there is no practical problem. .
However, in recent years, reducing the amount of mercury contained in a battery has become a social need to reduce pollution, and various studies have been made. For example, a method has been proposed in which an alloy powder obtained by adding lead, cadmium, indium, gallium, or the like to zinc is used to improve the corrosion resistance and reduce the conversion rate. In addition to the effect of a single additive element, these corrosion inhibition effects have a large composite effect of multiple additive elements. Indium and lead, or those in which gallium is further added, and zinc alloys in which gallium and lead are added, etc. Conventionally, it has been proposed as a promising system.
これらはいずれもある程度の耐食性が期待でき、汞化率
の低減もある程度見込めるものの、さらに一層、耐食性
のよい合金系の探索が必要である。All of these can be expected to have a certain degree of corrosion resistance, and although it is possible to expect a reduction in the degree of conversion to a certain extent, it is necessary to search for alloy systems with even better corrosion resistance.
また、主にマンガン乾電池の改良をめざして、亜鉛又は
亜鉛合金にインジュウムを添加した亜鉛合金を負極に使
用することが防食上の効果が大きいという提案がある
(特公昭33−3204号)。In addition, there is a proposal that using a zinc alloy obtained by adding indium to zinc or a zinc alloy for the negative electrode has a great effect on the anticorrosion mainly for the purpose of improving the manganese dry battery.
(Japanese Examined Patent Publication No. 33-3204).
発明が解決しようとする問題点 上記の提案の中では亜鉛合金中の元素として、インジウ
ムの他にFe,Cd,Cr,Pb,Ca,Hg,Bi,Sb,Al,Ag,M
g,Si,Ni,Mn等を不純物又は添加物として1又は2種
以上を含む場合を包含して記載されているが、インジウ
ムと鉛を添加元素として併用した場合の有効性以外に
は、上記の雑多な各元素を不純物として含むのか、有効
な元素として添加するのかの区分は明示されていなく、
どの元素が防食に有効なのかさえ不明であり、その適切
な添加量についてはインジウム,鉛以外の記載はない。Problems to be Solved by the Invention In the above proposals, in addition to indium, Fe, Cd, Cr, Pb, Ca, Hg, Bi, Sb, Al, Ag and M are used as elements in the zinc alloy.
Although it is described to include one or two or more of g, Si, Ni, Mn, etc. as impurities or additives, in addition to the effect of using indium and lead as additive elements, the above The classification of whether each miscellaneous element of is included as an impurity or added as an effective element is not specified,
It is not known even which element is effective for anticorrosion, and there is no description other than indium and lead regarding the appropriate addition amount.
これらの元素の組合せの効果について、しかもこれを亜
鉛アルカリ電池において検討し、有効な合金組成を求め
ることは、なお今後の課題である。It is still a future subject to investigate the effect of the combination of these elements, and further to investigate this in a zinc alkaline battery to obtain an effective alloy composition.
本発明は、負極亜鉛の耐食性,放電性能を劣化させるこ
となく汞化率を低減させ、低公害で放電性能,貯蔵性,
耐漏液性などの総合性能のすぐれた亜鉛アルカリ電池を
提供することを目的とする。INDUSTRIAL APPLICABILITY The present invention reduces the corrosion rate of the negative electrode zinc without degrading the discharge performance, the discharge performance, the storability, and the low pollution.
It is an object of the present invention to provide a zinc-alkaline battery having excellent overall performance such as leakage resistance.
問題点を解決するための手段 本発明は、電解液にか性カリ,か性ソーダなどを主成分
とするアルカリ水溶液,負極活物質に亜鉛、正極活物質
に二酸化マンガン,酸化銀,酸化水銀,酸素などを用い
るいわゆる亜鉛アルカリ系電池の負極に亜鉛を主成分と
しニッケル(Ni)を0.01〜0.5重量%、鉛(Pb)を
0.01〜0.5重量%、カドミウム(Cd)を0.01〜
0.5重量%含有する亜鉛合金を用いたことを特徴とす
る。Means for Solving the Problems The present invention is directed to an electrolytic solution containing an alkaline aqueous solution containing caustic potash, caustic soda, etc. as a main component, zinc as a negative electrode active material, and manganese dioxide, silver oxide, mercury oxide as a positive electrode active material. A negative electrode of a so-called zinc alkaline battery using oxygen or the like contains zinc as a main component, 0.01 to 0.5% by weight of nickel (Ni), 0.01 to 0.5% by weight of lead (Pb), and cadmium (Cd). ) From 0.01 to
A zinc alloy containing 0.5% by weight is used.
本発明は、前記の従来例の亜鉛合金中の添加元素又は不
純物のうち、Niが安価で環境汚染の心配のない無公害の
元素であることに注目し、Niの添加効果について実験を
行ない、Niを単独で添加した亜鉛合金は防食性に乏しい
が、NiとPb及びCdの3元素を併存させた場合には上記の
元素の1〜2種を添加した場合に較べて顕著な複合的防
食効果が得られることを見出だして完成したものであ
る。The present invention, among the additional elements or impurities in the above-mentioned conventional zinc alloy, paying attention to the fact that Ni is a non-polluting element that is inexpensive and does not cause environmental pollution, and conducts experiments on the effect of adding Ni. The zinc alloy with Ni added alone has poor anticorrosion property, but when Ni, Pb, and Cd are coexistent, the combined corrosion protection is more remarkable than when 1 or 2 of the above elements are added. It was completed by finding out the effects.
作用 Ni,或いはPb,Cdの単独での添加による防食効果,及び
これらの元素の複合効果についての作用機構は不明確で
あるが、次のように推察される。Action The mechanism of action for the anti-corrosion effect by the addition of Ni, Pb, or Cd alone and the combined effect of these elements is unclear, but it is presumed as follows.
まず、亜鉛に対するNiの溶解度は小さいが噴射法で粉体
化する際の冷却速度が103℃/secのオーダーで非常に
大きいため、後述の実施例での適正な含有量の程度の亜
鉛合金粉においてはNiが亜鉛と溶体化する可能性があ
る。従って、亜鉛合金を表面から汞化した場合、水銀と
親和性の小さいNiが結晶内への水銀の拡散を抑制して亜
鉛合金表面の水銀濃度を高く維持することに寄与するこ
とが考えられる。また、PbとCdは亜鉛合金の結晶粒界近
傍に偏析し易く、汞化亜鉛合金の表面層の水銀が粒界を
通じて内部に拡散するのを抑制して表面の水銀濃度を高
く維持することに寄与するものと思われる。この効果
は、Pb或いはCdを単独で添加した場合よりも、双方を併
存させた方がより大きい、何らかの複合作用があるもの
と考えられる。本発明は上記の3元素の複合効果より汞
化した亜鉛合金の表面層の水銀の内部への拡散をより一
層効果的に抑制して表面の水銀濃度を確実に維持して水
素電圧を長期間にわたり大きく保つことによって、負極
亜鉛の耐食性を著しく改善したものである。すなわち、
Niによる結晶粒内への水銀の拡散の抑制、及びPb,Cd併
存による粒界拡散の抑制の作用を複合させることによる
防食効果を期待して実験を行ない、上記3元素を適正な
含有量で併存させた亜鉛合金を用いることにより亜鉛負
極の低汞化率化に成功し、低公害の亜鉛アルカリ電池の
実現に有効な手段を提供したものである。First, the solubility of Ni in zinc is small, but the cooling rate when powdered by the injection method is very high on the order of 10 3 ° C / sec. Therefore, a zinc alloy with an appropriate content in the examples described later is used. In powder, Ni may be solutionized with zinc. Therefore, when the zinc alloy is screened from the surface, it is considered that Ni, which has a low affinity for mercury, suppresses the diffusion of mercury into the crystal and contributes to maintain a high mercury concentration on the surface of the zinc alloy. Further, Pb and Cd tend to segregate near the grain boundaries of the zinc alloy, and suppress the diffusion of mercury in the surface layer of the zinc hydride alloy into the interior through the grain boundaries to maintain a high surface mercury concentration. It seems to contribute. It is considered that this effect has some combined action, which is larger when Pb or Cd is added together than when Pb or Cd is added alone. The present invention more effectively suppresses the inward diffusion of mercury in the surface layer of the zinc alloy, which is selected by the combined effect of the above three elements, and reliably maintains the surface mercury concentration to maintain the hydrogen voltage for a long time. The corrosion resistance of the negative electrode zinc is remarkably improved by keeping the same for a long time. That is,
Experiments were carried out in anticipation of the anticorrosion effect by combining the effect of suppressing the diffusion of mercury into the crystal grains by Ni and the effect of suppressing the grain boundary diffusion by the coexistence of Pb and Cd. By using the coexisting zinc alloy, the zinc negative electrode was successfully reduced in the rate of reduction, and it provided an effective means for realizing a low-pollution zinc alkaline battery.
実施例 純度99.997%以上の亜鉛地金に、次表に示す各種
の元素を添加した各種の亜鉛合金を作成し、約500℃
で溶融して圧縮空気により噴射して粉体化し、50〜1
50メッシュの粒度範囲にふるい分けした。次いで、か
性カリの10重量%水溶液中に上記粉体を投入し、攪拌
しながら所定量の水銀を滴下して汞化した。その後水洗
し、アセトンで置換して乾燥し、汞化亜鉛合金粉を作成
した。Example Various zinc alloys were prepared by adding various elements shown in the following table to zinc ingot having a purity of 99.997% or more, and the temperature was about 500 ° C.
50 to 1
It was sieved to a particle size range of 50 mesh. Then, the above powder was put into a 10% by weight aqueous solution of caustic potash, and a predetermined amount of mercury was added dropwise while stirring to effect hydration. Then, it was washed with water, replaced with acetone and dried to prepare a zinc hydride alloy powder.
これらの汞化粉末を用い、図に示すボタン形酸化銀電池
を製作した。図において、1はステンレス鋼製の封口板
で、その内面には銅メッキ1′が施されている。2はか
性カリの40重量%水溶液に酸化亜鉛を飽和させた電解
液をカルボキシメチルセルロースによりゲル化し、この
ゲル中に汞化亜鉛合金粉末を分散させた亜鉛負極であ
る。3はセルロース系の保液材、4は多孔性ポリプロピ
レン製のセパレータ、5は酸化銀に黒鉛を混合して加圧
成形した正極、6は鉄にニッケルメッキを施した正極リ
ング、7はステンレス鋼製の正極缶で、その内外面には
ニッケルメッキが施されている。8はポリプロピレン製
のカスケットで、正極缶の折り曲げにより正極缶と封口
板との間に圧縮されている。A button type silver oxide battery shown in the figure was produced using these selected powders. In the figure, 1 is a stainless steel sealing plate, the inner surface of which is plated with copper 1 '. Reference numeral 2 is a zinc negative electrode in which a 40 wt% aqueous solution of caustic potash was used to gel an electrolytic solution saturated with zinc oxide by carboxymethyl cellulose, and a zinc halide alloy powder was dispersed in the gel. 3 is a cellulosic liquid-retaining material, 4 is a separator made of porous polypropylene, 5 is a positive electrode formed by mixing silver oxide with graphite and pressure-molded, 6 is a positive electrode ring made of iron plated with nickel, and 7 is stainless steel The positive electrode can is made of nickel and has nickel plating on the inner and outer surfaces. Reference numeral 8 denotes a polypropylene casquette, which is compressed between the positive electrode can and the sealing plate by bending the positive electrode can.
試作した電池は直径11,6mm、高さ5.4mmであり、
負極と汞化粉末の重量を193mgに統一し、水銀の添加
量(汞化率)は、亜鉛合金粉に対し、いずれも1重量%と
した。The prototype battery has a diameter of 11.6 mm and a height of 5.4 mm.
The weight of the negative electrode and the selective powder was unified to 193 mg, and the amount of mercury added (selective rate) was 1% by weight based on the zinc alloy powder.
試作した電池の亜鉛合金の組成と、60℃で1カ月間保
存した後の放電性能の電池総高の変化を次表に示す。な
お放電性能は、20℃において510Ωで0.9Vを終
止電圧として放電したときの放電持続時間で表わした。The following table shows the composition of the zinc alloy of the prototype battery and the change in the total battery height of the discharge performance after storage at 60 ° C. for one month. The discharge performance was expressed by the discharge duration when discharged at 510 Ω at 20 ° C. with a final voltage of 0.9V.
この表における、電池総高の変化については、電池封口
後、経時的に各電池構成要素間への応力の関係が安定化
するまでの期間は電池総高が減少するのが通例である。
しかし、亜鉛負極の腐食に伴う水素ガス発生の多い電池
では、上記の電池総高の減少力に対抗する電池内圧の上
昇により電池総高を増大させる傾向が強くなる。従っ
て、貯蔵による電池総高の増減により亜鉛負極の耐食性
を評価することができる。また、耐食性が不十分な電池
では、電池総高が増大するほか、電池内圧の上昇により
耐漏液性が劣化するとともに、腐食による亜鉛の消耗、
亜鉛表面の酸化膜の形成や、水素ガスの内在による放電
反応の阻害等により放電性能が著しく劣化することにな
り、放電持続時間も又亜鉛負極の耐食性に依存する要素
が大きい。 Regarding the change in the total battery height in this table, it is customary that the total battery height decreases after the battery is sealed until the stress relationship between the battery constituent elements stabilizes over time.
However, in a battery in which a large amount of hydrogen gas is generated due to corrosion of the zinc negative electrode, there is a strong tendency to increase the total battery height due to an increase in the internal pressure of the battery, which opposes the above-described force of reducing the total battery height. Therefore, the corrosion resistance of the zinc negative electrode can be evaluated by increasing or decreasing the total height of the battery due to storage. In addition, in the case of batteries with insufficient corrosion resistance, the total height of the battery increases and the leakage resistance deteriorates due to an increase in the internal pressure of the battery.
The discharge performance is significantly deteriorated due to the formation of an oxide film on the zinc surface and the inhibition of the discharge reaction due to the internal presence of hydrogen gas, and the discharge duration also largely depends on the corrosion resistance of the zinc negative electrode.
表において、本発明の比較例として挙げたNo.1〜6の
うち、単独で添加元素を添加した亜鉛合金を使用した場
合(No.1,2,3)よりも二種の元素を添加した場合(N
o.4,5,6)の方が亜鉛負極の耐食性,放電性能とも
幾分改善されている。しかし、Ni,pb,Cdの三元素を適
正な含有量で依存させた本発明の実施例(No.8,9,1
0,13,14,17,18)の場合には前記の比較例に較べ、一
段と耐食性,放電性能がすぐれ、添加元素の複合効果が
顕著に示される。一方、上記の三元素を併存させた場合
でも含有量に過不足のある場合(No.7,11,12,15,1
6,19)は比較例と大差なく、複合効果が乏しい。上述の
通り、本発明は上記の三元素を適正な含有量で併存させ
た亜鉛合金を負極に用いることにより低汞化率化に成功
したもので、各元素の含有量は0.01≦Ni≦0.5重
量%,0.01≦pb≦0.5重量%,0.01≦Cd≦
0.5重量%とするのが適切である。In the table, among No. 1 to 6 listed as comparative examples of the present invention, two kinds of elements were added more than when the zinc alloy to which the additional element was added alone was used (No. 1, 2, 3). Case (N
The corrosion resistance and the discharge performance of the zinc negative electrode are somewhat improved in o.4, 5, 6). However, the embodiment of the present invention (No. 8, 9, 1) in which the three elements of Ni, pb, and Cd are made to depend on proper contents
In the case of 0, 13, 14, 17, 18), the corrosion resistance and the discharge performance are further improved as compared with the above-mentioned comparative example, and the combined effect of the additional elements is remarkably shown. On the other hand, even if the above three elements are present together, if there is an excess or deficiency in the content (No. 7, 11, 12, 15, 1
6 and 19) are not so different from the comparative examples, and the combined effect is poor. As described above, the present invention succeeds in lowering the rate of reduction by using a zinc alloy in which the above three elements are coexisted in proper contents in the negative electrode, and the content of each element is 0.01 ≦ Ni. ≦ 0.5% by weight, 0.01 ≦ pb ≦ 0.5% by weight, 0.01 ≦ Cd ≦
It is suitable to be 0.5% by weight.
以上のように、本発明は前述の添加元素の組合わせによ
る相乗効果により負極に用い、亜鉛合金の耐食性が向上
することを見出し、適切な含有量を割り出して低公害で
実用性能なすぐれた亜鉛アルカリ電池を実現したもので
ある。なお、実施例においては汞化亜鉛負極を用いた空
池について説明したが、開放式の電気電池や水素吸収機
構を備えた密閉型の亜鉛アルカリ電池などにおいては、
水素ガスの発生許容量は比較的多いので、このような場
合に本発明を適用する場合は、さらに低汞化率,場合に
よっては無汞化のまま実施することもできる。As described above, the present invention is used in the negative electrode due to the synergistic effect of the combination of the above-mentioned additional elements, it was found that the corrosion resistance of the zinc alloy is improved, the appropriate content is determined, low pollution and excellent zinc performance It is an implementation of an alkaline battery. In the examples, the void using the zinc hydride negative electrode was described, but in the case of an open type electric battery or a sealed zinc alkaline battery equipped with a hydrogen absorption mechanism,
Since the hydrogen gas generation allowance is comparatively large, when the present invention is applied in such a case, it can be carried out with a further lowering rate, and in some cases, with no reduction.
発明の効果 以上のように本発明は、負極亜鉛の汞化率を低減でき、
低公害の亜鉛アルカリ電池を得るに極めて効果的であ
る。Effects of the Invention As described above, the present invention can reduce the conversion rate of negative electrode zinc,
It is extremely effective in obtaining a low-pollution zinc alkaline battery.
図は本発明の実施例に用いたボタン形酸化銀電池の一部
を断面にした側面図である。 2……亜鉛負極、4……セパレータ、 5……酸化銀正極。The figure is a side view in which a button-shaped silver oxide battery used in an example of the present invention is partially sectioned. 2 ... Zinc negative electrode, 4 ... Separator, 5 ... Silver oxide positive electrode.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡崎 良二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 植村 豊秀 広島県竹原市竹原町652―15 (72)発明者 賀川 恵市 広島県竹原市竹原町652―15 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ryoji Okazaki Ryoji Okazaki 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. 652-15 Takehara-cho, Takehara-shi, Hiroshima Prefecture
Claims (1)
0.01〜0.5重量%、カドミウムを0.01〜0.
5重量%含有する亜鉛合金を負極活物質に用いた亜鉛ア
ルカリ電池。1. Nickel 0.01 to 0.5% by weight, lead 0.01 to 0.5% by weight, and cadmium 0.01 to 0.
A zinc alkaline battery using a zinc alloy containing 5% by weight as a negative electrode active material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60020374A JPH0622117B2 (en) | 1985-02-05 | 1985-02-05 | Zinc alkaline battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60020374A JPH0622117B2 (en) | 1985-02-05 | 1985-02-05 | Zinc alkaline battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61181070A JPS61181070A (en) | 1986-08-13 |
JPH0622117B2 true JPH0622117B2 (en) | 1994-03-23 |
Family
ID=12025279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60020374A Expired - Lifetime JPH0622117B2 (en) | 1985-02-05 | 1985-02-05 | Zinc alkaline battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0622117B2 (en) |
-
1985
- 1985-02-05 JP JP60020374A patent/JPH0622117B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS61181070A (en) | 1986-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0622117B2 (en) | Zinc alkaline battery | |
JPH0622119B2 (en) | Zinc alkaline battery | |
JPH0622121B2 (en) | Zinc alkaline battery | |
JPH0622118B2 (en) | Zinc alkaline battery | |
JPS636749A (en) | Zinc alkaline battery | |
JPH0719600B2 (en) | Zinc alkaline battery | |
JPS6273565A (en) | Zinc alkaline battery | |
JPH0642369B2 (en) | Zinc alkaline battery | |
JPS61253764A (en) | Zinc alkaline battery | |
JPH0622120B2 (en) | Zinc alkaline battery | |
JPH0685324B2 (en) | Zinc alkaline battery | |
JPS6177265A (en) | Zinc alkaline battery | |
JPS61140064A (en) | Zinc alkali battery | |
JPS61140068A (en) | Zinc alkali battery | |
JPS61140066A (en) | Zinc alkali battery | |
JPS60175369A (en) | Zinc-alkaline primary cell | |
JPS63178453A (en) | Zinc alkaline battery | |
JPH0365617B2 (en) | ||
JPH0622116B2 (en) | Zinc alkaline battery | |
JPH0682551B2 (en) | Zinc alkaline battery | |
JPH0365621B2 (en) | ||
JPS636748A (en) | Zinc alkaline battery | |
JPS6290859A (en) | Zinc alkaline cell | |
JPS61140065A (en) | Zinc alloy battery | |
JPS6290857A (en) | Zinc alkaline cell |