[go: up one dir, main page]

JPH0365621B2 - - Google Patents

Info

Publication number
JPH0365621B2
JPH0365621B2 JP60043148A JP4314885A JPH0365621B2 JP H0365621 B2 JPH0365621 B2 JP H0365621B2 JP 60043148 A JP60043148 A JP 60043148A JP 4314885 A JP4314885 A JP 4314885A JP H0365621 B2 JPH0365621 B2 JP H0365621B2
Authority
JP
Japan
Prior art keywords
zinc
battery
negative electrode
weight
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60043148A
Other languages
Japanese (ja)
Other versions
JPS61203563A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60043148A priority Critical patent/JPS61203563A/en
Publication of JPS61203563A publication Critical patent/JPS61203563A/en
Publication of JPH0365621B2 publication Critical patent/JPH0365621B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、負極活物質として亜鉛、電解液とし
てアルカリ水溶液、正極活物質として二酸化マン
ガン、酸化銀、酸化水銀、酸素、水酸化ニツケル
等を用いる亜鉛アルカリ電池の負極の改良に関す
るものである。 従来の技術 亜鉛アルカリ電池の共通した問題点として、保
存中の負極亜鉛の電解液による腐食が挙げられ
る。従来、亜鉛に5〜10重量%程度の水銀を添加
した汞化亜鉛粉末を用いて水素過電圧を高め、実
用的に問題のない程度に腐食を抑制することが工
業的な手法として採用されている。しかし近年、
低公害化のため、電池内の含有水銀量を低減させ
ることが社会的ニーズとして高まり、種々の研究
がなされている。例えば、亜鉛中に鉛、カドミウ
ム、インジウム、ガリウムなどを添加した合金粉
末を用いて耐食性を向上させ、汞化率を低減させ
る方法が提案されている。これは腐食抑制効果
は、添加元素の単体の効果以外に複数の添加元素
による複合効果も大きく、インジウムと鉛あるい
はこれにさらにガリウムを添加したもの、さらに
はガリウムと鉛を添加した亜鉛合金などが従来、
有望な系として提案されている。 これらはいずれもある程度の耐食性が期待で
き、汞化率の低減もある程度見込めるものの、さ
らに一層、耐食性のよい合金系の探索が必要であ
る。 また、主にマンガン乾電池の改良をめざして、
亜鉛又は亜鉛合金にインジウムを添加した亜鉛合
金を負極に使用することが防食上の効果が大きい
という提案がある((特公昭33−3204号)。 発明が解決しようとする問題点 上記の提案の中では亜鉛合金中の元素として、
インジウムの他にFe、Cd、Cr、Pb、Ca、Hg、
Bi、Sb、Al、Ag、Mg、Si、Ni、Mn等を不純
物又は添加物として一種または二種以上を含む場
合を包含して記載されているが、インジウムと鉛
を添加元素として併用した場合の有効性以外に
は、上記の雑多な各元素を不純物として含むの
か、有効な元素として添加するのかの区分は明示
されていなく、どの元素が防食に有効なのかさえ
不明であり、その適切な添加量についてはインジ
ウム、鉛以外の記載はない。 これらの元素の組合せの効果について、しかも
これを亜鉛アルカリ電池において検討し、有効な
合金組成を求めることは、なお今後の課題であ
る。 本発明は、負極亜鉛の耐食性、放電性能を劣化
させることなく汞化率を低減させ、低公害で放電
性能、貯蔵性、耐漏液性などの総合性能のすぐれ
た亜鉛アルカリ電池を提供することを目的とす
る。 問題点を解決するための手段 本発明は、電解液にか性カリ、か性ソーダなど
を主成分とするアルカリ水溶液、負極活物質に亜
鉛、正極活物質に二酸化マンガン、酸化銀、酸化
水銀、酸素などを用いるいわゆる亜鉛アルカリ系
電池の負極に、亜鉛を主成分とし、インジウム
(In)を0.01〜0.5重量%、ストロンチウム(Sr)
を0.005〜0.3重量%、鉛(Pb)、カドミウム(Cd)
の一種または二種を合計で0.01〜0.5重量%含有
した亜鉛合金を用いたことを特徴とする。 作 用 ここで添加元素の作用について推察すれば、ス
トロンチウムは水銀に対し親和性が大きく、ま
た、通常アルカリ電池用として用いられる噴霧亜
鉛粉の粒子表面の微細な凹凸をなくし、平滑化に
する効果がある。したがつて亜鉛表面を金属水銀
で汞化する場合、それが均一に行なえる状態を作
り、また表面積を低下させることにより、防食効
果を示すと思われる。しかし、ストロンチウムの
標準電位は非常に低く、ストロンチウム単独の添
加では充分な防食効果は得られない。インジウム
は水素過電圧が高く、水銀に対し親和性が大き
い。鉛、カドミウムも比較的水素過電圧が高く、
また亜鉛結晶粒界に偏析し易く、水銀の粒界を通
つて拡散を抑制する効果があると考えられる。 インジウムは亜鉛にストロンチウムを添加する
場合の悪影響をカバーし、さらに鉛、カドミウム
と同時に添加することにより相乗的な防食効果が
あると思われる。 本発明は、以上の推察のもとにストロンチウム
単独、インジウム単独あるいは鉛、カドミウムの
内の一種ないし二種だけを亜鉛に添加した場合よ
り、それらを同時に加えることによる相乗的な防
食効果について検討を行い、負極に用いる亜鉛合
金の耐食性を著しく改善して低汞化に成功し、放
電性能と貯蔵性にすぐれた低公害の亜鉛アルカリ
電池を提供したものである。 実施例 純度99.997%の亜鉛地金に、次表に示す各種の
元素を添加した各種の亜鉛合金を作成し、約500
℃で溶融して圧縮空気により噴射し粉体化し、50
〜150メツシユの粒度範囲にふるい分けした。次
いで、か性カリの10重量%水溶液中に上記粉体を
投入し、攪拌しながら所定量の水銀を滴下して汞
化した。その後水洗し、アセトンで置換して乾燥
し、汞化亜鉛合金粉を作成した。さらに本発明の
実施例以外の汞化亜鉛粉、又は汞化亜鉛合金粉に
ついても比較例として同様の方法で作成した。 これらの汞化粉末を用い、図に示すボタン形酸
化銀電池を製作した。図において、1はステンレ
ス鋼製の封口板で、その内面には銅メツキ1′が
施されている。2はか性カリの40重量%水溶液に
酸化亜鉛を飽和させた電解液をカルボキシメチル
セルロースによりゲル化し、このゲル中に汞化亜
鉛合金粉末を分散させた亜鉛負極である。3はセ
ルロース系の保液材、4は多孔性ポリプロピレン
製のセパレータ、5は酸化銀に黒鉛を混合して加
圧成形した正極、6は鉄にニツケルメツキを施し
た正極リング、7はステンレス鋼でかつニツケル
メツキを施した正極缶である。8はポリプロピレ
ン製のガスケツトで、正極缶7の折り曲げにより
正極缶7と封口板1との間に圧縮されている。 試作した電池は直径11.6mm、高さ5.4mmであり、
負極の汞化粉末の重量を193mgに統一し、水銀の
添加量(汞化率)は、亜鉛合金粉に対し、いずれ
も1重量%とした。 試作した電池の亜鉛合金の組成と、60℃で1カ
月間保存した後の放電性能及び電池総高の変化を
次表に示す。なお放電性能は、20℃において
510Ωで0.9Vを終止電圧として放電したときの放
電持続時間で表わした。
INDUSTRIAL APPLICATION FIELD The present invention relates to improvement of the negative electrode of a zinc-alkaline battery using zinc as the negative electrode active material, an alkaline aqueous solution as the electrolyte, and manganese dioxide, silver oxide, mercury oxide, oxygen, nickel hydroxide, etc. as the positive electrode active material. It is something. Prior Art A common problem with zinc-alkaline batteries is corrosion of the negative electrode zinc by electrolyte during storage. Conventionally, an industrial method has been used to increase the hydrogen overvoltage by using zinc chloride powder containing 5 to 10% by weight of mercury to suppress corrosion to a level that poses no practical problems. . However, in recent years,
In order to reduce pollution, there is a growing social need to reduce the amount of mercury contained in batteries, and various studies are being conducted. For example, a method has been proposed that uses an alloy powder in which lead, cadmium, indium, gallium, etc. are added to zinc to improve corrosion resistance and reduce the rate of corrosion. This means that the corrosion inhibiting effect is not only due to the effect of a single additive element, but also the combined effect of multiple additive elements. Conventionally,
It has been proposed as a promising system. Although all of these can be expected to have a certain degree of corrosion resistance and to reduce the degree of corrosion to some extent, it is necessary to search for an alloy system with even better corrosion resistance. In addition, we mainly aim to improve manganese dry batteries.
There is a proposal that using zinc or a zinc alloy with indium added to the zinc alloy for the negative electrode has a great anticorrosion effect ((Japanese Patent Publication No. 33-3204). Problems to be Solved by the Invention The above proposal Among them, as an element in zinc alloys,
In addition to indium, Fe, Cd, Cr, Pb, Ca, Hg,
The description includes cases where one or more types of Bi, Sb, Al, Ag, Mg, Si, Ni, Mn, etc. are included as impurities or additives, but when indium and lead are used together as additive elements. Other than the effectiveness of corrosion prevention, there is no clear distinction as to whether each of the miscellaneous elements listed above is added as an impurity or as an effective element, and it is not even clear which elements are effective for corrosion prevention. There is no description of the amount of addition other than indium and lead. It remains a challenge for the future to study the effects of the combination of these elements in zinc-alkaline batteries and to find an effective alloy composition. The present invention aims to provide a zinc-alkaline battery with low pollution and excellent overall performance such as discharge performance, storage performance, and leakage resistance, by reducing the corrosion resistance and discharge performance of the negative electrode zinc. purpose. Means for Solving the Problems The present invention uses an aqueous alkaline solution containing caustic potash, caustic soda, etc. as the main components in the electrolyte, zinc as the negative electrode active material, manganese dioxide, silver oxide, mercury oxide, etc. as the positive electrode active material, The negative electrode of a so-called zinc-alkaline battery that uses oxygen etc. is made mainly of zinc, 0.01 to 0.5% by weight of indium (In), and strontium (Sr).
0.005~0.3% by weight, lead (Pb), cadmium (Cd)
It is characterized by using a zinc alloy containing a total of 0.01 to 0.5% by weight of one or two of the following. Effects If we speculate about the effects of added elements, strontium has a high affinity for mercury, and it also has the effect of smoothing out the fine irregularities on the particle surface of atomized zinc powder, which is usually used for alkaline batteries. There is. Therefore, when the surface of zinc is coated with metallic mercury, it is thought to have an anticorrosion effect by creating a condition in which it can be coated uniformly and by reducing the surface area. However, the standard potential of strontium is very low, and adding strontium alone does not provide a sufficient anticorrosion effect. Indium has a high hydrogen overvoltage and a high affinity for mercury. Lead and cadmium also have relatively high hydrogen overvoltage.
In addition, zinc tends to segregate at grain boundaries and is thought to have the effect of suppressing the diffusion of mercury through grain boundaries. Indium covers the negative effects of adding strontium to zinc, and is thought to have a synergistic anti-corrosion effect when added at the same time as lead and cadmium. Based on the above speculation, the present invention investigates the synergistic anticorrosion effect of adding strontium alone, indium alone, or one or two of lead and cadmium to zinc at the same time. By doing so, we succeeded in significantly improving the corrosion resistance of the zinc alloy used in the negative electrode and lowering the battery temperature, thereby providing a low-pollution zinc-alkaline battery with excellent discharge performance and storage performance. Example: Various zinc alloys were created by adding various elements shown in the following table to zinc ingot with a purity of 99.997%.
Melt at ℃, spray with compressed air to powder,
The particles were sieved to a particle size range of ~150 mesh. Next, the powder was put into a 10% by weight aqueous solution of caustic potash, and a predetermined amount of mercury was added dropwise to the solution while stirring. Thereafter, it was washed with water, substituted with acetone, and dried to produce a zinc chloride alloy powder. Further, zinc chloride powder or zinc chloride alloy powder other than the examples of the present invention were also prepared in the same manner as comparative examples. The button-shaped silver oxide battery shown in the figure was manufactured using these oxidized powders. In the figure, reference numeral 1 denotes a sealing plate made of stainless steel, the inner surface of which is plated with copper 1'. 2 is a zinc negative electrode prepared by gelling an electrolytic solution of a 40% by weight aqueous solution of caustic potassium saturated with zinc oxide with carboxymethyl cellulose, and dispersing zinc oxide alloy powder in this gel. 3 is a cellulose-based liquid retaining material, 4 is a separator made of porous polypropylene, 5 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded, 6 is a positive electrode ring made of nickel-plated iron, and 7 is made of stainless steel. It is also a positive electrode can with nickel plating. A polypropylene gasket 8 is compressed between the positive electrode can 7 and the sealing plate 1 by bending the positive electrode can 7. The prototype battery has a diameter of 11.6 mm and a height of 5.4 mm.
The weight of the oxidized powder of the negative electrode was unified to 193 mg, and the amount of mercury added (the oxidized ratio) was 1% by weight based on the zinc alloy powder. The following table shows the composition of the zinc alloy of the prototype battery, and the changes in discharge performance and total battery height after storage at 60°C for one month. Note that the discharge performance is at 20℃.
It is expressed as the discharge duration when discharging at 510Ω with a final voltage of 0.9V.

【表】【table】

【表】 この表における、電池総高の変化については、
電池封口後、経時的に各電池構成要素間への応力
の関係が安定化するまでの期間は電池総高が減少
するのが通例である。しかし、亜鉛負極の腐食に
伴う水素ガス発生の多い電池では、上記の電池総
高の減少力に対抗する電池内圧の上昇により電池
総高を増大させる傾向が強くなる。従つて、貯蔵
による電池総高の増減により亜鉛負極の耐食性を
評価することができる。また、耐食性が不十分な
電池では、電池総高が増大するほか、電池内圧の
上昇により耐漏液性が劣化するとともに、腐食に
よる亜鉛の消耗、亜鉛表面の酸化膜の形成や、水
素ガスの内在による放電反応の阻害等により放電
性能が著しく劣化することになり、放電持続時間
もまた亜鉛負極の耐食性に依存する要素が大き
い。 さて、表において、本発明の比較例として挙げ
たNo.1〜7のうち単独で添加元素を添加した場合
(No.1、2、3、4)よりも、二つの元素を添加
した場合(No.5、6、7)の方が亜鉛負極の耐食
性、放電性能と幾分改善されている。しかしIn、
Sr、Pb、Cdを適切な組合せで適正な含有量だけ
併存させた本発明の実施例(No.9、10、11、14、
15、18、19、22、23、25、26)の場合には前記の
比較例に比べ、一段と耐食性、放電性能がすぐ
れ、添加元素の複合効果が顕著に示される。一方
三元素を併存させた場合でも含有量に過不足のあ
る場合(No.8、12、13、16、17、20、21、24)は
比較例と大差なく、複合効果が乏しい。上述の通
り、本発明はIn、Sr、Pb、Cdを適切な組合せ、
例えば(No.26、26で示すような適正な含有量で併
存させた亜鉛合金を負極に用いることにより低汞
化率化に成功したものであり、各元素の含有量は
Inが0.01〜0.5重量%、Srが0.005〜0.3重量%、
Pb、Cdの一種または二種の和が0.01〜0.05重量%
とするのが適切である。 以上のように、本発明は前述の添加元素の組合
わせによる相乗効果により負極に用いる亜鉛合金
の耐食性が向上することを見出し、適切な含有量
を割り出して低公害で実用性能のすぐれた亜鉛ア
ルカリ電池を実現したものである。なお、実施例
においては汞化亜鉛負極を用いた電池について説
明したが、開放式の空気電池や水素吸収機構を備
えた密閉型の亜鉛アルカリ電池などにおいては、
水素ガスの発生許容量は比較的多いので、このよ
うな場合に本発明を適用する場合はさらに低汞化
率、場合によつては無汞化のまま実施することも
できる。 発明の効果 以上のように本発明は、負極亜鉛の汞化率を低
減でき、低公害の亜鉛アルカリ電池を得るに極め
て効果的である。
[Table] Regarding changes in total battery height in this table,
After the battery is sealed, the total height of the battery typically decreases during the period until the stress relationship between the battery components becomes stable over time. However, in a battery where a large amount of hydrogen gas is generated due to corrosion of the zinc negative electrode, there is a strong tendency to increase the total battery height due to an increase in battery internal pressure that counteracts the above-described force for decreasing the total battery height. Therefore, the corrosion resistance of the zinc negative electrode can be evaluated based on the change in total battery height due to storage. In addition, batteries with insufficient corrosion resistance will not only increase the total height of the battery, but also deteriorate leakage resistance due to an increase in battery internal pressure, as well as depletion of zinc due to corrosion, formation of an oxide film on the surface of zinc, and the presence of hydrogen gas. The discharge performance will be significantly deteriorated due to inhibition of the discharge reaction by the zinc negative electrode, and the discharge duration also largely depends on the corrosion resistance of the zinc negative electrode. Now, in the table, among Nos. 1 to 7 listed as comparative examples of the present invention, cases where two elements are added (Nos. 1, 2, 3, and 4) are better than cases where an additional element is added alone (Nos. Nos. 5, 6, and 7) have somewhat improved corrosion resistance and discharge performance of the zinc negative electrode. But In,
Examples of the present invention (Nos. 9, 10, 11, 14,
In the case of Nos. 15, 18, 19, 22, 23, 25, and 26), the corrosion resistance and discharge performance are even better than those of the above-mentioned comparative examples, and the combined effect of the added elements is clearly exhibited. On the other hand, even when three elements are present together, in cases where there is excess or deficiency in the content (No. 8, 12, 13, 16, 17, 20, 21, 24), there is no significant difference from the comparative example, and the combined effect is poor. As mentioned above, the present invention uses a suitable combination of In, Sr, Pb, and Cd.
For example, by using a zinc alloy in the negative electrode at an appropriate content as shown in (No. 26, 26), we succeeded in reducing the rate of reduction in iron content, and the content of each element is
In: 0.01 to 0.5% by weight, Sr: 0.005 to 0.3% by weight,
The sum of one or both of Pb and Cd is 0.01 to 0.05% by weight
It is appropriate to As described above, the present invention has discovered that the corrosion resistance of the zinc alloy used for the negative electrode is improved due to the synergistic effect of the combination of the above-mentioned additive elements, and has determined the appropriate content to create a zinc-alkaline alloy with low pollution and excellent practical performance. This is the realization of a battery. In addition, in the examples, a battery using a zinc chloride negative electrode was explained, but in an open air battery or a sealed zinc alkaline battery equipped with a hydrogen absorption mechanism,
Since the permissible amount of hydrogen gas to be generated is relatively large, when the present invention is applied to such a case, it is possible to further reduce the rate of hydrogenation, or in some cases, it can be carried out with no rate of hydrogenation. Effects of the Invention As described above, the present invention can reduce the oxidation rate of negative electrode zinc, and is extremely effective in obtaining a low-pollution zinc-alkaline battery.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例に用いたボタン形酸化銀電
池の一部を断面にした側面図である。 2……亜鉛負極、4……セパレータ、5……酸
化銀正極。
The figure is a partially sectional side view of a button-shaped silver oxide battery used in an example of the present invention. 2... Zinc negative electrode, 4... Separator, 5... Silver oxide positive electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 インジウムを0.01〜0.5重量%、ストロンチ
ウムを0.005〜0.3重量%、鉛、カドミウムの一種
または二種を0.01〜0.5重量%含有する亜鉛合金
を負極活物質に用いた亜鉛アルカリ電池。
1. A zinc-alkaline battery using a zinc alloy containing 0.01 to 0.5% by weight of indium, 0.005 to 0.3% by weight of strontium, and 0.01 to 0.5% by weight of one or both of lead and cadmium as a negative electrode active material.
JP60043148A 1985-03-05 1985-03-05 Alkaline zinc battery Granted JPS61203563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60043148A JPS61203563A (en) 1985-03-05 1985-03-05 Alkaline zinc battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60043148A JPS61203563A (en) 1985-03-05 1985-03-05 Alkaline zinc battery

Publications (2)

Publication Number Publication Date
JPS61203563A JPS61203563A (en) 1986-09-09
JPH0365621B2 true JPH0365621B2 (en) 1991-10-14

Family

ID=12655754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60043148A Granted JPS61203563A (en) 1985-03-05 1985-03-05 Alkaline zinc battery

Country Status (1)

Country Link
JP (1) JPS61203563A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602629B1 (en) 2000-05-24 2003-08-05 Eveready Battery Company, Inc. Zero mercury air cell

Also Published As

Publication number Publication date
JPS61203563A (en) 1986-09-09

Similar Documents

Publication Publication Date Title
JPS60175368A (en) Zinc-alkaline primary cell
JPH0365621B2 (en)
JPH0622119B2 (en) Zinc alkaline battery
JPS61253764A (en) Zinc alkaline battery
JPH0142576B2 (en)
JPH0365618B2 (en)
JPH0365620B2 (en)
JPH0365619B2 (en)
JPH0622118B2 (en) Zinc alkaline battery
JPH0365623B2 (en)
JPS61181067A (en) Zinc alkaline cell
JPS6273565A (en) Zinc alkaline battery
JPS6290860A (en) Zinc alkaline cell
JPH0365622B2 (en)
JPH0143429B2 (en)
JPS6290859A (en) Zinc alkaline cell
JPS636747A (en) Zince alkaline battery
JPH0365617B2 (en)
JPS6290855A (en) Zinc alkaline cell
JPS6290851A (en) Zinc alkaline cell
JPH0441470B2 (en)
JPS61140066A (en) Zinc alkali battery
JPS61181065A (en) Zinc alkaline cell
JPS61181070A (en) Zinc alkaline cell
JPS60175369A (en) Zinc-alkaline primary cell