[go: up one dir, main page]

JPH0587974U - Multilayer piezoelectric element - Google Patents

Multilayer piezoelectric element

Info

Publication number
JPH0587974U
JPH0587974U JP036141U JP3614192U JPH0587974U JP H0587974 U JPH0587974 U JP H0587974U JP 036141 U JP036141 U JP 036141U JP 3614192 U JP3614192 U JP 3614192U JP H0587974 U JPH0587974 U JP H0587974U
Authority
JP
Japan
Prior art keywords
piezoelectric
electrode
piezoelectric element
laminated
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP036141U
Other languages
Japanese (ja)
Inventor
謙一 中村
和元 鈴木
信宏 森山
Original Assignee
呉羽化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 呉羽化学工業株式会社 filed Critical 呉羽化学工業株式会社
Priority to JP036141U priority Critical patent/JPH0587974U/en
Publication of JPH0587974U publication Critical patent/JPH0587974U/en
Pending legal-status Critical Current

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)

Abstract

(57)【要約】 【構成】 積層されたポリマー圧電体フィルム(1)の
各面の周縁部に電極不存在部(8)を形成し、該不存在
部との対向面にリード電極(6a)を設ける。 【効果】 洩れ電流や縁面放電の発生を防止し、且つリ
ード線の取出を容易化する。
(57) [Summary] [Structure] An electrode absent portion (8) is formed on the peripheral edge of each surface of the laminated polymer piezoelectric film (1), and a lead electrode (6a) is formed on the surface facing the absent portion. ) Is provided. [Effect] Leakage current and edge discharge are prevented from occurring, and lead wires are easily taken out.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、複数のポリマー圧電体フィルムまたはシートと電極が交互に平面的 に積層された積層圧電素子に関し、特にかかる積層圧電素子の電極構造に関する 。 The present invention relates to a laminated piezoelectric element in which a plurality of polymer piezoelectric films or sheets and electrodes are alternately laminated in a plane, and particularly to an electrode structure of such laminated piezoelectric element.

【0002】[0002]

【従来の技術】[Prior Art]

分極処理した弗化ビニリデン系樹脂(以下、代表的にPVDFと称する)をは じめとするポリマー圧電体は、セラミックス圧電体と比較して、(1)可撓性が 大きく、薄膜化、大面積化、長尺化が容易で任意の形状、形態のものを作ること ができる;(2)静水圧圧電ひずみ定数dh は同等またはそれ以下であるが、誘 電率εが小さいために、dh /εで定まる静水圧電圧出力係数(gh 定数)は極 めて大となり、従って感度特性が優れる;(3)低密度、低弾性であるため、音 響インピーダンス(音速×密度)が、水や生体の値に近く、従って水や生体と素 子との間での反射が少なく、効率のよいエネルギー伝播が可能である等の特性を 有する。このような特性を生かして、ポリマー圧電体は、スピーカー、マイクロ ホン、超音波探触子、ハイドロフォン、震動計、ひずみ計、血圧計、バイモルフ ファン等の、一般に電気−機械(音響)変換素子として、広汎な用途への適用が 提案され、あるいは実用化されている。Polymer piezoelectric materials including polarized vinylidene fluoride resin (hereinafter typically referred to as PVDF) are (1) more flexible, thinner, and thinner than ceramic piezoelectric materials. Areas and lengths can be easily made, and arbitrary shapes and forms can be produced; (2) Hydrostatic pressure piezoelectric strain constant d h is the same or less, but the dielectric constant ε is small, so d h / epsilon hydrostatic voltage output coefficient determined in (g h constant) becomes very Umate large, therefore the sensitivity characteristics are excellent; (3) low density, due to low elasticity, acoustic impedance (sound velocity × density) It has characteristics that it is close to the values of water and living organisms, therefore there is little reflection between water and living organisms and elements, and efficient energy transmission is possible. Taking advantage of these characteristics, polymer piezoelectric materials are generally used for electro-mechanical (acoustic) conversion elements such as speakers, microphones, ultrasonic probes, hydrophones, seismographs, strain gauges, blood pressure monitors, and bimorph fans. As a result, application to a wide range of applications has been proposed or put into practical use.

【0003】 フィルム状またはシート状のポリマー圧電体(以下、包括的に、「ポリマー圧 電体フィルム」と称する。)を素子化するに際しては、通常その両面に電極を設 ける。そして、この電極と後段の電気回路とがリード線などで接続される。When forming a film-shaped or sheet-shaped polymer piezoelectric material (hereinafter, generically referred to as “polymer piezoelectric film”) as an element, electrodes are usually provided on both surfaces thereof. Then, this electrode and the electric circuit in the subsequent stage are connected by a lead wire or the like.

【0004】 一方、この素子化されたポリマー圧電体には1枚のポリマー圧電体フィルムの 両面に電極を形成した単層の圧電素子と、複数のポリマー圧電体フィルムを用い 、それらと電極を交互に積層した積層圧電素子とがあり、後者は超音波トランス デューサや本出願人の先の出願にかかる特願平3−356667号明細書に記載 される素子のような送受波器あるいはバイモルフ振動子として広く利用されてい る。On the other hand, in this polymer piezoelectric body made into an element, a single-layer piezoelectric element in which electrodes are formed on both surfaces of one polymer piezoelectric film and a plurality of polymer piezoelectric films are used, and the electrodes are alternately arranged. And a laminated piezoelectric element, wherein the latter is an ultrasonic transducer or a transducer or bimorph oscillator such as the element described in Japanese Patent Application No. 3-356667 of the applicant's earlier application. Is widely used as.

【0005】 上述のような従来の圧電素子は、通常、あらかじめ表面に電極が形成された大 面積の圧電体フィルムを所望の寸法に切り出すことによって製造されており、ポ リマー圧電体フィルムの表面全体に電極が形成された形態となっている。The conventional piezoelectric element as described above is usually manufactured by cutting a large area piezoelectric film having electrodes formed on the surface in advance into desired dimensions, and the entire surface of the polymer film The electrode is formed on the surface.

【0006】[0006]

【考案が解決すべき課題】[Issues to be solved by the device]

ところが、セラミックス圧電体と比較してgh 定数が大きく、通常数10μm 乃至1000μm前後の厚みで用いられるポリマー圧電体にあっては、電極間は 相対的に薄くてその間には高い電圧が発生または印加されるので、圧電体フィル ムの側面に沿って発生する漏れ電流や縁面放電は、素子の感度低下、効率低下を もたらすと同時にノイズの原因となる等、無視できない問題となる。特に、上述 のような大面積の圧電素子から切り出された圧電素子においては、切り出し時の 電極のバリのため、この漏れ電流や縁面放電の発生頻度が高く、素子製造の歩留 まりを低下させる原因の一つとなっている。However, in the polymer piezoelectric body, which has a larger gh constant than the ceramic piezoelectric body and is usually used with a thickness of several tens of μm to 1000 μm, the electrodes are relatively thin and a high voltage is generated between them. Since it is applied, leakage current and edge discharge that occur along the side surface of the piezoelectric film cause a decrease in device sensitivity and efficiency, and at the same time cause noise, which is a problem that cannot be ignored. In particular, in a piezoelectric element cut out from a large-area piezoelectric element as described above, due to electrode burr when cutting out, this leakage current and edge discharge frequently occur, which lowers the yield of element manufacturing. It is one of the causes.

【0007】 上述の問題に加えて、積層圧電素子では圧電体間に挾持された中間電極へのリ ード線接続も問題となる。すなわち、積層圧電素子では、通常すべての圧電要素 が電気的に並列回路となるように、各電極を積層方向に一つおきにリード線接続 することが必要となるが、この際に、隣り合う電極に短絡することなく、また漏 れ電流や縁面放電を抑えて前記並列回路を実現することは容易ではない。In addition to the above-mentioned problems, lead wire connection to an intermediate electrode sandwiched between piezoelectric bodies also becomes a problem in the laminated piezoelectric element. That is, in a laminated piezoelectric element, it is usually necessary to connect every other electrode in the laminating direction with lead wires so that all the piezoelectric elements are electrically parallel circuits. It is not easy to realize the parallel circuit without short-circuiting the electrodes and suppressing leakage current and edge discharge.

【0008】 本考案の主要な目的は、漏れ電流や縁面放電が発生し難く、電極へのリード線 接続が容易な電極構造を有するポリマー系積層圧電素子を提供することにある。The main object of the present invention is to provide a polymer-based laminated piezoelectric element having an electrode structure in which leakage current and edge discharge are less likely to occur and lead wires can be easily connected to electrodes.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

本考案者等は、上述の目的で研究を続けた結果、ポリマー圧電体フィルム表面 の周縁部に電極不在部(マージン)を設けて、さらに各圧電要素を構成する圧電 電極から連続して一体にリード電極を、対向するフィルム表面上のマージンと対 応する位置に設けた電極構造が有用であることを見出して本考案に到達した。 As a result of continuing the research for the above-mentioned purpose, the present inventors have provided an electrode absent portion (margin) on the peripheral portion of the surface of the polymer piezoelectric film, and further, continuously and integrally from the piezoelectric electrodes constituting each piezoelectric element. The present inventors have found that the electrode structure in which the lead electrode is provided at a position corresponding to the margin on the opposing film surface is useful, and arrived at the present invention.

【0010】 即ち、本考案の積層圧電素子は、ポリマー圧電体フィルムまたはシートとその 両表面に配置される圧電電極とから形成される圧電要素が少なくとも2層以上平 面状に積層された積層圧電素子であって、該ポリマー圧電体フィルムまたはシー トの各面の周縁部には電極の不在部が形成され、対向面の該電極不在部と対向す る所定位置には前記圧電電極と連続して一体にリード電極が形成されていること を特徴とするものである。That is, the laminated piezoelectric element of the present invention is a laminated piezoelectric element in which at least two or more piezoelectric elements formed of a polymer piezoelectric film or sheet and piezoelectric electrodes arranged on both surfaces thereof are laminated in a plane. In the element, an absent portion of an electrode is formed on the peripheral edge of each surface of the polymer piezoelectric film or sheet, and the piezoelectric electrode is connected to the piezoelectric electrode at a predetermined position on the opposite surface facing the absent electrode portion. It is characterized in that the lead electrode is integrally formed.

【0011】 なお、本考案で積層圧電素子の「圧電要素」とは、一枚のポリマー圧電体フィ ルムとその両表面の電極との圧電効果を生ぜしめる組合せであり、換言すれば両 表面の電極の重畳部(これを「圧電電極」と称する。)とそれらに挟まれた圧電 体フィルム部分を指す。また、単に「電極」とは、上記圧電電極のみならずそれ から連続して一体に形成されるリード電極をも含む、圧電素子の表面に、あるい は表面から連続して形成されたポリマー圧電体フィルムに対して電気エネルギー の入出力を行なう導電部材をいう。In the present invention, the “piezoelectric element” of the laminated piezoelectric element is a combination of one polymer piezoelectric film and the electrodes on both surfaces, which produces a piezoelectric effect. It refers to the overlapped part of electrodes (this is called "piezoelectric electrode") and the piezoelectric film part sandwiched between them. The term "electrode" simply means a polymer piezoelectric formed on the surface of the piezoelectric element or continuously from the surface, including not only the above-mentioned piezoelectric electrode but also a lead electrode continuously and integrally formed from the piezoelectric electrode. A conductive member that inputs and outputs electrical energy to and from the body film.

【0012】[0012]

【作用】[Action]

ポリマー圧電体フィルムの周縁部から電極を可及的に除き、またリード電極を 対向面の電極不在部(マージン)に対応する位置に設けてあるので、比較的薄い ポリマー圧電体であっても端面を周り込んだ両面電極間距離が長くなり、前記バ リ等が原因の両面電極の短絡あるいは接近や高い発生電圧による圧電体端面を通 しての洩れ電流や縁面放電の発生が効果的に防止される。また、積層に際しての 隣接電極との短絡を効果的に防止しつつリード線を取出すことが容易となる。 The electrodes are removed from the peripheral edge of the polymer piezoelectric film as much as possible, and the lead electrode is provided at a position corresponding to the electrode absent portion (margin) of the facing surface. The distance between the double-sided electrodes, which is surrounded by the double-sided electrode, becomes longer, and the short-circuiting or approaching of the double-sided electrodes due to the above-mentioned barriers or the occurrence of leakage current or edge discharge through the end faces of the piezoelectric body due to the high generated voltage is effective. To be prevented. Further, it becomes easy to take out the lead wire while effectively preventing a short circuit with an adjacent electrode at the time of stacking.

【0013】[0013]

【考案の具体的説明】[Specific explanation of the device]

以下、図面を参照しつつ本考案の積層圧電素子の好ましい態様を説明する。図 面中、異なる態様の説明に用いた同一参照符号は類似部分を示す。 Hereinafter, preferred embodiments of the laminated piezoelectric element of the present invention will be described with reference to the drawings. In the drawings, the same reference numerals used to describe different modes indicate similar parts.

【0014】 図1は、本考案の積層圧電素子の第1の実施例の積層構造を結線状態とともに 示す正面図であり、図2はその平面図である。図1および図2を参照して、この 積層圧電素子10aは、ポリマー圧電体フィルム1と、リード電極6(6a、6 b)と一体化した金属箔からなる圧電電極2(2a、2b)とを接着剤層3を介 してリード電極6aと6bの方向が交互になるように積層した10層の圧電要素 の積層構造を有する。圧電電極2a、2bからは、連続して一体的に、それぞれ リード電極6a、6bが延びて素子の外部まで達しており、そこで短絡線4a、 4bに接続され、端子5a、5bを介して図示されない後段の電気回路へと導か れる。かくして、すべての圧電要素が並列回路を形成するように配線される。ま たそれぞれの圧電体フィルム1の、対向面且つ対向辺の対角近傍には圧電電極2 a、2bの幅よりも狭い幅のリード電極6a、6bがそれぞれ形成(貼付)され 、また各面の該リード電極形成部を除く全周縁部には、電極不在部(マージン) 8が形成されている。結果的に、対向する面の該電極不在部8と対向する所定位 置にリード電極6(6a、6b)が形成された配置となる。すなわち、本実施例 ではリード電極6a、6bを除いて圧電体1の端面9部位には電極は設けられて いない。そのため、隣接する圧電電極2a、2b間の端面9を周り込んでの絶縁 距離が長く、前記漏れ電流や縁面放電を効果的に抑えることができる。FIG. 1 is a front view showing a laminated structure of a first embodiment of a laminated piezoelectric element of the present invention together with a connected state, and FIG. 2 is a plan view thereof. Referring to FIGS. 1 and 2, the laminated piezoelectric element 10a includes a polymer piezoelectric film 1 and a piezoelectric electrode 2 (2a, 2b) made of a metal foil integrated with a lead electrode 6 (6a, 6b). Has a laminated structure of 10 layers of piezoelectric elements in which the lead electrodes 6a and 6b are laminated via the adhesive layer 3 in such a manner that the directions thereof alternate. Lead electrodes 6a, 6b extend continuously and integrally from the piezoelectric electrodes 2a, 2b to reach the outside of the element, where they are connected to the short-circuit wires 4a, 4b and shown via terminals 5a, 5b. Not led to the subsequent electrical circuit. Thus all piezoelectric elements are wired to form a parallel circuit. Moreover, lead electrodes 6a and 6b each having a width narrower than the width of the piezoelectric electrodes 2a and 2b are formed (attached) on the opposing surfaces of the respective piezoelectric films 1 and in the vicinity of the diagonals of the opposing sides. An electrode absent portion (margin) 8 is formed on the entire peripheral edge portion except the lead electrode forming portion. As a result, the lead electrode 6 (6a, 6b) is formed in a predetermined position on the opposing surface facing the electrode absent portion 8. That is, in this embodiment, no electrodes are provided on the end surface 9 of the piezoelectric body 1 except for the lead electrodes 6a and 6b. Therefore, the insulation distance around the end face 9 between the adjacent piezoelectric electrodes 2a and 2b is long, and the leakage current and the edge discharge can be effectively suppressed.

【0015】 次に各部の構成のより詳細について説明する。ポリマー圧電体フィルム1を構 成するポリマー圧電体としては、比較的高い耐熱性を有するシアン化ビニリデン −酢酸ビニル共重合体が好適に用いられるほか、優れた圧電特性のフッ化ビニリ デン系樹脂圧電体が好ましく、なかでも圧電性発現に適したβ型結晶化のために 一軸延伸の必要なフッ化ビニリデン(VDF)単独重合体に比べて、通常の結晶 条件化でβ型結晶化の可能なVDF系共重合体(例えば優位量のVDFと劣位量 のフッ化ビニル(VF)、トリフルオロエチレン(TrFE)あるいはテトラフ ルオロエチレン(TFE)との共重合体)が好ましく、更には優位量(特に70 〜80モル%)のVDFと劣位量(特に30〜20モル%)のTrFEとの共重 合体がもっとも好ましく用いられる。Next, the details of the configuration of each unit will be described. As the polymer piezoelectric material forming the polymer piezoelectric film 1, vinylidene cyanide-vinyl acetate copolymer having a relatively high heat resistance is preferably used, and a vinylidene fluoride resin piezoelectric material having excellent piezoelectric characteristics is used. The preferred form is β-type crystallization under ordinary crystallization conditions, compared with vinylidene fluoride (VDF) homopolymer, which requires uniaxial stretching for β-type crystallization suitable for piezoelectricity. A VDF-based copolymer (for example, a copolymer of a predominant amount of VDF and a subordinate amount of vinyl fluoride (VF), trifluoroethylene (TrFE) or tetrafluoroethylene (TFE)) is preferable, and a predominant amount (particularly 70). A copolymer of VDF (about 80 to 80 mol%) and a subordinate amount (particularly 30 to 20 mol%) of TrFE is most preferably used.

【0016】 これらポリマー圧電体材料は、溶融押出等により成膜後、必要に応じて一軸延 伸あるいは軟化温度以下での熱処理、軟化温度以下での電界印加により分極処理 に付される。ポリマー圧電体フィルム1は、10〜2000μm程度、特に20 〜1000μmの厚さを有することが好ましい。フィルムの厚さが10μm未満 では、用途によっては十分な送受波感度が得られない場合がある。また、逆に2 000μmを超えると、分極に高電圧が必要となるため縁面放電が発生し分極処 理が極めて困難となる。After being formed into a film by melt extrusion or the like, these polymer piezoelectric materials are subjected to polarization treatment by uniaxial elongation or heat treatment at a softening temperature or lower, and application of an electric field at a softening temperature or lower, if necessary. The polymer piezoelectric film 1 preferably has a thickness of about 10 to 2000 μm, particularly 20 to 1000 μm. If the thickness of the film is less than 10 μm, sufficient wave transmission / reception sensitivity may not be obtained depending on the application. On the other hand, when the thickness exceeds 2,000 μm, a high voltage is required for polarization, which causes edge discharge and makes polarization processing extremely difficult.

【0017】 圧電電極2およびリード電極6は、この例では箔電極が用いられ、これにより 図1、図2に示すように、リード電極を素子積層部の外側にまで連続且つ一体的 に突出させて端部を与えることができ、これによりリード線の結線が容易になる 。As the piezoelectric electrode 2 and the lead electrode 6, foil electrodes are used in this example, and as a result, as shown in FIGS. 1 and 2, the lead electrode is continuously and integrally projected to the outside of the element laminated portion. End can be provided to facilitate the lead wire connection.

【0018】 箔電極としては、例えば銅、アルミニウム、錫、亜鉛、金、銀、白金等の良導 電性の金属の厚さ6〜2000μm、特に20〜1000μmの箔が好ましい。 この箔電極の厚さは、圧電素子全体の厚みや可撓性、突出したリード電極部に要 求される可撓性などにより適宜決定される。また、箔電極を接着剤を介してポリ マー圧電体フィルム表面に貼合せた構造が特に好ましく採用される。As the foil electrode, for example, a foil of a conductive metal such as copper, aluminum, tin, zinc, gold, silver and platinum having a thickness of 6 to 2000 μm, particularly 20 to 1000 μm is preferable. The thickness of the foil electrode is appropriately determined depending on the thickness and flexibility of the entire piezoelectric element, the flexibility required for the protruding lead electrode portion, and the like. A structure in which a foil electrode is attached to the surface of the polymer piezoelectric film via an adhesive is particularly preferably adopted.

【0019】 接着剤層3は、導電性粒子を分散させた導電性の接着剤により形成することも できるが、より接着強度の優れるエポキシ系樹脂、ウレタン系樹脂、ポリエステ ル系樹脂、ブタジエン系樹脂、プロピレン系樹脂、アクリル系樹脂等の接着剤に より5〜40μm程度の厚さの層として形成することが好ましい。The adhesive layer 3 can be formed of a conductive adhesive in which conductive particles are dispersed, but an epoxy resin, a urethane resin, a polyester resin, a butadiene resin having a higher adhesive strength can be used. It is preferable to form a layer having a thickness of about 5 to 40 μm with an adhesive such as a propylene resin or an acrylic resin.

【0020】 電極不在部(マージン)8は、ポリマー圧電体フィルム1の各面の周縁部に、 例えば0.3〜20mm、好ましくは2〜10mmの幅で設けられる。この幅が 0.3mmよりも短いともれ電流や縁面放電を抑える効果が少なく、また20m mよりも長いと特に小寸法の素子ではポリマー圧電体フィルムの利用効率が極め て低下する。特に、この例のように箔電極をポリマー圧電体フィルムに接着剤で 貼り合わせた構成の素子では、幅の短いマージンであってもそこが接着剤で充填 されるので、もれ電流や放電の抑止効果が大きい。また、幅広のマージンが設け られる場合には、導電性の接着剤を用いてももれ電流が増えることはない。The electrode absent portion (margin) 8 is provided in the peripheral portion of each surface of the polymer piezoelectric film 1 with a width of, for example, 0.3 to 20 mm, preferably 2 to 10 mm. If this width is shorter than 0.3 mm, there is little effect of suppressing leakage current and edge discharge, and if it is longer than 20 mm, the utilization efficiency of the polymer piezoelectric film is extremely reduced especially in small-sized elements. In particular, in the case of an element with a foil electrode bonded to a polymer piezoelectric film with an adhesive as in this example, even if the margin is short, it is filled with the adhesive, so leakage current and discharge Great deterrent effect. Also, if a wide margin is provided, leakage current will not increase even if a conductive adhesive is used.

【0021】 ポリマー圧電体フィルム1の各面上でマージン8を設ける方向は、この例のよ うにリード電極部6(6a、6b)を除く全周囲方向(四方向)であることが特 に好ましいが、本考案はこれに限定されない。上記のマ−ジンの方向は、フィル ムの表裏面で合わせて全周囲方向となるように、それぞれ少なくとも二方向に設 けられれば良い。また、例えばポリマー圧電体フィルム1に対して長さ方向が長 くて幅方向が短い上面電極と、その逆の下面電極を組合せれば、二方向にマージ ン8が設けられた素子となる。It is particularly preferable that the direction in which the margin 8 is provided on each surface of the polymer piezoelectric film 1 is the entire circumferential direction (four directions) excluding the lead electrode portions 6 (6a, 6b) as in this example. However, the present invention is not limited to this. The margins may be provided in at least two directions such that the front and back surfaces of the film are aligned with the entire circumference. Further, for example, by combining an upper surface electrode having a longer length direction and a shorter width direction with respect to the polymer piezoelectric film 1 and a lower surface electrode opposite thereto, an element having a margin 8 provided in two directions is obtained.

【0022】 リード電極6(6a、6b)は、圧電電極2(2a、2b)から連続して、そ れと一体に形成されており、後段の電気回路と圧電電極との電気的接続を行なう ものであり、少なくともポリマー圧電体フィルムの端面9の周辺部位においては 、隣り合う面の電極、即ち、圧電電極とリード電極と重ならない(圧電素子を構 成しない)ことがもれ電流や縁面放電の防止の観点から必要である。リード電極 は、圧電電極と同じ材質であることが好ましいが、同じ幅である必要はない。The lead electrode 6 (6a, 6b) is formed continuously from the piezoelectric electrode 2 (2a, 2b) and integrally with the piezoelectric electrode 2 (2a, 2b), and electrically connects the subsequent electric circuit and the piezoelectric electrode. At least at the peripheral portion of the end surface 9 of the polymer piezoelectric film, the electrodes on the adjacent surfaces, that is, the piezoelectric electrode and the lead electrode may not overlap (do not form the piezoelectric element). It is necessary from the viewpoint of preventing discharge. The lead electrodes are preferably made of the same material as the piezoelectric electrodes, but need not have the same width.

【0023】 この例のように偶数の圧電要素からなる積層圧電素子では、素子全体としての 両表面電極2a、6aが同極性となり、それを筐体アースに取れば、高電圧側の 電気的絶縁が容易になるので好ましい。In the laminated piezoelectric element including an even number of piezoelectric elements as in this example, both surface electrodes 2a and 6a of the element as a whole have the same polarity, and if they are grounded to the housing, they are electrically insulated on the high voltage side. Is preferred, which is preferable.

【0024】 この例では、隣接するポリマー圧電体フィルム1は、互いに逆向きの分極方向 (矢示)として、厚さ方向の収縮・膨張変形に伴う機械(音響)−電気変換を行 うのに適した構成となっているが、バイモルフ振動子などの電気−機械変換素子 では、分極方向を一ケ所だけ同方向で積層したアンバランスな組合せとされるな ど、図1に示すような交互逆向き構成でなくともよい。In this example, the adjacent polymer piezoelectric films 1 perform mechanical (acoustic) -electrical conversion due to contraction / expansion deformation in the thickness direction with polarization directions (arrows) opposite to each other. Although it has a suitable configuration, an electro-mechanical conversion element such as a bimorph oscillator has an unbalanced combination in which the polarization directions are laminated in one direction at the same direction. It does not have to be oriented.

【0025】 図3((a)は正面図、(b)は右側面図)および図4(平面図)は、本考案 の積層圧電素子の第2の実施例を示す。この例の積層圧電素子10bは、それぞ れ上面に溶射圧電電極12(12aまたは12b)を設けた複数のポリマー圧電 体フィルム1を、圧電電極12aと12bに接続したそれぞれのリード電極16 aと16bとが左右に交互の配置となるように接着剤層3を介して積層し、且つ 右側端面にまで延長した溶射電極12aの延長部からなるリード電極16aを短 絡線7aで全接続し、左側端面にまで延長した溶射電極12bの延長部からなる リード電極16bを短絡線7bで全接続した構成を有する。マージン8は、ポリ マー圧電体フィルム1の上下面の三辺に沿う三方向に設けられている。短絡線7 (7a、7b)は、同様に溶射電極として形成することが可能であるほか、導電 性接着剤を介して貼付した箔電極あるいは導電性ペーストの塗布電極等であり得 る。短絡線7は、積層素子の右側面および左側面の全面に形成することもできる が、積層圧電素子10bの厚さ方向の変形を妨げないように、図示のごとく部分 的に且つ少しずつ横にずらして形成するのが好ましい。また溶射電極12(リー ド電極16部分を含む)の代わりに蒸着電極を用いてもよい。FIG. 3 ((a) is a front view, (b) is a right side view) and FIG. 4 (a plan view) show a second embodiment of the laminated piezoelectric element of the present invention. In the laminated piezoelectric element 10b of this example, a plurality of polymer piezoelectric films 1 each having a sprayed piezoelectric electrode 12 (12a or 12b) provided on the upper surface thereof are connected to the respective piezoelectric electrodes 12a and 12b and lead electrodes 16a. 16b are laminated via the adhesive layer 3 so that they are alternately arranged on the left and right, and the lead electrode 16a, which is an extension of the sprayed electrode 12a extended to the right end face, is fully connected by the short wire 7a, The lead electrode 16b, which is an extension of the sprayed electrode 12b extending to the left end face, is fully connected by a short-circuit wire 7b. The margins 8 are provided in three directions along the three sides of the upper and lower surfaces of the polymer piezoelectric film 1. The short-circuit wire 7 (7a, 7b) can be formed as a sprayed electrode as well, and can be a foil electrode attached via a conductive adhesive or a coated electrode of a conductive paste. The short-circuit line 7 can be formed on the entire right and left side surfaces of the laminated element, but as shown in the drawing, the short-circuit line 7 is partially and gradually laterally arranged so as not to prevent deformation of the laminated piezoelectric element 10b in the thickness direction. It is preferable to form them in a staggered manner. Further, a vapor deposition electrode may be used instead of the sprayed electrode 12 (including the lead electrode 16 portion).

【0026】 また、溶射電極12、16の材料としては、銅、アルミニウム、亜鉛等が挙げ られるが、なかでも比較的低温での溶射が可能であり、且つリード線の半田付性 に優れた電極膜を与える亜鉛または亜鉛と銅等との合金が好ましく用いられる。 溶射電極の厚さは、例えば10〜200μm範囲とされる。本考案で用いること ことのできる溶射電極のより詳細については特願平3−356667号の明細書 に開示されている。Further, examples of the material of the sprayed electrodes 12, 16 include copper, aluminum, zinc, etc. Among them, an electrode that can be sprayed at a relatively low temperature and has excellent solderability of lead wires Zinc or an alloy of zinc and copper or the like which gives a film is preferably used. The thickness of the sprayed electrode is, for example, in the range of 10 to 200 μm. The details of the thermal spraying electrode which can be used in the present invention are disclosed in the specification of Japanese Patent Application No. 3-356667.

【0027】 本考案に用いられる蒸着電極は、銅、アルミニウム、銀、亜鉛、錫、ニッケル 、金等の良導電性金属の蒸着により、例えば厚さが0.01〜0.2μm、特に 0.02〜0.1μmの範囲で形成することが好ましい。また蒸着電極の代わり にメッキ、特に無電解メッキで厚さが10〜100μm程度に形成した電極を用 いることもできる。The vapor deposition electrode used in the present invention has a thickness of, for example, 0.01 to 0.2 μm, in particular, 0. It is preferably formed in the range of 02 to 0.1 μm. Further, instead of the vapor deposition electrode, an electrode formed by plating, particularly electroless plating to a thickness of about 10 to 100 μm can be used.

【0028】 この第2の実施例の場合、接着剤層3の数を、第1の実施例に比べてほぼ半減 することができる。In the case of the second embodiment, the number of the adhesive layers 3 can be reduced to almost half of that of the first embodiment.

【0029】 図5は本考案の積層圧電素子の第3の実施例の積層組立時の断面図であり、図 6は同素子の展開平面図である。図5は、図6に展開平面構造で示した素子の積 層組立時のV−V断面図に相当する。FIG. 5 is a sectional view of a laminated piezoelectric element according to a third embodiment of the present invention when laminated and assembled, and FIG. 6 is a developed plan view of the same. FIG. 5 corresponds to a sectional view taken along line VV of the device shown in FIG.

【0030】 この積層圧電素子10cは、図6に示すような横長帯状の展開形状を有するポ リマー圧電体フィルム1の表面に離間した矩形状の箔電極からなる圧電電極2a およびこれと連続一体化して接続するリード電極6aを設け、その他の部分にマ ージン8aを形成し、且つ裏面には、表面の圧電電極2aと対向する位置に同じ 矩形の箔電極からなる圧電電極2b、これら圧電電極2bと連続一体化して接続 するリード電極6b、その他の部分にマージン8bを形成してなる帯状圧電素子 を、その各圧電電極2(2a、2b)の間のリード電極6(6a、6b)を設け た部分Dで交互に逆向きに折畳んだものである。この例のリード電極6a、6b は第1の実施例における短絡線4(4a、4b)あるいは第2の実施例における 短絡線7(7a、7b)の機能を兼ねており、それだけ、多数層の積層圧電素子 における配線が容易化する。この際のポリマー圧電体フィルム1における分極方 向は、自動的に図1と同様に隣接ポリマー圧電体層間で逆向きになる。また本実 施例では、中間の圧電要素はポリマー圧電体フィルム1の長さ方向に端面がなく 、もれ電流や放電にとって有利である。なお、本実施例は、リード電極6aと6 bが互いに重ならない、即ち圧電効果が発現しない構成であるが、これは送受波 感度の方向性を向上するうえで有効である。This laminated piezoelectric element 10c is a piezoelectric electrode 2a composed of rectangular foil electrodes separated from each other on the surface of a polymer film 1 having a horizontally elongated strip-like developed shape, and is continuously integrated with the piezoelectric electrode 2a. A lead electrode 6a to be connected to each other is provided, a margin 8a is formed on the other portion, and a piezoelectric electrode 2b made of the same rectangular foil electrode is formed on the back surface at a position facing the piezoelectric electrode 2a on the front surface. A lead-shaped piezoelectric element having a lead electrode 6b continuously connected to and connected to it and a margin 8b formed in the other portion, and the lead electrodes 6 (6a, 6b) between the respective piezoelectric electrodes 2 (2a, 2b) are provided. The parts D are alternately folded in opposite directions. The lead electrodes 6a and 6b in this example also have the function of the short-circuit wire 4 (4a, 4b) in the first embodiment or the short-circuit wire 7 (7a, 7b) in the second embodiment, and accordingly, the multi-layered electrodes are formed. Wiring in the laminated piezoelectric element is facilitated. At this time, the polarization direction in the polymer piezoelectric film 1 automatically becomes opposite between the adjacent polymer piezoelectric layers as in FIG. Further, in this embodiment, the intermediate piezoelectric element has no end face in the length direction of the polymer piezoelectric film 1, which is advantageous for leakage current and discharge. In this embodiment, the lead electrodes 6a and 6b do not overlap each other, that is, the piezoelectric effect is not exhibited, but this is effective in improving the directionality of the wave transmission / reception sensitivity.

【0031】[0031]

【製造例】[Production example]

以下のようにして、図1の構造を有する積層圧電素子を製造した。ただし、リ ード電極6の幅は圧電電極2の幅と同じとした。 The laminated piezoelectric element having the structure of FIG. 1 was manufactured as follows. However, the width of the lead electrode 6 is the same as the width of the piezoelectric electrode 2.

【0032】 ふっ化ビニリデン(VDF)/トリフロロエチレン(TrFE)のモル比75 /25の共重合体を、ダイス温度265℃でシート押出し、125℃で13時間 の熱処理後、75MV/mの電界下100℃での保持時間5分、昇降時間を含め て全1時間の分極処理を行ない、厚さ500μmのポリマー圧電体フィルム1を 得、更にその両面を粗面化した。A vinylidene fluoride (VDF) / trifluoroethylene (TrFE) copolymer having a molar ratio of 75/25 was sheet extruded at a die temperature of 265 ° C., heat-treated at 125 ° C. for 13 hours, and then subjected to an electric field of 75 MV / m. A polarization treatment was carried out at a temperature of 100 ° C. for 5 minutes and for a total of 1 hour including the ascending / descending time to obtain a polymer piezoelectric film 1 having a thickness of 500 μm, and both surfaces thereof were roughened.

【0033】 両面を粗面化した厚さ70μmの銅箔6に、ポリエステル系接着剤(東洋紡( 株)製<バイロン30SS>と日本ウレタン(株)製<コロネートL>との99 :1(重量比)混合物をフローコーターを用いて厚さ10μmで両面塗布後、上 記で得られたフィルムも同様に両面に接着剤混合物を塗布した。On a copper foil 6 having a thickness of 70 μm with both surfaces roughened, a polyester adhesive (Toron Co., Ltd. <Byron 30SS> and Nippon Urethane Co., Ltd. <Coronate L> 99: 1 (weight: Ratio) The mixture was coated on both sides with a flow coater to a thickness of 10 μm, and the film obtained above was also coated with the adhesive mixture on both sides.

【0034】 その圧電体フィルム及び銅箔を70℃で2時間以上の真空乾燥をし、溶剤を除 去し、ウレタン反応を促進した。The piezoelectric film and copper foil were vacuum dried at 70 ° C. for 2 hours or more to remove the solvent and accelerate the urethane reaction.

【0035】 次いで、上記で得た接着剤塗布圧電体フィルム1を8×8cmに、また接着剤 塗布銅箔を7×8cmに切り出し、これらを交互に且つ、隣接する圧電体フィル ムの分極方向が逆となるように、さらにマージン8が圧電体フィルム1の三方向 に幅5mmとなるように積層して圧電体として10層の貼り付けを行ない、90 ℃、40kg/cm2 の条件で脱気させて積層体とした。この積層体には幅5m mのリード電極6a、6bが突出して設けられている。また、圧電電極2a、2 bの寸法は70×70mmである。Next, the adhesive-coated piezoelectric film 1 obtained above was cut into a size of 8 × 8 cm, and the adhesive-coated copper foil was cut into a size of 7 × 8 cm. These were cut alternately and the polarization directions of adjacent piezoelectric films were cut. So that the margins 8 are reversed so that the margin 8 has a width of 5 mm in the three directions of the piezoelectric film 1, and 10 layers are adhered as a piezoelectric body, and are removed under the conditions of 90 ° C. and 40 kg / cm 2. It was made to be a laminate. In this laminated body, lead electrodes 6a and 6b having a width of 5 mm are provided so as to project. The dimensions of the piezoelectric electrodes 2a and 2b are 70 × 70 mm.

【0036】 このようにして得られた積層圧電素子の各リード電極6a、6b間の絶縁を直 流1KVで調べたが、漏れ電流や縁面放電につながる現象はなかった。また、各 層の静水圧圧電ひずみ定数(dh 定数)は13.4〜14.2pC/Nの範囲で あり、ほぼ均一な圧電特性を持つ圧電要素の積層体が得られた。なお、dh 定数 は次のようにして求めた。The insulation between the lead electrodes 6a and 6b of the thus obtained laminated piezoelectric element was examined at a direct current of 1 KV, but there was no phenomenon leading to leakage current or edge discharge. Moreover, hydrostatic piezoelectric constant of each layer (d h constant) is in the range of 13.4~14.2pC / N, laminate piezoelectric element is obtained having a substantially uniform piezoelectric characteristics. The d h constant was determined as follows.

【0037】 耐圧容器に入れたシリコン油中に試料素子を浸漬し、容器に窒素ガス源から圧 力P(ニュートン(N)/m2 )を加えながら試料の電荷量Q(クーロン(C) )を測定する。そしてゲージ圧2kg/cm2 近辺での圧力上昇dpに対する電 荷の増加量dQを得、下式で計算した: dh =(dQ/dP)/A 単位は、C/Nである。ここで、Aは電極面積(m2 )である。A sample element is immersed in silicon oil placed in a pressure resistant container, and a charge amount Q (Coulomb (C)) of the sample is applied while applying a pressure P (Newton (N) / m 2 ) from a nitrogen gas source to the container. To measure. Then give increment dQ of electric load for the pressure increase dp in the vicinity gauge pressure 2 kg / cm 2, was calculated by the following equation: d h = (dQ / dP ) / A unit is C / N. Here, A is the electrode area (m 2 ).

【0038】[0038]

【効果】【effect】

上述したように、本考案によればポリマー圧電体フィルムの周縁部から電極を 可及的に除き、またリード電極を対向面の電極不在部(マージン)に対応する位 置に設けてあるので、比較的薄いポリマー圧電体であっても端面を周り込んだ両 面電極間距離が長くなり、前記バリ等が原因の両面電極の短絡あるいは接近や高 い発生電圧による圧電体端面を通しての洩れ電流や縁面放電の発生が効果的に防 止される。また、積層に際しての隣接電極との短絡を効果的に防止しつつリード 線を取出すことが容易となる。 As described above, according to the present invention, the electrode is removed from the peripheral edge of the polymer piezoelectric film as much as possible, and the lead electrode is provided at a position corresponding to the electrode absent portion (margin) of the facing surface. Even with a comparatively thin polymer piezoelectric body, the distance between the electrodes on both sides of the end face becomes longer, and the leakage current through the end face of the piezoelectric body due to short-circuiting or approaching of the double-sided electrodes due to the burr etc. or high generated voltage, The occurrence of edge discharge is effectively prevented. In addition, it becomes easy to take out the lead wire while effectively preventing a short circuit with an adjacent electrode during stacking.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の第1の実施例にかかる圧電素子の積層
構造を示す正面図。
FIG. 1 is a front view showing a laminated structure of a piezoelectric element according to a first embodiment of the present invention.

【図2】図1の圧電素子の対応する平面図。FIG. 2 is a corresponding plan view of the piezoelectric element of FIG.

【図3】(a)は本考案の第2の実施例にかかる圧電素
子の積層構造を示す正面図であり、(b)は対応する右
側面図である。
3A is a front view showing a laminated structure of a piezoelectric element according to a second embodiment of the present invention, and FIG. 3B is a corresponding right side view.

【図4】図3の圧電素子の平面図。FIG. 4 is a plan view of the piezoelectric element shown in FIG.

【図5】本考案の第3の実施例にかかる圧電素子の積層
構造を示す断面図。
FIG. 5 is a sectional view showing a laminated structure of a piezoelectric element according to a third embodiment of the present invention.

【図6】図5の圧電素子の展開平面図。FIG. 6 is a developed plan view of the piezoelectric element shown in FIG.

【符号の説明】[Explanation of symbols]

1:ポリマー圧電体フィルム 2(2a、2b):箔圧電電極 3:接着剤層 4(4a、4b):短絡線 5(5a、5b):端子(線) 6(6a、6b):箔リード電極 7(7a、7b):短絡線 8、8a、8b:電極不存在部(マージン) 9:ポリマー圧電体フィルム端面 10a、10b、10c:積層圧電素子 12(12a、12b):溶射圧電電極 16(16a、16b):溶射リード電極 1: Polymer piezoelectric film 2 (2a, 2b): Foil piezoelectric electrode 3: Adhesive layer 4 (4a, 4b): Short-circuit wire 5 (5a, 5b): Terminal (wire) 6 (6a, 6b): Foil lead Electrode 7 (7a, 7b): Short-circuit line 8, 8a, 8b: Electrode absent part (margin) 9: Polymer piezoelectric film end face 10a, 10b, 10c: Multilayer piezoelectric element 12 (12a, 12b): Thermal spray piezoelectric electrode 16 (16a, 16b): Thermally sprayed lead electrode

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 ポリマー圧電体フィルムまたはシートと
その両表面に配置される圧電電極とから形成される圧電
要素が少なくとも2層以上平面状に積層された積層圧電
素子であって、該ポリマー圧電体フィルムまたはシート
の各面の周縁部には電極の不在部が形成され、対向面の
該電極不在部と対向する所定位置には前記圧電電極と連
続して一体にリード電極が形成されている積層圧電素
子。
1. A laminated piezoelectric element in which at least two or more piezoelectric elements formed of a polymer piezoelectric film or sheet and piezoelectric electrodes arranged on both surfaces thereof are laminated in a plane, and the polymer piezoelectric material is used. An electrode absent portion is formed on the peripheral portion of each surface of the film or sheet, and a lead electrode is formed integrally with the piezoelectric electrode at a predetermined position facing the electrode absent portion on the opposing surface. Piezoelectric element.
【請求項2】 電極不在部がリード電極部位を除いてポ
リマー圧電体フィルムまたはシート表面の全周縁部に設
けられている請求項1に記載の積層圧電素子。
2. The laminated piezoelectric element according to claim 1, wherein the electrode absent portion is provided on the entire peripheral edge portion of the surface of the polymer piezoelectric film or sheet except the lead electrode portion.
【請求項3】 圧電電極とそれと一体となっているリー
ド電極とが金属箔からなり、且つリード電極が連続して
圧電素子の外部まで突出して設けられている請求項1ま
たは2に記載の積層圧電素子。
3. The laminate according to claim 1, wherein the piezoelectric electrode and the lead electrode integrated with the piezoelectric electrode are made of metal foil, and the lead electrode is continuously provided so as to protrude to the outside of the piezoelectric element. Piezoelectric element.
JP036141U 1992-04-30 1992-04-30 Multilayer piezoelectric element Pending JPH0587974U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP036141U JPH0587974U (en) 1992-04-30 1992-04-30 Multilayer piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP036141U JPH0587974U (en) 1992-04-30 1992-04-30 Multilayer piezoelectric element

Publications (1)

Publication Number Publication Date
JPH0587974U true JPH0587974U (en) 1993-11-26

Family

ID=12461515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP036141U Pending JPH0587974U (en) 1992-04-30 1992-04-30 Multilayer piezoelectric element

Country Status (1)

Country Link
JP (1) JPH0587974U (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036156A (en) * 1999-07-16 2001-02-09 Aloka Co Ltd Electrodes for stacked-type vibrator and the stacked- type vibrator using the same
JP2001230462A (en) * 2000-02-17 2001-08-24 Minolta Co Ltd Piezoelectric transducer
JP2008034810A (en) * 2006-06-27 2008-02-14 Konica Minolta Opto Inc Actuator element and manufacturing method therefor
WO2013027617A1 (en) * 2011-08-24 2013-02-28 株式会社村田製作所 Actuator device and method for producing actuator device
WO2013027696A1 (en) * 2011-08-24 2013-02-28 株式会社村田製作所 Actuator device and method for producing actuator device
JP2014068142A (en) * 2012-09-25 2014-04-17 Teijin Ltd Piezoelectric loudspeaker
JP2014068141A (en) * 2012-09-25 2014-04-17 Teijin Ltd Piezoelectric loudspeaker
KR101408740B1 (en) * 2007-05-14 2014-06-18 삼성전자주식회사 ELECTRO ACTIVE ACTUATOR AND MANUFACTURING METHOD
EP4061010A1 (en) * 2019-11-12 2022-09-21 FUJIFILM Corporation Laminated piezoelectric element

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036156A (en) * 1999-07-16 2001-02-09 Aloka Co Ltd Electrodes for stacked-type vibrator and the stacked- type vibrator using the same
JP2001230462A (en) * 2000-02-17 2001-08-24 Minolta Co Ltd Piezoelectric transducer
JP2008034810A (en) * 2006-06-27 2008-02-14 Konica Minolta Opto Inc Actuator element and manufacturing method therefor
KR101408740B1 (en) * 2007-05-14 2014-06-18 삼성전자주식회사 ELECTRO ACTIVE ACTUATOR AND MANUFACTURING METHOD
JPWO2013027696A1 (en) * 2011-08-24 2015-03-19 株式会社村田製作所 Actuator element and method of manufacturing the actuator element
WO2013027696A1 (en) * 2011-08-24 2013-02-28 株式会社村田製作所 Actuator device and method for producing actuator device
JP5541419B2 (en) * 2011-08-24 2014-07-09 株式会社村田製作所 Actuator element and method of manufacturing the actuator element
WO2013027617A1 (en) * 2011-08-24 2013-02-28 株式会社村田製作所 Actuator device and method for producing actuator device
US9543498B2 (en) 2011-08-24 2017-01-10 Murata Manufacturing Co., Ltd. Actuator device and method for manufacturing the actuator device
US9673372B2 (en) 2011-08-24 2017-06-06 Murata Manufacturing Co., Ltd. Actuator device and manufacturing method for actuator device
JP2014068142A (en) * 2012-09-25 2014-04-17 Teijin Ltd Piezoelectric loudspeaker
JP2014068141A (en) * 2012-09-25 2014-04-17 Teijin Ltd Piezoelectric loudspeaker
EP4061010A1 (en) * 2019-11-12 2022-09-21 FUJIFILM Corporation Laminated piezoelectric element
EP4061010A4 (en) * 2019-11-12 2023-06-21 FUJIFILM Corporation Laminated piezoelectric element

Similar Documents

Publication Publication Date Title
US5288551A (en) Flexible piezoelectric device
US5153859A (en) Laminated piezoelectric structure and process of forming the same
JP3093849B2 (en) Flexible laminated piezoelectric element
US6996883B2 (en) Method of manufacturing a multi-piezoelectric layer ultrasonic transducer for medical imaging
US5321332A (en) Wideband ultrasonic transducer
JP5644729B2 (en) Ultrasonic transducer, ultrasonic probe, and ultrasonic diagnostic imaging apparatus
US4469978A (en) Electrode arrangement for a folded polymer piezoelectric ultrasonic detector
JPH0629587A (en) Cylindrical or curved piezoelectric element
JP3160070B2 (en) Vibration-electric energy conversion element
WO1988004475A1 (en) Piezoelectric/pyroelectric elements and a process for making same
EP1312424A3 (en) Piezoelectric transducer, manufacturing method of piezoelectric transducer and pulse wave detector
US20230007400A1 (en) Laminated piezoelectric element
JPS61182944A (en) Manufacture of laminate available for thin-film electric device
JPH0587974U (en) Multilayer piezoelectric element
US20220279284A1 (en) Electroacoustic transducer
JP3360371B2 (en) Shear wave vibration element, surface wave piezoelectric element, and ultrasonic transducer
JP3079175B2 (en) Piezoelectric element and hydrophone using the same
JPH05335642A (en) Piezoelectric element and its manufacture
JP3121416B2 (en) Flexible piezoelectric element
CN215187369U (en) Multi-layer double-sided lead-free piezoelectric audio frequency element
JP7012242B2 (en) Piezoelectric device
JP2002076459A (en) Flexible piezoelectric element
CN215183049U (en) Multi-layer single-side leadless piezoelectric audio frequency element
US20240407266A1 (en) Piezoelectric element and electroacoustic transducer
JPH0543197B2 (en)