[go: up one dir, main page]

JPH0622120B2 - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPH0622120B2
JPH0622120B2 JP60230162A JP23016285A JPH0622120B2 JP H0622120 B2 JPH0622120 B2 JP H0622120B2 JP 60230162 A JP60230162 A JP 60230162A JP 23016285 A JP23016285 A JP 23016285A JP H0622120 B2 JPH0622120 B2 JP H0622120B2
Authority
JP
Japan
Prior art keywords
zinc
battery
weight
negative electrode
mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60230162A
Other languages
Japanese (ja)
Other versions
JPS6290855A (en
Inventor
晃 三浦
寛治 高田
良二 岡崎
豊秀 植村
恵市 賀川
暢順 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP60230162A priority Critical patent/JPH0622120B2/en
Publication of JPS6290855A publication Critical patent/JPS6290855A/en
Publication of JPH0622120B2 publication Critical patent/JPH0622120B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質として亜鉛、電解液としてアルカ
リ水溶液、正極活物質として二酸化マンガン,酸化銀,
酸化水銀,酸素,水酸化ニッケル等を用いる亜鉛アルカ
リ電池の負極の改良に関するものである。
TECHNICAL FIELD The present invention relates to zinc as a negative electrode active material, an alkaline aqueous solution as an electrolyte, and manganese dioxide, silver oxide as a positive electrode active material.
The present invention relates to improvement of the negative electrode of a zinc-alkaline battery using mercury oxide, oxygen, nickel hydroxide, etc.

従来の技術 亜鉛アルカリ電池の共通した問題点として、保存中の負
極亜鉛の電解液による腐食が挙げられる。従来、亜鉛に
5〜10重量%程度の水銀を添加した汞化亜鉛粉末を用
いて水素過電圧を高め、実用的に問題のない程度に腐食
を抑制することが工業的な手法として採用されている。
しかし近年、低公害化のため、電池内の含有水銀量を低
減させることが社会的ニーズとして高まり、種々の研究
がなされている。例えば、亜鉛中に鉛,カドミウム,イ
ンジウム,ガリウムなどを添加した合金粉末を用いて耐
食性を向上させ、汞化率を低減させる方法が提案されて
いる。これらの腐食抑制効果は、添加元素の単体の効果
以外に複数の添加元素による複合効果も大きく、インジ
ウムと鉛あるいはこれにさらにガリウムを添加したも
の、さらにはガリウムと鉛を添加した亜鉛合金などが従
来、有望な系として提案されている。
2. Description of the Related Art A common problem with zinc alkaline batteries is corrosion of the negative electrode zinc during storage by the electrolytic solution. Heretofore, it has been adopted as an industrial method to increase hydrogen overvoltage by using zinc fluoride powder obtained by adding about 5 to 10% by weight of mercury to zinc to suppress corrosion to such an extent that there is no practical problem. .
However, in recent years, reducing the amount of mercury contained in a battery has become a social need to reduce pollution, and various studies have been made. For example, a method has been proposed in which an alloy powder obtained by adding lead, cadmium, indium, gallium, or the like to zinc is used to improve the corrosion resistance and reduce the conversion rate. In addition to the effect of a single additive element, these corrosion inhibition effects have a large composite effect of multiple additive elements. Indium and lead, or those in which gallium is further added, and zinc alloys in which gallium and lead are added, etc. Conventionally, it has been proposed as a promising system.

これらはいずれもある程度の耐食性が期待でき、汞化率
の低減もある程度見込めるものの、さらに一層、耐食性
のよい合金系の探索が必要である。
All of these can be expected to have a certain degree of corrosion resistance, and although it is possible to expect a reduction in the degree of conversion to a certain extent, it is necessary to search for alloy systems with even better corrosion resistance.

また、主にマンガン乾電池の改良をめざして、亜鉛又は
亜鉛合金にインジウムを添加した亜鉛合金を負極に使用
することが防食上の効果が大きいという提案がある(特
公昭33−3204号)。
In addition, there is a proposal that using a zinc alloy obtained by adding indium to zinc or a zinc alloy to the negative electrode has a great anticorrosion effect mainly for the purpose of improving a manganese dry battery (Japanese Patent Publication No. 33-3204).

発明が解決しようとする問題点 上記の提案の中では亜鉛合金中の元素として、インジウ
ムの他にFe,Cd,Cr,Pb,Ca,Hg,Bi,Sb,A
l,Ag,Mg,Si,Ni,Mn等を不純物又は添加物とし
て1又は2種以上を含む場合を包含して記載されている
が、インジウムと鉛を添加元素として併用した場合の有
効性以外には、上記の雑多な各元素を不純物として含む
のか、有効な元素として添加するのかの区分は明示され
ていなく、どの元素が防食に有効なのかさえ不明であ
り、その適切な添加量についてはインジウム,鉛以外の
記載はない。
Problems to be Solved by the Invention In the above proposals, Fe, Cd, Cr, Pb, Ca, Hg, Bi, Sb and A are used as elements in the zinc alloy in addition to indium.
Although it is described that it includes 1 or 2 or more as impurities or additives such as l, Ag, Mg, Si, Ni, Mn, etc., it is not effective when indium and lead are used in combination as additive elements. In, the classification of whether each of the above-mentioned miscellaneous elements is included as an impurity or added as an effective element is not clearly indicated, and it is not clear even which element is effective for anticorrosion. There is no description other than indium and lead.

これらの元素の組合せの効果について、しかもこれを亜
鉛アルカリ電池において検討し、有効な合金組成を求め
ることは、なお今後の課題である。
It is still a future subject to investigate the effect of the combination of these elements, and further to investigate this in a zinc alkaline battery to obtain an effective alloy composition.

本発明は、負極亜鉛の耐食性,放電性能を劣化させるこ
となく汞化率を低減させ、低公害で放電性能,貯蔵性,
耐漏液性などの総合性能のすぐれた亜鉛アルカリ電池を
提供することを目的とする。
INDUSTRIAL APPLICABILITY The present invention reduces the corrosion rate of the negative electrode zinc without degrading the discharge performance, the discharge performance, the storability, and the low pollution.
It is an object of the present invention to provide a zinc-alkaline battery having excellent overall performance such as leakage resistance.

問題点を解決するための手段 本発明は、電解液にか性カリ,か性ソーダなどを主成分
とするアルカリ水溶液、負極活物質に亜鉛、正極活物質
に二酸化マンガン,酸化銀,酸化水銀,酸素などを用い
るいわゆる亜鉛アルカリ系電池の負極に、亜鉛を主成分
とし、必須添加元素として、少なくとも、インジウムを
0.001〜0.5重量%、鉛を0.01〜0.5重量
%、ガリウムを0.001〜0.3重量%、マグネシウ
ム,カルシウム,バリウムおよびストロンチウムからな
る群のうち少なくとも一種を0.001〜0.2重量%
含有する亜鉛合金を用いたことを特徴とする。
MEANS FOR SOLVING THE PROBLEMS The present invention is directed to an electrolytic solution containing an alkaline aqueous solution containing caustic potash, caustic soda, etc. as a main component, zinc as a negative electrode active material, and manganese dioxide, silver oxide, mercury oxide as a positive electrode active material. For a negative electrode of a so-called zinc alkaline battery using oxygen or the like, zinc is a main component, and at least 0.001 to 0.5% by weight of indium and 0.01 to 0.5% by weight of lead are essential addition elements. 0.001 to 0.3% by weight of gallium and 0.001 to 0.2% by weight of at least one of the group consisting of magnesium, calcium, barium and strontium.
The zinc alloy contained is used.

本発明は前記の従来例の亜鉛合金中の添加元素、及びそ
の他の元素のうち、単独の添加では防食効果が乏しい
が、In,Ga,Pbなど防食効果の比較的大きい元素と
の組合せで添加すると複合的な防食効果を発揮する元素
としてMg,Ca,Ba,Srに注目し、それらの添加率を
実験的に検討して完成したものである。
In the present invention, among the additional elements in the above-mentioned conventional zinc alloy and other elements, the addition of a single element has a poor anticorrosion effect, but it is added in combination with an element having a relatively large anticorrosion effect such as In, Ga and Pb. Then, attention was paid to Mg, Ca, Ba, and Sr as elements exhibiting a complex anticorrosion effect, and the addition ratios thereof were experimentally examined and completed.

作 用 本発明の添加元素の作用機構は明確ではないが、各添加
元素の作用が相乗的な効果を発揮して耐食性の著しい向
上を果たしたものと考えられ、次のように推察される。
Operation The mechanism of action of the additive elements of the present invention is not clear, but it is considered that the action of each additive element exerted a synergistic effect and significantly improved the corrosion resistance, and is speculated as follows.

Inは防食用の添加元素としては、あらゆる元素のうち
で、最も効果の大きいものの一つとして知られており、
水素過電圧を高める作用を有する以外に水銀との親和性
が大きいので、汞化のために添加した水銀を亜鉛合金の
表面や粒界に固定し、結晶内や亜鉛合金の内部への拡散
を抑制し、少量の水銀の添加で表面や粒界の水銀濃度を
高く維持できることにより大きな防食効果が得られるも
のと考えられる。そして、Pbは亜鉛合金の結晶粒界の
近傍に偏析し易く、亜鉛合金の表面から汞化した場合
に、表面層の水銀の結晶粒界を通じての亜鉛合金内部へ
の拡散を抑制して表面の水銀濃度を高く維持することに
寄与するものと思われる。また、Gaは比較的水銀との
親和性が大きいので、結晶粒界に存在するGaが亜鉛合
金の表面から汞化した水銀を結晶粒界に固定し、表面層
から結晶内に拡散するのを抑制して水銀の表面濃度を高
く維持する効果をIn,Pbの作用と相乗的に発揮するも
のと考えられる。
In is known as one of the most effective elements among all elements as an additional element for anticorrosion,
In addition to having the effect of increasing the hydrogen overvoltage, it has a high affinity with mercury, so the mercury added for grading is fixed on the surface and grain boundaries of the zinc alloy to suppress the diffusion inside the crystal and inside the zinc alloy. However, it is considered that a large anticorrosion effect can be obtained because the mercury concentration on the surface and grain boundaries can be maintained high by adding a small amount of mercury. Pb is easily segregated in the vicinity of the grain boundaries of the zinc alloy, and when it is screened from the surface of the zinc alloy, it suppresses the diffusion of mercury in the surface layer into the zinc alloy through the grain boundaries of the surface of the zinc alloy. It seems to contribute to maintaining a high mercury concentration. Further, since Ga has a relatively high affinity with mercury, it is possible that Ga existing in the crystal grain boundaries fixes mercury that has been screened from the surface of the zinc alloy to the crystal grain boundaries and diffuses from the surface layer into the crystals. It is considered that the effect of suppressing and maintaining a high surface concentration of mercury is synergistically exerted with the action of In and Pb.

又、Mg,Ca,Ba,Srの添加効果は粉体化して負極に
用いる亜鉛合金粉の表面積を減少させて亜鉛合金の腐食
を抑制することにある。すなわち、通常、負極に用いる
亜鉛合金粉は溶融状態の亜鉛合金を高圧のガスで噴霧固
化することによって作られるアトマイズ粉であり、通常
の亜鉛又は亜鉛合金のアトマイズ粉の表面は凝固時に生
ずる微細な皺で覆われているが、Mg,Ca,Ba,Srを
添加するとその皺がなくなり、粒子の表面を平滑化する
ことができ、電解液との接触による腐食反応を行う真の
表面積を減少させ、耐食性を増すことができる。以上の
如く、本発明は、In,Pb,Gaを共存させた相乗的作
用により、亜鉛合金自体の水素過電圧を増大させるとと
もに、少量の水銀添加で亜鉛合金粉の表面の水銀濃度を
高く維持することを可能ならしめて、表面状態を均一化
するとともにさらに水素過電圧を高め、その上に,M
g,Ca,Ba,Srの少くとも一種の添加により、亜鉛合
金粉の表面積を減少させるという複合的な作用により、
防食性を著しく改善したものである。
Further, the effect of adding Mg, Ca, Ba, and Sr is to reduce the surface area of the zinc alloy powder used for the negative electrode and to suppress corrosion of the zinc alloy. That is, normally, the zinc alloy powder used for the negative electrode is an atomized powder produced by spray-solidifying a molten zinc alloy with a high-pressure gas, and the surface of the atomized powder of a normal zinc or zinc alloy is a fine powder produced during solidification. It is covered with wrinkles, but when Mg, Ca, Ba, Sr is added, the wrinkles disappear, the surface of the particles can be smoothed, and the true surface area for the corrosion reaction due to contact with the electrolytic solution is reduced. , The corrosion resistance can be increased. As described above, the present invention increases the hydrogen overvoltage of the zinc alloy itself by the synergistic effect of coexisting In, Pb, and Ga, and maintains the mercury concentration on the surface of the zinc alloy powder at a high level by adding a small amount of mercury. This makes it possible to make the surface state uniform and to further increase the hydrogen overvoltage.
By the addition of at least one of g, Ca, Ba and Sr, the combined action of reducing the surface area of the zinc alloy powder,
The anticorrosion property is remarkably improved.

以下、実施例により本発明を詳細する。Hereinafter, the present invention will be described in detail with reference to examples.

実施例 純度99.997%の亜鉛地金に、次表に示す各種の元
素を添加した各種の亜鉛合金を作成し、約500℃で溶
融して圧縮空気により噴射して粉体化し、50〜150
メッシュの粒度範囲にふるい分けした。次いで、か性カ
リの10重量%水溶液中に上記粉体を投入し、攪拌しな
がら所定量の水銀を滴下して汞化した。その後水洗し、
アセトンで置換して乾燥し、汞化亜鉛合金粉を作成し
た。さらに本発明の実施例以外の汞化亜鉛粉、又は汞化
亜鉛合金粉についても比較例として同様の方法で作成し
た。
Example Various zinc alloys were prepared by adding various elements shown in the following table to a zinc ingot having a purity of 99.997%, melted at about 500 ° C. and sprayed with compressed air to be powdered, 150
It was sieved to the particle size range of the mesh. Then, the above powder was put into a 10% by weight aqueous solution of caustic potash, and a predetermined amount of mercury was added dropwise while stirring to effect hydration. Then wash with water,
It was replaced with acetone and dried to prepare a zinc fluoride alloy powder. Further, zinc fluorinated powder or zinc hydride alloy powder other than the examples of the present invention was prepared by the same method as a comparative example.

これらの汞化粉末を用い、図に示すボタン形酸化銀電池
を製作した。図において、1はステンレス鋼製の封口板
で、その内面には銅メッキ1′が施されている。2はか
性カリの40重量%水溶液に酸化亜鉛を飽和させた電解
液をカルボキシメチルセルロースによりゲル化し、この
ゲル中に汞化亜鉛合金粉末を分散させた亜鉛負極であ
る。3はセルロース系の保液材、4は多孔性ポリプロピ
レン製のセパレータ、5は酸化銀に黒鉛を混合して加圧
成形した正極、6は鉄にニッケルメッキを施した正極リ
ング、7はステンレス鋼製の正極缶で、その内外面には
図示していないがニッケルメッキが施されている。8は
ポリプロピレン製のガスケットで、正極缶7の折り曲げ
により正極缶7と封口板1との間に圧縮されている。
A button type silver oxide battery shown in the figure was produced using these selected powders. In the figure, 1 is a stainless steel sealing plate, the inner surface of which is plated with copper 1 '. Reference numeral 2 is a zinc negative electrode in which a 40 wt% aqueous solution of caustic potash was used to gel an electrolytic solution saturated with zinc oxide by carboxymethyl cellulose, and a zinc halide alloy powder was dispersed in the gel. 3 is a cellulosic liquid-retaining material, 4 is a separator made of porous polypropylene, 5 is a positive electrode formed by mixing silver oxide with graphite and pressure-molded, 6 is a positive electrode ring made of iron plated with nickel, and 7 is stainless steel Although not shown, the inner and outer surfaces of the positive electrode can are made of nickel. A polypropylene gasket 8 is compressed between the positive electrode can 7 and the sealing plate 1 by bending the positive electrode can 7.

試作した電池は直径11.6mm、高さ5.4mmであり、
負極の汞化粉末の重量を193mgに統一し、水銀の添加
量(汞化率)は、亜鉛合金粉に対し、いずれも0.5重量
%とした。
The prototype battery has a diameter of 11.6 mm and a height of 5.4 mm.
The weight of the selective powder of the negative electrode was unified to 193 mg, and the amount of mercury added (selective rate) was 0.5% by weight based on the zinc alloy powder.

試作した電池の亜鉛合金の組成と、60℃で1カ月間保
存した後の放電性能及び目視判定による電池の漏液個数
並びに電池総高の変化を次表に示す。なお、放電性能
は、20℃において510Ωで0.9Vを終止電圧とし
て放電したときの放電持続時間で表わした。
The following table shows the composition of the zinc alloy of the prototype battery, the discharge performance after storage at 60 ° C. for 1 month, the number of battery leaks by visual judgment, and the change in the total battery height. The discharge performance was expressed as the discharge duration when discharged at 20 ° C. with 510Ω as the final voltage of 0.9V.

この表における、電池総高の変化については、電池封口
後、経時的に各電池構成要素間への応力の関係が安定化
するまでの期間は電池総高が減少するのが通例である。
しかし、亜鉛負極の腐食に伴う水素ガス発生の多い電池
では上記の電池総高の減少力に対抗する電池内圧の上昇
により電池総高を増大させる傾向が強くなる。従って、
貯蔵による電池総高の増減により亜鉛負極の耐食性を評
価することができる。また、耐食性が不十分な電池で
は、電池総高が増大するほか、電池内圧の上昇により耐
漏液性が劣化するとともに、腐食による亜鉛の消耗、亜
鉛表面の酸化膜の形成、水素ガスの内在による放電反応
の阻害等により放電性能が著しく劣化することになり、
耐漏液性と放電持続時間も又、亜鉛負極の耐食性に依存
する要素が大きい。
Regarding the change in the total battery height in this table, it is customary that the total battery height decreases after the battery is sealed until the stress relationship between the battery constituent elements stabilizes over time.
However, in a battery in which a large amount of hydrogen gas is generated due to corrosion of the zinc negative electrode, the total battery height tends to increase due to the increase in the battery internal pressure that opposes the above-described force of reducing the total battery height. Therefore,
The corrosion resistance of the zinc negative electrode can be evaluated by increasing or decreasing the total height of the battery due to storage. In addition, in the case of batteries with insufficient corrosion resistance, the total battery height increases, and the leakage resistance deteriorates due to the increase in battery internal pressure, as well as zinc consumption due to corrosion, the formation of an oxide film on the zinc surface, and the internal presence of hydrogen gas. Discharge performance will be significantly deteriorated due to the inhibition of discharge reaction,
The liquid leakage resistance and the discharge duration also largely depend on the corrosion resistance of the zinc negative electrode.

この表に見られるように、単独の元素を添加したNo.
1,2,3,及び5,〜8,の中ではInの添加効果が
大きく、次いで、Ga,Pbにも若干の効果が見られ、M
g,Ca,Ba,Srの場合は他に較べて耐食性,放電性能
とも劣っている。また、従来から、最も耐食性が優れた
亜鉛合金の一つとして注目されているIn,Pb,Ga,
を共存させたNo.4はNo.1〜No.8のうちでは最も良好
であるが、放電性能,耐漏液性において、0.5重量%
という低汞化率では十分な実用性能を備えているとはい
えない。これらの従来例に対し、In,Pb,Ga,にSr
を共存させたNo.9〜28のうち、各添加元素の含有量が
適切なものでは、No.4よりすぐれた性能を示してお
り、Srの添加による複合的な防食効果が確認されてい
る。すなわち、Inを0.001〜0.5重量%、Pbを
0.01〜0.5重量%、Gaを0.001〜0.3重
量%、Srを0.001〜0.3重量%の範囲で、各々含
有している亜鉛合金が有効で、各添加元素の含有量が上
記より過剰又は不足の場合はNo.4と大差ないか、逆効
果の性能値を示している。またSrに代えてCo,又はM
g,又はBaを添加したNo.29〜34、及びこれらを共存
させたNo.35,36においても、同様の効果が認められて
いる。以上の如く、本発明は、In,Pb,Gaを必須添
加元素とし、さらにSr,Ca,Mg,Baの一種以上を必
須添加元素とし、各々の適切な量を含有させた亜鉛合金
を負極に用いることにより、低汞化率で実用性能のすぐ
れた亜鉛アルカリ電池を構成できる。尚、上記の実施例
では、In,Pb,Ga,及び、Sr,又はCa,又はMg,
又はBaという本発明に必須添加元素についてのみ記述
したが、さらに追加の非必須添加元素として、Tl,C
d,Sn,Bi,Ag,Al,Hi,Na,K,Rb,Cu,T
e,Ta,Si,Tiの何れかを前表のNo.10に0.1重量
%含有させた場合にも、No.10とほぼ同等の性能値が得
られた。このことから本発明における必須添加元素を所
定量含有させた上に上記の非必須添加元素を限度内で添
加した場合も、必須元素のみを添加した本発明実施例の
場合と同様に、本質的に変わらない作用効果が得られ
る。また、実施例においては、汞化亜鉛負極を用いた電
池について説明したが、開放式の空気電池や水素吸収機
構を備えた密閉型の亜鉛アルカリ電池などにおいては、
水素ガスの発生許容量は比較的多いので、本発明をさら
に低汞化率、場合によっては無汞化のまま実施すること
もできる。
As can be seen in this table, no.
Among 1, 2, 3, and 5, to 8, the effect of adding In is large, and then Ga and Pb also have some effects, and M
In the case of g, Ca, Ba and Sr, the corrosion resistance and the discharge performance are inferior to the others. In addition, In, Pb, Ga, which has been attracting attention as one of the zinc alloys with the highest corrosion resistance,
No. 4 which coexisted with No. 1 is the best among No. 1 to No. 8, but 0.5% by weight in discharge performance and leakage resistance.
It cannot be said to have sufficient practical performance at such a low reduction rate. In contrast to these conventional examples, In, Pb, Ga, and Sr
Among Nos. 9 to 28, in which Co. coexisted, those with appropriate content of each additive element showed superior performance to No. 4, and the composite anticorrosion effect by addition of Sr was confirmed. . That is, 0.001 to 0.5% by weight of In, 0.01 to 0.5% by weight of Pb, 0.001 to 0.3% by weight of Ga, and 0.001 to 0.3% by weight of Sr. Within the range, the zinc alloys contained are effective, and when the content of each additional element is excessive or insufficient than the above, it is not much different from No. 4 or shows the performance value of the opposite effect. Also, instead of Sr, Co or M
Similar effects are also observed in Nos. 29 to 34 to which g or Ba is added and Nos. 35 and 36 in which these are coexisted. As described above, the present invention uses In, Pb, and Ga as essential additive elements, and one or more of Sr, Ca, Mg, and Ba as essential additive elements, and a zinc alloy containing an appropriate amount of each is used as the negative electrode. By using it, it is possible to construct a zinc-alkali battery with a low reduction rate and excellent practical performance. In the above embodiment, In, Pb, Ga, and Sr or Ca, Mg,
Or, only the essential addition element of Ba in the present invention is described, but as additional non-essential addition elements, Tl, C
d, Sn, Bi, Ag, Al, Hi, Na, K, Rb, Cu, T
Even when any one of e, Ta, Si, and Ti was added to No. 10 in the above table in an amount of 0.1% by weight, performance values substantially equal to those of No. 10 were obtained. Therefore, even if the above-mentioned non-essential additive element is added within the limit after containing a predetermined amount of the essential additive element in the present invention, as in the case of the present invention example in which only the essential element is added, it is essentially The same effect can be obtained. In addition, in the examples, a battery using a zinc hydride negative electrode was described, but in an open type air battery or a sealed zinc alkaline battery provided with a hydrogen absorbing mechanism,
Since the permissible generation amount of hydrogen gas is relatively large, the present invention can be carried out with a further lowering rate, or in some cases with no reduction.

さらに、本実施例では亜鉛合金として亜鉛の溶湯に、添
加元素を添加し合金化した後に粉体化した場合について
説明したが、別法として、添加元素のうち、In,Gaな
どアマルガム化し易い添加金属を汞化に用いる水銀中に
予め含有させて亜鉛合金を汞化すると同時に添加する方
法や、Pb,In,Gaの水酸化物や塩を溶解した溶液中
で亜鉛との置換反応で亜鉛合金表面に上記元素を析出さ
せて合金化する方法も採ることができる。
Further, in the present embodiment, a case has been described where a zinc alloy as a zinc alloy is added with an additional element to form an alloy and then pulverized. However, as an alternative method, an addition element such as In or Ga that easily forms an amalgam is added. A method of preliminarily containing a metal in mercury used for hydration and adding the zinc alloy simultaneously with hydration, or a zinc alloy by a substitution reaction with zinc in a solution in which a hydroxide or salt of Pb, In, Ga is dissolved. A method of precipitating the above element on the surface and alloying it can also be adopted.

発明の効果 以上のように本発明は、負極亜鉛の汞化率を低減でき、
低公害の亜鉛アルカリ電池を得るに極めて効果的であ
る。
Effects of the Invention As described above, the present invention can reduce the conversion rate of negative electrode zinc,
It is extremely effective in obtaining a low-pollution zinc alkaline battery.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の実施例に用いたボタン形酸化銀電池の一部
を断面にした側面図である。 2……亜鉛負極、4……セパレータ、 5……酸化銀正極。
The figure is a side view in which a button-shaped silver oxide battery used in an example of the present invention is partially sectioned. 2 ... Zinc negative electrode, 4 ... Separator, 5 ... Silver oxide positive electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡崎 良二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 植村 豊秀 広島県竹原市竹原町652―15 (72)発明者 賀川 恵市 広島県竹原市竹原町652―15 (72)発明者 笠原 暢順 広島県竹原市竹原町1531―45 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ryoji Okazaki Ryoji Okazaki 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Megumi City, Hiroshima Prefecture Takehara City, Takehara Town 652-15 (72) Inventor Nobuyoshi Kasahara 1531-45 Takehara Town, Takehara City, Hiroshima Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】インジウムを0.001〜0.5重量%、
鉛を0.01〜0.5重量%、ガリウムを0.001〜
0.3重量%、マグネシウム,カルシウム,バリウムお
よびストロンチウムからなる群のうち少なくとも一種を
0.001〜0.2重量%含有する亜鉛合金を負極活物
質に用いた亜鉛アルカリ電池。
1. Indium in an amount of 0.001 to 0.5% by weight,
0.01 to 0.5% by weight of lead and 0.001 to 0.001 of gallium
A zinc alkaline battery using, as a negative electrode active material, a zinc alloy containing 0.3% by weight and 0.001 to 0.2% by weight of at least one selected from the group consisting of magnesium, calcium, barium and strontium.
JP60230162A 1985-10-16 1985-10-16 Zinc alkaline battery Expired - Lifetime JPH0622120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60230162A JPH0622120B2 (en) 1985-10-16 1985-10-16 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60230162A JPH0622120B2 (en) 1985-10-16 1985-10-16 Zinc alkaline battery

Publications (2)

Publication Number Publication Date
JPS6290855A JPS6290855A (en) 1987-04-25
JPH0622120B2 true JPH0622120B2 (en) 1994-03-23

Family

ID=16903568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60230162A Expired - Lifetime JPH0622120B2 (en) 1985-10-16 1985-10-16 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPH0622120B2 (en)

Also Published As

Publication number Publication date
JPS6290855A (en) 1987-04-25

Similar Documents

Publication Publication Date Title
JPS60175368A (en) Zinc-alkaline primary cell
JPH0622120B2 (en) Zinc alkaline battery
JPH0622121B2 (en) Zinc alkaline battery
JPH0622119B2 (en) Zinc alkaline battery
JPH0719600B2 (en) Zinc alkaline battery
JPS636749A (en) Zinc alkaline battery
JPH0682551B2 (en) Zinc alkaline battery
JPH0622118B2 (en) Zinc alkaline battery
JPS61253764A (en) Zinc alkaline battery
JPH0642369B2 (en) Zinc alkaline battery
JPH0622117B2 (en) Zinc alkaline battery
JPH0142576B2 (en)
JPS6273565A (en) Zinc alkaline battery
JPH0685324B2 (en) Zinc alkaline battery
JPS6290859A (en) Zinc alkaline cell
JPH0622116B2 (en) Zinc alkaline battery
JPH0365621B2 (en)
JPH0365623B2 (en)
JPS60175369A (en) Zinc-alkaline primary cell
JPH0365617B2 (en)
JPH0143429B2 (en)
JPH0365618B2 (en)
JPS63178453A (en) Zinc alkaline battery
JPH0365619B2 (en)
JPH0534778B2 (en)