JPS63133450A - Zinc alkaline battery - Google Patents
Zinc alkaline batteryInfo
- Publication number
- JPS63133450A JPS63133450A JP61280218A JP28021886A JPS63133450A JP S63133450 A JPS63133450 A JP S63133450A JP 61280218 A JP61280218 A JP 61280218A JP 28021886 A JP28021886 A JP 28021886A JP S63133450 A JPS63133450 A JP S63133450A
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- zinc alloy
- negative electrode
- mercury
- alkaline battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title claims abstract description 25
- 239000011701 zinc Substances 0.000 title claims abstract description 22
- 229910052725 zinc Inorganic materials 0.000 title claims abstract description 22
- 229910001297 Zn alloy Inorganic materials 0.000 claims abstract description 33
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 13
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 13
- 239000011575 calcium Substances 0.000 claims abstract description 13
- 239000011777 magnesium Substances 0.000 claims abstract description 11
- 229910052738 indium Inorganic materials 0.000 claims abstract description 10
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 9
- 229910052788 barium Inorganic materials 0.000 claims abstract description 7
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000007773 negative electrode material Substances 0.000 claims description 3
- 238000005260 corrosion Methods 0.000 abstract description 21
- 230000007797 corrosion Effects 0.000 abstract description 20
- 239000000843 powder Substances 0.000 abstract description 16
- 230000000694 effects Effects 0.000 abstract description 15
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 abstract description 14
- 229910052753 mercury Inorganic materials 0.000 abstract description 14
- 239000000654 additive Substances 0.000 abstract description 8
- 230000000996 additive effect Effects 0.000 abstract description 8
- 238000003860 storage Methods 0.000 abstract description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 7
- 239000001257 hydrogen Substances 0.000 abstract description 4
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 4
- 239000002245 particle Substances 0.000 abstract description 4
- 230000009471 action Effects 0.000 abstract description 3
- 238000007599 discharging Methods 0.000 abstract description 3
- 238000005536 corrosion prevention Methods 0.000 abstract description 2
- 238000005267 amalgamation Methods 0.000 abstract 1
- 230000002265 prevention Effects 0.000 abstract 1
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 14
- 229910001923 silver oxide Inorganic materials 0.000 description 7
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 229910052733 gallium Inorganic materials 0.000 description 6
- 230000036571 hydration Effects 0.000 description 6
- 238000006703 hydration reaction Methods 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 4
- RNWHGQJWIACOKP-UHFFFAOYSA-N zinc;oxygen(2-) Chemical compound [O-2].[Zn+2] RNWHGQJWIACOKP-UHFFFAOYSA-N 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229910052793 cadmium Inorganic materials 0.000 description 3
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical group CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000002301 combined effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910000474 mercury oxide Inorganic materials 0.000 description 2
- UKWHYYKOEPRTIC-UHFFFAOYSA-N mercury(ii) oxide Chemical compound [Hg]=O UKWHYYKOEPRTIC-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- -1 polypropylene ring Polymers 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 235000011118 potassium hydroxide Nutrition 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910052716 thallium Inorganic materials 0.000 description 2
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- 229910000497 Amalgam Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000000887 hydrating effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/42—Alloys based on zinc
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、負極活物質として亜鉛、電解液としてアルカ
リ電解液、正極活物質として二酸化マンガン、酸化銀、
酸化水銀、酸素、水酸化ニッケル等を用いる亜鉛アルカ
リ電池において特に負極の改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses zinc as a negative electrode active material, an alkaline electrolyte as an electrolyte, and manganese dioxide, silver oxide, or silver oxide as a positive electrode active material.
It particularly relates to the improvement of negative electrodes in zinc-alkaline batteries using mercury oxide, oxygen, nickel hydroxide, etc.
従来の技術
従来、この種の亜鉛アルカリ電池の共通した問題点とし
て、保存中の負極亜鉛の電解液による腐食が挙げられる
。これまで亜鉛に6〜10重量%重量%水銀を添加した
水化亜鉛粉末を用いて水素過電圧を高め、実用的に問題
のない程度に腐食を抑制することが工業的な手法として
採用されている。2. Prior Art Conventionally, a common problem with this type of zinc-alkaline battery is corrosion of the negative electrode zinc by the electrolyte during storage. Up until now, an industrial method has been adopted to increase the hydrogen overvoltage by using zinc hydrate powder containing 6 to 10% by weight of mercury and to suppress corrosion to a level that poses no practical problems. .
しかし近年、低公害化のため、電池内の含有水銀を低減
させることが社会的なニーズとして高まり、種々の研究
がなされている。例えば、亜鉛中に鉛、カドミウム、イ
ンジウム、ガリウムなどを添加した合金粉末を用いて耐
食性を向上させ、水化率を低減させる方法が提案されて
いる。これらの腐食抑制効果は、添加元素の単体の効果
以外の複数の添加元素による複合効果も大きく、インジ
ウムと鉛あるいはこれらにガリウムを添加したもの、さ
らにはガリウムと鉛を添加した亜鉛合金などが従来、有
望な系として提案されている。However, in recent years, there has been an increasing social need to reduce the amount of mercury contained in batteries in order to reduce pollution, and various studies have been conducted. For example, a method has been proposed to improve corrosion resistance and reduce the hydration rate by using an alloy powder in which lead, cadmium, indium, gallium, etc. are added to zinc. These corrosion inhibition effects are not only due to the effect of a single additive element but also the combined effect of multiple additive elements. Conventionally, indium and lead, or gallium added to these, and zinc alloys with gallium and lead added are used. , has been proposed as a promising system.
また、鉛、カドミウムにガリウムと銀を添加した亜鉛合
金(特開昭61−78062号公報)。Also, a zinc alloy in which gallium and silver are added to lead and cadmium (Japanese Unexamined Patent Publication No. 78062/1983).
ガリウムおよびタリウムにアルミニウムを添加した亜鉛
合金(特開昭61−78061号公報)。A zinc alloy in which aluminum is added to gallium and thallium (Japanese Unexamined Patent Publication No. 78061/1983).
アルミニウムと鉛に銀、ガリウム、タリウム、カドミウ
ムの一種または二種以上を添加した亜鉛合金(特開昭6
1−78059号公報)等がある。Zinc alloy made by adding one or more of silver, gallium, thallium, and cadmium to aluminum and lead (Japanese Patent Laid-Open No. 6
1-78059), etc.
発明が解決しようとする問題点
上記の提案の亜鉛合金は、いずれもある程度の耐食性は
期待でき、水化率の低減もある程度見込めたが、これら
の元素の組み合わせの効果については現状では十分でな
く、有効な組み合わせによる合金組成を解明することは
なお今後の課題である。Problems to be Solved by the Invention All of the zinc alloys proposed above can be expected to have a certain degree of corrosion resistance and to reduce the hydration rate to a certain extent, but the effect of the combination of these elements is currently insufficient. However, it remains a future challenge to elucidate alloy compositions based on effective combinations.
本発明はこのような問題点を解決するもので、負極亜鉛
の耐蝕性を劣化させることなく、水化率を低減させ、低
公害で放電性能、貯蔵性能、耐漏液性などの総合性能に
すぐれた亜鉛負極を提供することを目的とするものであ
る。The present invention solves these problems, and reduces the hydration rate without deteriorating the corrosion resistance of negative electrode zinc, resulting in low pollution and excellent overall performance such as discharge performance, storage performance, and leakage resistance. The purpose of this invention is to provide a zinc negative electrode.
問題点を解決するための手段
本発明は、電解液にか性カリ、か性ソーダなどを主成分
とするアルカリ水溶液、負極活物質に亜鉛、正極活物質
に二酸化マンガン、酸化銀、酸化水銀、酸素などを用い
るいわゆる亜鉛アルカリ系電池の負極に、亜鉛を主成分
とし、添加元素として、インジウムを0.001〜0.
5重量%、アルミニウム、カルシウム、マグネシウムか
らなる群のうち一種以上を0.Oo1〜0.3重量%、
バリウムを0.001〜0.5重量%含有する亜鉛合金
を用いたことを特徴とする。Means for Solving the Problems The present invention uses an alkaline aqueous solution containing caustic potash, caustic soda, etc. as the main components for the electrolyte, zinc for the negative electrode active material, and manganese dioxide, silver oxide, mercury oxide, etc. for the positive electrode active material. The negative electrode of a so-called zinc-alkaline battery that uses oxygen etc. has zinc as its main component and 0.001 to 0.00% of indium as an additional element.
5% by weight, 0.0% of one or more of the group consisting of aluminum, calcium, and magnesium. Oo1-0.3% by weight,
It is characterized by using a zinc alloy containing 0.001 to 0.5% by weight of barium.
本発明は防食効果が比較的大きい元素として知られてい
るInと併用して、単独の添加では防食効果が乏しい、
Al、Ca、Mgから選んだ元素とBaを添加すること
によシ、Inを単独で添加した亜鉛合金よりも数段すぐ
れた亜鉛合金が得られることを見出し、添加元素の組合
せと添加率を実験的に検討して完成したものである。The present invention uses In in combination with In, which is known as an element with a relatively large anticorrosion effect.
We discovered that by adding elements selected from Al, Ca, and Mg and Ba, we could obtain a zinc alloy that was much better than the zinc alloy that added In alone. This was completed after experimental study.
作 用
本発明による亜鉛合金における各添加元素の作用機構は
不明確であるが、防食に関する相乗効果は下記のように
推察される。Function Although the mechanism of action of each additive element in the zinc alloy according to the present invention is unclear, the synergistic effect regarding corrosion prevention is inferred as follows.
まず、Inは水素過電圧を高める作用と、水銀との親和
性が大きいため、水化のために添加した水銀を亜鉛合金
の表面や粒界に固定し、少量の水銀の添加で亜鉛合金の
表面や粒界の水銀濃度を高く維持する作用とにより大き
な防食効果があるものと考えられる。又、Al、Ca、
Mgの添加効果は粉体化して負極に用いる亜鉛合金粉の
表面積を減少させて亜鉛合金の腐食を抑制することにあ
る。First, since In has the effect of increasing hydrogen overvoltage and has a high affinity for mercury, the mercury added for hydration is fixed on the surface and grain boundaries of the zinc alloy, and by adding a small amount of mercury, the surface of the zinc alloy is It is thought that this has a large anti-corrosion effect due to the action of maintaining a high mercury concentration at the grain boundaries. Also, Al, Ca,
The effect of adding Mg is to reduce the surface area of the zinc alloy powder that is pulverized and used for the negative electrode, thereby suppressing corrosion of the zinc alloy.
即ち、通常負極に用いる亜鉛合金粉は溶融状態の亜鉛合
金を高圧のガスで噴霧固化することによって作られるア
トマイズ粉であり、通常の亜鉛又は亜鉛合金のアトマイ
ズ粉の表面は凝固時に生じる微細な皺で覆われているが
、Al 、Ca 、Mgを添加するとその皺が減少し、
粒子の表面を平滑化することができ、電解液との接触に
よシ腐食反応を行う表面積を減少させ、耐食性を増すこ
とができる。In other words, the zinc alloy powder normally used for the negative electrode is an atomized powder made by spraying and solidifying molten zinc alloy with high-pressure gas, and the surface of the atomized zinc or zinc alloy powder has fine wrinkles that occur during solidification. However, when Al, Ca, and Mg are added, the wrinkles are reduced.
The surface of the particles can be smoothed, reducing the surface area where corrosion reactions occur upon contact with the electrolytic solution, and increasing corrosion resistance.
さらに、Baは水銀との親和性が大きいので、Inの防
食作用と類似の作用効果が期待され、Inの作用を補う
役割を果すものと推定される。以上の如く、本発明に用
いる亜鉛合金は少量の水銀で水化することにより、亜鉛
合金の表面の水銀濃度を高く維持でき、しかも亜鉛合金
粉の表面積を小さくできるので、耐食性が極めてすぐれ
ているものと考えられる。本発明は係る亜鉛合金中の添
加元素の組合せとその含有量を実験的に検討し4fbf
。Furthermore, since Ba has a high affinity with mercury, it is expected to have a similar effect to the anticorrosion effect of In, and is presumed to play a role in supplementing the effect of In. As mentioned above, by hydrating the zinc alloy used in the present invention with a small amount of mercury, the mercury concentration on the surface of the zinc alloy can be maintained high, and the surface area of the zinc alloy powder can be reduced, so it has extremely excellent corrosion resistance. considered to be a thing. The present invention has experimentally investigated the combination of additive elements and their contents in the zinc alloy, and
.
化率で十分な耐食性と放電性能を兼ね備えた低公害で実
用性の高い亜鉛アルカリ電池を実現するに有効な手段を
完成したものである。以下、実施例により詳細に説明す
る。This work has completed an effective means for realizing a low-pollution, highly practical zinc-alkaline battery that has both sufficient corrosion resistance and discharge performance at a low corrosion rate. Hereinafter, it will be explained in detail using examples.
実施例
純度99.997 %の亜鉛地金に、次表に示す各種
の元素を添加した各種の亜鉛合金を作成し、約soo’
cで溶融して圧縮空気により噴射して粉体化し、50〜
150メツシユの粒度範囲にふるい分けした。次いで、
か性カリの10M量多水溶液中に上記粉体を投入し、攪
拌しながら所定量の水銀を滴下して水化した。その後、
水洗し、アセトンで置換して乾燥し、水化亜鉛合金粉を
作成した。Examples Various zinc alloys were prepared by adding the various elements shown in the following table to zinc ingot with a purity of 99.997%.
Melt at c and sprayed with compressed air to powder, 50~
It was sieved to a particle size range of 150 mesh. Then,
The above powder was put into a 10M aqueous solution of caustic potash, and a predetermined amount of mercury was added dropwise while stirring to hydrate it. after that,
It was washed with water, replaced with acetone, and dried to produce a zinc hydrate alloy powder.
さらに本発明の実施例以外の水化亜鉛粉、又は氷化亜鉛
合金粉についても比較例として同様の方法で作成した。Furthermore, hydrated zinc powder or glazed zinc alloy powder other than the examples of the present invention were also prepared in the same manner as comparative examples.
これらの氷化粉末を用い、図に示すボタン形酸化銀電池
を製作した。図において、1はステンレス鋼製の封口板
で、その内面には銅メッキ1′が施されている。2はか
性カリの40重量%水溶液に酸化亜鉛を飽和させた電解
液をカルボキシメチルセルロースによシゲル化し、この
ゲル中に水化亜鉛合金粉末を分散させた亜鉛負極である
。3はセルロース系の保液材、4は多孔性ポリプロピレ
ン環のセパレータ、5は酸化銀に黒鉛を混合して加圧成
形した正極、6は鉄にニッケルメッキを施した正極リン
グ、7はニッケルメッキを施したステンレス鋼製の正極
缶である。8はポリプロピレン環のガスケットで、正極
缶7の開口部の折り曲げにより正極缶7と封口板1との
間に圧縮されている。試作した電池は直径11.6++
m、高さ5.4mで負極の氷化粉末の重量を193ツに
統一し、水銀の添加量(氷化率)は亜鉛合金粉に対し、
いずれも1.0重量%とした。The button-shaped silver oxide battery shown in the figure was manufactured using these frozen powders. In the figure, reference numeral 1 denotes a sealing plate made of stainless steel, the inner surface of which is coated with copper plating 1'. 2 is a zinc negative electrode in which an electrolytic solution in which a 40% by weight aqueous solution of caustic potassium is saturated with zinc oxide is gelled with carboxymethylcellulose, and zinc hydrate alloy powder is dispersed in this gel. 3 is a cellulose-based liquid retaining material, 4 is a porous polypropylene ring separator, 5 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded, 6 is a positive electrode ring made of iron plated with nickel, and 7 is nickel plated. This is a positive electrode can made of stainless steel. Reference numeral 8 denotes a polypropylene ring gasket, which is compressed between the positive electrode can 7 and the sealing plate 1 by bending the opening of the positive electrode can 7 . The prototype battery has a diameter of 11.6++
m, the height of 5.4 m, the weight of the negative electrode frozen powder was unified to 193 m, and the amount of mercury added (frozen rate) to the zinc alloy powder was
Both amounts were 1.0% by weight.
試作した電池の亜鉛合金の組成と、6C)℃で1ケ月保
存した後の放電性能と電池総高の変化、及び目視判定で
の漏液電池の個数を次表に示す。放電性能は、20℃に
おいて510Ωで0.9vを終止電圧として放電した時
の放電持続時間で表わした。The following table shows the composition of the zinc alloy of the prototype battery, the change in discharge performance and total battery height after storage at 6C)°C for one month, and the number of leaking batteries as determined by visual inspection. The discharge performance was expressed by the discharge duration when discharging at 510Ω at 20° C. with a final voltage of 0.9V.
この表において、電池総高の変化は電池封口後、各電池
構成要素間への応力の関係が安定化するまでの期間は経
時的に電池総高が減少するのが通例である。しかし亜鉛
負極の腐食に伴う水素ガス発生の多い電池では上記の電
池総高の減少に対抗する電池内圧の上昇により、電池総
高を増大させる傾向が強くなる。従って、貯蔵による電
池総高の増減によシ亜鉛負極の耐食性を評価することが
できる。また、耐食性が不十分な電池では電池総高が増
大するほか、電池内圧の上昇により耐漏液性が劣化する
とともに、腐食による亜鉛の消耗、亜鉛表面の酸化膜の
形成、水素ガスの内在による放電反応の阻害等により、
放電性能が著しく劣化することになり、耐漏液性、放電
持続時間とも、亜鉛負極の耐食性に大きく依存する。In this table, the total battery height generally decreases over time after the battery is sealed until the stress relationship between each battery component becomes stable. However, in a battery in which a large amount of hydrogen gas is generated due to corrosion of the zinc negative electrode, there is a strong tendency to increase the total battery height due to an increase in battery internal pressure that counteracts the above-mentioned decrease in the total battery height. Therefore, the corrosion resistance of the zinc negative electrode can be evaluated based on changes in the total battery height due to storage. In addition, in batteries with insufficient corrosion resistance, the total height of the battery increases, and leakage resistance deteriorates due to an increase in battery internal pressure. At the same time, zinc is consumed due to corrosion, an oxide film is formed on the zinc surface, and discharge occurs due to the presence of hydrogen gas. Due to reaction inhibition, etc.
The discharge performance will be significantly deteriorated, and both the leakage resistance and the discharge duration will largely depend on the corrosion resistance of the zinc negative electrode.
この表に見られるように、Inを単独で添加した扁1の
電池に対し、AJ 、 Ca 、Mgのいずれかを併存
させた42,3.4の場合はいずれも7fL1の電池よ
り耐食性が良く、特にCa、Alの複合効果が大きい。As can be seen in this table, in contrast to the flat 1 battery in which In was added alone, the 42 and 3.4 batteries in which AJ, Ca, or Mg were added together had better corrosion resistance than the 7fL1 battery. In particular, the combined effect of Ca and Al is large.
しかしこれらは、1.0重量%という低水化率では実用
的に満足すべき特性が得られておらず、耐食性が十分と
は言えない。However, these materials do not have practically satisfactory properties at a water conversion rate as low as 1.0% by weight, and cannot be said to have sufficient corrosion resistance.
これらの従来例に対し、InとAl 、 Ca 、Mg
の一種以上を併存させ、これにさらにBaを併存させた
屋5〜27のうち、各添加元素の含有量が適切なもので
は、さらにすぐれた特性を示しておシ、これはBaと他
元素との複合効果によるもので、例えば、42とA10
、A3とA 15 、A4と遥18の対比により明ら
かである。また、各元素の適切な含有量は、Inが0.
001〜0.5重量%、Al、Ca、Mqから選ばれた
元素の一種以上の元素の含有量の和が0.001〜0.
3重量%、Baが0.001〜0.6重量%の範囲で各
々含有されている亜鉛合金が有効で、各添加元素の含有
量が上記より過剰、又は不足の場合は従来例と大差ない
か、逆効果の特性値を示している。以上の如く、本発明
はIn、Baを必須添加元素とし、さらに、Al。In contrast to these conventional examples, In, Al, Ca, Mg
Of the cases 5 to 27 in which one or more of the following elements coexisted together with Ba, those with an appropriate content of each additive element showed even better characteristics. For example, 42 and A10
, A3 and A 15 , and A4 and Haruka 18 make this clear. In addition, the appropriate content of each element is as follows: In is 0.
001 to 0.5% by weight, and the sum of the contents of one or more elements selected from Al, Ca, and Mq is 0.001 to 0.5% by weight.
Zinc alloy containing 3% by weight and Ba in the range of 0.001 to 0.6% by weight is effective, and if the content of each additional element is excessive or insufficient than the above, it is not much different from the conventional example. Or, it shows characteristic values that have the opposite effect. As described above, the present invention uses In and Ba as essential additive elements, and furthermore, Al.
Ca、Mgのうち一種以上を必須添加元素として、各々
の適切な量を含有させた亜鉛合金を負極に用いることに
よシ、低水化率で放電性能、貯蔵性。By using a zinc alloy in the negative electrode containing one or more of Ca and Mg as essential additive elements and containing appropriate amounts of each, discharge performance and storage stability can be achieved with a low hydration rate.
耐漏液性など、実用性能のすぐれた低公害の亜鉛アルカ
リ電池を完成したものである。This is a low-pollution zinc-alkaline battery with excellent practical performance such as leak resistance.
尚、実施例において、添加元素を添加する方法として、
溶融亜鉛地金中に添加する方法を採ったが、アマルガム
化し易いInやBaを添加する場合には、予め添加元素
を溶解させて、水化と同時に添加する方法を採ることも
できる。また、亜鉛よりイオン化傾向の小さいInを添
加する場合、例えば塩化インジウムなどの溶液中で、Z
nとの置換反応で、亜鉛合金の表面に析出させて合金化
することもでき、いずれの方法を採っても、本発明と同
様の効果を得ることができ、本発明の実施態様に包含さ
れる。In addition, in the examples, as a method of adding additional elements,
Although the method of adding the elements to the molten zinc ingot was adopted, when adding In or Ba, which easily forms into amalgam, it is also possible to dissolve the additional elements in advance and add them simultaneously with hydration. In addition, when adding In, which has a smaller ionization tendency than zinc, for example, in a solution of indium chloride, Z
It is also possible to precipitate on the surface of the zinc alloy and alloy it by a substitution reaction with n, and either method can obtain the same effect as the present invention and is not included in the embodiments of the present invention. Ru.
また、実施例においては、1.0重量−の水化亜鉛負極
を用いた電池について説明したが、極めて厳密な貯蔵性
能や耐漏液性を要求される場合は3重量%程度を上限と
し、1.0重量−以上の氷化率を適用するのが適切な場
合があり、逆に、排気装置を備えた空気電池や、水素吸
収機構を備えた密閉形の亜鉛アルカリ電池などにおいて
は水素ガスの発生許容量は比較的多いので、1.0重量
%未満の氷化率、場合によっては無水化のまま実施する
こともできる。In addition, in the example, a battery using a 1.0% by weight zinc hydrate negative electrode was described, but if very strict storage performance or leakage resistance is required, the upper limit is about 3% by weight, and 1.0% by weight is used. In some cases, it may be appropriate to apply a freezing rate of 0.0 weight - or more, and conversely, in air batteries equipped with an exhaust system or sealed zinc-alkaline batteries equipped with a hydrogen absorption mechanism, hydrogen gas Since the allowable amount of generation is relatively large, it is possible to carry out the process with a freezing rate of less than 1.0% by weight, and in some cases with anhydrous state.
発明の効果
以上のように本発明は、負極亜鉛の氷化率を低減でき、
低公害の亜鉛アルカリ電池を得るに極めて効果的である
。Effects of the Invention As described above, the present invention can reduce the freezing rate of negative electrode zinc,
It is extremely effective in obtaining low-pollution zinc-alkaline batteries.
図は本発明の実施例に用いたボタン形酸化銀電池の一部
を断面にした側面図である。
2・・・・・・亜鉛負極、4・・・・・・セパレータ、
6・・・・・・酸化銀正極。The figure is a partially sectional side view of a button-shaped silver oxide battery used in an example of the present invention. 2...Zinc negative electrode, 4...Separator,
6...Silver oxide positive electrode.
Claims (1)
、カルシウム、マグネシウムからなる群のうち1種以上
を0.001〜0.3重量%、バリウムを0.001〜
0.5重量%含有する亜鉛合金を負極活物質に用いた亜
鉛アルカリ電池。0.001 to 0.5% by weight of indium, 0.001 to 0.3% by weight of one or more of the group consisting of aluminum, calcium, and magnesium, and 0.001 to 0.001% of barium.
A zinc alkaline battery using a zinc alloy containing 0.5% by weight as a negative electrode active material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61280218A JPH0682551B2 (en) | 1986-11-25 | 1986-11-25 | Zinc alkaline battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61280218A JPH0682551B2 (en) | 1986-11-25 | 1986-11-25 | Zinc alkaline battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63133450A true JPS63133450A (en) | 1988-06-06 |
JPH0682551B2 JPH0682551B2 (en) | 1994-10-19 |
Family
ID=17621958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61280218A Expired - Lifetime JPH0682551B2 (en) | 1986-11-25 | 1986-11-25 | Zinc alkaline battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0682551B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03173731A (en) * | 1989-11-10 | 1991-07-29 | Acec Union Miniere Nv:Sa | Powdered zinc for use in alkaline battery |
-
1986
- 1986-11-25 JP JP61280218A patent/JPH0682551B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03173731A (en) * | 1989-11-10 | 1991-07-29 | Acec Union Miniere Nv:Sa | Powdered zinc for use in alkaline battery |
Also Published As
Publication number | Publication date |
---|---|
JPH0682551B2 (en) | 1994-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60175368A (en) | Zinc-alkaline primary cell | |
JPS63133450A (en) | Zinc alkaline battery | |
JPS636749A (en) | Zinc alkaline battery | |
JPS636747A (en) | Zince alkaline battery | |
JPH0622119B2 (en) | Zinc alkaline battery | |
JPS60175369A (en) | Zinc-alkaline primary cell | |
JPS6273565A (en) | Zinc alkaline battery | |
JPS61253764A (en) | Zinc alkaline battery | |
JPS63178452A (en) | Zinc alkaline battery | |
JPS60177553A (en) | Zinc alkaline primary battery | |
JPS6290859A (en) | Zinc alkaline cell | |
JPH0622118B2 (en) | Zinc alkaline battery | |
JPH0142576B2 (en) | ||
JPS6290857A (en) | Zinc alkaline cell | |
JPS61140066A (en) | Zinc alkali battery | |
JPS6290860A (en) | Zinc alkaline cell | |
JPH0365617B2 (en) | ||
JPS6290855A (en) | Zinc alkaline cell | |
JPS60165052A (en) | Zinc alkaline primary battery | |
JPS63178453A (en) | Zinc alkaline battery | |
JPS61140064A (en) | Zinc alkali battery | |
JPS61181069A (en) | Zinc alkaline cell | |
JPH0365621B2 (en) | ||
JPS60177552A (en) | Zinc alkaline primary battery | |
JPS63178451A (en) | Zinc alkaline battery |