[go: up one dir, main page]

JPS63133450A - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPS63133450A
JPS63133450A JP61280218A JP28021886A JPS63133450A JP S63133450 A JPS63133450 A JP S63133450A JP 61280218 A JP61280218 A JP 61280218A JP 28021886 A JP28021886 A JP 28021886A JP S63133450 A JPS63133450 A JP S63133450A
Authority
JP
Japan
Prior art keywords
zinc
zinc alloy
negative electrode
mercury
alkaline battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61280218A
Other languages
Japanese (ja)
Other versions
JPH0682551B2 (en
Inventor
Akira Miura
三浦 晃
Kanji Takada
寛治 高田
Ryoji Okazaki
良二 岡崎
Toyohide Uemura
植村 豊秀
Keiichi Kagawa
賀川 恵市
Nobuyori Kasahara
笠原 暢順
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP61280218A priority Critical patent/JPH0682551B2/en
Publication of JPS63133450A publication Critical patent/JPS63133450A/en
Publication of JPH0682551B2 publication Critical patent/JPH0682551B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce public pollution and to improve discharging, storage and leakage resisting properties, by adding In, Ba and an element selected from Al, Ca, and Mg. CONSTITUTION:A negative electrode of a zinc alkaline battery is composed mainly of zinc, and zinc alloy as an additive element containing indium of 0.001-0.5 wt%, one or more of aluminum, calcium and magnesium of 0.001-0.3 wt% and barium of 0.001-0.5 wt%. The indium has an action for increasing a hydrogen over-voltage and an action for fixing mercury added for to the surface and particle boundary of the zinc alloy to keep a mercury concentration at the surface and the particle boundary of the zinc alloy at a high level by the addition of a small amount of mercury for providing a large corrosion prevention effect. The addition of the Al, Ca and Mg has an effect to reduce a surface area of zinc alloy powder used to the negative electrode to restrict corrosion of the zinc alloy. With the arrangement, a zinc alkaline battery of low public pollution can be provided which has a lower amalgamation ratio and excellent discharging, storage and leakage prevention properties.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質として亜鉛、電解液としてアルカ
リ電解液、正極活物質として二酸化マンガン、酸化銀、
酸化水銀、酸素、水酸化ニッケル等を用いる亜鉛アルカ
リ電池において特に負極の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses zinc as a negative electrode active material, an alkaline electrolyte as an electrolyte, and manganese dioxide, silver oxide, or silver oxide as a positive electrode active material.
It particularly relates to the improvement of negative electrodes in zinc-alkaline batteries using mercury oxide, oxygen, nickel hydroxide, etc.

従来の技術 従来、この種の亜鉛アルカリ電池の共通した問題点とし
て、保存中の負極亜鉛の電解液による腐食が挙げられる
。これまで亜鉛に6〜10重量%重量%水銀を添加した
水化亜鉛粉末を用いて水素過電圧を高め、実用的に問題
のない程度に腐食を抑制することが工業的な手法として
採用されている。
2. Prior Art Conventionally, a common problem with this type of zinc-alkaline battery is corrosion of the negative electrode zinc by the electrolyte during storage. Up until now, an industrial method has been adopted to increase the hydrogen overvoltage by using zinc hydrate powder containing 6 to 10% by weight of mercury and to suppress corrosion to a level that poses no practical problems. .

しかし近年、低公害化のため、電池内の含有水銀を低減
させることが社会的なニーズとして高まり、種々の研究
がなされている。例えば、亜鉛中に鉛、カドミウム、イ
ンジウム、ガリウムなどを添加した合金粉末を用いて耐
食性を向上させ、水化率を低減させる方法が提案されて
いる。これらの腐食抑制効果は、添加元素の単体の効果
以外の複数の添加元素による複合効果も大きく、インジ
ウムと鉛あるいはこれらにガリウムを添加したもの、さ
らにはガリウムと鉛を添加した亜鉛合金などが従来、有
望な系として提案されている。
However, in recent years, there has been an increasing social need to reduce the amount of mercury contained in batteries in order to reduce pollution, and various studies have been conducted. For example, a method has been proposed to improve corrosion resistance and reduce the hydration rate by using an alloy powder in which lead, cadmium, indium, gallium, etc. are added to zinc. These corrosion inhibition effects are not only due to the effect of a single additive element but also the combined effect of multiple additive elements. Conventionally, indium and lead, or gallium added to these, and zinc alloys with gallium and lead added are used. , has been proposed as a promising system.

また、鉛、カドミウムにガリウムと銀を添加した亜鉛合
金(特開昭61−78062号公報)。
Also, a zinc alloy in which gallium and silver are added to lead and cadmium (Japanese Unexamined Patent Publication No. 78062/1983).

ガリウムおよびタリウムにアルミニウムを添加した亜鉛
合金(特開昭61−78061号公報)。
A zinc alloy in which aluminum is added to gallium and thallium (Japanese Unexamined Patent Publication No. 78061/1983).

アルミニウムと鉛に銀、ガリウム、タリウム、カドミウ
ムの一種または二種以上を添加した亜鉛合金(特開昭6
1−78059号公報)等がある。
Zinc alloy made by adding one or more of silver, gallium, thallium, and cadmium to aluminum and lead (Japanese Patent Laid-Open No. 6
1-78059), etc.

発明が解決しようとする問題点 上記の提案の亜鉛合金は、いずれもある程度の耐食性は
期待でき、水化率の低減もある程度見込めたが、これら
の元素の組み合わせの効果については現状では十分でな
く、有効な組み合わせによる合金組成を解明することは
なお今後の課題である。
Problems to be Solved by the Invention All of the zinc alloys proposed above can be expected to have a certain degree of corrosion resistance and to reduce the hydration rate to a certain extent, but the effect of the combination of these elements is currently insufficient. However, it remains a future challenge to elucidate alloy compositions based on effective combinations.

本発明はこのような問題点を解決するもので、負極亜鉛
の耐蝕性を劣化させることなく、水化率を低減させ、低
公害で放電性能、貯蔵性能、耐漏液性などの総合性能に
すぐれた亜鉛負極を提供することを目的とするものであ
る。
The present invention solves these problems, and reduces the hydration rate without deteriorating the corrosion resistance of negative electrode zinc, resulting in low pollution and excellent overall performance such as discharge performance, storage performance, and leakage resistance. The purpose of this invention is to provide a zinc negative electrode.

問題点を解決するための手段 本発明は、電解液にか性カリ、か性ソーダなどを主成分
とするアルカリ水溶液、負極活物質に亜鉛、正極活物質
に二酸化マンガン、酸化銀、酸化水銀、酸素などを用い
るいわゆる亜鉛アルカリ系電池の負極に、亜鉛を主成分
とし、添加元素として、インジウムを0.001〜0.
5重量%、アルミニウム、カルシウム、マグネシウムか
らなる群のうち一種以上を0.Oo1〜0.3重量%、
バリウムを0.001〜0.5重量%含有する亜鉛合金
を用いたことを特徴とする。
Means for Solving the Problems The present invention uses an alkaline aqueous solution containing caustic potash, caustic soda, etc. as the main components for the electrolyte, zinc for the negative electrode active material, and manganese dioxide, silver oxide, mercury oxide, etc. for the positive electrode active material. The negative electrode of a so-called zinc-alkaline battery that uses oxygen etc. has zinc as its main component and 0.001 to 0.00% of indium as an additional element.
5% by weight, 0.0% of one or more of the group consisting of aluminum, calcium, and magnesium. Oo1-0.3% by weight,
It is characterized by using a zinc alloy containing 0.001 to 0.5% by weight of barium.

本発明は防食効果が比較的大きい元素として知られてい
るInと併用して、単独の添加では防食効果が乏しい、
Al、Ca、Mgから選んだ元素とBaを添加すること
によシ、Inを単独で添加した亜鉛合金よりも数段すぐ
れた亜鉛合金が得られることを見出し、添加元素の組合
せと添加率を実験的に検討して完成したものである。
The present invention uses In in combination with In, which is known as an element with a relatively large anticorrosion effect.
We discovered that by adding elements selected from Al, Ca, and Mg and Ba, we could obtain a zinc alloy that was much better than the zinc alloy that added In alone. This was completed after experimental study.

作  用 本発明による亜鉛合金における各添加元素の作用機構は
不明確であるが、防食に関する相乗効果は下記のように
推察される。
Function Although the mechanism of action of each additive element in the zinc alloy according to the present invention is unclear, the synergistic effect regarding corrosion prevention is inferred as follows.

まず、Inは水素過電圧を高める作用と、水銀との親和
性が大きいため、水化のために添加した水銀を亜鉛合金
の表面や粒界に固定し、少量の水銀の添加で亜鉛合金の
表面や粒界の水銀濃度を高く維持する作用とにより大き
な防食効果があるものと考えられる。又、Al、Ca、
Mgの添加効果は粉体化して負極に用いる亜鉛合金粉の
表面積を減少させて亜鉛合金の腐食を抑制することにあ
る。
First, since In has the effect of increasing hydrogen overvoltage and has a high affinity for mercury, the mercury added for hydration is fixed on the surface and grain boundaries of the zinc alloy, and by adding a small amount of mercury, the surface of the zinc alloy is It is thought that this has a large anti-corrosion effect due to the action of maintaining a high mercury concentration at the grain boundaries. Also, Al, Ca,
The effect of adding Mg is to reduce the surface area of the zinc alloy powder that is pulverized and used for the negative electrode, thereby suppressing corrosion of the zinc alloy.

即ち、通常負極に用いる亜鉛合金粉は溶融状態の亜鉛合
金を高圧のガスで噴霧固化することによって作られるア
トマイズ粉であり、通常の亜鉛又は亜鉛合金のアトマイ
ズ粉の表面は凝固時に生じる微細な皺で覆われているが
、Al 、Ca 、Mgを添加するとその皺が減少し、
粒子の表面を平滑化することができ、電解液との接触に
よシ腐食反応を行う表面積を減少させ、耐食性を増すこ
とができる。
In other words, the zinc alloy powder normally used for the negative electrode is an atomized powder made by spraying and solidifying molten zinc alloy with high-pressure gas, and the surface of the atomized zinc or zinc alloy powder has fine wrinkles that occur during solidification. However, when Al, Ca, and Mg are added, the wrinkles are reduced.
The surface of the particles can be smoothed, reducing the surface area where corrosion reactions occur upon contact with the electrolytic solution, and increasing corrosion resistance.

さらに、Baは水銀との親和性が大きいので、Inの防
食作用と類似の作用効果が期待され、Inの作用を補う
役割を果すものと推定される。以上の如く、本発明に用
いる亜鉛合金は少量の水銀で水化することにより、亜鉛
合金の表面の水銀濃度を高く維持でき、しかも亜鉛合金
粉の表面積を小さくできるので、耐食性が極めてすぐれ
ているものと考えられる。本発明は係る亜鉛合金中の添
加元素の組合せとその含有量を実験的に検討し4fbf
Furthermore, since Ba has a high affinity with mercury, it is expected to have a similar effect to the anticorrosion effect of In, and is presumed to play a role in supplementing the effect of In. As mentioned above, by hydrating the zinc alloy used in the present invention with a small amount of mercury, the mercury concentration on the surface of the zinc alloy can be maintained high, and the surface area of the zinc alloy powder can be reduced, so it has extremely excellent corrosion resistance. considered to be a thing. The present invention has experimentally investigated the combination of additive elements and their contents in the zinc alloy, and
.

化率で十分な耐食性と放電性能を兼ね備えた低公害で実
用性の高い亜鉛アルカリ電池を実現するに有効な手段を
完成したものである。以下、実施例により詳細に説明す
る。
This work has completed an effective means for realizing a low-pollution, highly practical zinc-alkaline battery that has both sufficient corrosion resistance and discharge performance at a low corrosion rate. Hereinafter, it will be explained in detail using examples.

実施例 純度99.997  %の亜鉛地金に、次表に示す各種
の元素を添加した各種の亜鉛合金を作成し、約soo’
cで溶融して圧縮空気により噴射して粉体化し、50〜
150メツシユの粒度範囲にふるい分けした。次いで、
か性カリの10M量多水溶液中に上記粉体を投入し、攪
拌しながら所定量の水銀を滴下して水化した。その後、
水洗し、アセトンで置換して乾燥し、水化亜鉛合金粉を
作成した。
Examples Various zinc alloys were prepared by adding the various elements shown in the following table to zinc ingot with a purity of 99.997%.
Melt at c and sprayed with compressed air to powder, 50~
It was sieved to a particle size range of 150 mesh. Then,
The above powder was put into a 10M aqueous solution of caustic potash, and a predetermined amount of mercury was added dropwise while stirring to hydrate it. after that,
It was washed with water, replaced with acetone, and dried to produce a zinc hydrate alloy powder.

さらに本発明の実施例以外の水化亜鉛粉、又は氷化亜鉛
合金粉についても比較例として同様の方法で作成した。
Furthermore, hydrated zinc powder or glazed zinc alloy powder other than the examples of the present invention were also prepared in the same manner as comparative examples.

これらの氷化粉末を用い、図に示すボタン形酸化銀電池
を製作した。図において、1はステンレス鋼製の封口板
で、その内面には銅メッキ1′が施されている。2はか
性カリの40重量%水溶液に酸化亜鉛を飽和させた電解
液をカルボキシメチルセルロースによシゲル化し、この
ゲル中に水化亜鉛合金粉末を分散させた亜鉛負極である
。3はセルロース系の保液材、4は多孔性ポリプロピレ
ン環のセパレータ、5は酸化銀に黒鉛を混合して加圧成
形した正極、6は鉄にニッケルメッキを施した正極リン
グ、7はニッケルメッキを施したステンレス鋼製の正極
缶である。8はポリプロピレン環のガスケットで、正極
缶7の開口部の折り曲げにより正極缶7と封口板1との
間に圧縮されている。試作した電池は直径11.6++
m、高さ5.4mで負極の氷化粉末の重量を193ツに
統一し、水銀の添加量(氷化率)は亜鉛合金粉に対し、
いずれも1.0重量%とした。
The button-shaped silver oxide battery shown in the figure was manufactured using these frozen powders. In the figure, reference numeral 1 denotes a sealing plate made of stainless steel, the inner surface of which is coated with copper plating 1'. 2 is a zinc negative electrode in which an electrolytic solution in which a 40% by weight aqueous solution of caustic potassium is saturated with zinc oxide is gelled with carboxymethylcellulose, and zinc hydrate alloy powder is dispersed in this gel. 3 is a cellulose-based liquid retaining material, 4 is a porous polypropylene ring separator, 5 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded, 6 is a positive electrode ring made of iron plated with nickel, and 7 is nickel plated. This is a positive electrode can made of stainless steel. Reference numeral 8 denotes a polypropylene ring gasket, which is compressed between the positive electrode can 7 and the sealing plate 1 by bending the opening of the positive electrode can 7 . The prototype battery has a diameter of 11.6++
m, the height of 5.4 m, the weight of the negative electrode frozen powder was unified to 193 m, and the amount of mercury added (frozen rate) to the zinc alloy powder was
Both amounts were 1.0% by weight.

試作した電池の亜鉛合金の組成と、6C)℃で1ケ月保
存した後の放電性能と電池総高の変化、及び目視判定で
の漏液電池の個数を次表に示す。放電性能は、20℃に
おいて510Ωで0.9vを終止電圧として放電した時
の放電持続時間で表わした。
The following table shows the composition of the zinc alloy of the prototype battery, the change in discharge performance and total battery height after storage at 6C)°C for one month, and the number of leaking batteries as determined by visual inspection. The discharge performance was expressed by the discharge duration when discharging at 510Ω at 20° C. with a final voltage of 0.9V.

この表において、電池総高の変化は電池封口後、各電池
構成要素間への応力の関係が安定化するまでの期間は経
時的に電池総高が減少するのが通例である。しかし亜鉛
負極の腐食に伴う水素ガス発生の多い電池では上記の電
池総高の減少に対抗する電池内圧の上昇により、電池総
高を増大させる傾向が強くなる。従って、貯蔵による電
池総高の増減によシ亜鉛負極の耐食性を評価することが
できる。また、耐食性が不十分な電池では電池総高が増
大するほか、電池内圧の上昇により耐漏液性が劣化する
とともに、腐食による亜鉛の消耗、亜鉛表面の酸化膜の
形成、水素ガスの内在による放電反応の阻害等により、
放電性能が著しく劣化することになり、耐漏液性、放電
持続時間とも、亜鉛負極の耐食性に大きく依存する。
In this table, the total battery height generally decreases over time after the battery is sealed until the stress relationship between each battery component becomes stable. However, in a battery in which a large amount of hydrogen gas is generated due to corrosion of the zinc negative electrode, there is a strong tendency to increase the total battery height due to an increase in battery internal pressure that counteracts the above-mentioned decrease in the total battery height. Therefore, the corrosion resistance of the zinc negative electrode can be evaluated based on changes in the total battery height due to storage. In addition, in batteries with insufficient corrosion resistance, the total height of the battery increases, and leakage resistance deteriorates due to an increase in battery internal pressure. At the same time, zinc is consumed due to corrosion, an oxide film is formed on the zinc surface, and discharge occurs due to the presence of hydrogen gas. Due to reaction inhibition, etc.
The discharge performance will be significantly deteriorated, and both the leakage resistance and the discharge duration will largely depend on the corrosion resistance of the zinc negative electrode.

この表に見られるように、Inを単独で添加した扁1の
電池に対し、AJ 、 Ca 、Mgのいずれかを併存
させた42,3.4の場合はいずれも7fL1の電池よ
り耐食性が良く、特にCa、Alの複合効果が大きい。
As can be seen in this table, in contrast to the flat 1 battery in which In was added alone, the 42 and 3.4 batteries in which AJ, Ca, or Mg were added together had better corrosion resistance than the 7fL1 battery. In particular, the combined effect of Ca and Al is large.

しかしこれらは、1.0重量%という低水化率では実用
的に満足すべき特性が得られておらず、耐食性が十分と
は言えない。
However, these materials do not have practically satisfactory properties at a water conversion rate as low as 1.0% by weight, and cannot be said to have sufficient corrosion resistance.

これらの従来例に対し、InとAl 、 Ca 、Mg
の一種以上を併存させ、これにさらにBaを併存させた
屋5〜27のうち、各添加元素の含有量が適切なもので
は、さらにすぐれた特性を示しておシ、これはBaと他
元素との複合効果によるもので、例えば、42とA10
 、A3とA 15 、A4と遥18の対比により明ら
かである。また、各元素の適切な含有量は、Inが0.
001〜0.5重量%、Al、Ca、Mqから選ばれた
元素の一種以上の元素の含有量の和が0.001〜0.
3重量%、Baが0.001〜0.6重量%の範囲で各
々含有されている亜鉛合金が有効で、各添加元素の含有
量が上記より過剰、又は不足の場合は従来例と大差ない
か、逆効果の特性値を示している。以上の如く、本発明
はIn、Baを必須添加元素とし、さらに、Al。
In contrast to these conventional examples, In, Al, Ca, Mg
Of the cases 5 to 27 in which one or more of the following elements coexisted together with Ba, those with an appropriate content of each additive element showed even better characteristics. For example, 42 and A10
, A3 and A 15 , and A4 and Haruka 18 make this clear. In addition, the appropriate content of each element is as follows: In is 0.
001 to 0.5% by weight, and the sum of the contents of one or more elements selected from Al, Ca, and Mq is 0.001 to 0.5% by weight.
Zinc alloy containing 3% by weight and Ba in the range of 0.001 to 0.6% by weight is effective, and if the content of each additional element is excessive or insufficient than the above, it is not much different from the conventional example. Or, it shows characteristic values that have the opposite effect. As described above, the present invention uses In and Ba as essential additive elements, and furthermore, Al.

Ca、Mgのうち一種以上を必須添加元素として、各々
の適切な量を含有させた亜鉛合金を負極に用いることに
よシ、低水化率で放電性能、貯蔵性。
By using a zinc alloy in the negative electrode containing one or more of Ca and Mg as essential additive elements and containing appropriate amounts of each, discharge performance and storage stability can be achieved with a low hydration rate.

耐漏液性など、実用性能のすぐれた低公害の亜鉛アルカ
リ電池を完成したものである。
This is a low-pollution zinc-alkaline battery with excellent practical performance such as leak resistance.

尚、実施例において、添加元素を添加する方法として、
溶融亜鉛地金中に添加する方法を採ったが、アマルガム
化し易いInやBaを添加する場合には、予め添加元素
を溶解させて、水化と同時に添加する方法を採ることも
できる。また、亜鉛よりイオン化傾向の小さいInを添
加する場合、例えば塩化インジウムなどの溶液中で、Z
nとの置換反応で、亜鉛合金の表面に析出させて合金化
することもでき、いずれの方法を採っても、本発明と同
様の効果を得ることができ、本発明の実施態様に包含さ
れる。
In addition, in the examples, as a method of adding additional elements,
Although the method of adding the elements to the molten zinc ingot was adopted, when adding In or Ba, which easily forms into amalgam, it is also possible to dissolve the additional elements in advance and add them simultaneously with hydration. In addition, when adding In, which has a smaller ionization tendency than zinc, for example, in a solution of indium chloride, Z
It is also possible to precipitate on the surface of the zinc alloy and alloy it by a substitution reaction with n, and either method can obtain the same effect as the present invention and is not included in the embodiments of the present invention. Ru.

また、実施例においては、1.0重量−の水化亜鉛負極
を用いた電池について説明したが、極めて厳密な貯蔵性
能や耐漏液性を要求される場合は3重量%程度を上限と
し、1.0重量−以上の氷化率を適用するのが適切な場
合があり、逆に、排気装置を備えた空気電池や、水素吸
収機構を備えた密閉形の亜鉛アルカリ電池などにおいて
は水素ガスの発生許容量は比較的多いので、1.0重量
%未満の氷化率、場合によっては無水化のまま実施する
こともできる。
In addition, in the example, a battery using a 1.0% by weight zinc hydrate negative electrode was described, but if very strict storage performance or leakage resistance is required, the upper limit is about 3% by weight, and 1.0% by weight is used. In some cases, it may be appropriate to apply a freezing rate of 0.0 weight - or more, and conversely, in air batteries equipped with an exhaust system or sealed zinc-alkaline batteries equipped with a hydrogen absorption mechanism, hydrogen gas Since the allowable amount of generation is relatively large, it is possible to carry out the process with a freezing rate of less than 1.0% by weight, and in some cases with anhydrous state.

発明の効果 以上のように本発明は、負極亜鉛の氷化率を低減でき、
低公害の亜鉛アルカリ電池を得るに極めて効果的である
Effects of the Invention As described above, the present invention can reduce the freezing rate of negative electrode zinc,
It is extremely effective in obtaining low-pollution zinc-alkaline batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例に用いたボタン形酸化銀電池の一部
を断面にした側面図である。 2・・・・・・亜鉛負極、4・・・・・・セパレータ、
6・・・・・・酸化銀正極。
The figure is a partially sectional side view of a button-shaped silver oxide battery used in an example of the present invention. 2...Zinc negative electrode, 4...Separator,
6...Silver oxide positive electrode.

Claims (1)

【特許請求の範囲】[Claims] インジウムを0.001〜0.5重量%、アルミニウム
、カルシウム、マグネシウムからなる群のうち1種以上
を0.001〜0.3重量%、バリウムを0.001〜
0.5重量%含有する亜鉛合金を負極活物質に用いた亜
鉛アルカリ電池。
0.001 to 0.5% by weight of indium, 0.001 to 0.3% by weight of one or more of the group consisting of aluminum, calcium, and magnesium, and 0.001 to 0.001% of barium.
A zinc alkaline battery using a zinc alloy containing 0.5% by weight as a negative electrode active material.
JP61280218A 1986-11-25 1986-11-25 Zinc alkaline battery Expired - Lifetime JPH0682551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61280218A JPH0682551B2 (en) 1986-11-25 1986-11-25 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61280218A JPH0682551B2 (en) 1986-11-25 1986-11-25 Zinc alkaline battery

Publications (2)

Publication Number Publication Date
JPS63133450A true JPS63133450A (en) 1988-06-06
JPH0682551B2 JPH0682551B2 (en) 1994-10-19

Family

ID=17621958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61280218A Expired - Lifetime JPH0682551B2 (en) 1986-11-25 1986-11-25 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPH0682551B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173731A (en) * 1989-11-10 1991-07-29 Acec Union Miniere Nv:Sa Powdered zinc for use in alkaline battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173731A (en) * 1989-11-10 1991-07-29 Acec Union Miniere Nv:Sa Powdered zinc for use in alkaline battery

Also Published As

Publication number Publication date
JPH0682551B2 (en) 1994-10-19

Similar Documents

Publication Publication Date Title
JPS60175368A (en) Zinc-alkaline primary cell
JPS63133450A (en) Zinc alkaline battery
JPS636749A (en) Zinc alkaline battery
JPS636747A (en) Zince alkaline battery
JPH0622119B2 (en) Zinc alkaline battery
JPS60175369A (en) Zinc-alkaline primary cell
JPS6273565A (en) Zinc alkaline battery
JPS61253764A (en) Zinc alkaline battery
JPS63178452A (en) Zinc alkaline battery
JPS60177553A (en) Zinc alkaline primary battery
JPS6290859A (en) Zinc alkaline cell
JPH0622118B2 (en) Zinc alkaline battery
JPH0142576B2 (en)
JPS6290857A (en) Zinc alkaline cell
JPS61140066A (en) Zinc alkali battery
JPS6290860A (en) Zinc alkaline cell
JPH0365617B2 (en)
JPS6290855A (en) Zinc alkaline cell
JPS60165052A (en) Zinc alkaline primary battery
JPS63178453A (en) Zinc alkaline battery
JPS61140064A (en) Zinc alkali battery
JPS61181069A (en) Zinc alkaline cell
JPH0365621B2 (en)
JPS60177552A (en) Zinc alkaline primary battery
JPS63178451A (en) Zinc alkaline battery