[go: up one dir, main page]

JPH0143429B2 - - Google Patents

Info

Publication number
JPH0143429B2
JPH0143429B2 JP60230161A JP23016185A JPH0143429B2 JP H0143429 B2 JPH0143429 B2 JP H0143429B2 JP 60230161 A JP60230161 A JP 60230161A JP 23016185 A JP23016185 A JP 23016185A JP H0143429 B2 JPH0143429 B2 JP H0143429B2
Authority
JP
Japan
Prior art keywords
zinc
mercury
weight
negative electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60230161A
Other languages
Japanese (ja)
Other versions
JPS6290854A (en
Inventor
Akira Miura
Kanji Takada
Ryoji Okazaki
Toyohide Uemura
Keiichi Kagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP60230161A priority Critical patent/JPS6290854A/en
Priority to EP85308930A priority patent/EP0185497B1/en
Priority to AU51012/85A priority patent/AU558729B2/en
Priority to DE8585308930T priority patent/DE3562307D1/en
Priority to CN85109759.6A priority patent/CN1004391B/en
Priority to US07/029,343 priority patent/US4861688A/en
Publication of JPS6290854A publication Critical patent/JPS6290854A/en
Publication of JPH0143429B2 publication Critical patent/JPH0143429B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、負極活物質として、亜鉛、電解液と
してアルカリ水溶液、正極活物質として二酸化マ
ンガン、酸化銀、酸化水銀、酸素、水酸化ニツケ
ル等を用いる亜鉛アルカリ電池の負極の改良に関
するものである。 従来の技術 亜鉛アルカリ電池の共通した問題点として、保
存中の負極亜鉛の電解液による腐食が挙げられ
る。 従来、亜鉛に5〜10重量%程度の水銀を添加
し、実用的に問題のない程度に腐食を抑制するこ
とが工業的な手法として彩用されている。しかし
近年、低公害化のため、電池内の含有水銀量を低
減させることが社会的ニーズとして高まり、種々
の研究がなされている。例えば、亜鉛中に鉛、カ
ドミウム、インジウム、ガリウムなどを添加した
合金粉末を用いて耐食性を向上させ、汞化のため
の使用水銀量、いわゆる汞化率を低減させる方法
が提案されている。これらの腐食抑制効果は、添
加元素の単体の効果以外に複数の添加元素による
複合効果も大きく、インジウムと鉛あるいはこれ
にさらにガリウムを添加したしたもの、さらには
ガリウムと鉛を添加した亜鉛合金などが従来、有
望な系として提案されている。 これらはいずれもある程度の耐食性が期待で
き、汞化率の低減もある程度見込めるものの、さ
らに一層、耐食性のよい合金系の探索が必要であ
る。 また、主にマンガン乾電池の改良をめざして、
亜鉛合金にインジウムを添加した亜鉛合金を負極
に使用することが防食上の効果が大きいという提
案がある(特公昭33−3204号)。 発明が解決しようとする課題 上記の提案の中では亜鉛合金中の元素として、
インジウムの他にFe、Cd、Cr、Pb、Ca、Hg、
Bi、Sb、Al、Ag、Mg、Si、Ni、Mn等を不純
物又は添加物として1又は2種以上を含む場合を
包含して記載されているが、インジウムと鉛を添
加元素として併用した場合の有効性以外には、上
記の雑多な各元素を不純物として含むのか、有効
な元素として添加するのかの区分は明示されてい
なく、どの元素が防食に有効なのかさえ不明であ
り、その適切な添加量についてはインジウム、鉛
以外の記載はない。 これらの元素の組合せの効果について、しかも
これを亜鉛アルカリ電池において検討し、有効な
合金組成を求めることは、なお今後の問題であ
る。 本発明は、負極亜鉛の耐食性、放電性能を劣化
させることなく汞化率を低減させ、低公害で放電
性能、貯蔵性、耐漏液性などの総合性能のすぐれ
た亜鉛アルカリ電池を提供することを目的とす
る。 課題を解決するための手段 本発明は、電解液にか性カリ、か性ソーダなど
を主成分とするアルカリ水溶液、負極活物質に亜
鉛、正極活物質に二酸化マンガン、酸化銀、酸
素、酸化水銀、などを用いるいわゆる亜鉛アルカ
リ系電池の負極に、亜鉛を主成分とし、ニツケル
を0.01〜0.5重量%、インジウム、鉛、カドミウ
ムのうち少なくとも一種を総量で0.01〜0.5重量
%、アルミニウム、マグネシウム、カルシウム、
ストロンチウムからなる群のうちの少なくとも一
種を0.005〜0.2重量%含有し、残部が亜鉛からな
る亜鉛合金を用いたことを特徴とする。 本発明は、亜鉛合金中の添加元素又は不純物や
他の元素のうち、NiとCoに注目して実験を行い、
NiやCoを単独で添加した亜鉛合金は防食性に乏
しいが、他の添加元素との複合効果が大きく、と
りわけ、Coよりも安価で合金化した際、防食性
を高めることのできるNiを上記の元素と組合せ
て適正な量を含有させた場合に、極めて顕著な複
合的防食効果が得られることを見出して完成した
ものである。 作 用 各元素の添加による防食効果、及び、これらの
元素の複合効果についての作用機構は不明確であ
るが、次のように推察される。先ず、亜鉛に対す
るNiの溶解度は小さいが噴射法で溶融亜鉛合金
を粉体化する際の冷却速度が102℃/secのオーダ
で、非常に大きいため、後述の実施例での適正な
含有量の亜鉛合金粉末においてはNiが亜鉛と溶
体化する可能性がある。従つて、亜鉛合金を表面
から汞化した場合、水銀との親和性の小さいNi
が、結晶内への水銀の拡散を抑制して亜鉛合金表
面の水銀の濃度を高く維持するのに寄与すると考
えられる。しかしその反面、亜鉛合金表面の水銀
のなじみを却つて悪くする懸念もある。また、
PbとCdは亜鉛合金の結晶粒界近傍に偏析し易く、
汞化亜鉛合金の表面層の水銀が粒界を通じて内部
に拡散するのを抑制して表面の水銀濃度を高く維
持するのに寄与するものと思われる。 また、Inは亜鉛合金の水素過電圧を大きくする
とともに、水銀となじみ易いため亜鉛合金を汞化
する場合、表面状態を汞化により均一化するのに
有効で、さらに、亜鉛合金の表面や結晶粒界に水
銀を固定する役割も期待される。また、Al、
Mg、Ca、Srは何れも、Niと同様に水銀との親
和性が小さいので、亜鉛合金の内部への水銀の拡
散を抑制するとともに、固有の作用として、溶融
亜鉛合金を噴射法で粉体化する際に生ずる亜鉛合
金粉の表面の“しわ”をなくして平滑化し、表面
積を小さくして防食効果を高めるものと考えられ
る。しかし、これらの元素は亜鉛より卑な金属な
ので、電解液中で亜鉛より優先して腐食し易く、
防食面で期待される作用とのバランスを考慮する
必要があり、過剰な添加は却つて防食性を損うこ
とになる。 以上の如く、各添加元素は異なつた作用が期待
される。しかし、各々の元素は単独では防食効果
が乏しい場合がある。本発明はこれらの添加元素
の長所、短所を補完し合うような適切な元素の組
合せと含有量を実験的に割り出して完成したもの
で、少量の水銀添加で亜鉛合金粉の表面の水素過
電圧を長期に亘り高く維持するとともに表面を均
一化し、さらに表面積を縮小させることにより、
負極に用いる亜鉛合金の耐食性を著しく改善した
ものである。これにより、低汞化率の耐食性亜鉛
負極を実現し、放電性能、貯蔵性ともにすぐれた
低公害の亜鉛アルカリ電池を提供したものであ
る。 以下、実施例により詳細に説明する。 実施例 純度99.997%の亜鉛地金に、次表に示す各種の
元素を添加した各種の亜鉛合金を作成し、約500
℃で溶融して圧縮空気により噴射して粉体化し、
50〜150メツシユの粒度範囲にふるい分けした。
次いで、か性カリの10重量%水溶液中に上記粉体
を投入し、撹拌しながら所定量の水銀を滴下して
汞化した。その後水洗し、アセトンで置換して乾
燥し、汞化亜鉛合金粉を作成した。 さらに本発明の実施例以外の汞化亜鉛粉、又は
汞化亜鉛合金粉についても比較例として同様の方
法で作成した。 これらの汞化粉末を用い、第1図に示すボタン
形酸化銀電池を製作した。図において、1はステ
ンレス鋼製の封口板で、その内面には銅メツキ
1′が施されている。2はか性カリの40重量%水
溶液に酸化亜鉛を飽和させた電解液をカルボキシ
メチルセルロースによりゲル化し、このゲル中に
汞化亜鉛合金粉末を分散させた亜鉛負極である。
3はセルロース系の保液材、4は多孔性ポリプロ
ピレン製のセパレータ、5は酸化銀に黒鉛を混合
して加圧成形した正極、6は鉄にニツケルメツキ
を施した正極リング、7はステンレス鋼製の正極
缶で、その内外面には図示していないがニツケル
メツキが施されている。8はポリプロピレン製の
ガスケツトで、正極缶の折り曲げにより正極缶と
封口板との間に圧縮されている。 試作した電池は直径11.6mm、高さ5.4mmであり、
負極の汞化粉末の重量を193mgに統一し、水銀の
添加量(汞化率)は、亜鉛合金粉に対し、いずれ
も0.5重量%とした。 試作した電池の亜鉛合金の組成と、60℃で1カ
月間保存した後の放電性能と電池総高の変化を次
表に示す。なお放電性能は、20℃において510Ω
で0.9Vを終止電圧として放電したときの3個の
電池の平均放電持続時間で表し、電池総高の変化
は20個の電池の保存後における平均高さが基準値
(5.4mm)に対して増大したものを+、減少したも
のを−で示した。 この電池総高の変化については、電池封口後、
経時的に各電池構成要素間への応力の関係が安定
化するまでの期間は電池総高が減少するのが通例
である。しかし、亜鉛負極の腐食に伴う水素ガス
発生の多い電池では、上記の電池総高の減少力に
対抗する電池内圧の上昇により電池総高を増大さ
せる傾向が強くなる。従つて、貯蔵による電池総
高の基準値に対する増減により亜鉛負極の耐食性
を評価することができる。 また、20個の電池を温度60℃、湿度90%で1カ
月放置したのち、目視で漏液状態を判定し、漏液
した電池個数も同時に示した。
Industrial Application Field The present invention is an improvement of the negative electrode of a zinc-alkaline battery that uses zinc as the negative electrode active material, an alkaline aqueous solution as the electrolyte, and manganese dioxide, silver oxide, mercury oxide, oxygen, nickel hydroxide, etc. as the positive electrode active material. It is related to. Prior Art A common problem with zinc-alkaline batteries is corrosion of the negative electrode zinc by electrolyte during storage. Conventionally, it has been widely used as an industrial method to add 5 to 10% by weight of mercury to zinc to suppress corrosion to a level that causes no practical problems. However, in recent years, there has been an increasing social need to reduce the amount of mercury contained in batteries in order to reduce pollution, and various studies have been conducted. For example, a method has been proposed in which the corrosion resistance is improved by using an alloy powder in which lead, cadmium, indium, gallium, etc. are added to zinc, and the amount of mercury used for oxidation, the so-called oxidation rate, is reduced. These corrosion-inhibiting effects are not only due to the single additive element, but also due to the combined effect of multiple additive elements, such as indium and lead, or the combination of indium and lead with the addition of gallium, and even zinc alloys with the addition of gallium and lead. has been proposed as a promising system. Although all of these can be expected to have a certain degree of corrosion resistance and to reduce the degree of corrosion to some extent, it is necessary to search for an alloy system with even better corrosion resistance. In addition, we mainly aim to improve manganese dry batteries.
There is a proposal that using a zinc alloy with indium added to the zinc alloy for the negative electrode has a great anticorrosion effect (Japanese Patent Publication No. 33-3204). Problems to be solved by the invention Among the above proposals, as an element in zinc alloy,
In addition to indium, Fe, Cd, Cr, Pb, Ca, Hg,
The description includes cases in which one or more of Bi, Sb, Al, Ag, Mg, Si, Ni, Mn, etc. are included as impurities or additives, but when indium and lead are used together as additive elements. Other than the effectiveness of corrosion prevention, there is no clear distinction as to whether each of the miscellaneous elements listed above is added as an impurity or as an effective element, and it is not even clear which elements are effective for corrosion prevention. There is no description of the amount of addition other than indium and lead. It remains a matter of future research to study the effects of these element combinations in zinc-alkaline batteries and to find effective alloy compositions. The present invention aims to provide a zinc-alkaline battery with low pollution and excellent overall performance such as discharge performance, storage performance, and leakage resistance, by reducing the corrosion resistance and discharge performance of the negative electrode zinc. purpose. Means for Solving the Problems The present invention includes an electrolyte containing an alkaline aqueous solution containing caustic potassium or caustic soda as a main component, zinc as a negative electrode active material, and manganese dioxide, silver oxide, oxygen, or mercury oxide as a positive electrode active material. For the negative electrode of a so-called zinc-alkaline battery, which uses zinc as the main component, 0.01 to 0.5% by weight of nickel, 0.01 to 0.5% by weight of at least one of indium, lead, and cadmium, aluminum, magnesium, and calcium. ,
It is characterized by using a zinc alloy containing 0.005 to 0.2% by weight of at least one member of the group consisting of strontium, and the balance being zinc. The present invention conducted experiments focusing on Ni and Co among the additive elements, impurities, and other elements in the zinc alloy.
Zinc alloys containing Ni or Co alone have poor corrosion resistance, but the combined effect with other additive elements is significant.In particular, the above-mentioned Ni is cheaper than Co and can improve corrosion resistance when alloyed. This work was completed after discovering that an extremely remarkable composite anticorrosion effect can be obtained when the appropriate amount is contained in combination with the following elements. Effect The mechanism of action of the anticorrosive effect of adding each element and the combined effect of these elements is unclear, but it is inferred as follows. First, although the solubility of Ni in zinc is small, the cooling rate when pulverizing molten zinc alloy by the injection method is on the order of 10 2 °C/sec, which is extremely high, so the appropriate content in the examples described later is There is a possibility that Ni may become a solution with zinc in the zinc alloy powder. Therefore, when a zinc alloy is made into a starch from the surface, Ni, which has a low affinity for mercury,
It is thought that this contributes to suppressing the diffusion of mercury into the crystal and maintaining a high concentration of mercury on the surface of the zinc alloy. However, on the other hand, there is also a concern that the adhesion of mercury to the surface of the zinc alloy may become worse. Also,
Pb and Cd tend to segregate near the grain boundaries of zinc alloys,
It is thought that this suppresses the diffusion of mercury in the surface layer of the zinc chloride alloy into the interior through grain boundaries, thereby contributing to maintaining a high mercury concentration on the surface. In addition, In increases the hydrogen overvoltage of zinc alloys, and since it is easily compatible with mercury, it is effective in making the surface condition uniform when a zinc alloy is oxidized. It is also expected to play a role in fixing mercury in the world. Also, Al,
Like Ni, Mg, Ca, and Sr all have a low affinity for mercury, so they suppress the diffusion of mercury into the zinc alloy. It is thought that this method eliminates the wrinkles on the surface of the zinc alloy powder that occur when it is oxidized, making it smoother, reducing the surface area, and increasing the anticorrosion effect. However, since these elements are base metals than zinc, they are more likely to corrode than zinc in the electrolyte.
It is necessary to consider the balance with the expected anticorrosion effect, and excessive addition will actually impair the anticorrosion property. As mentioned above, each additive element is expected to have a different effect. However, each element alone may have a poor anticorrosive effect. The present invention was completed by experimentally determining the appropriate combination and content of elements that complement the strengths and weaknesses of these additive elements, and it is possible to reduce the hydrogen overvoltage on the surface of zinc alloy powder by adding a small amount of mercury. By maintaining a high level over a long period of time, making the surface uniform, and further reducing the surface area,
This significantly improves the corrosion resistance of the zinc alloy used in the negative electrode. As a result, a corrosion-resistant zinc negative electrode with a low rate of decay was realized, and a low-pollution zinc-alkaline battery with excellent discharge performance and storage performance was provided. Hereinafter, it will be explained in detail using examples. Example: Various zinc alloys were created by adding various elements shown in the following table to zinc ingot with a purity of 99.997%.
Melt it at ℃ and inject it with compressed air to powder it.
It was sieved to a particle size range of 50 to 150 mesh.
Next, the above powder was put into a 10% by weight aqueous solution of caustic potash, and a predetermined amount of mercury was added dropwise to the solution while stirring. Thereafter, it was washed with water, substituted with acetone, and dried to produce a zinc chloride alloy powder. Furthermore, zinc chloride powder or zinc chloride alloy powder other than the examples of the present invention were also prepared in the same manner as comparative examples. A button-shaped silver oxide battery shown in FIG. 1 was manufactured using these oxidized powders. In the figure, reference numeral 1 denotes a sealing plate made of stainless steel, the inner surface of which is plated with copper 1'. 2 is a zinc negative electrode prepared by gelling an electrolytic solution of a 40% by weight aqueous solution of caustic potassium saturated with zinc oxide with carboxymethylcellulose, and dispersing zinc oxide alloy powder in this gel.
3 is a cellulose-based liquid retaining material, 4 is a separator made of porous polypropylene, 5 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded, 6 is a positive electrode ring made of nickel-plated iron, and 7 is made of stainless steel. The positive electrode can has nickel plating (not shown) on its inner and outer surfaces. A polypropylene gasket 8 is compressed between the positive electrode can and the sealing plate by bending the positive electrode can. The prototype battery has a diameter of 11.6 mm and a height of 5.4 mm.
The weight of the oxidized powder of the negative electrode was unified to 193 mg, and the amount of mercury added (the oxidized ratio) was 0.5% by weight based on the zinc alloy powder. The following table shows the composition of the zinc alloy of the prototype battery, and the changes in discharge performance and total battery height after storage at 60°C for one month. The discharge performance is 510Ω at 20℃.
It is expressed as the average discharge duration of three batteries when discharged with a final voltage of 0.9V, and the change in total battery height is the average height of 20 batteries after storage compared to the standard value (5.4mm). An increase is indicated by +, and a decrease is indicated by -. Regarding this change in total battery height, after sealing the battery,
It is normal for the total height of the battery to decrease over time until the stress relationship between the battery components becomes stable. However, in a battery in which a large amount of hydrogen gas is generated due to corrosion of the zinc negative electrode, there is a strong tendency to increase the total battery height due to an increase in battery internal pressure that counteracts the above-described force for decreasing the total battery height. Therefore, the corrosion resistance of the zinc negative electrode can be evaluated based on the change in total battery height from the standard value due to storage. In addition, after 20 batteries were left at a temperature of 60°C and humidity of 90% for one month, the state of leakage was visually determined, and the number of batteries leaking was also indicated.

【表】【table】

【表】【table】

【表】 表から明らかなように、耐食性が不十分な電池
では、電池総高が増大するほか、電池内圧の上昇
により耐漏液性が劣化するとともに、腐食による
亜鉛の消耗、亜鉛表面の酸化膜の形成や、水素ガ
スの内圧による放電反応の阻害等により放電性能
が著しく劣化することになり、放電持続時間も又
亜鉛負極の耐食性に依存する要素が大きい。 上記表において、本発明の比較例として挙げた
No.1〜8のうち単独で添加元素を添加した場合
(No.1〜2)よりも、二つの元素を添加した場合
(No.3、4)、さらに三つの元素を添加した場合
(No.5、6、7、8)の方が亜鉛負極の耐食性、
放電性能ともに幾分は改善されている。 しかし、In、Cd、Pb、Ni、Al、Mg、Ca、Sr
を適切な組合わせで適正な含有量だけ併存させた
場合、No.10、11、12、15、16、19、21、22、23、
24、25、26、27、28、29、30、31、32、33では前
記の比較例に比べ、一段と耐食性、放電性能がす
ぐれ、添加元素の複合効果が顕著に示される。一
方三元素を併存させた場合でも含有量に過不足の
ある場合(No.9、13、14、17、18、20)は比較例
と大差なく、複合効果が乏しい。 第2図から第4図は、前記のIn、Pb、Al又は
Mg及びNiの4元素のうち、3元素を適切な添加
量(各0.05重量%又は0.02重量%)に固定し、他
の1元素につきその添加量をかえて亜鉛合金粉を
調整し、水銀量1重量%で汞化して45℃でのアル
カリ電解液との接触による水素ガス発生速度から
合金の耐食性を評価し、好ましい含有量を求めた
ものである。 水素ガス発生速度を実用的に問題のない、すな
わちこれまでの10重量%程度の水銀を添加した汞
化亜鉛粉末と同程度の2〜2.5μ/g・日以下に
抑えるため、耐食性の向上を図るよう添加した
Niは、第2図から明らかなように0.01〜0.5重量
%とするのが好ましい。同様にAlの添加量は第
3図で明らかなとおり0.005〜0.2重量%が、Mg
も第4図に示すとおり0.005〜0.2重量%が好適で
あつた。又、図示しなかつたがカルシウム、スト
ロンチウムを含有させた場合でもその好ましい添
加量はアルミニウムと同様であつた。さらにInと
Pbを併用した場合だけでなく、これらを単独で
用いた場合、又はCdを単独であるいはInなどと
併用した場合も、その好ましい添加量は0.01〜
0.5重量%であつた。 第5図は各種亜鉛合金粉における経過日数と水
素ガス発生量との関係を示す図であり、図中Aは
純亜鉛粉で水銀添加量0のもの、Bは純亜鉛粉に
9重量%の水銀を添加したもの、CはInおよび
Pbを各0.05重量%含有し、3重量%の水銀を添加
したもの、DはIn、Pb、Alを各0.05重量%、Ni
を0.02重量%含有し1重量%の水銀を添加したも
の、EはDの水銀添加量を1.5重量%に増加した
もののそれぞれ特性を示す。 以上のように、本発明は前述の添加元素の組合
わせによる相乗効果により負極に用いる亜鉛合金
の耐食性が向上することを見出し、適切な含有量
を割り出して低公害で実用性能のすぐれた亜鉛ア
ルカリ電池を実現したものである。なお、実施例
においては汞化亜鉛負極を用いた電池について説
明したが、開放式の空気電池や水素吸収機構を備
えた密閉型の亜鉛アルカリ電池などにおいては、
水素ガスの発生許容量は比較的多いので、このよ
うな場合に本発明を適用する場合はさらに低汞化
率、場合によつては無汞化のまま実施することも
できる。 発明の効果 以上のように本発明は、負極亜鉛の汞化率を低
減でき、低公害の亜鉛アルカリ電池を得るに極め
て効果的である。
[Table] As is clear from the table, in batteries with insufficient corrosion resistance, the total height of the battery increases, the leakage resistance deteriorates due to an increase in battery internal pressure, zinc is consumed due to corrosion, and an oxide film on the surface of the zinc increases. The discharge performance is significantly deteriorated due to the formation of hydrogen gas and the inhibition of the discharge reaction due to the internal pressure of hydrogen gas, and the discharge duration also largely depends on the corrosion resistance of the zinc negative electrode. In the above table, the following are listed as comparative examples of the present invention.
Among Nos. 1 to 8, cases in which only one additional element was added (Nos. 1 to 2), cases in which two elements were added (Nos. 3 and 4), and cases in which three additional elements were added (Nos. 1 to 2) .5, 6, 7, 8) have better corrosion resistance of zinc negative electrode,
Both discharge performance has been improved somewhat. However, In, Cd, Pb, Ni, Al, Mg, Ca, Sr
No. 10, 11, 12, 15, 16, 19, 21, 22, 23,
Samples Nos. 24, 25, 26, 27, 28, 29, 30, 31, 32, and 33 have even better corrosion resistance and discharge performance than the above-mentioned comparative examples, and the combined effects of the added elements are clearly exhibited. On the other hand, even when three elements are present together, in cases where there is an excess or deficiency in the content (Nos. 9, 13, 14, 17, 18, 20), there is no significant difference from the comparative example, and the combined effect is poor. Figures 2 to 4 show the above-mentioned In, Pb, Al or
Among the four elements Mg and Ni, three elements are fixed at appropriate addition amounts (0.05% or 0.02% by weight each), and the addition amount of the other element is changed to adjust the zinc alloy powder, and the amount of mercury is adjusted. The corrosion resistance of the alloy was evaluated from the rate of hydrogen gas generation upon contact with an alkaline electrolyte at 45° C. after hydrogenation at 1% by weight, and the preferred content was determined. In order to keep the hydrogen gas generation rate to a level of 2 to 2.5 μ/g/day or less, which is practically acceptable, that is, the same level as the conventional zinc chloride powder containing about 10% by weight of mercury, we have improved the corrosion resistance. added to aim for
As is clear from FIG. 2, Ni is preferably contained in an amount of 0.01 to 0.5% by weight. Similarly, as shown in Figure 3, the amount of Al added is 0.005 to 0.2% by weight, while Mg
As shown in FIG. 4, 0.005 to 0.2% by weight was also suitable. Further, although not shown in the drawings, even when calcium or strontium is contained, the preferable addition amount is the same as that for aluminum. Furthermore, In and
Not only when Pb is used in combination, but also when these are used alone, or when Cd is used alone or in combination with In etc., the preferable addition amount is 0.01 to
It was 0.5% by weight. Figure 5 shows the relationship between the number of days elapsed and the amount of hydrogen gas generated for various zinc alloy powders. In the figure, A is pure zinc powder with no added mercury, and B is pure zinc powder with 9 wt% Added mercury, C is In and
Contains 0.05% by weight each of Pb and 3% by weight of mercury, D contains 0.05% by weight each of In, Pb, and Al, and Ni
E shows the characteristics of a material containing 0.02% by weight of mercury and 1% by weight of mercury, and E shows the characteristics of D with an increased amount of mercury added to 1.5% by weight. As described above, the present invention has discovered that the corrosion resistance of the zinc alloy used for the negative electrode is improved due to the synergistic effect of the combination of the above-mentioned additive elements, and has determined the appropriate content to create a zinc-alkaline alloy with low pollution and excellent practical performance. This is the realization of a battery. In addition, in the examples, a battery using a zinc chloride negative electrode was explained, but in an open air battery or a sealed zinc alkaline battery equipped with a hydrogen absorption mechanism,
Since the permissible amount of hydrogen gas to be generated is relatively large, when the present invention is applied to such a case, it is possible to further reduce the rate of hydrogenation, or in some cases, it can be carried out with no rate of hydrogenation. Effects of the Invention As described above, the present invention can reduce the oxidation rate of negative electrode zinc, and is extremely effective in obtaining a low-pollution zinc-alkaline battery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いたボタン形酸化
銀電池の一部を断面にした側面図、第2図から第
4図は亜鉛合金粉における合金成分の含有量と水
素ガス発生速度との関係を示した図、第5図は各
種亜鉛合金粉における経過日数と水素ガス発生量
との関係を示した図である。 2……合金負極、4……セパレータ、5……酸
化銀正極。
FIG. 1 is a side view of a button-shaped silver oxide battery used in an example of the present invention, with a part cut away, and FIGS. 2 to 4 show the content of alloy components in zinc alloy powder and the rate of hydrogen gas generation. FIG. 5 is a diagram showing the relationship between the number of days elapsed and the amount of hydrogen gas generated for various zinc alloy powders. 2... Alloy negative electrode, 4... Separator, 5... Silver oxide positive electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 正極と、アルカリ水溶液からなる電解液と、
負極を備え、ニツケルを0.01〜0.5重量%、イン
ジウム、鉛、カドミウムからなる群のうち少なく
とも一種を総量で0.01〜0.5重量%、アルミニウ
ム、マグネシウム、カルシウム、ストロンチウム
からなる群のうちの少なくとも一種を0.005〜0.2
重量%含有し、残部が低汞化率の亜鉛からなる亜
鉛合金を負極活物質に用いた亜鉛アルカリ電池。
1 a positive electrode, an electrolyte consisting of an alkaline aqueous solution,
Equipped with a negative electrode, 0.01 to 0.5% by weight of nickel, 0.01 to 0.5% by weight of at least one of the group consisting of indium, lead, and cadmium, and 0.005% of at least one of the group consisting of aluminum, magnesium, calcium, and strontium. ~0.2
A zinc-alkaline battery using a zinc alloy as a negative electrode active material, with the balance being zinc with a low concentration ratio.
JP60230161A 1984-12-12 1985-10-16 Zinc alkaline cell Granted JPS6290854A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60230161A JPS6290854A (en) 1985-10-16 1985-10-16 Zinc alkaline cell
EP85308930A EP0185497B1 (en) 1984-12-12 1985-12-09 Zinc-alkaline battery
AU51012/85A AU558729B2 (en) 1984-12-12 1985-12-09 Zinc alloy-alkaline battery including nickel
DE8585308930T DE3562307D1 (en) 1984-12-12 1985-12-09 Zinc-alkaline battery
CN85109759.6A CN1004391B (en) 1984-12-12 1985-12-11 Zinc-alkali cells
US07/029,343 US4861688A (en) 1984-12-12 1987-03-19 Zinc-alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60230161A JPS6290854A (en) 1985-10-16 1985-10-16 Zinc alkaline cell

Publications (2)

Publication Number Publication Date
JPS6290854A JPS6290854A (en) 1987-04-25
JPH0143429B2 true JPH0143429B2 (en) 1989-09-20

Family

ID=16903552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60230161A Granted JPS6290854A (en) 1984-12-12 1985-10-16 Zinc alkaline cell

Country Status (1)

Country Link
JP (1) JPS6290854A (en)

Also Published As

Publication number Publication date
JPS6290854A (en) 1987-04-25

Similar Documents

Publication Publication Date Title
JPS60175368A (en) Zinc-alkaline primary cell
JPH0371737B2 (en)
JPH0143429B2 (en)
JPH0142576B2 (en)
JPH0622119B2 (en) Zinc alkaline battery
JPS636749A (en) Zinc alkaline battery
JPH0365619B2 (en)
JPS6290860A (en) Zinc alkaline cell
JPS6273565A (en) Zinc alkaline battery
JPH0365620B2 (en)
JPH0622118B2 (en) Zinc alkaline battery
JPH0365623B2 (en)
JPS61253764A (en) Zinc alkaline battery
JPH0365618B2 (en)
JPH0365621B2 (en)
JPH0365622B2 (en)
JPH0365617B2 (en)
JPS6290859A (en) Zinc alkaline cell
JPS6290855A (en) Zinc alkaline cell
JPS636747A (en) Zince alkaline battery
JPS6290851A (en) Zinc alkaline cell
JPS61140064A (en) Zinc alkali battery
JPS61181070A (en) Zinc alkaline cell
JPS61181066A (en) Zinc alkaline cell
JPS61140066A (en) Zinc alkali battery