[go: up one dir, main page]

JPH0685324B2 - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPH0685324B2
JPH0685324B2 JP62010666A JP1066687A JPH0685324B2 JP H0685324 B2 JPH0685324 B2 JP H0685324B2 JP 62010666 A JP62010666 A JP 62010666A JP 1066687 A JP1066687 A JP 1066687A JP H0685324 B2 JPH0685324 B2 JP H0685324B2
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
battery
alloy
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62010666A
Other languages
Japanese (ja)
Other versions
JPS63178452A (en
Inventor
晃 三浦
寛治 高田
良二 岡崎
豊秀 植村
恵市 賀川
暢順 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP62010666A priority Critical patent/JPH0685324B2/en
Publication of JPS63178452A publication Critical patent/JPS63178452A/en
Publication of JPH0685324B2 publication Critical patent/JPH0685324B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質として亜鉛,電解液としてアルカ
リ電解液、正極活物質として二酸化マンガン,酸化銀,
酸化水銀,酸素,水酸化ニッケル等を用いる亜鉛アルカ
リ電池において、特に負極の改良に関するものである。
TECHNICAL FIELD The present invention relates to zinc as a negative electrode active material, an alkaline electrolyte as an electrolytic solution, and manganese dioxide, silver oxide as a positive electrode active material.
In a zinc-alkaline battery using mercury oxide, oxygen, nickel hydroxide, etc., it particularly relates to improvement of the negative electrode.

従来の技術 従来、この種の亜鉛アルカリ電池の共通した問題点とし
て、保存中の負極亜鉛の電解液による腐食が挙げられ
る。以前から、亜鉛に5〜10重量%程度の水銀を添加し
た汞化亜鉛粉末を用いて水素過電圧を高め、実用的に問
題のない程度に腐食を抑制することが工業的な手法とし
て採用されている。
2. Description of the Related Art Conventionally, a common problem of this type of zinc alkaline battery is corrosion of the negative electrode zinc during storage by an electrolytic solution. It has been used as an industrial method for a long time to increase the hydrogen overvoltage by using zinc fluoride powder in which 5 to 10% by weight of mercury is added to zinc and suppress corrosion to the extent that there is no practical problem. There is.

しかし近年、低公害化のため、電池内の含有水銀を低減
させることが社会的なニーズとして高まり、種々の研究
がなされている。例えば、亜鉛,カドミウム,インジウ
ム,ガリウムなどを添加した合金粉末を用いて耐食性を
向上させ、汞化率を低減させる方法が提案されている。
これらの腐食抑制効果は、添加元素単体による効果以外
に、複数の添加元素による複合効果も大きく、インジウ
ムと鉛あるいはこれらにガリウムを添加した亜鉛合金な
どが従来、有望な系として提案されている。
However, in recent years, to reduce pollution, reduction of mercury contained in a battery has been increasing as a social need, and various studies have been made. For example, a method has been proposed in which alloy powder added with zinc, cadmium, indium, gallium, or the like is used to improve the corrosion resistance and reduce the conversion rate.
In addition to the effect of the additional element alone, these corrosion inhibition effects have a large composite effect of a plurality of additional elements, and indium and lead or zinc alloys in which gallium is added to these elements have been proposed as promising systems.

また、鉛,カドミウムにガリウムと銀を添加した亜鉛合
金(特開昭61-78062号)、ガリウムおよびタリウムにア
ルミニウムを添加した亜鉛合金(特開昭61-78061号)、
アルミニウムと鉛に銀,ガリウム,タリウム,カドミウ
ムの一種または二種以上を添加した亜鉛合金(特開昭61
-78059号)等がある。
Further, a zinc alloy in which gallium and silver are added to lead and cadmium (JP-A-61780780), a zinc alloy in which aluminum is added to gallium and thallium (JP-A-61-78061),
Zinc alloy in which one or more kinds of silver, gallium, thallium, and cadmium are added to aluminum and lead (Japanese Patent Laid-Open No. Sho 61-61).
-78059) etc.

発明が解決しようとする問題点 このような提案による亜鉛合金は、いずれもある程度の
耐食性は期待でき、汞化率の低減もある程度できるが、
これらの元素の組み合わせの効果については現状では十
分ではなく、有効な組み合せによる合金組成を解明する
ことは今後の課題である。
Problems to be Solved by the Invention The zinc alloys according to such a proposal can be expected to have corrosion resistance to some extent, and the reduction rate can be reduced to some extent.
The effect of the combination of these elements is not sufficient at present, and it is a future subject to elucidate the alloy composition by an effective combination.

本発明はこのような問題点を解決するもので、負極亜鉛
の耐食性を劣化させることなく、汞化率を低減させ、低
公害で放電性能,貯蔵性能,耐漏液性などの総合性能の
すぐれた特性を亜鉛負極に具備せしめるため、添加元素
の選択とその含有量の適正な組み合せを目的とするもの
である。
The present invention solves such a problem, and reduces deterioration rate without deteriorating the corrosion resistance of the negative electrode zinc, and has low pollution and excellent overall performance such as discharge performance, storage performance and liquid leakage resistance. In order to provide the zinc negative electrode with the characteristics, the purpose is to select an additive element and appropriately combine the contents.

問題点を解決するための手段 この問題点を解決するために本発明は、鉛,カドミウ
ム,ガリウムのうち一種以上を0.01〜0.5重量%、アル
ミニウムを0.01〜0.2重量%、バリウム,ストロンチウ
ムの少なくとも一種を0.01〜0.2重量%含有する亜鉛合
金を負極活物質に使用し、亜鉛アルカリ電池の水銀低減
化を実現したものである。
Means for Solving the Problems In order to solve this problem, the present invention provides 0.01 to 0.5% by weight of one or more of lead, cadmium and gallium, 0.01 to 0.2% by weight of aluminum, and at least one of barium and strontium. By using a zinc alloy containing 0.01 to 0.2% by weight as a negative electrode active material, reduction of mercury in a zinc alkaline battery is realized.

作用 本発明による各添加元素の作用機構は明確ではないが、
防食に関する相乗効果は下記のように推察される。
Action The action mechanism of each additive element according to the present invention is not clear,
The synergistic effect of anticorrosion is presumed as follows.

まず、鉛,カドミウム,ガリウムは、水素過電圧を高め
る。特にガリウムは非常に水素過電圧が高く、しかも常
温近傍で液体であるため、水銀とほぼ同様な効果を示す
ものと思われる。また鉛,カドミウムなどは亜鉛合金の
粒界の近傍に偏析し安く、亜鉛合金を表面から汞化した
場合に、表面層の水銀が粒界を通じて亜鉛合金内部へ拡
散するのを抑制し、表面の水銀濃度を高く維持すること
に寄与するものと考えられる。
First, lead, cadmium, and gallium increase the hydrogen overvoltage. In particular, gallium has a very high hydrogen overvoltage, and since it is a liquid at around room temperature, it seems to have an effect similar to that of mercury. Also, lead and cadmium are segregated near the grain boundaries of the zinc alloy and are cheap, and when the zinc alloy is screened from the surface, mercury in the surface layer is suppressed from diffusing into the zinc alloy through the grain boundaries, It is considered to contribute to maintaining a high mercury concentration.

アルカリ電池に用いる亜鉛は、亜鉛溶湯を圧縮空気等
で、噴霧固化して作られる亜鉛粉、いわゆるアトマイズ
亜鉛粉の状態である。アルミニウムの添加はそのアトマ
イズ亜鉛粉の粒子形状に関わり、粒子を球状化し、かつ
その表面を平滑化することに作用している。粒子の球状
化、その表面の平滑化は、亜鉛粉の電解液との接触によ
り腐食反応を行なう表面積を減少させ、耐食性を増すこ
とができる。
Zinc used in alkaline batteries is in the state of so-called atomized zinc powder, which is zinc powder produced by spray-solidifying molten zinc with compressed air or the like. The addition of aluminum affects the particle shape of the atomized zinc powder, and has the effect of making the particles spherical and smoothing the surface thereof. The spheroidizing of the particles and the smoothing of the surface thereof can reduce the surface area where the zinc powder is brought into contact with the electrolytic solution to cause a corrosion reaction, thereby increasing the corrosion resistance.

ストロンチウムまたはバリウムをアルミニウムと同時に
添加すると、上記のアトマイズ亜鉛粉の形状をさらに球
状化し、その表面を平滑化する効果があり、耐食性が、
さらに向上できる。
When strontium or barium is added at the same time as aluminum, it has the effect of further sphericalizing the shape of the above atomized zinc powder, smoothing the surface, and corrosion resistance,
It can be further improved.

以上述べた添加元素は単独での添加では、耐食性におい
て効果が薄いか、逆効果が基礎的な耐食実験で確認され
た。複合添加することは、各々の添加合金が持つ耐食性
に逆効果の性質、たとえば、アルミニウム,ストロンチ
ウム,バリウムの電気化学に卑なポテンシャルの影響等
が軽減され、相乗効果があるものと思われる。
It was confirmed by basic corrosion resistance experiments that the above-mentioned additional elements have little effect on corrosion resistance when added alone, or the opposite effect. It is considered that the combined addition reduces synergistic effects by reducing adverse effects on the corrosion resistance of each additive alloy, for example, the influence of a base potential on the electrochemistry of aluminum, strontium, and barium.

本発明は、亜鉛合金中の添加元素の組合せとその含有量
を実験的に検討し、低汞化率で、充分な耐食性と放電性
能を兼ね備えた低公害で実用性の高い亜鉛アルカリ電池
を実現するに有効な手段を完成したものである。以下、
実施例により詳細に説明する。
The present invention experimentally examines the combination of additive elements in a zinc alloy and the content thereof, and realizes a low-pollution and highly practical zinc alkaline battery that has both a sufficient reduction rate and sufficient corrosion resistance and discharge performance. It is a completed effective means. Less than,
This will be described in detail with reference to examples.

実施例 純度99.997%以上の亜鉛地金に後に表に示すように各種
の元素を添加した各種の亜鉛合金を作成し、約500℃で
溶融して圧縮空気により噴射して粉体化し、50〜150メ
ッシュの粒度範囲にふるい分けした。次いで、か性カリ
の10重量%水溶液中に上記粉体を投入し、攪拌しながら
所定量の水銀を滴下して汞化した。その後水洗し、アセ
トンで置換して乾燥し、汞化亜鉛合金粉を作成した。さ
らに本発明の実施例以外の汞化亜鉛合金粉についても比
較例として同様の方法で作成した。
Example Various zinc alloys were prepared by adding various elements to a zinc ingot having a purity of 99.997% or more, as shown in the table below, and were melted at about 500 ° C. and sprayed with compressed air to be powdered. It was sieved to a particle size range of 150 mesh. Then, the above powder was put into a 10% by weight aqueous solution of caustic potash, and a predetermined amount of mercury was dropped to the solution while stirring to make it selective. Then, it was washed with water, replaced with acetone and dried to prepare a zinc hydride alloy powder. Further, zinc fluorinated alloy powders other than the examples of the present invention were prepared by the same method as comparative examples.

これらの汞化粉末を用い、図に示す円筒形のアルカリマ
ンガン電池を製作した。図において、1は鉄にニッケル
メッキを施した正極ケースで内部には二酸化マンガンに
黒鉛を混合して加圧成形した正極2,ポリプロピレンの不
織布からなるセパレータ3,セルロース製底板4,カルボキ
シメチルセルロースでゲル化したか性カリ水溶液の電解
液に各種汞化亜鉛合金を分散させたゲル状の負極5を収
容している。6はケース1の開口部を封口したポリプロ
ピレン製の封口板で、その中央には真鍮製の負極集電子
7を固定している。8は負極端子板、9は正極端子板、
10,11は絶縁リング、12は熱収縮性樹脂チューブ、13は
金属外缶である。
A cylindrical alkaline manganese battery shown in the figure was manufactured using these selected powders. In the figure, 1 is a nickel-plated positive electrode case in which positive electrode is made by mixing manganese dioxide with graphite, pressure-molded 2, separator made of polypropylene non-woven fabric 3, cellulose bottom plate 4, carboxymethyl cellulose gel A gelled negative electrode 5 in which various zinc fluoride alloys are dispersed in an electrolytic solution of an aqueous potassium hydroxide solution is housed. Reference numeral 6 denotes a polypropylene sealing plate that seals the opening of the case 1, and a brass negative electrode current collector 7 is fixed to the center thereof. 8 is a negative terminal plate, 9 is a positive terminal plate,
10, 11 are insulating rings, 12 is a heat-shrinkable resin tube, and 13 is a metal outer can.

試作した電池は単3形のアルカリマンガン電池で、負極
に用いた汞化亜鉛合金粉末の重量は2.80gに統一し、水
銀の添加量(汞化率)は亜鉛合金に対し2重量%とし
た。試作した電池を60℃で1カ月貯蔵後、20℃において
1Ω負荷での連続放電性能と耐漏液性とを評価した。負
極の亜鉛合金の内訳と試験の結果を次表に示す。
The prototype battery was an AA alkaline manganese battery. The weight of the zinc hydride alloy powder used for the negative electrode was unified to 2.80 g, and the amount of mercury added (rate of hydration) was 2% by weight based on the zinc alloy. . The prototype battery was stored at 60 ° C. for 1 month and then evaluated at 20 ° C. for continuous discharge performance under a load of 1 Ω and leakage resistance. The following table shows the breakdown of the zinc alloy for the negative electrode and the test results.

耐食性が不十分な電池では、電池内圧の上昇により耐漏
液性が劣化するとともに、腐食による亜鉛の消耗,亜鉛
表面の酸化膜の形成や水素ガスの内圧による放電反応の
阻害等により放電性能が著しく劣化することになり、放
電持続時間もまた亜鉛負極の耐食性に依存する要素が大
きい。
In the case of batteries with insufficient corrosion resistance, the leakage resistance deteriorates due to an increase in the battery internal pressure, and the discharge performance is significantly reduced due to the consumption of zinc due to corrosion, the formation of an oxide film on the zinc surface, and the inhibition of the discharge reaction due to the internal pressure of hydrogen gas. As a result, the discharge duration is largely dependent on the corrosion resistance of the zinc negative electrode.

上記表において、本発明の比較例として挙げたNo1〜7
のうち単独で添加した場合(No1,2,3,4)よりも、二種
の元素を添加した場合(No5,6,7)、さらに三種の元素
を添加した場合の方が亜鉛負極の耐食性,放電性能とも
に幾分は改善されている。しかしPb,Cd,Ca,Al,Ba,Srを
適切な組合せで適正な含有量だけ併存させた本発明の実
施例(No9,10,11,12,15,16,17,20,21,22,25,26,27,28,3
1,32,33,34,37,38,39,41,42,43)の場合には前記比較例
に比べ、一段と耐食性,放電性能がすぐれ、添加元素の
複合効果が顕著に示される。一方三元素を併存させた場
合でも含有量に過不足のある場合(No8,13,14,18,19,2
3,24,29,30,35,36,40)では比較例と大差なく、複合効
果に乏しい。
In the above table, Nos. 1 to 7 listed as comparative examples of the present invention
Corrosion resistance of zinc negative electrode when two elements are added (No5,6,7) and three elements are added more than when added alone (No1,2,3,4) The discharge performance has been somewhat improved. However, examples of the present invention (No 9, 10, 11, 12, 15, 15, 16, 17, 20, 21, 22 in which Pb, Cd, Ca, Al, Ba, Sr are present together in an appropriate combination in an appropriate content , 25,26,27,28,3
In the case of 1,32,33,34,37,38,39,41,42,43), the corrosion resistance and the discharge performance are further improved as compared with the comparative example, and the combined effect of the additional elements is remarkably exhibited. On the other hand, even if the three elements are coexistent, if there is an excess or deficiency in the content (No8, 13, 14, 18, 18, 19, 2)
3,24,29,30,35,36,40) is not so different from the comparative example and the combined effect is poor.

上述の通り、本発明はPb,Cd,Ga,Al,Ba,Srを適切に組合
せ、実施例で示すような適正な含有量で併存させた亜鉛
合金を負極に用いることにより低汞化率化に成功したも
のであり、添加元素の含有量はPb,Cd,Gaのうち一種以上
を総量で0.01〜0.5重量%、Alは0.01〜0.5重量%、Ba,S
rの少なくとも一種を総量で0.01〜0.2重量%とするのが
適切である。
As described above, the present invention is a combination of Pb, Cd, Ga, Al, Ba, Sr appropriately, by using a zinc alloy coexistent with an appropriate content as shown in the example to the negative electrode to achieve a low conversion rate. The total content of additive elements is 0.01 to 0.5 wt% for Pb, Cd, and Ga, 0.01 to 0.5 wt% for Al, and 0.01 to 0.5 wt% for Ba and S.
It is suitable that the total amount of at least one of r is 0.01 to 0.2% by weight.

以上のように本発明は前述の添加元素の組合せによる相
乗効果により負極に用いる亜鉛合金の耐食性が向上する
ことを見出し、適切な含有量を割出して低公害で実用性
のすぐれた亜鉛アルカリ電池を実現したものである。な
お実施例においては汞化亜鉛負極を用いた電池について
説明したが、開放式の空気電池や水素吸収機構を備えた
密閉型の亜鉛アルカリ電池などにおいては、水素ガスの
発生許容量は比較的多いので、このような場合に本発明
を適用する場合はさらに低汞化率、場合によっては無汞
化のまま実施することもできる。
As described above, the present invention has found that the corrosion resistance of the zinc alloy used for the negative electrode is improved by the synergistic effect of the combination of the above-mentioned additional elements, and by determining an appropriate content, a zinc alkaline battery with low pollution and excellent practicability Is realized. In the examples, the battery using the zinc hydride negative electrode was described, but in the open type air battery and the sealed zinc alkaline battery equipped with the hydrogen absorption mechanism, the allowable generation amount of hydrogen gas is relatively large. Therefore, when the present invention is applied to such a case, it can be carried out with a further lowering rate, and depending on the case, with no reduction.

発明の効果 以上のように本発明によれば、負極亜鉛の汞化率を低減
でき、低公害の亜鉛アルカリ電池を得るに極めて効果的
である。
EFFECTS OF THE INVENTION As described above, according to the present invention, the conversion rate of negative electrode zinc can be reduced, and it is extremely effective in obtaining a low-pollution zinc alkaline battery.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の実施例に用いたアルカリマンガン電池の半
断面図である。 2……正極、3……セパレータ、5……亜鉛負極。
The figure is a half cross-sectional view of an alkaline manganese battery used in Examples of the present invention. 2 ... Positive electrode, 3 ... Separator, 5 ... Zinc negative electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡崎 良二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 植村 豊秀 広島県竹原市竹原町652−15 (72)発明者 賀川 恵市 広島県竹原市竹原町652−15 (72)発明者 笠原 暢順 広島県竹原市竹原町1531−45 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ryoji Okazaki 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Megumi City, Hiroshima Prefecture Takehara City, Takehara Town 652-15 (72) Inventor Nobuyoshi Kasahara 1531-45 Takehara Town, Takehara City, Hiroshima Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鉛,カドミウム,ガリウムのうち一種以上
を0.01〜0.5重量%、アルミニウムを0.01〜0.2重量%、
バリウム,ストロンチウムの少なくとも一種を0.01〜0.
2重量%含有する亜鉛合金を負極活物質に用いた亜鉛ア
ルカリ電池。
1. At least one of lead, cadmium, and gallium is 0.01 to 0.5% by weight, and aluminum is 0.01 to 0.2% by weight.
0.01 to 0 of at least one of barium and strontium.
A zinc alkaline battery using a zinc alloy containing 2% by weight as a negative electrode active material.
JP62010666A 1987-01-20 1987-01-20 Zinc alkaline battery Expired - Lifetime JPH0685324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62010666A JPH0685324B2 (en) 1987-01-20 1987-01-20 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62010666A JPH0685324B2 (en) 1987-01-20 1987-01-20 Zinc alkaline battery

Publications (2)

Publication Number Publication Date
JPS63178452A JPS63178452A (en) 1988-07-22
JPH0685324B2 true JPH0685324B2 (en) 1994-10-26

Family

ID=11756565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62010666A Expired - Lifetime JPH0685324B2 (en) 1987-01-20 1987-01-20 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPH0685324B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025552A (en) * 2000-07-12 2002-01-25 Fdk Corp Negative electrode zinc base alloy powder for alkaline battery and alkaline battery using this powder

Also Published As

Publication number Publication date
JPS63178452A (en) 1988-07-22

Similar Documents

Publication Publication Date Title
JP3215448B2 (en) Zinc alkaline battery
JPH0421310B2 (en)
JPH0685324B2 (en) Zinc alkaline battery
JPH0622122B2 (en) Zinc alkaline battery
JPH0622119B2 (en) Zinc alkaline battery
JPH0719600B2 (en) Zinc alkaline battery
JPH0622116B2 (en) Zinc alkaline battery
JPH0622118B2 (en) Zinc alkaline battery
JPH0682551B2 (en) Zinc alkaline battery
JPH0622121B2 (en) Zinc alkaline battery
JPS63178453A (en) Zinc alkaline battery
JPH0642369B2 (en) Zinc alkaline battery
JPH0142576B2 (en)
JPS63178451A (en) Zinc alkaline battery
JPH0665032B2 (en) Zinc alkaline battery
JPS6273565A (en) Zinc alkaline battery
JPS61253764A (en) Zinc alkaline battery
JPH0620688A (en) Zinc alkaline battery
JPH0622117B2 (en) Zinc alkaline battery
JPH0665031B2 (en) Zinc alkaline battery
JPH0622115B2 (en) Zinc alkaline battery
JPS61140068A (en) Zinc alkali battery
JPH0622120B2 (en) Zinc alkaline battery
JPS61140062A (en) Zinc alkali battery
JPS61140064A (en) Zinc alkali battery