JPH05335642A - Piezoelectric element and its manufacture - Google Patents
Piezoelectric element and its manufactureInfo
- Publication number
- JPH05335642A JPH05335642A JP15884492A JP15884492A JPH05335642A JP H05335642 A JPH05335642 A JP H05335642A JP 15884492 A JP15884492 A JP 15884492A JP 15884492 A JP15884492 A JP 15884492A JP H05335642 A JPH05335642 A JP H05335642A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- porous sheet
- piezoelectric
- piezoelectric element
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、多孔シート状の電極を
有するポリマー系圧電素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer piezoelectric element having a porous sheet electrode.
【0002】[0002]
【従来の技術】分極処理した弗化ビニリデン系樹脂(以
下、代表的にPVDFと称する)をはじめとするポリマ
ー圧電体は、セラミックス圧電体と比較して、(1)可
撓性が大きく、薄膜化、大面積化、長尺化が容易で任意
の形状、形態のものを作ることができる;(2)静水圧
圧電ひずみ定数dh は同等または、それ以下であるが、
誘電率εが小さいために、dh /εで定まる静水圧電圧
出力係数(gh 定数)は極めて大となり、従って感度特
性が優れる;(3)低密度、低弾性であるため、音響イ
ンピーダンス(音速×密度)が、水や生体の値に近く、
従って水や生体と素子との間での反射が少なく、効率の
よいエネルギー伝播が可能である等の特性を有する。こ
のような特性を生かして、ポリマー圧電体は、スピーカ
ー、マイクロホン、超音波探触子、ハイドロホン、震動
計、ひずみ計、血圧計、バイモルフファン等の、一般に
電気−機械(音響)変換素子あるいは焦電変換素子とし
て、広汎な用途への適用が提案され、あるいは実用化さ
れている。2. Description of the Related Art Polymer piezoelectric materials such as a polarized vinylidene fluoride resin (hereinafter typically referred to as PVDF) have a large flexibility (1) and a thin film as compared with ceramic piezoelectric materials. It is easy to increase the size, increase the area, and increase the length, and it is possible to make any shape and form; (2) The hydrostatic piezoelectric strain constant d h is equal to or less than that,
The dielectric constant epsilon is low, hydrostatic voltage output coefficient determined by d h / ε (g h constant) is extremely large, and the thus sensitivity characteristics are excellent; (3) low density, due to low elasticity, acoustic impedance ( Sound velocity x density) is close to that of water and living organisms,
Therefore, there is little reflection between water and a living body and the element, and efficient energy transmission is possible. Taking advantage of such characteristics, the polymer piezoelectric material is generally used in electro-mechanical (acoustic) conversion elements such as speakers, microphones, ultrasonic probes, hydrophones, seismographs, strain gauges, blood pressure monitors, and bimorph fans. As a pyroelectric conversion element, application to a wide range of applications has been proposed or put into practical use.
【0003】分極処理されたフィルム状またはシート状
のポリマー圧電体(以下、包括的に、「ポリマー圧電体
フィルム」と称する。)を素子化するに際しては、通常
その両面に電極が設けられる。この際に、電極として
は、ポリマー圧電体の、配向−分極等により付与された
圧電特性をも含めた耐熱性が、100℃前後であること
を考慮して、一般に銅、アルミニウム等の蒸着電極ある
いは接着剤により貼付したこれら金属の箔電極が用いら
れている。また本発明者等により、亜鉛等の比較的融点
の低い金属を溶射して表面に層形成した溶射電極も提案
されている(平成3年特許願第356668号)。しか
しながら、これら電極には、以下に述べるようにそれぞ
れ問題点がある。When a film- or sheet-shaped polymer piezoelectric material subjected to polarization treatment (hereinafter, generically referred to as "polymer piezoelectric film") is formed into an element, electrodes are usually provided on both surfaces thereof. At this time, the electrode is generally a vapor-deposited electrode of copper, aluminum or the like, considering that the heat resistance of the polymer piezoelectric body including the piezoelectric characteristics imparted by orientation-polarization and the like is around 100 ° C. Alternatively, foil electrodes of these metals attached with an adhesive are used. Further, the present inventors have also proposed a thermal spraying electrode in which a metal having a relatively low melting point such as zinc is thermally sprayed to form a layer on the surface (Japanese Patent Application No. 356668 of 1991). However, each of these electrodes has problems as described below.
【0004】[0004]
【発明が解決すべき課題】まず蒸着電極は、一般に設け
られる電極の厚みが0.02〜0.1μm程度と薄いこ
とに加えて、ポリマー圧電体との接着強度が十分でな
く、電極へのリード線の半田付接続が非常に困難なこと
である。このため、蒸着電極を設けたポリマー圧電素子
については、電気信号入力のために複雑な電極端子構造
を採用する必要が生じる。First, the vapor deposition electrode is generally provided with a thin electrode thickness of about 0.02 to 0.1 μm and, in addition, the adhesive strength with the polymer piezoelectric material is not sufficient and the vapor deposition electrode does not adhere to the electrode. It is very difficult to connect the lead wires by soldering. Therefore, it is necessary to employ a complicated electrode terminal structure for inputting an electric signal in the polymer piezoelectric element provided with the vapor deposition electrode.
【0005】これに対し、金属箔電極は、一般に6〜1
00μm程度の厚さの金属箔を、ポリエステル系樹脂、
ウレタン系樹脂、エポキシ系樹脂等からなる5〜40μ
m程度の接着剤層を介して、ポリマー圧電体フィルムに
貼付され、半田付によるリード線接続の可能な電極とし
て形成される。しかし、この金属箔電極は、特にポリマ
ー圧電体フィルムの両面に設けた場合、ポリマー圧電素
子の可撓性という重要な長所を損なう欠点がある。ま
た、使用状態によっては、特に外気に触れる面では、接
着剤が劣化して、圧電素子としての耐久性が問題になる
ことがある。さらに、非圧電体である接着剤層の存在の
ため、場合によっては静水圧圧電ひずみ定数dh が低下
することもある。On the other hand, the metal foil electrode is generally 6 to 1
A metal foil with a thickness of about 00 μm is coated with polyester resin,
5-40μ made of urethane resin, epoxy resin, etc.
It is attached to a polymer piezoelectric film via an adhesive layer of about m, and is formed as an electrode capable of connecting lead wires by soldering. However, this metal foil electrode has a drawback that it impairs an important advantage of flexibility of the polymer piezoelectric element, particularly when it is provided on both surfaces of the polymer piezoelectric film. In addition, depending on the state of use, especially on the surface exposed to the outside air, the adhesive may deteriorate and the durability of the piezoelectric element may become a problem. Further, due to the existence of the adhesive layer which is a non-piezoelectric material, the hydrostatic piezoelectric strain constant d h may be lowered in some cases.
【0006】一方、溶射電極は、ポリマー圧電体との密
着性、半田付けによるリード線接続性、得られる圧電素
子の可撓性のいずれにおいても好ましいものであるが、
ポリマー圧電体の耐熱性のため、容易に溶射形成できる
のは低融点の金属のみであり、用いられる電極材料が制
限されるという点が問題である。On the other hand, the sprayed electrode is preferable in terms of adhesion to the polymer piezoelectric material, lead wire connectivity by soldering, and flexibility of the obtained piezoelectric element.
Due to the heat resistance of the polymer piezoelectric material, only a low melting point metal can be easily formed by thermal spraying, and the problem is that the electrode material used is limited.
【0007】上記従来の電極は、いずれもポリマー圧電
体の表面の全面に形成される。したがって、従来の圧電
素子では、電気的絶縁または実使用における周囲の環境
から電極を保護するなどの目的で、圧電体全体を被覆し
たり、密封されたケース内に収納するといったことが必
要であった。All of the above conventional electrodes are formed on the entire surface of the polymer piezoelectric material. Therefore, in the conventional piezoelectric element, it is necessary to cover the entire piezoelectric body or store the piezoelectric body in a sealed case for the purpose of electrical insulation or protection of the electrode from the surrounding environment in actual use. It was
【0008】本発明の主要な目的は、ポリマー圧電体の
優れた可撓性を本質的に損なうことのない、ポリマー圧
電体と一体に形成された電極構造を有する圧電素子を提
供することにある。The main object of the present invention is to provide a piezoelectric element having an electrode structure integrally formed with a polymer piezoelectric material, which does not substantially impair the excellent flexibility of the polymer piezoelectric material. ..
【0009】[0009]
【課題を解決するための手段】本発明者等は、上述の目
的で研究した結果、多孔シート状の電極をポリマー圧電
体フィルムの表層に埋入して一体に形成した素子が、電
極の多孔構造にもかかわらず箔電極の接着固定により得
られた素子と同レベルの圧電特性を示し、電極剥離強度
に優れかつ可撓性の低下も比較的少ないことを見出して
本発明に到った。また、このような多孔シート状電極の
ポリマー圧電体フィルムの表層への埋入構造は、ポリマ
ー圧電体フィルムの表面を良溶媒で処理した後、多孔シ
ート状電極を圧着することにより効果的に形成されるこ
とも見出された。Means for Solving the Problems As a result of research for the above-mentioned purpose, the present inventors found that an element in which a porous sheet-like electrode is embedded in the surface layer of a polymer piezoelectric film and integrally formed is The present invention has been completed by discovering that, despite the structure, it exhibits the same level of piezoelectric characteristics as an element obtained by adhesively fixing a foil electrode, is excellent in electrode peeling strength, and has a relatively small decrease in flexibility. Further, such a structure in which the porous sheet-shaped electrode is embedded in the surface layer of the polymer piezoelectric film is effectively formed by treating the surface of the polymer piezoelectric film with a good solvent and then pressure-bonding the porous sheet-shaped electrode. It was also found to be done.
【0010】すなわち、本発明の圧電素子は、ポリマー
圧電体に多孔シート状の電極が埋入されていることを特
徴とするものである。なお、メッシュ状電極は、前記多
孔シート状の電極の好ましい一実施態様である。That is, the piezoelectric element of the present invention is characterized in that a porous sheet-shaped electrode is embedded in a polymer piezoelectric material. The mesh electrode is a preferred embodiment of the porous sheet electrode.
【0011】また、本発明の圧電素子の製造方法は、ポ
リマー圧電体フィルムまたはシートの表面を溶媒で処理
し、その後に該処理表面に多孔シート状の電極を積層し
て圧着することを特徴とするものである。Further, the method for producing a piezoelectric element of the present invention is characterized in that the surface of the polymer piezoelectric film or sheet is treated with a solvent, and then a porous sheet-shaped electrode is laminated on the treated surface and pressure-bonded. To do.
【0012】[0012]
【作用】本発明の圧電素子では、多孔シート状の電極を
用い、かつ電極をポリマー圧電体内部および/または表
層に埋入した構造が採用されている。そのため、ポリマ
ー圧電体材料の一部は電極の透孔にも侵入し、電極と圧
電体とが一体となった電極剥離強度に優れた圧電素子が
形成される。また、多孔シート状電極の優れた可撓性
は、素子化においても可撓性の低下の比較的少ない素子
を与える。The piezoelectric element of the present invention employs a structure in which a porous sheet-like electrode is used and the electrode is embedded inside and / or on the surface of the polymer piezoelectric material. Therefore, a part of the polymer piezoelectric material penetrates into the through hole of the electrode, and a piezoelectric element having excellent electrode peeling strength is formed in which the electrode and the piezoelectric body are integrated. In addition, the excellent flexibility of the porous sheet-like electrode provides an element with a relatively small reduction in flexibility in forming the element.
【0013】[0013]
【発明の具体的説明】本発明において、用いられるポリ
マー圧電体としては、比較的高い耐熱性を有するシアン
化ビニリデン−酢酸ビニル共重合体が好適に用いられる
ほか、優れた圧電特性のフッ化ビニリデン系樹脂圧電体
が好ましく、なかでも圧電性発現に適したβ型結晶化の
ために一軸延伸の必要なフッ化ビニリデン(VDF)単
独重合体に比べて、通常の結晶条件化でβ型結晶化の可
能なVDF系共重合体(例えば優位量のVDFと劣位量
のフッ化ビニル(VF)トリフルオロエチレン(TrF
E)あるいはテトラフルオロエチレン(TFE)との共
重合体)が好ましく、更には優位量(特に70〜80モ
ル%)のVDFと劣位量(特に30〜20モル%)のT
rFEとの共重合体がもっとも好ましく用いられる。こ
れらポリマー圧電体材料は、溶融押出等により成膜後、
必要に応じて一軸延伸あるいは軟化温度以下での熱処
理、軟化温度以下での電界印加により分極処理に付され
て、ポリマー圧電体フィルムとされる。DETAILED DESCRIPTION OF THE INVENTION As the polymer piezoelectric material used in the present invention, vinylidene cyanide-vinyl acetate copolymer having a relatively high heat resistance is preferably used, and vinylidene fluoride having excellent piezoelectric characteristics is used. -Based resin piezoelectric materials are preferable, and among them, β-type crystallization under ordinary crystallization conditions is more preferable than vinylidene fluoride (VDF) homopolymer, which requires uniaxial stretching for β-type crystallization suitable for developing piezoelectricity. Possible VDF-based copolymers (eg, predominant amount of VDF and inferior amount of vinyl fluoride (VF) trifluoroethylene (TrF
E) or a copolymer with tetrafluoroethylene (TFE)) is preferred, and moreover a predominant amount (particularly 70 to 80 mol%) of VDF and a subordinate amount (particularly 30 to 20 mol%) of T.
A copolymer with rFE is most preferably used. These polymer piezoelectric materials are formed by film formation by melt extrusion,
If necessary, uniaxial stretching or heat treatment at a softening temperature or lower and polarization treatment by applying an electric field at a softening temperature or lower are applied to obtain a polymer piezoelectric film.
【0014】図1は、本発明の圧電素子の好ましい一実
施例の平面図、図2は図1のII−II線に沿って取っ
た矢視方向の断面図である。図1および図2を参照し
て、この圧電素子10aは、上記したようなポリマー圧
電体フィルム1の両面の表層に、メッシュ状の多孔シー
ト状電極2を埋入し、且つその一部をリード線または端
子接続部3とした構造を有する。FIG. 1 is a plan view of a preferred embodiment of the piezoelectric element of the present invention, and FIG. 2 is a sectional view taken along the line II--II in FIG. With reference to FIGS. 1 and 2, in this piezoelectric element 10a, a mesh-shaped porous sheet-shaped electrode 2 is embedded in the surface layers of both surfaces of a polymer piezoelectric film 1 as described above, and a part thereof is lead. It has a structure of a wire or a terminal connecting portion 3.
【0015】本発明の多孔シート状電極は、例えば、
銅、ステンレススチール、アルミニウム、鋼、錫、亜
鉛、金、銀、チタン、白金等の金属材料の他に、炭素繊
維等の、適当な剛性を有する任意の導電性材料により構
成することができる。The porous sheet electrode of the present invention is, for example,
In addition to metal materials such as copper, stainless steel, aluminum, steel, tin, zinc, gold, silver, titanium, and platinum, it is possible to use any conductive material having appropriate rigidity such as carbon fiber.
【0016】メッシュ状多孔シート状電極2を構成する
ためには、図示のような平織りのほか、綾織り、畳綾織
り、平畳綾織り、綾畳織りなどの任意の織り方が採用で
きるが、その呼称が40メッシュ(例えば目開き350
μm、線径290μmの平織り金網)乃至1000メッ
シュ(例えば濾過粒度数約25μm、線径80(縦)/
55(横)μmで、縦方向は120メッシュの綾畳織り
金網)、特に60メッシュ(例えば目開き240μm、
線径180μmの平織り金網)乃至635メッシュ(例
えば目開き20μm、線径20μmの綾織り金網)のも
のが好ましく用いられる。したがって、メッシュ状多孔
シート状電極2の透孔(目開きまたは濾過粒度数)とし
ては20〜350μm、線径としては20〜300μm
の範囲が適当とされる。ステンレススチール、チタンな
どの高強度金属により金網として構成することが特に好
ましい。1000メッシュを超える金網では、透孔が小
さ過ぎて後述のように電極剥離強度が低下する傾向があ
り、逆に40メッシュ未満の金網の場合、圧電特性を表
わす主要なパラメータの一つである静水圧圧電ひずみ定
数dh が小さくなる。しかし、この場合でも、dh 定数
は小さくなるが、誘電率εも同じく低下するので後述の
ようにdh 定数と誘電率εとの比で表現される静水圧圧
電出力係数(gh 定数)は同程度のレベルに維持され
る。In order to form the mesh-like porous sheet-shaped electrode 2, in addition to the plain weave as shown, an arbitrary weave such as twill weave, tatami twill weave, flat tatami twill weave, twill weave can be adopted. , Its name is 40 mesh (for example, opening 350
μm, wire woven wire mesh of 290 μm) to 1000 mesh (for example, filtration particle size of about 25 μm, wire diameter 80 (length) /
55 (horizontal) μm, 120 mesh in the longitudinal direction is a twill weave wire mesh, especially 60 mesh (for example, opening 240 μm,
A plain weave wire mesh having a wire diameter of 180 μm) to 635 mesh (for example, a twill weave wire mesh having an opening of 20 μm and a wire diameter of 20 μm) is preferably used. Therefore, the through holes (opening or the number of filtering particles) of the mesh-shaped porous sheet electrode 2 are 20 to 350 μm, and the wire diameter is 20 to 300 μm.
The range is appropriate. It is particularly preferable that the wire mesh is made of high strength metal such as stainless steel or titanium. With a wire mesh of more than 1000 mesh, the through holes are too small and the electrode peeling strength tends to decrease as described below. Conversely, in the case of a wire mesh of less than 40 mesh, one of the main parameters showing piezoelectric characteristics, The hydraulic piezoelectric strain constant d h becomes smaller. However, even in this case, the d h constant becomes smaller, but the dielectric constant ε also decreases, so that the hydrostatic piezoelectric output coefficient (g h constant) expressed by the ratio of the d h constant and the dielectric constant ε as described later. Are maintained at the same level.
【0017】図3は、本発明の圧電素子の他の好ましい
一実施例の平面図、図4は、図3のIV−IV線に沿っ
て取った矢視方向の断面図である。この圧電素子10b
は、ポリマー圧電体フィルム1の両面の表層に、多数の
透孔12aを設けた多孔板形状の多孔シート状電極12
を埋入した構造を有する。メッシュ状の多孔シート状電
極2の代わりに、透孔12aを設けた多孔板状電極12
を用いることを除いては、図1および図2に示す圧電素
子10aと本質的に同様な構造を有する。FIG. 3 is a plan view of another preferred embodiment of the piezoelectric element of the present invention, and FIG. 4 is a sectional view taken along the line IV-IV in FIG. This piezoelectric element 10b
Is a perforated sheet-shaped electrode 12 in the form of a perforated plate in which a large number of through holes 12a are provided in the surface layers of both sides of the polymer piezoelectric film 1.
It has a structure in which is embedded. Instead of the mesh-shaped porous sheet-shaped electrode 2, a porous plate-shaped electrode 12 provided with through holes 12a
1 has a structure essentially similar to that of the piezoelectric element 10a shown in FIGS.
【0018】多孔板状電極12とメッシュ状電極2と
は、同様な材料から構成することができる。また透孔1
2aの孔径および透孔間の距離は、メッシュ状電極2に
おける目開きおよび線径にそれぞれ準じて設定すること
ができる。但し、透孔間の距離の設定には、より自由な
選択が可能である。またメッシュ状多孔シート状電極2
の場合にも該当することではあるが、多孔板状電極12
(従って透孔12a)の開口率は、10〜70%、特に
20〜60%の範囲に設定することが好ましい。開口率
が10%未満では電極剥離強度が低下し、70%を超え
るとdh 定数が低下する。The porous plate electrode 12 and the mesh electrode 2 can be made of the same material. Through hole 1
The hole diameter of 2a and the distance between the through holes can be set according to the openings and the wire diameters of the mesh electrode 2, respectively. However, the distance between the through holes can be set more freely. In addition, the mesh-like porous sheet electrode 2
In the case of, the perforated plate electrode 12
(Thus, the aperture ratio of the through hole 12a) is preferably set in the range of 10 to 70%, particularly 20 to 60%. When the aperture ratio is less than 10%, the electrode peeling strength decreases, and when it exceeds 70%, the dh constant decreases.
【0019】本発明の多孔シート状電極の厚さ(平織り
または綾織りのメッシュ状電極2においては線径に対応
する。)は、10〜800μm、特に20〜300μ
m、の範囲とすることが好ましい。電極の厚さが10μ
m未満では得られる圧電素子の剛性が充分でなく、良溶
媒で膨潤処理されたポリマー圧電体フィルムに積層して
圧着する時、しわが発生し易い。また、逆に800μm
を超えると、適当な電極剥離強度を与えるのに充分な程
度に多孔シート状電極をポリマー圧電体フィルム1に埋
入させることが困難となる。The thickness of the porous sheet-shaped electrode of the present invention (corresponding to the wire diameter in the plain-woven or twilled mesh-shaped electrode 2) is 10 to 800 μm, and particularly 20 to 300 μm.
The range of m is preferable. The thickness of the electrode is 10μ
If it is less than m, the rigidity of the obtained piezoelectric element is not sufficient, and wrinkles are liable to occur when the piezoelectric element is laminated on a polymer piezoelectric film swollen with a good solvent and pressure-bonded thereto. Conversely, 800 μm
If it exceeds, it becomes difficult to embed the porous sheet-like electrode in the polymer piezoelectric film 1 to an extent sufficient to give an appropriate electrode peeling strength.
【0020】多孔シート状電極2、12のポリマー圧電
体フィルム積層への埋入は、アンカー効果が発現して必
要な電極剥離強度が得られるのに充分な程度になされる
べきであり、通常その厚さの30%以上、特に50%以
上が、ポリマー圧電体フィルム1の表層に埋入されるべ
きである。図5は、本発明の圧電素子の更に他の好まし
い実施例の平面図、図6はその側面図である。この圧電
素子10cは、ポリマー圧電体フィルム1の両面の表層
に、綾畳織りのメッシュ状電極22をその厚さの50%
まで埋入した構造を有する。このような部分埋入であっ
ても、多孔シート状電極の透孔に部分的に侵入したポリ
マー圧電体材料のアンカー効果により電極剥離強度は有
意に向上する。厚さの100%を埋入させた、すなわち
完全埋設状態とすることも可能であるが、この際、電極
はポリマー圧電体の樹脂で被覆される。その場合には、
表面の樹脂被覆層の一部を溶媒で軽く拭き取り電極を露
出させてから、素子へのリード線または端子の接続を行
なうとよい。また、本発明において「ポリマー圧電体フ
ィルムの表層」とは、表面から多孔シート状電極の厚さ
と同程度の深さまでの領域をいう。The embedding of the porous sheet-shaped electrodes 2, 12 into the polymer piezoelectric film laminate should be performed to such an extent that the anchor effect is exhibited and the required electrode peeling strength is obtained, and usually, At least 30%, especially at least 50% of the thickness should be embedded in the surface layer of the polymeric piezoelectric film 1. FIG. 5 is a plan view of still another preferred embodiment of the piezoelectric element of the present invention, and FIG. 6 is a side view thereof. In this piezoelectric element 10c, twill-woven mesh-shaped electrodes 22 are provided on both surface layers of the polymer piezoelectric film 1 at 50% of the thickness.
It has a structure embedded up to. Even with such partial embedding, the electrode peeling strength is significantly improved by the anchor effect of the polymer piezoelectric material that partially penetrates the through holes of the porous sheet electrode. It is also possible to embed 100% of the thickness, that is, to completely embed it. At this time, the electrodes are covered with the resin of the polymer piezoelectric material. In that case,
It is advisable to lightly wipe a part of the resin coating layer on the surface with a solvent to expose the electrodes, and then connect the lead wires or terminals to the element. Further, in the present invention, the “surface layer of the polymer piezoelectric film” refers to a region from the surface to a depth comparable to the thickness of the porous sheet electrode.
【0021】ポリマー圧電体フィルム1は、50〜20
00μm程度、特に200〜1000μmの厚さを有す
ることが好ましい。フィルムの厚さが50μm未満で
は、多孔シート状電極の埋入が困難であり、フィルムの
変形、圧電特性のばらつきといった問題が発生する。ま
た、逆に2000μmを超えると、フィルムの可撓性が
損なわれ、更に分極に高電圧が必要となるため縁面放電
が発生し分極処理が極めて困難となる。本発明に従い、
多孔シート状電極をポリマー圧電体フィルムの表層に埋
入させると、素子の電極間距離が、ほぼ埋入の深さ分だ
け狭くなる。従って、ポリマー圧電体フィルム1の厚さ
は、使用する多孔シート状電極の厚さおよび埋入の深さ
を考慮し、上記範囲から選択することが好ましい。The polymer piezoelectric film 1 has a thickness of 50 to 20.
It is preferable to have a thickness of about 00 μm, particularly 200 to 1000 μm. When the thickness of the film is less than 50 μm, it is difficult to embed the porous sheet electrode, and problems such as film deformation and variation in piezoelectric characteristics occur. On the other hand, when the thickness exceeds 2000 μm, the flexibility of the film is impaired, and a high voltage is required for polarization, which causes edge discharge and makes polarization extremely difficult. According to the invention,
When the porous sheet-shaped electrode is embedded in the surface layer of the polymer piezoelectric film, the distance between the electrodes of the element is narrowed by the depth of the embedding. Therefore, the thickness of the polymer piezoelectric film 1 is preferably selected from the above range in consideration of the thickness of the porous sheet electrode to be used and the embedding depth.
【0022】上記において、図1〜図6を参照して、本
発明の圧電素子を、その好ましい三態様について説明し
た。しかしながら、本発明の範囲内で、上記態様を種々
変形可能である。例えば、多孔シート状電極2、12
は、ポリマー圧電体フィルム1の少なくとも一面に埋入
されていればよく、他の面の電極は、従来の蒸着電極、
金属箔電極あるいは溶射電極であってもよい。また多孔
シート状電極としては、前記例に示したようなメッシュ
状電極2あるいは透孔を設けた多孔板状電極12以外に
も、不織布、フェルト等の表裏面に連通した孔ないし空
隙を有し、溶媒により膨潤ないし溶解したあるいは熱溶
解したポリマー圧電体樹脂が含浸され得るシート状導電
体を用いることが可能である。In the above, the preferred three modes of the piezoelectric element of the present invention have been described with reference to FIGS. However, various modifications of the above embodiment are possible within the scope of the present invention. For example, the porous sheet electrodes 2, 12
Need only be embedded on at least one surface of the polymer piezoelectric film 1, and the electrodes on the other surface should be conventional vapor-deposited electrodes,
It may be a metal foil electrode or a sprayed electrode. In addition to the mesh-shaped electrode 2 or the perforated plate-shaped electrode 12 having a through hole as shown in the above examples, the porous sheet-shaped electrode has holes or voids communicating with the front and back surfaces of a non-woven fabric, felt or the like. It is possible to use a sheet-shaped conductor that can be impregnated with a polymer piezoelectric resin swollen or dissolved by a solvent or thermally dissolved.
【0023】また圧電素子は、図2に対応して図7に示
すように多孔シート状電極2と同様な多孔シート状電極
32を中間電極として、それぞれの一面に埋入するよう
にして二枚のポリマー圧電体フィルム1で積層挾持した
全体として積層構造の圧電素子10dとして構成するこ
ともできる。このように、本発明の多孔シート状電極は
ポリマー圧電体の表層だけではなく、その内部にも埋入
され得る。この圧電素子10dにおいては、中間電極は
四辺の一方においてポリマー圧電体フィルム1から突出
して配置され、この突出部を以てリード線または端子接
続部3とされる。Further, as shown in FIG. 7 corresponding to FIG. 2, the piezoelectric element has two porous sheet-shaped electrodes 32 similar to the porous sheet-shaped electrode 2 as an intermediate electrode so as to be embedded in each one surface. It is also possible to form a piezoelectric element 10d having a laminated structure as a whole by sandwiching and sandwiching the polymer piezoelectric film 1. As described above, the porous sheet electrode of the present invention can be embedded not only in the surface layer of the polymer piezoelectric material but also in the inside thereof. In this piezoelectric element 10d, the intermediate electrode is arranged so as to project from the polymer piezoelectric film 1 on one of the four sides, and the projecting portion serves as the lead wire or the terminal connecting portion 3.
【0024】次に、上述したような圧電素子を製造する
ための、本発明方法について説明する。まず、ポリマー
圧電体フィルム1の多孔シート状電極を埋入させるべき
表面を溶媒で処理する。この際の溶媒としては、ポリマ
ー圧電体フィルム1を構成するポリマー圧電体の良溶媒
が好適に用いられるが、ポリマー圧電体を溶解できなく
とも膨潤できる程度の溶媒能があれば充分である。この
ような溶媒の例としては、アセトン、メチルエチルケト
ン等のケトン系溶媒;テトラヒドロフラン、NNジメチ
ルアセトアミド、ジメチルホルムアミド等が挙げられ
る。溶媒処理のためには、ポリマー圧電体フィルムの表
面に溶媒を、塗布、スプレー、浸漬などの方法で適用
し、溶媒とフィルムとを、例えば常温〜90℃で2秒〜
1時間程度接触させておけばよい。これら温度、時間等
の処理条件は、ポリマー圧電体の組成、溶媒の種類、電
極の形状や厚さによっても異なり得る。後工程である圧
着工程における温度が高いほど電極剥離強度が増加する
ので、このような目的のためには、溶媒処理工程では溶
解力の弱い溶媒を用い、圧電体の耐熱温度範囲内で高い
温度で処理するのも好ましい。Next, the method of the present invention for manufacturing the above-described piezoelectric element will be described. First, the surface of the polymer piezoelectric film 1 on which the porous sheet electrode is to be embedded is treated with a solvent. As the solvent at this time, a good solvent for the polymer piezoelectric material constituting the polymer piezoelectric film 1 is preferably used, but it is sufficient if it has a solvent ability to swell even if the polymer piezoelectric material cannot be dissolved. Examples of such a solvent include ketone solvents such as acetone and methyl ethyl ketone; tetrahydrofuran, NN dimethylacetamide, dimethylformamide, and the like. For the solvent treatment, a solvent is applied to the surface of the polymer piezoelectric film by a method such as coating, spraying or dipping, and the solvent and the film are heated at room temperature to 90 ° C. for 2 seconds to, for example.
It is enough to leave them in contact for about 1 hour. The processing conditions such as temperature and time may differ depending on the composition of the polymer piezoelectric material, the type of solvent, the shape and thickness of the electrode. Since the electrode peeling strength increases as the temperature in the subsequent crimping step increases, for this purpose, a solvent having a weak dissolving power is used in the solvent treatment step, and a high temperature within the heat resistant temperature range of the piezoelectric body is used. Is also preferable.
【0025】次いでポリマー圧電体フィルム1の溶媒処
理済面に、多孔シート状電極を接触させ、両者を圧着さ
せる。多孔シート状電極のポリマー圧電体フィルム1と
の接触面には、ポリマー圧電体との接着性を向上させる
ような表面処理や、電極を保護する被覆などを予め施し
ておくのも好ましい。このような前処理の一例として
は、ポリマー圧電体と同質または相溶性の良い樹脂のコ
ーティングを例示し得る。Next, the porous sheet electrode is brought into contact with the surface of the polymer piezoelectric film 1 which has been subjected to the solvent treatment, and the both are pressure-bonded. It is also preferable that the contact surface of the porous sheet-like electrode with the polymer piezoelectric film 1 be subjected in advance to a surface treatment for improving the adhesiveness with the polymer piezoelectric material, a coating for protecting the electrode, or the like. An example of such pretreatment may be coating with a resin having the same quality as or compatibility with the polymer piezoelectric material.
【0026】溶媒処理工程終了後、速やかに次の圧着工
程に移るのが良い。また、両工程の間でポリマー圧電体
フィルムの表面液を拭き取る、または落とすことも好ま
しい。After completion of the solvent treatment step, it is preferable to immediately proceed to the next pressure bonding step. It is also preferable to wipe or drop the surface liquid of the polymer piezoelectric film between both steps.
【0027】圧着工程における温度は、高温ほど電極剥
離強度が増加するのでこの点では好ましいが、一般に常
温以上で圧電体の耐熱温度の範囲内、実用上好ましくは
50〜90℃である。一方、圧着の圧力は、1kg/c
m2 乃至ポリマー圧電体が塑性変形する700kg/c
m2 程度まで、実用的には5kg/cm2 〜100kg
/cm2 とされるのが好ましい。また、圧着時間は10
秒〜1時間程度である。The higher the temperature in the crimping process, the higher the electrode peeling.
This is preferable in this respect because it increases the peel strength, but it is generally
Above the temperature, within the heat resistant temperature range of the piezoelectric material
It is 50 to 90 ° C. On the other hand, the pressure for crimping is 1 kg / c
m2Or 700kg / c where the piezoelectric polymer is plastically deformed
m2Up to about 5kg / cm for practical use2~ 100 kg
/ Cm2Is preferred. Also, the crimping time is 10
It is about one second to one hour.
【0028】図7に示すような、フィルム1に挟まれた
多孔シート状電極32を中間電極として有する圧電素子
を得る場合には、中間電極32の近傍でのボイドの発生
を抑えて良好な圧電特性と強い電極剥離強度を得るため
には、溶媒処理された圧電体の表層樹脂が電極の孔部に
流れ、かつ溶媒が抜けるような圧着条件および溶媒処理
条件を適宜決定する必要がある。特に、縦横いずれかの
寸法が小さい場合には、かかる条件を見出すことは容易
である。ローラーで圧着するのも好ましい方法の一つで
ある。In the case of obtaining a piezoelectric element having a porous sheet electrode 32 sandwiched between films 1 as an intermediate electrode as shown in FIG. 7, generation of voids in the vicinity of the intermediate electrode 32 is suppressed and good piezoelectricity is obtained. In order to obtain the characteristics and the strong electrode peeling strength, it is necessary to appropriately determine the pressure bonding condition and the solvent treatment condition in which the solvent-treated surface layer resin of the piezoelectric substance flows into the pores of the electrode and the solvent escapes. In particular, when the vertical or horizontal dimension is small, it is easy to find such a condition. Pressing with a roller is also one of the preferable methods.
【0029】ポリマー圧電体フィルムの分極処理は、電
極形成後に行なうこともできるが、分極処理を行なった
圧電体フィルムに電極を形成する方法もより好ましく採
用できる。The polarization treatment of the polymer piezoelectric film can be performed after the electrodes are formed, but the method of forming the electrodes on the polarization-treated piezoelectric film can be more preferably adopted.
【0030】また、本発明圧電素子を製造するための他
の方法として、多孔シート状電極を治具を用いて鋳型中
に保持しながら、そこに熱溶融した圧電体樹脂または溶
媒に溶かした圧電体樹脂を流し込んで鋳造する方法を採
用することも可能である。しかし、この場合にはポリマ
ー圧電体の分極処理は、電極形成後に行なわれる。As another method for producing the piezoelectric element of the present invention, while holding the porous sheet-like electrode in the mold using a jig, the piezoelectric resin melted by heat or the piezoelectric material dissolved in a solvent is used. It is also possible to adopt a method of pouring body resin and casting. However, in this case, the polarization treatment of the polymer piezoelectric material is performed after the electrode formation.
【0031】得られた圧電素子10a、10b、10d
においては、多孔シート状電極2、12または32の表
面被覆層を溶剤を用いて部分的に除去する等によりリー
ド線または端子接続部3を形成する。Obtained piezoelectric elements 10a, 10b, 10d
In, the lead wire or the terminal connecting portion 3 is formed by partially removing the surface coating layer of the porous sheet-shaped electrode 2, 12 or 32 with a solvent.
【0032】このようにして得られた本発明の圧電素子
は、セラミック圧電素子にはない耐衝撃性、可撓性を維
持する一方で、従来のポリマー圧電素子に比べて向上し
た電極剥離強度を有する。従って、従来のポリマー圧電
素子と同様な用途への使用が可能であるほか、より大な
る応力がかかる条件下での使用に優れた適性を有する。The thus-obtained piezoelectric element of the present invention maintains impact resistance and flexibility that ceramic piezoelectric elements do not have, while exhibiting improved electrode peel strength as compared with conventional polymer piezoelectric elements. Have. Therefore, it can be used for the same purpose as the conventional polymer piezoelectric element, and has an excellent suitability for use under a condition where a larger stress is applied.
【0033】[0033]
【実施例】以下、実施例および比較例により、本発明を
更に具体的に説明する。これら例で作成した圧電素子に
ついては、次の特性を評価した。EXAMPLES The present invention will be described in more detail below with reference to examples and comparative examples. The following characteristics were evaluated for the piezoelectric elements produced in these examples.
【0034】圧電特性:以下の方法で静水圧圧電ひずみ
定数(dh 定数)を測定して求めた。耐圧容器に入れた
シリコン油中に試料を浸漬し、容器に窒素ガス源から圧
力P(ニュートン(N)/m2 )を加えながら試料の電
荷量Q(クーロン(C))を測定する。そして、ゲージ
圧2kg/cm2 近辺での圧力上昇dPに対する電荷の
増加量dQを得、下式で計算した: dh =(dQ/dP)/A 単位は、C/Nである。ここで、Aは電極面積(m2 )
である。The piezoelectric properties: was determined by measuring the hydrostatic piezoelectric constant (d h constant) in the following manner. The sample is immersed in silicon oil placed in a pressure resistant container, and the charge amount Q (Coulomb (C)) of the sample is measured while applying a pressure P (Newton (N) / m 2 ) from a nitrogen gas source to the container. The resulting increased amount dQ of the charge with respect to the pressure increase dP in the vicinity gauge pressure 2 kg / cm 2, was calculated by the following equation: d h = (dQ / dP ) / A unit is C / N. Where A is the electrode area (m 2 )
Is.
【0035】一方、静水圧圧電出力係数(gh 定数)
は、ポリマー圧電体フィルムの誘電率εをYHP社製の
multi−frequency LCR meter
により求め、gh =dh /εの式から計算で求めた。単
位は、ボルト(V)×m/Nである。On the other hand, hydrostatic piezoelectric output coefficient (g h constant)
Is a multi-frequency LCR meter manufactured by YHP Co., Ltd.
It was calculated by the formula g h = d h / ε. The unit is volts (V) × m / N.
【0036】可撓性:試料を間隔4cmの二支点で支
え、支点の中心で試料に5mm/分の速度で荷重Wを加
えて2mmたわませるのに要した1cm幅当たりの荷重
値を求め、たわみ荷重(g/cm)とした。Flexibility: The sample is supported by two fulcrums with an interval of 4 cm, and a load value per 1 cm width required to bend the sample by applying a load W at a speed of 5 mm / min at the center of the fulcrum for 2 mm is obtained. And the flexural load (g / cm).
【0037】電極剥離強度:厚さ35μmの銅箔にエポ
キシ系接着剤(アラルダイトAW106(樹脂):HV
953U(硬化剤)=1:1、日本チバガイギー
(株))を塗布して、表面被覆樹脂層をアセトンで軽く
拭いて除去した圧電素子の電極形成面と張り合わせ、9
0℃、100kg重/cm2 の圧力で20分間プレスし
た。続いて、この張り合せ試料に対しJIS C−64
81に準拠して50mm/分の速度で90度剥離試験を
行なった。なお、この電極剥離強度は、電極にリード線
を半田接続する際にまたはその後の素子の取扱の際など
に半田周辺部で生じる電極の亀裂や剥がれなどの不都合
の度合い、即ち半田によるリード線接続性と良好な相関
を示すことが経験的に知られている。Electrode peeling strength: An epoxy adhesive (Araldite AW106 (resin): HV) on a copper foil having a thickness of 35 μm
953U (curing agent) = 1: 1, Nippon Ciba Geigy Co., Ltd. was applied, and the surface coating resin layer was lightly wiped with acetone to be bonded to the electrode forming surface of the piezoelectric element, and 9
It was pressed at 0 ° C. and a pressure of 100 kgf / cm 2 for 20 minutes. Subsequently, JIS C-64 was applied to this laminated sample.
In accordance with No. 81, a 90 ° peel test was performed at a speed of 50 mm / min. The electrode peeling strength is the degree of inconvenience such as cracking or peeling of the electrode that occurs around the solder when connecting the lead wire to the electrode by soldering or when handling the element thereafter, that is, connecting the lead wire by soldering. It is empirically known to show a good correlation with sex.
【0038】なお、可撓性、電極剥離強度の試験では、
試験機として(株)東洋精機製作所製のSTROGRA
PH−R2を用いた。In the test of flexibility and electrode peeling strength,
STROGRA manufactured by Toyo Seiki Co., Ltd. as a testing machine
PH-R2 was used.
【0039】実施例1 図1および図2に示す構造の圧電素子を以下のようにし
て形成した。 Example 1 A piezoelectric element having the structure shown in FIGS. 1 and 2 was formed as follows.
【0040】まず、VDF/TrFE(75/25モル
比)共重合体(呉羽化学工業(株)製)をダイス温度2
65℃でシート押出しし、125℃で13時間の熱処理
後、60V/μmの電界下、138℃での保持時間5
分、昇降時間を含めて全1時間の分極処理を行ない、厚
さ500μmのポリマー圧電体フィルム1を得た。この
フィルムの可撓性(たわみ荷重)は47g/cmであっ
た。First, a VDF / TrFE (75/25 molar ratio) copolymer (manufactured by Kureha Chemical Industry Co., Ltd.) was used at a die temperature of 2
The sheet was extruded at 65 ° C., heat-treated at 125 ° C. for 13 hours, and then kept at 138 ° C. under an electric field of 60 V / μm for 5 hours.
The polarization treatment was performed for a total of 1 hour including the minute and the raising / lowering time to obtain a polymer piezoelectric film 1 having a thickness of 500 μm. The flexibility (deflection load) of this film was 47 g / cm.
【0041】該ポリマー圧電体フィルムを30℃のアセ
トン中に30秒間浸漬後、その両面を500メッシュ
(綾織り、目開き26μm、線径25μm)のステンレ
ススチール(SUS316)製金網で挾持し、これら
を、温度90℃、圧力50kg/cm2 、時間2分の条
件で圧着して、図1の構造の圧電素子を得た。The polymer piezoelectric film was dipped in acetone at 30 ° C. for 30 seconds, and then both surfaces thereof were held by a 500 mesh (twill weave, opening 26 μm, wire diameter 25 μm) stainless steel (SUS316) wire mesh. Was pressure-bonded under the conditions of a temperature of 90 ° C., a pressure of 50 kg / cm 2 , and a time of 2 minutes to obtain a piezoelectric element having the structure shown in FIG.
【0042】実施例2 実施例1において、該500メッシュの金網を、VDF
/TrFE(75/25モル比)共重合体の7.5%濃
度THF溶液中に浸漬後、乾燥した樹脂被覆された金網
を用いる以外は、同様にして圧電素子を得た。 Example 2 In Example 1, the 500 mesh wire mesh was replaced with VDF.
A piezoelectric element was obtained in the same manner as above, except that a resin-coated wire net was used after being dipped in a 7.5% concentration THF solution of a / TrFE (75/25 molar ratio) copolymer.
【0043】比較例1 実施例1で得たポリマー圧電体フィルムの両面に、粒度
#220のアルミナ系研磨剤を、空気圧力4.0kg/
cm2 、距離15cmの条件でサンドブラストして粗面
化したのち、SBR系接着剤(住友スリーエム(株)製
「4693スコッチ・グリップ」、溶剤1,2−ジクロ
ロエタン中に10〜20%濃度)を両面に塗布し、実施
例1の金網で挾持した後、予熱:90℃−4分間、加
圧:90℃−4分間−150kg/cm2 の条件で圧着
して圧電素子を得た。 Comparative Example 1 An alumina-based abrasive having a grain size of # 220 was applied to both sides of the polymer piezoelectric film obtained in Example 1 with an air pressure of 4.0 kg /.
After sandblasting under conditions of cm 2 and distance of 15 cm, an SBR adhesive (“4693 Scotch Grip” manufactured by Sumitomo 3M Limited, 10-20% concentration in the solvent 1,2-dichloroethane) was used. After being applied on both sides and held by the wire net of Example 1, pressure was applied under the conditions of preheating: 90 ° C. for 4 minutes and pressure: 90 ° C. for 4 minutes at −150 kg / cm 2 to obtain a piezoelectric element.
【0044】比較例2 比較例1と同様にして粗面化ならびに接着剤を塗布した
ポリマー圧電体フィルムの両面に、厚さ35μmの銅箔
を貼付して圧電素子を得た。 Comparative Example 2 In the same manner as in Comparative Example 1, a 35 μm-thick copper foil was attached to both surfaces of a polymer piezoelectric film roughened and coated with an adhesive to obtain a piezoelectric element.
【0045】比較例3 比較例1と同様にして粗面化したポリマー圧電体フィル
ムの両面に電気溶線式溶射機(加藤メタリコン(株)
製、DK式金属溶射機E型)を用い、エアー圧力5Kg
/cm2 、電圧15Vの条件で溶射を行ない厚さ約40
μmの亜鉛溶射電極を形成して、圧電素子を得た。 Comparative Example 3 An electro-spraying thermal spraying machine (Kato Metallikon Co., Ltd.) was applied to both surfaces of a polymer piezoelectric film roughened in the same manner as in Comparative Example 1.
Made, DK type metal sprayer E type), air pressure 5Kg
/ Cm 2 and voltage 15V, thermal spraying is performed and thickness is about 40
A μm zinc sprayed electrode was formed to obtain a piezoelectric element.
【0046】上記で得られた各種圧電素子について、上
記した特性評価を行なった結果を後記表1にまとめて記
す。The results of the above-described characteristic evaluations of the various piezoelectric elements obtained above are summarized in Table 1 below.
【0047】[0047]
【表1】 [Table 1]
【0048】実施例3 圧着温度を、室温、50℃および70℃に変える以外
は、実施例1と同様にして圧電素子を得た。 Example 3 A piezoelectric element was obtained in the same manner as in Example 1 except that the pressure bonding temperature was changed to room temperature, 50 ° C. and 70 ° C.
【0049】得られた圧電素子についての、電極剥離強
度およびdh の測定値を実施例1についての結果とまと
めて、それぞれ図8および9、ならびに後記表3に示
す。The measured values of the electrode peeling strength and d h of the obtained piezoelectric element are shown together with the results of Example 1 in FIGS. 8 and 9 and in Table 3 below.
【0050】実施例4 金網として下表2に示すように40メッシュ〜800メ
ッシュの金網(実施例1で用いた500メッシュ金網も
併記する)を用い、圧着温度を50℃とする以外は、実
施例1と同様にして圧電素子を得た。 Example 4 As shown in Table 2 below, a wire mesh of 40 mesh to 800 mesh (the 500 mesh wire mesh used in Example 1 is also described) is used, and the pressure bonding temperature is 50 ° C. A piezoelectric element was obtained in the same manner as in Example 1.
【0051】[0051]
【表2】 1)横線のメッシュ数である。縦線のメッシュ数は80
である; 2)濾過粒度数として示す; 3)横線の線径/縦線の線径。[Table 2] 1) The number of horizontal line meshes. The number of vertical line meshes is 80
2) Shown as the number of filtered particles; 3) Horizontal line diameter / vertical line diameter.
【0052】得られた圧電素子についての、電極剥離強
度およびdh の測定値をまとめて、それぞれ図10およ
び11、ならびに下表3に示す。The measured values of the electrode peeling strength and d h of the obtained piezoelectric element are summarized in FIGS. 10 and 11 and Table 3 below.
【0053】[0053]
【表3】 1)メッシュ金網が硬過ぎて90゜剥離とならなかっ
た。[Table 3] 1) The mesh wire mesh was too hard to peel at 90 °.
【0054】[0054]
【発明の効果】上記実施例、比較例の結果からも明らか
な通り、本発明によれば、ポリマー圧電体に多孔シート
状電極を埋入させることにより、従来のポリマー圧電素
子の可撓性等の利点を維持し、圧電特性の劣化を招くこ
となく、電極剥離強度で代表される機械的強度が著しく
改善された圧電素子ならびにその効果的な製造法が提供
される。従って、従来のポリマー圧電素子の用途にその
まま提供可能なだけでなく、より酷しい応力の印加され
るような使用条件下において優れた適性を有する圧電素
子が得られる。As is apparent from the results of the above-mentioned Examples and Comparative Examples, according to the present invention, by embedding a porous sheet-like electrode in a polymer piezoelectric material, the flexibility and the like of a conventional polymer piezoelectric element can be obtained. There is provided a piezoelectric element in which the mechanical strength typified by the electrode peeling strength is remarkably improved and an effective manufacturing method thereof, while maintaining the advantages of 1. Therefore, it is possible to obtain a piezoelectric element which is not only provided as it is for the use of the conventional polymer piezoelectric element but also has excellent suitability under a use condition in which severe stress is applied.
【図1】本発明の圧電素子の一実施例の平面図。FIG. 1 is a plan view of an embodiment of a piezoelectric element of the present invention.
【図2】図1のII−II線に沿って取った断面図。2 is a cross-sectional view taken along line II-II in FIG.
【図3】本発明の圧電素子の別の一実施例の平面図。FIG. 3 is a plan view of another embodiment of the piezoelectric element of the present invention.
【図4】図3のIV−IV線に沿って取った断面図。4 is a cross-sectional view taken along line IV-IV in FIG.
【図5】本発明の圧電素子の更に別の一実施例の平面
図。FIG. 5 is a plan view of yet another embodiment of the piezoelectric element of the present invention.
【図6】図5の側面図。FIG. 6 is a side view of FIG.
【図7】本発明の多層構成型とした圧電素子の実施例の
断面図。FIG. 7 is a cross-sectional view of an example of a piezoelectric element having a multi-layered structure according to the present invention.
【図8】本発明の圧電素子の電極剥離強度の圧着温度依
存性を示す実験データのグラフ。FIG. 8 is a graph of experimental data showing the pressure-bonding temperature dependence of the electrode peeling strength of the piezoelectric element of the present invention.
【図9】本発明の圧電素子のdh 定数の圧着温度依存性
を示す実験データのグラフ。FIG. 9 is a graph of experimental data showing the pressure-bonding temperature dependence of the d h constant of the piezoelectric element of the present invention.
【図10】本発明の圧電素子の電極剥離強度の金網目開
き依存性を示す実験データのグラフ。FIG. 10 is a graph of experimental data showing the dependence of the electrode peel strength of the piezoelectric element of the present invention on the wire mesh opening.
【図11】本発明の圧電素子のdh 定数の金網目開き依
存性を示す実験データのグラフ。FIG. 11 is a graph of experimental data showing the dependence of d h constant of the piezoelectric element of the present invention on the wire mesh opening.
1:ポリマー圧電体フィルム 2、22、32:メッシュ状多孔シート状電極 3:リード線または端子接続部 10a、10b、10c、10d:本発明の圧電素子 12:透孔を穿った多孔シート状電極 12a:透孔 1: Polymer piezoelectric film 2, 22, 32: Mesh-like porous sheet-like electrode 3: Lead wire or terminal connecting portion 10a, 10b, 10c, 10d: Piezoelectric element of the present invention 12: Porous sheet-like electrode with perforations 12a: through hole
Claims (4)
埋入されていることを特徴とする圧電素子。1. A piezoelectric element in which a porous sheet-shaped electrode is embedded in a polymer piezoelectric material.
フィルムまたはシートの少なくとも一つの面において、
その表層に埋入されている請求項1に記載の圧電素子。2. The porous sheet electrode is provided on at least one surface of a polymer piezoelectric film or sheet,
The piezoelectric element according to claim 1, wherein the piezoelectric element is embedded in the surface layer.
である請求項1または2のいずれかに記載の圧電素子。3. The piezoelectric element according to claim 1, wherein the porous sheet electrode is a mesh electrode.
表面を溶媒で処理し、その後に該処理表面に多孔シート
状の電極を積層して圧着することを特徴とする圧電素子
の製造方法。4. A method for manufacturing a piezoelectric element, which comprises treating the surface of a polymer piezoelectric film or sheet with a solvent, and then laminating and adhering a porous sheet-like electrode on the treated surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15884492A JP3105645B2 (en) | 1992-05-27 | 1992-05-27 | Piezoelectric element and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15884492A JP3105645B2 (en) | 1992-05-27 | 1992-05-27 | Piezoelectric element and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05335642A true JPH05335642A (en) | 1993-12-17 |
JP3105645B2 JP3105645B2 (en) | 2000-11-06 |
Family
ID=15680645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15884492A Expired - Lifetime JP3105645B2 (en) | 1992-05-27 | 1992-05-27 | Piezoelectric element and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3105645B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003230288A (en) * | 2002-01-31 | 2003-08-15 | Matsushita Electric Works Ltd | Electrostrictive actuator |
JP2008044332A (en) * | 2006-08-16 | 2008-02-28 | Yasuo Namita | Sheet material and product using the sheet |
DE102008055131A1 (en) * | 2008-12-23 | 2010-07-01 | Robert Bosch Gmbh | Piezoactuator for use in fuel-injector to adjust e.g. control valve, has electrode firmly connected with piezobody using sintered paste or by adhesive, soldering or welding material and designed as open porous sintered mold |
JP2011097072A (en) * | 1999-10-29 | 2011-05-12 | Usa Government | Piezoelectric macro-fiber composite actuator and manufacturing method |
JP2016110156A (en) * | 2014-12-09 | 2016-06-20 | エルジー ディスプレイ カンパニー リミテッド | Transformable device and display apparatus |
CN110519675A (en) * | 2019-09-29 | 2019-11-29 | 北京信息科技大学 | Submarine navigation device acoustic intelligence electronics perceives skin and preparation method thereof |
JP2020205370A (en) * | 2019-06-18 | 2020-12-24 | Tdk株式会社 | Piezoelectric element |
CN114496350A (en) * | 2020-10-23 | 2022-05-13 | 荣耀终端有限公司 | Electrode, electronic device and device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3229471B2 (en) | 1993-11-26 | 2001-11-19 | 呉羽化学工業株式会社 | Piezoelectric transducer for stringed instruments |
CN110959295B (en) | 2017-09-29 | 2022-06-28 | 住友理工株式会社 | Transducer and method of manufacturing the same |
EP3668115B1 (en) | 2017-11-30 | 2024-10-09 | Sumitomo Riko Company Limited | Transducer and method for manufacturing same |
-
1992
- 1992-05-27 JP JP15884492A patent/JP3105645B2/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011097072A (en) * | 1999-10-29 | 2011-05-12 | Usa Government | Piezoelectric macro-fiber composite actuator and manufacturing method |
JP2003230288A (en) * | 2002-01-31 | 2003-08-15 | Matsushita Electric Works Ltd | Electrostrictive actuator |
JP2008044332A (en) * | 2006-08-16 | 2008-02-28 | Yasuo Namita | Sheet material and product using the sheet |
DE102008055131A1 (en) * | 2008-12-23 | 2010-07-01 | Robert Bosch Gmbh | Piezoactuator for use in fuel-injector to adjust e.g. control valve, has electrode firmly connected with piezobody using sintered paste or by adhesive, soldering or welding material and designed as open porous sintered mold |
JP2016110156A (en) * | 2014-12-09 | 2016-06-20 | エルジー ディスプレイ カンパニー リミテッド | Transformable device and display apparatus |
US9812664B2 (en) | 2014-12-09 | 2017-11-07 | Lg Display Co., Ltd. | Transformable device and method of manufacturing the same |
JP2020205370A (en) * | 2019-06-18 | 2020-12-24 | Tdk株式会社 | Piezoelectric element |
CN110519675A (en) * | 2019-09-29 | 2019-11-29 | 北京信息科技大学 | Submarine navigation device acoustic intelligence electronics perceives skin and preparation method thereof |
CN110519675B (en) * | 2019-09-29 | 2020-12-01 | 北京信息科技大学 | Underwater vehicle acoustic information electronic sensing skin and preparation method thereof |
CN114496350A (en) * | 2020-10-23 | 2022-05-13 | 荣耀终端有限公司 | Electrode, electronic device and device |
CN114496350B (en) * | 2020-10-23 | 2024-05-03 | 荣耀终端有限公司 | Electrode, electronic device and apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP3105645B2 (en) | 2000-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5410210A (en) | Piezoelectric device and process for production thereof | |
EP0528279B1 (en) | Flexible piezoelectric device | |
JP7375033B2 (en) | Piezoelectric element | |
JP3093849B2 (en) | Flexible laminated piezoelectric element | |
US5153859A (en) | Laminated piezoelectric structure and process of forming the same | |
JP3105645B2 (en) | Piezoelectric element and method of manufacturing the same | |
US20170144428A1 (en) | Methods for Making an Electroactive Device Fabricated with a Nanotube Film Electrode | |
JP3332279B2 (en) | Deflection sensor and fishing rod having the same | |
KR102200305B1 (en) | Nano membrane, method for manufacturing nano membrane and apparatus for speaker and microphone using nano membrane | |
US8564178B2 (en) | Micro electric generator, method of providing the same, and electric generating device | |
EP4175322A1 (en) | Piezoelectric element | |
TW202119662A (en) | Piezoelectric element | |
JP3621700B1 (en) | Heat-resistant electret material, heat-resistant electret using the same, method for producing the same, and electrostatic acoustic sensor | |
CN116783902A (en) | Piezoelectric film | |
US20240260476A1 (en) | Piezoelectric film and laminated piezoelectric element | |
JP3243047B2 (en) | Wave receiving piezoelectric element | |
JP3121416B2 (en) | Flexible piezoelectric element | |
JP2019062124A (en) | Heat resistant piezoelectric wire and piezoelectric device provided with heat resistant piezoelectric wire | |
JP3229471B2 (en) | Piezoelectric transducer for stringed instruments | |
EP2437519A1 (en) | Heat resistant electret material and heat resistant electret | |
JP3270616B2 (en) | Wave receiving piezoelectric element | |
TW202236704A (en) | Piezoelectric film | |
JP3301812B2 (en) | Wave receiving piezoelectric element | |
JPH01295169A (en) | Composite diaphragm and its production and piezoelectric acceleration sensor formed by using composite diaphragm | |
JP2001085757A (en) | Flexible piezoelectric element and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080901 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080901 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090901 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090901 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100901 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100901 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110901 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120901 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120901 Year of fee payment: 12 |