JPS6177265A - Zinc alkaline battery - Google Patents
Zinc alkaline batteryInfo
- Publication number
- JPS6177265A JPS6177265A JP59197198A JP19719884A JPS6177265A JP S6177265 A JPS6177265 A JP S6177265A JP 59197198 A JP59197198 A JP 59197198A JP 19719884 A JP19719884 A JP 19719884A JP S6177265 A JPS6177265 A JP S6177265A
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- zinc alloy
- negative electrode
- alloy
- corrosion resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/42—Alloys based on zinc
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、負極活物質として亜鉛、電解液としてアルカ
リ水溶液、正極活物質として二酸化マンガン、酸化銀、
酸化水銀、酸素等を用いる亜鉛アルカリ電池の改良に関
するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses zinc as a negative electrode active material, an alkaline aqueous solution as an electrolyte, and manganese dioxide, silver oxide, or silver oxide as a positive electrode active material.
This invention relates to improvements in zinc-alkaline batteries using mercury oxide, oxygen, etc.
従来の技術
亜鉛アルカリ電池の共通した問題点として、保存中の亜
鉛負極の電解液による腐食が挙げられる。A common problem with prior art zinc-alkaline batteries is corrosion of the zinc negative electrode by the electrolyte during storage.
従来、亜鉛に5〜10重量%重量%水銀を添加した水化
亜鉛粉末を用いて水素過電圧を高め、実用的に問題のな
い程度に腐食を抑制することが工業的な手法として採用
されている。しかし、近年低公害化のため、電池内の含
有水銀量を低減させることか社会的ニーズとして高まり
、種・2の研究がなされている。例えば、亜鉛中に11
)、ガリウム。Conventionally, it has been adopted as an industrial method to increase the hydrogen overvoltage using zinc hydrate powder, which is made by adding 5 to 10% by weight of mercury to zinc, and to suppress corrosion to the extent that there is no practical problem. . However, in recent years, there has been an increasing social need to reduce the amount of mercury contained in batteries in order to reduce pollution, and research on type 2 is being conducted. For example, 11 in zinc
),gallium.
インジウムなとを添加した合金粉末を用いて耐食性を向
」ニさせ、水化率を低減させる方法か提案されている。It has been proposed to improve corrosion resistance and reduce the hydration rate by using alloy powders containing indium and other additives.
これは腐食抑制には効果があるが、水化率を低減させる
ことにより強放電性能が悪化するという逆効果が見られ
る。これらの提案において、低木化率とした場合に強放
電性能が劣化する原因は不明確であるが、放電生成物が
活性な亜鉛表面を覆い、放電反応に必要な水酸イオンの
亜鉛表面への供給を妨げる度合が水銀含量の多い場合に
比較して大きいためと考えられ、耐食性と強放電性能を
兼ね備えた低木化率亜鉛負極の確立か今後の重要課題と
されている。Although this is effective in suppressing corrosion, it has the opposite effect of deteriorating strong discharge performance by reducing the hydration rate. In these proposals, the cause of the deterioration of strong discharge performance when considering the bushing rate is unclear, but the discharge products cover the active zinc surface and the hydroxide ions necessary for the discharge reaction are transferred to the zinc surface. This is thought to be due to the fact that the degree of blockage of mercury supply is greater than when the mercury content is high, and the establishment of a low-density zinc negative electrode that has both corrosion resistance and strong discharge performance is an important issue for the future.
また、主にマンガン乾電池の改良をめざして、亜鉛又は
亜鉛合金にインジウムを添加した亜鉛合金を負極に使用
することが防食−1−の効果が大きいという提案がある
(特公昭33−3204号)。In addition, with the aim of improving manganese dry batteries, there is a proposal that using zinc or a zinc alloy with indium added to the zinc alloy for the negative electrode has a large anti-corrosion effect (Japanese Patent Publication No. 33-3204). .
上記の提案の中では亜鉛合金中の元素として、インジウ
ムの他にFe、 Cd、 Cr、 Pb、 Ca、 H
g。Among the above proposals, in addition to indium, Fe, Cd, Cr, Pb, Ca, and H are used as elements in the zinc alloy.
g.
Bi、Sb、AI、Ag、 Mg、Si、Ni、Mn等
を不純物または添加物としてIまたは2種以上を含む場
合を包含して記載されているか、インジウム上船を添加
元素として併用した場合の有効性以外には、」上記の雑
多な各元素を不純物として含むのか、有効な元素として
添加するのかの区分は全く示されておらず、との元素か
防食に有効なのかさえ不明で、まして適切な添加量につ
いてはインジウム。Bi, Sb, AI, Ag, Mg, Si, Ni, Mn, etc. are described as impurities or additives, including cases where I or two or more types are included, or when indium onboard is used together as an additive element. Other than their effectiveness, there is no indication of whether they contain the miscellaneous elements listed above as impurities or are added as effective elements, and it is not even clear whether these elements are effective in preventing corrosion. Indium for proper addition amount.
鉛以外の記載はない。これらの元素の♀11合ゼの効果
について、しかもこれを亜鉛アルカリ電池において検刺
して、有効な合金組成を求めることは、なお今後の課題
として残されている。There is no mention of anything other than lead. The effects of ♀11 synthesis of these elements, and the determination of an effective alloy composition by examining this in a zinc-alkaline battery, remain as future issues.
発明が解決しようとする問題点
上記のように、低水化率でii1食性と強放電性能を兼
ね備えたア九ノノリ電池用亜鉛負極か求められている。Problems to be Solved by the Invention As mentioned above, there is a need for a zinc negative electrode for Akinonori batteries that has a low hydration rate, high edibility and strong discharge performance.
3 一
本発明は一負極亜鉛の耐食1′1″、bV電性能を劣化
さゼることなく水1ヒ率を低減さぜ、低公害で放電性能
、貯蔵性、 In、I漏液性なとの総合11+能のすく
れた亜鉛)アルカリ電池系
問題点を解決するための手段
本発明は、電解液にか性ノノリ、か11−ソーダなとを
主成分とするア月ノ1り水溶)1η、負極活物質に亜鉛
、正極活物質に二酸化マンガン、酸化銀、酸化水銀、酸
素なとを用いろ、いわゆる亜ji)アルカリ電池系の負
極にインジウム(In)を0.01〜0.5重量りδ、
#;)(Pb) 、ツノ1〜ミウム(Cd)、錫(Sn
)の一種また(」二種以−1−の元素を合泪て0.01
〜0.5重量%、アJレミニウム(、八1)。3. The present invention has a negative electrode zinc corrosion resistance of 1'1", a reduction in the water rate without deteriorating the bV electrical performance, low pollution, discharge performance, storage performance, and In and I leakage properties. Means for solving the problems of alkaline battery systems (11+ low performance zinc) The present invention provides an electrolyte containing an aqueous solution containing caustic glue, or 11-soda as a main component. ) 1η, use zinc as the negative electrode active material, manganese dioxide, silver oxide, mercury oxide, oxygen, etc. as the positive electrode active material. 5 weight δ,
#;) (Pb), horn 1~mium (Cd), tin (Sn
) or (''2 or more -1- elements together) 0.01
~0.5% by weight, AJ Reminium (81).
マグネシウム(tVlg)の一種または二種の元素を合
a1て0.005〜02重に%含有する亜鉛合金を用い
たことを特徴とする。It is characterized by using a zinc alloy containing one or two elements of magnesium (tVlg) in a total amount of 0.005 to 0.02%.
作用
本発明はまず、放電反応生成物か活性tf亜鉛表面を被
い、1)<酸イオンのf11給をト11害して大電流で
の放電反応が円滑に進行しない傾向が特に水化率の低い
亜鉛を負極に用いる場合に顕著に表われる問題をAI、
h・1gより選ばれた元素の適切な量を添加して合金
化することにより解決し、さらに亜鉛合金の耐食性向上
のために大きな効果があるとされているInを添加し、
同時にPb、Cd、Snよりなる群より選ばれた元素の
適切な量を添加して、Inの防食効果をさらに相乗的に
高めることにJこり、耐食性、放電性能のすくれた低水
化率の亜鉛負極を実現したものである。Effects of the present invention Firstly, the discharge reaction product coats the active tf zinc surface, and 1) the hydration rate tends to be particularly low because it impairs the f11 supply of acid ions and prevents the discharge reaction from proceeding smoothly at large currents. AI,
The problem was solved by adding an appropriate amount of an element selected from 1g of h.
At the same time, an appropriate amount of an element selected from the group consisting of Pb, Cd, and Sn is added to further synergistically enhance the anticorrosion effect of In, resulting in a low water content with excellent J stiffness, corrosion resistance, and discharge performance. This is the realization of a zinc negative electrode.
」上記のAI、Mgの添加効果は、後述の実施例て示す
ように、適切な添加量において有効であるか、その作用
機構は十分に解明されていない。推定するに、負極の亜
鉛合金中に含まれているAI、Mgは亜鉛より卑な電位
を有し、亜鉛とともに放電して、その放電生成物が亜鉛
の放電生成物の電解液中への溶解を促進させるか、未溶
解の生成物の層の緻密化による亜鉛表面の不働態化を緩
和する役割を果たし、亜鉛の活性表面に水酸イオンが豊
富に供給される状態を亜鉛が消耗する放電末期まで継続
して維持し、亜11)の放電利用率を高めるもの古考え
られる。''As shown in the examples below, the effects of adding AI and Mg are effective when added in appropriate amounts, and the mechanism of their action has not been fully elucidated. Presumably, AI and Mg contained in the zinc alloy of the negative electrode have a more base potential than zinc, and are discharged together with zinc, resulting in the dissolution of the discharge products of zinc into the electrolyte. The discharge that depletes zinc creates a state in which hydroxide ions are abundantly supplied to the active surface of zinc, and serves to promote the zinc surface passivation due to the densification of the undissolved product layer. It is considered to be possible to maintain it continuously until the end of the stage and increase the discharge utilization rate of A11).
また、Inは防食用の添加元素としては、あらゆる元素
のうちで最も効果の大きいものの一つと]−で知られて
いるが、他の添加元素との複合効果により一層、防食効
果を高めることかできる。In addition, In is known as one of the most effective additive elements for corrosion prevention among all elements, but it is possible to further enhance the corrosion prevention effect by combining with other additive elements. can.
Inの添加効果は、亜鉛合金の水素過電子を高める作用
を有する以91に水銀との親和11が大きいので、水化
のために添加した水銀を亜鉛合金の表面や粒Wに固定し
、結晶内や亜鉛合金の内部への拡散を抑制し、少量の水
銀の添加で表面や拉Wの水銀濃度を高く維持できること
に、より大きな防食効果か得られるものと考えられる。The effect of adding In is that it has the effect of increasing the hydrogen perelectron in the zinc alloy91 and has a large affinity with mercury11, so the mercury added for hydration is fixed on the surface and grains W of the zinc alloy, and the crystals are It is thought that a greater corrosion-preventing effect can be obtained by suppressing the diffusion of mercury into the inside of the zinc alloy and maintaining a high mercury concentration on the surface and the inside of the zinc alloy by adding a small amount of mercury.
そして本発明において、同時に添加する円)、Cd、S
nは、比較的水銀との親111性が小さいのでこれらの
元素が亜鉛合金の粒Wに存在すると表面から水化した亜
鉛合金中の水銀が表面層から結晶粒界に拡散するのを抑
制して水銀の表面濃度を高く維持するのに効T的なため
に、Inと相乗的な防食効果を示すものとJfF定され
る。In the present invention, Cd, S
Since n has a relatively low affinity for mercury, the presence of these elements in the grains W of the zinc alloy suppresses the diffusion of mercury in the zinc alloy, which has hydrated from the surface, from the surface layer to the grain boundaries. Since JfF is effective in maintaining a high surface concentration of mercury, it is determined that JfF exhibits a synergistic anticorrosion effect with In.
なお、本発明においてノ\1.Mgの添加による主効果
は、放電11.能の向−1−にあるが、添加量によって
は」−記の他の元素の防食効果を高める−1−にも若干
の効果を有し、これらの元素は電池の保存期間中に亜鉛
負極が電解液により腐食する場合、亜鉛より卑な金属で
あるので亜鉛に対して優先して酸化され易く、亜鉛合金
の表面への活性点を不活性化する酸化膜を形成して腐食
を抑制する作用がある古考えられるが、上記の酸化膜の
形成に必要な量以」二に添加されると、過剰添加元素か
亜鉛に優先して腐食するので却って水素ガスの発生を増
大させる結果になるものと考えられる。In addition, in the present invention, \1. The main effect of adding Mg is the discharge 11. However, depending on the amount added, it also has a slight effect on increasing the anticorrosion effect of other elements listed in "1-1-". When corroded by electrolyte, since it is a base metal than zinc, it is easily oxidized preferentially to zinc, and forms an oxide film that inactivates the active sites on the surface of the zinc alloy, suppressing corrosion. It is thought that it has some effect, but if it is added in more than the amount necessary to form the oxide film mentioned above, it will corrode preferentially to the excessively added element or zinc, which will actually increase the generation of hydrogen gas. considered to be a thing.
以」−のように、本発明は負極に用いる亜鉛合金の添加
元素の和合ぜと添加量を実験的に検討し、放電性能と耐
食性を兼ね備えた低水化率の亜鉛負極を実現したもので
ある。As described above, in the present invention, we have experimentally investigated the combination and amount of added elements in the zinc alloy used for the negative electrode, and have achieved a zinc negative electrode with a low water conversion rate that combines discharge performance and corrosion resistance. be.
実施例
純度99.997%以上の亜鉛地金に後に表に示すよう
に各種の元素を添加した各種の亜鉛合金を作成し、約5
00℃で溶融して圧縮空気により噴射して粉体化し、5
0〜150メツシユの粒度〜 7 −
範囲にふるい分けした。次いて、か性ノノリの10重量
%水溶液中に」上記粉体を投入し、撹拌しながら所定量
の水銀を滴下1−で氷化した。その後水洗し、アセトン
て置換して乾燥L、禾化捕ti)合金粉を作成した。さ
らに本発明の実施例以外の水化亜1;)合金粉について
1つ化較例として同様の方法で作成しノこ。Examples Various zinc alloys were prepared by adding various elements as shown in the table later to zinc ingots with a purity of 99.997% or more.
Melt it at 00℃ and inject it with compressed air to powder it,
The particles were sieved to a particle size ranging from 0 to 150 mesh to 7-. Next, the above-mentioned powder was put into a 10% by weight aqueous solution of caustic sardine, and a predetermined amount of mercury was added dropwise with stirring to freeze it. Thereafter, it was washed with water and replaced with acetone to prepare a dried L, fertilized Ti) alloy powder. Further, hydrated aluminum 1;) Alloy powder other than the examples of the present invention was prepared using the same method as a comparative example of monomerization.
これらの水化粉末を用い、図に示すボタン形酸化銀電池
を製作した。図において、Iはステンレス鋼製の封目板
で、内面には銅メツキビが施されている。2はか性ノノ
リの40重量%水溶液に酸化亜鉛を飽和させた電解液を
ノJルボキシメチルセ几ロースによりゲバ化し、このノ
iル中に水化粉末を分散さぜた亜鉛1)極である。31
f゛セ月ロース系の保1lfl、11は多孔性ポリプロ
ピレン製のセパレータ、5は酸化銀に黒81)を混合し
て加1f成形した正極、6は鉄にニソ’r)Iメッキを
施した正極リング、7はステンレス鋼製の正極缶で、内
4面に(Aニラケバメッキか施されている。8はポリプ
ロピレン製のガスケットて、正極缶の折り曲げにより正
極田七封口板との間に圧縮されている。試作した電池は
直径11.6mm、高さ5.4mmであり、負極の水化
粉末の重量を193mgに統一し、また水銀の添加量(
水化率)は、亜鉛合金粉に対し、いずれも1重量%とじ
た。試作した電池の亜鉛合金の組成と、60℃で1力月
間保存した後の放電性能及び電池総高の変化を次表に示
す。放電性能は、20℃において510Ωで0.9vを
終止電圧として放電したときの放電持続時間で表わした
。Using these hydrated powders, the button-shaped silver oxide battery shown in the figure was manufactured. In the figure, I is a sealing plate made of stainless steel, and the inner surface is coated with copper plating. 2 is a zinc 1) electrode in which an electrolytic solution containing a 40% by weight aqueous solution of caustic glue saturated with zinc oxide is gelatinized with carboxymethyl cerolose, and hydrated powder is dispersed in the gel. 31
11 is a separator made of porous polypropylene, 5 is a positive electrode formed by mixing black 81) with silver oxide, and 6 is a positive electrode made of iron with niso'r)I plating. The positive electrode ring, 7, is a positive electrode can made of stainless steel, and the inner four surfaces are coated with (Nira-buki plating). 8 is a polypropylene gasket, which is compressed between the positive electrode ring and the sealing plate when the positive electrode can is bent. The prototype battery has a diameter of 11.6 mm and a height of 5.4 mm, the weight of the hydrated powder of the negative electrode was unified to 193 mg, and the amount of mercury added (
The hydration rate) was 1% by weight based on the zinc alloy powder. The following table shows the composition of the zinc alloy of the prototype battery, and the changes in discharge performance and total battery height after storage at 60°C for one month. The discharge performance was expressed as the discharge duration when discharging at 20° C. at 510Ω with a final voltage of 0.9V.
1ユ・
1駅
!・
1・
し
1ブ
ト
し
レ
レ
1宇
1−゛
1−゛
この表に見られるように、従来例のうちInのみを添加
した場合(歯1)に対し、Pb、 CdまたはSnをI
nと共に添加した場合(隔、3,5.6>がより電池の
膨張が少なく、相乗効果として耐食性が向」ニしている
。しかし、耐食性を強く支配している元素がInである
ことは例えばNO2と隔3との比較でも明らかである。1 Yu/1 station!・ 1. As seen in this table, compared to the conventional case where only In was added (tooth 1), Pb, Cd or Sn was added to I
When added together with n (interval, 3,5.6>), the expansion of the battery is smaller and the corrosion resistance is improved as a synergistic effect.However, it is not true that In is the element that strongly controls the corrosion resistance. For example, it is clear from the comparison between NO2 and Separation 3.
また、隔4,8のように耐食性向上のため添加した元素
が過多となると却って逆効果となる。これらの従来例の
うち、電池の膨張か著しいものは放電性能が悪いか、例
えばNn3,5.6のように耐食性が十分と判断される
ものにおいても、510Ωという強負荷放電での持続時
間は後述のように本発明品より短い。一方、これらの添
加元素の複合効果によって耐食性を高めた上に、負極の
放電反応を円滑化するのを主目的としてAI、Mgの一
種または二種を添加元素として同時に加えた場合(陥9
〜32)、放電性能。Furthermore, as shown in gaps 4 and 8, if too many elements are added to improve corrosion resistance, it will have the opposite effect. Among these conventional examples, if the battery expands significantly, the discharge performance may be poor.For example, even if the battery is judged to have sufficient corrosion resistance, such as Nn3, 5.6, the duration under heavy load discharge of 510Ω is As described later, it is shorter than the product of the present invention. On the other hand, when one or both of AI and Mg are simultaneously added as additive elements with the main purpose of increasing the corrosion resistance due to the combined effect of these additive elements and smoothing the discharge reaction of the negative electrode (
~32), discharge performance.
耐食性ともに従来例より改善されたと判断されるのは、
Inか0.01−0.5重量%、Pb、 Cd。It is judged that both corrosion resistance has been improved over the conventional example.
0.01-0.5% by weight of In, Pb, Cd.
Snの一種または二種以」二の元素を合計で0,01〜
0.彦重量%、AI、Mgの一種または二種の元素を合
計て旺 005〜0.2重量%含有する亜鉛合金を用い
た場合(N〕、I O,1]。A total of 0.01 to 1 or more elements of Sn
0. When a zinc alloy containing a total of 005 to 0.2% by weight of one or two elements of AI and Mg is used (N], IO,1).
12、+5.16.18,19,20,21゜22.2
3,25,27,28.30)であり、添加元素量が不
足または過剰の場合1+、9,13゜14.17,24
.2G、29.3])は若干の複合効果は認められるノ
へ従来例のうち比較的良好なものと大差ないが、却って
逆効果であり、」二連のように適正な添加量の範囲にお
いて顕著な効果か認められる。12, +5.16.18,19,20,21°22.2
3,25,27,28.30), and if the amount of added elements is insufficient or excessive, 1+, 9,13°14.17,24
.. 2G, 29.3]) has a slight combined effect, which is not much different from the relatively good conventional examples, but on the contrary, it has the opposite effect. A remarkable effect is observed.
以上のように本発明は、耐食効果の大きい添加元素の1
11合せと、これと同時に放電反応円滑化を主目的とし
た元素を適切な範囲で含有させることにより、低公害で
実用性能のすくれた亜鉛アルノJり電池を実現したもの
である。As described above, the present invention provides one of the additive elements having a large corrosion resistance effect.
11 and at the same time, by containing an appropriate range of elements whose main purpose is to facilitate the discharge reaction, a zinc-alno-J battery with low pollution and excellent practical performance was realized.
なお、実施例においては、本化亜鉛負極を用いた電池に
ついて説明したが、空気電池や水素吸収機構を備えた密
閉形亜鉛アルカリ電池なとにおいては、水素ガスの発生
許容量は比較的大きいので、−14=
このような場合に本発明を適用する場合は、さらに低水
化率、場合によっては無水化のまま実施することもてき
る。In addition, in the examples, a battery using a zinc chloride negative electrode was explained, but in an air battery or a sealed zinc-alkaline battery equipped with a hydrogen absorption mechanism, the permissible amount of hydrogen gas generated is relatively large. , -14= When the present invention is applied to such a case, the water reduction rate may be lowered, and depending on the case, it may be carried out with the water being made anhydrous.
発明の効果
以上のように本発明によれば、負極亜鉛の水化率を低減
し、低公害の亜鉛アルカリ電池を得ることができる。Effects of the Invention As described above, according to the present invention, the hydration rate of negative electrode zinc can be reduced and a zinc-alkaline battery with low pollution can be obtained.
図は本発明の実施例に用いたボタン形酸化銀電池の一部
を断面にした側面図である。
2・・・・・・亜鉛負極、4 ・・・・・・セパレータ
、5・・・・・・酸化銀正極。The figure is a partially sectional side view of a button-shaped silver oxide battery used in an example of the present invention. 2... Zinc negative electrode, 4... Separator, 5... Silver oxide positive electrode.
Claims (1)
、錫の一種または二種以上を0.01〜0.5重量%、
アルミニウム、マグネシウムの一種または二種を0.0
05〜0.2重量%含有する亜鉛合金を負極活物質に用
いた亜鉛アルカリ電池。0.01 to 0.5% by weight of indium, 0.01 to 0.5% by weight of one or more of lead, cadmium, and tin;
0.0 of one or both of aluminum and magnesium
A zinc alkaline battery using a zinc alloy containing 0.05 to 0.2% by weight as a negative electrode active material.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59197198A JPS6177265A (en) | 1984-09-20 | 1984-09-20 | Zinc alkaline battery |
BR8505281A BR8505281A (en) | 1984-02-20 | 1985-02-18 | ALKALINE ZINC BATTERY |
EP85901061A EP0172255B1 (en) | 1984-02-20 | 1985-02-18 | Zinc alkaline battery |
US06/935,166 US4735876A (en) | 1984-02-20 | 1985-02-18 | Zinc-alkaline battery |
PCT/JP1985/000066 WO1985003810A1 (en) | 1984-02-20 | 1985-02-18 | Zinc alkali cell |
DE8585901061T DE3567130D1 (en) | 1984-02-20 | 1985-02-18 | Zinc alkaline battery |
AU39383/85A AU557244B2 (en) | 1984-02-20 | 1985-02-18 | Zinc alkali cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59197198A JPS6177265A (en) | 1984-09-20 | 1984-09-20 | Zinc alkaline battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6177265A true JPS6177265A (en) | 1986-04-19 |
JPH0142576B2 JPH0142576B2 (en) | 1989-09-13 |
Family
ID=16370442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59197198A Granted JPS6177265A (en) | 1984-02-20 | 1984-09-20 | Zinc alkaline battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6177265A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63304571A (en) * | 1987-01-21 | 1988-12-12 | Dowa Mining Co Ltd | Zinc alloy for battery and its manufacturing method |
JPH03173731A (en) * | 1989-11-10 | 1991-07-29 | Acec Union Miniere Nv:Sa | Powdered zinc for use in alkaline battery |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5130647A (en) * | 1974-09-09 | 1976-03-16 | Matsushita Refrigeration | REITOSOCHI |
JPS5346637A (en) * | 1976-10-08 | 1978-04-26 | Suwa Seikosha Kk | Alkaline battery |
JPS5826456A (en) * | 1981-08-11 | 1983-02-16 | Toho Aen Kk | Zinc alloy for electrode |
-
1984
- 1984-09-20 JP JP59197198A patent/JPS6177265A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5130647A (en) * | 1974-09-09 | 1976-03-16 | Matsushita Refrigeration | REITOSOCHI |
JPS5346637A (en) * | 1976-10-08 | 1978-04-26 | Suwa Seikosha Kk | Alkaline battery |
JPS5826456A (en) * | 1981-08-11 | 1983-02-16 | Toho Aen Kk | Zinc alloy for electrode |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63304571A (en) * | 1987-01-21 | 1988-12-12 | Dowa Mining Co Ltd | Zinc alloy for battery and its manufacturing method |
JPH03173731A (en) * | 1989-11-10 | 1991-07-29 | Acec Union Miniere Nv:Sa | Powdered zinc for use in alkaline battery |
Also Published As
Publication number | Publication date |
---|---|
JPH0142576B2 (en) | 1989-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04284358A (en) | Zinc alkaline battery | |
JPS6177265A (en) | Zinc alkaline battery | |
JPS636749A (en) | Zinc alkaline battery | |
JPH0622119B2 (en) | Zinc alkaline battery | |
JPH0365617B2 (en) | ||
JPS636747A (en) | Zince alkaline battery | |
JPH0622121B2 (en) | Zinc alkaline battery | |
KR890002672B1 (en) | Zinc-alkaline battery | |
JPS6273565A (en) | Zinc alkaline battery | |
JPS60175369A (en) | Zinc-alkaline primary cell | |
JPS61253764A (en) | Zinc alkaline battery | |
JPS63133450A (en) | Zinc alkaline battery | |
JPS61203563A (en) | Alkaline zinc battery | |
JPS61140066A (en) | Zinc alkali battery | |
JPS6290855A (en) | Zinc alkaline cell | |
JPH0622118B2 (en) | Zinc alkaline battery | |
JPH0622116B2 (en) | Zinc alkaline battery | |
JPS6290859A (en) | Zinc alkaline cell | |
JPS6290857A (en) | Zinc alkaline cell | |
JPS6177268A (en) | Zinc alkaline battery | |
JPS63178452A (en) | Zinc alkaline battery | |
JPS63178453A (en) | Zinc alkaline battery | |
JPH0143429B2 (en) | ||
JPS61140063A (en) | Zinc alkali battery | |
JPH0622117B2 (en) | Zinc alkaline battery |