[go: up one dir, main page]

JP3121416B2 - Flexible piezoelectric element - Google Patents

Flexible piezoelectric element

Info

Publication number
JP3121416B2
JP3121416B2 JP35666891A JP35666891A JP3121416B2 JP 3121416 B2 JP3121416 B2 JP 3121416B2 JP 35666891 A JP35666891 A JP 35666891A JP 35666891 A JP35666891 A JP 35666891A JP 3121416 B2 JP3121416 B2 JP 3121416B2
Authority
JP
Japan
Prior art keywords
electrode
piezoelectric element
piezoelectric
polymer
polymer piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35666891A
Other languages
Japanese (ja)
Other versions
JPH05102548A (en
Inventor
卓 佐藤
和元 鈴木
謙一 中村
Original Assignee
呉羽化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 呉羽化学工業株式会社 filed Critical 呉羽化学工業株式会社
Priority to EP19920113422 priority Critical patent/EP0528279B1/en
Priority to US07/925,279 priority patent/US5288551A/en
Priority to DE69215599T priority patent/DE69215599T2/en
Publication of JPH05102548A publication Critical patent/JPH05102548A/en
Application granted granted Critical
Publication of JP3121416B2 publication Critical patent/JP3121416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、溶射被覆電極を有する
ポリマー系圧電素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer piezoelectric element having a spray-coated electrode.

【0002】[0002]

【従来の技術】分極処理した弗化ビニリデン系樹脂(以
下、代表的にPVDFと称する)をはじめとするポリマ
ー圧電体は、セラミックス圧電体と比較して、(1)可
撓性が大きく、薄膜化、大面積化、長尺化が容易で任意
の形状、形態のものを作ることができる;(2)静水圧
圧電ひずみ定数dh は同等またはそれ以下であるが、誘
電率εが小さいために、dh /εで定まる静水圧電圧出
力係数(gh 定数)は極めて大となり、従って感度特性
が優れる;(3)低密度、低弾性であるため、音響イン
ピーダンス(音速×密度)が、水や生体の値に近く、従
って水や生体と素子との間での反射が少なく、効率のよ
いエネルギー伝播が可能である等の特性を有する。この
ような特性を生かして、ポリマー圧電体は、スピーカ
ー、マイクロホン、超音波探触子、ハイドロフォン、震
動計、ひずみ計、血圧計、バイモルフファン等の、一般
に電気−機械(音響)変換素子あるいは焦電変換素子と
して、広汎な用途への適用が提案され、あるいは実用化
されている。
2. Description of the Related Art A polymer piezoelectric material such as a polarized vinylidene fluoride resin (hereinafter, typically referred to as PVDF) has the following advantages. (2) Hydrostatic pressure piezoelectric strain constant d h is equal to or less than, but has a small dielectric constant ε, a, d h / hydrostatic voltage output coefficient determined by epsilon (g h constant) is extremely large, and the thus sensitivity characteristics are excellent; (3) low density, due to low elasticity, acoustic impedance (sound velocity × density), It has characteristics such as being close to the values of water and living organisms, and therefore having little reflection between water and living organisms and the element, enabling efficient energy transmission. Taking advantage of these characteristics, polymer piezoelectric materials are generally used for electro-mechanical (acoustic) conversion elements such as speakers, microphones, ultrasonic probes, hydrophones, vibrometers, strain gauges, blood pressure monitors, bimorph fans, and the like. As a pyroelectric conversion element, application to a wide range of uses has been proposed or put into practical use.

【0003】フィルム状またはシート状のポリマー圧電
体(以下、包括的に、「ポリマー圧電体フィルム」と称
する。)を素子化するに際しては、通常その両面に電極
を設ける。この際に、電極としては、ポリマー圧電体
の、配向−分極等により付与された圧電特性をも含めた
耐熱性が、100℃前後であることを考慮して、一般に
銅、アルミニウム等の蒸着電極あるいは接着剤により貼
付したこれら金属の箔電極が用いられている。しかしな
がら、これら電極には、以下に述べるようにそれぞれ問
題点がある。
When a film-shaped or sheet-shaped polymer piezoelectric material (hereinafter, collectively referred to as a "polymer piezoelectric film") is made into an element, electrodes are usually provided on both surfaces thereof. At this time, the electrode is generally made of a vapor-deposited electrode of copper, aluminum, or the like in consideration of the fact that the heat resistance of the polymer piezoelectric body, including the piezoelectric properties imparted by orientation and polarization, is around 100 ° C. Alternatively, these metal foil electrodes attached with an adhesive are used. However, these electrodes have respective problems as described below.

【0004】[0004]

【発明が解決すべき課題】まず蒸着電極は、一般に設け
られる電極の厚みが0.02〜0.1μm程度と薄いこ
とに加えて、ポリマー圧電体との接着強度が十分でな
く、電極へのリード線の半田付け接続が非常に困難なこ
とである。このため、蒸着電極を設けたポリマー圧電素
子については、電気信号入出力のために複雑な電極端子
固定構造を採用する必要が生じる。
First, in addition to the thinness of the generally provided electrode of about 0.02 to 0.1 μm, the vapor deposition electrode has insufficient adhesive strength with the polymer piezoelectric material, and the It is very difficult to solder the leads. For this reason, for a polymer piezoelectric element provided with a vapor deposition electrode, it is necessary to adopt a complicated electrode terminal fixing structure for inputting and outputting electric signals.

【0005】これに対し、金属箔電極は、一般に6〜1
00μm程度の厚さの金属箔を、ポリエステル系樹脂、
ウレタン系樹脂、エポキシ系樹脂等からなる5〜40μ
m程度の接着剤層を介して、ポリマー圧電体フィルムに
貼付され、半田付によるリード線接続の可能な電極とし
て形成される。しかし、この金属箔電極は、特にポリマ
ー圧電体フィルムの両面に設けた場合、ポリマー圧電素
子の可撓性という重要な長所を損なう欠点がある。ま
た、使用状態によっては、特に外気に触れる面では、接
着剤が劣化して、圧電素子としての耐久性が問題になる
ことがある。
On the other hand, metal foil electrodes are generally 6 to 1
A metal foil having a thickness of about 00 μm is
5-40μ consisting of urethane resin, epoxy resin, etc.
It is attached to the polymer piezoelectric film via an adhesive layer of about m, and is formed as an electrode which can be connected to a lead wire by soldering. However, when this metal foil electrode is provided on both surfaces of a polymer piezoelectric film, there is a disadvantage that the important advantage of flexibility of the polymer piezoelectric element is impaired. Further, depending on the use state, the adhesive deteriorates particularly on the surface that is exposed to the outside air, and the durability of the piezoelectric element may become a problem.

【0006】上述した事情に基づき、従来のポリマー圧
電素子においては、可撓性を重視する場合は複雑な端子
構造をとっても蒸着電極を採用し、他方、リード線接続
が要求される場合には可撓性を犠牲にしても金属箔電極
が採用されてきた。
Based on the above-mentioned circumstances, in the conventional polymer piezoelectric element, when importance is placed on flexibility, a vapor-deposited electrode is adopted even if a complicated terminal structure is adopted, and on the other hand, when a lead wire connection is required, it is acceptable. Metal foil electrodes have been employed at the expense of flexibility.

【0007】本発明の主要な目的は、可撓性を本質的に
損なうことなく半田によるリード線接続性に優れた電極
構造を有するポリマー系圧電素子を提供することにあ
る。
A main object of the present invention is to provide a polymer-based piezoelectric element having an electrode structure excellent in lead wire connectivity by soldering without substantially impairing flexibility.

【0008】[0008]

【課題を解決するための手段】本発明者等は、上述の目
的で研究を続けた結果、驚くべきことに、耐熱性に乏し
いポリマー圧電素子への適用は従来顧みられなかった溶
射による電極形成が、適切な条件設定により達成可能で
あるばかりでなく、かえってポリマー圧電素子の圧電特
性を高めること、即ち感度の向上したポリマー圧電素子
を与えることを見出して本発明に到達した。
The present inventors have continued their researches for the above-mentioned purpose, and as a result, surprisingly, the application to a polymer piezoelectric element having poor heat resistance has not been considered so far. However, the present invention has been found not only to be able to be achieved by setting appropriate conditions, but also to enhance the piezoelectric characteristics of the polymer piezoelectric element, that is, to provide a polymer piezoelectric element with improved sensitivity.

【0009】即ち、本発明の可撓性圧電素子は、ポリマ
ー圧電体フィルムの少なくとも一面に溶射被覆電極を設
けてなることを特徴とするものである。
That is, the flexible piezoelectric element of the present invention is characterized in that a spray-coated electrode is provided on at least one surface of a polymer piezoelectric film.

【0010】溶射被覆は、一般に溶融した金属材料を相
手方基材に向けて噴射し、表面で固化させることにより
金属被覆を形成するものであり、一般にポリマーフィル
ムの表面処理用途にはほとんど用いられていない。まし
てや、材料本来の低い耐熱性に加えて、優れた圧電特性
を発現するために分極処理を受けているポリマー圧電体
フィルムにおいて、圧電特性の向上を伴った溶射被覆が
可能であることは、本発明者等にとっても極めて意外な
ことであった。
The thermal spray coating generally forms a metal coating by spraying a molten metal material toward a mating base material and solidifying the molten metal on the surface. Generally, the thermal spray coating is almost used for surface treatment of polymer films. Absent. Furthermore, in addition to the inherently low heat resistance of the material, it is possible that thermal spray coating with improved piezoelectric properties is possible for polymer piezoelectric films that have been subjected to polarization treatment to exhibit excellent piezoelectric properties. It was very surprising to the inventors.

【0011】本発明において、用いられるポリマー圧電
体としては、比較的高い耐熱性を有するシアン化ビニリ
デン−酢酸ビニル共重合体が好適に用いられるほか、優
れた圧電特性のフッ化ビニリデン系樹脂圧電体が好まし
く、なかでも圧電性発現に適したβ型結晶化のために一
軸延伸の必要なフッ化ビニリデン(VDF)単独重合体
に比べて、通常の結晶条件化でβ型結晶化の可能なVD
F系共重合体(例えば優位量のVDFと劣位量のフッ化
ビニル(VF)トリフルオロエチレン(TrFE)ある
いはテトラフルオロエチレン(TFE)との共重合体)
が好ましく、更には優位量(特に70〜80モル%)の
VDFと劣位量(特に30〜20モル%)のTrFEと
の共重合体がもっとも好ましく用いられる。
In the present invention, a vinylidene cyanide-vinyl acetate copolymer having relatively high heat resistance is preferably used as a polymer piezoelectric material, and a vinylidene fluoride resin piezoelectric material having excellent piezoelectric properties is used. Among them, a VD capable of β-type crystallization under ordinary crystallization conditions is more preferable than a vinylidene fluoride (VDF) homopolymer which requires uniaxial stretching for β-type crystallization suitable for piezoelectricity development.
F-based copolymer (for example, a copolymer of a superior amount of VDF and an inferior amount of vinyl fluoride (VF) trifluoroethylene (TrFE) or tetrafluoroethylene (TFE))
The copolymer of VDF having a superior amount (especially 70 to 80 mol%) and TrFE having an inferior amount (especially 30 to 20 mol%) is most preferably used.

【0012】これらポリマー圧電体材料は、溶融押出等
により成膜後、必要に応じて一軸延伸あるいは軟化温度
以下での熱処理、軟化温度以下での電界印加により分極
処理に付される。溶射被覆前において、本発明で用いる
ポリマー圧電体フィルムは、200〜2000μm程
度、特に300〜1000μmの厚さを有することが好
ましい。フィルムの厚さが200μm未満では溶射時の
熱耐性に乏しく、フィルムの変形、圧電特性のばらつき
といった問題が発生する。また、逆に2000μmを超
えると、フィルムの可撓性が損なわれ、更に分極に高電
圧が必要となるため縁面放電が発生し分極処理が極めて
困難となる。
These polymer piezoelectric materials are formed into a film by melt extrusion or the like, and then subjected to a uniaxial stretching or a heat treatment at a softening temperature or lower, and a polarization treatment by application of an electric field at a softening temperature or lower, as necessary. Before the thermal spray coating, the polymer piezoelectric film used in the present invention preferably has a thickness of about 200 to 2000 μm, particularly 300 to 1000 μm. If the thickness of the film is less than 200 μm, the thermal resistance at the time of thermal spraying is poor, and problems such as deformation of the film and variation in piezoelectric characteristics occur. On the other hand, if the thickness exceeds 2000 μm, the flexibility of the film is impaired, and a high voltage is required for polarization, so that an edge discharge is generated and the polarization treatment becomes extremely difficult.

【0013】本発明の可撓性圧電素子は、その最も基本
的な形態において、図1に示すように、上述したような
ポリマー圧電体フィルム1の一面に溶射被覆電極2を有
する。ポリマー圧電体フィルム1の電極2による被覆面
あるいは必要に応じてフィルム1の両面は予め粗面化し
ておくことも好ましい。
In the most basic form, the flexible piezoelectric element of the present invention has a spray-coated electrode 2 on one surface of the above-described polymer piezoelectric film 1 as shown in FIG. It is also preferable that the surface of the polymer piezoelectric film 1 covered with the electrode 2 or both surfaces of the film 1 be roughened in advance as required.

【0014】溶射電極2の材料としては、銅、アルミニ
ウム、亜鉛等が挙げられるが、なかでも、比較的低温で
の溶射が可能であり、且つ半田付性に優れた電極膜を与
える亜鉛または、亜鉛と銅等との合金が好ましく用いら
れる。溶射被覆電極2の厚さは、良好な半田付性を与
え、圧電素子の可撓性を損なわない範囲で選択できる
が、一般に10〜100μm、特に20〜50μmの範
囲で設定するのが好ましい。
Examples of the material of the sprayed electrode 2 include copper, aluminum, zinc and the like. Among them, zinc or zinc, which can be sprayed at a relatively low temperature and provides an electrode film having excellent solderability, An alloy of zinc and copper is preferably used. The thickness of the spray-coated electrode 2 can be selected in a range that gives good solderability and does not impair the flexibility of the piezoelectric element, but is generally set in the range of 10 to 100 μm, particularly preferably 20 to 50 μm.

【0015】電極2の形成に用いる溶射方法は、ポリマ
ー圧電体フィルム1の圧電特性を本質的に損なわないよ
うに、ポリマー圧電体フィルム1を過度に熱しないもの
であることが必要であり、線材アーク溶射あるいはガス
溶射(プラズマ溶射)が用いられ得る。特に、線材アー
ク溶射は、他の溶射方法に比べポリマー圧電体フィルム
1への熱負荷が少なく、好ましい実施形態であるが、そ
の場合でも溶射処理は圧電体フィルム1を必要に応じて
強制冷却された回転体上に置き、前記熱負荷を制御しな
がら行なうのが好ましい。
The thermal spraying method used to form the electrode 2 must not excessively heat the polymer piezoelectric film 1 so that the piezoelectric characteristics of the polymer piezoelectric film 1 are not substantially impaired. Arc spraying or gas spraying (plasma spraying) can be used. In particular, wire arc spraying is a preferred embodiment in which the thermal load on the polymer piezoelectric film 1 is smaller than that of other spraying methods. However, even in such a case, the spraying process is performed by forcibly cooling the piezoelectric film 1 as necessary. It is preferable that the heat load be controlled while controlling the heat load.

【0016】本発明の可撓性圧電素子は、その圧電素子
としての使用形態において、図1に示すように、ポリマ
ー圧電体フィルム1の溶射被覆電極2を設けた面と逆側
の面に対向電極3を有する。この対向電極3は、溶射被
覆電極2と同様な溶射被覆電極であり得るほか、半田に
よるリード線接続性がそれ程要求されない場合において
は、銅、アルミニウム等の蒸着電極であってもよい。
When the flexible piezoelectric element of the present invention is used as a piezoelectric element, as shown in FIG. 1, it faces the surface of the polymer piezoelectric film 1 opposite to the surface on which the spray coating electrode 2 is provided. It has an electrode 3. The counter electrode 3 may be a spray-coated electrode similar to the spray-coated electrode 2, or may be a vapor-deposited electrode of copper, aluminum or the like when lead wire connection by solder is not so required.

【0017】本発明の可撓性圧電素子は、その好ましい
一形態として、図2に示すようにポリマー圧電体フィル
ム1の溶射被覆電極2形成面と逆側の面に接着剤層4を
介して金属箔電極5を貼付した構造も採用し得る。接着
剤層4は、導電性粒子を分散させた導電性の接着剤によ
り形成することもできるが、より接着強度の優れるエポ
キシ系樹脂、ウレタン系樹脂、ポリエステル系樹脂、ブ
タジエン系樹脂、プロピレン系樹脂、アクリル系樹脂等
の接着剤により5〜40μm程度の厚さの層として形成
することが好ましい。
As a preferred embodiment of the flexible piezoelectric element of the present invention, as shown in FIG. 2, an adhesive layer 4 is provided on the surface of the polymer piezoelectric film 1 opposite to the surface on which the thermal spray coating electrode 2 is formed. A structure in which the metal foil electrode 5 is attached can also be adopted. The adhesive layer 4 can be formed of a conductive adhesive in which conductive particles are dispersed. However, an epoxy resin, a urethane resin, a polyester resin, a butadiene resin, a propylene resin having higher adhesive strength can be used. It is preferable to form a layer having a thickness of about 5 to 40 μm with an adhesive such as an acrylic resin.

【0018】金属箔電極5は、例えば銅、アルミニウ
ム、錫、亜鉛、金、銀、白金等の良導電性の金属の厚さ
6〜200μm、更に20〜120μm、特に20〜8
0μmの箔が好ましく用いられる。
The metal foil electrode 5 is made of a metal having good conductivity such as copper, aluminum, tin, zinc, gold, silver, platinum and the like, having a thickness of 6 to 200 μm, more preferably 20 to 120 μm, especially 20 to 8 μm.
A 0 μm foil is preferably used.

【0019】図2の構造の可撓性圧電素子が好ましく用
いられる理由は、上記したような金属箔電極5を使用す
る場合、逆側の面に設けた溶射被覆電極2とともに両面
で半田による良好なリード線接続性が確保されるほか、
金属箔電極5がポリマー圧電体フィルムの一面に貼付さ
れた場合には、両面に貼付された場合に比べて可撓性の
低下が著しく少ないからである。
The reason why the flexible piezoelectric element having the structure shown in FIG. 2 is preferably used is that when the above-described metal foil electrode 5 is used, the soldering is preferably performed on both surfaces together with the spray-coated electrode 2 provided on the opposite surface. Lead wire connection is ensured,
This is because when the metal foil electrode 5 is adhered to one surface of the polymer piezoelectric film, the decrease in flexibility is significantly less than when it is adhered to both surfaces.

【0020】本発明の他の一つの好ましい態様に従え
ば、バイモルフ振動板として図3に示すような、積層圧
電素子が形成される。この積層圧電素子は、中心層をな
す金属箔電極5の両側に、それぞれ接着剤層4を介し
て、片面に溶射被覆電極2を形成したポリマー圧電体フ
ィルム1の一対をその溶射被覆電極2が互いに外側とな
るように貼付してなるものである。図2の例でも説明し
たように金属箔電極5が一層のみ用いられる場合には、
それによる可撓性の低下も許容できる一方において、両
側に設けた溶射被覆電極2により半田による良好なリー
ド線接続性は担保される。また図3の構造は、可撓性が
中心に位置する金属箔電極5を中立軸として上下対称で
あり、振動特性も対称となる利点がある。図3の構造を
得るに際して、金属箔電極5の両面にまずポリマー圧電
体フィルム1を貼付し、その後両面に溶射被覆電極2を
溶射により形成することももちろん可能である。
According to another preferred embodiment of the present invention, a laminated piezoelectric element as shown in FIG. 3 is formed as a bimorph diaphragm. In this laminated piezoelectric element, a pair of polymer piezoelectric films 1 having a spray-coated electrode 2 formed on one surface thereof are provided on both sides of a metal foil electrode 5 forming a central layer with an adhesive layer 4 interposed therebetween. They are attached so as to be outside each other. As described in the example of FIG. 2, when only one metal foil electrode 5 is used,
While a decrease in flexibility due to this can be tolerated, good thermal spray connection electrodes 2 provided on both sides assure good lead wire connectivity by soldering. The structure of FIG. 3 is vertically symmetric with respect to the metal foil electrode 5 whose flexibility is located at the center, and has an advantage that the vibration characteristics are also symmetric. In obtaining the structure shown in FIG. 3, it is of course possible to first adhere the polymer piezoelectric film 1 to both surfaces of the metal foil electrode 5 and then form the spray-coated electrodes 2 on both surfaces by thermal spraying.

【0021】なお、図3の積層圧電素子は、上下のポリ
マー圧電体フィルム1の分極方向pを図示のように同一
方向とし、交流電源6から電圧を印加することにより、
団扇の扇風運動に似た動作を繰返す。この積層圧電素子
は、適度に可撓性があり、加えて溶射被覆電極2が圧電
体フィルム1上に強固に被覆されるのでバイモルフ振動
板として好適なものである。
In the laminated piezoelectric element shown in FIG. 3, the polarization direction p of the upper and lower polymer piezoelectric films 1 is set to the same direction as shown in FIG.
Repeats the movement similar to the fan movement of the fan. This laminated piezoelectric element is suitably flexible as a bimorph diaphragm because it is moderately flexible and, in addition, the spray-coated electrode 2 is firmly coated on the piezoelectric film 1.

【0022】[0022]

【実施例】以下に、本発明の圧電素子の作成および評価
の実施例を示す。以下の実施例において、作成した圧電
素子については、次の特性を評価した。
EXAMPLES Examples of preparation and evaluation of the piezoelectric element of the present invention will be described below. In the following examples, the following characteristics were evaluated for the created piezoelectric elements.

【0023】圧電特性:以下の方法で静水圧圧電ひずみ
定数(dh 定数)を測定して求めた。耐圧容器に入れた
シリコン油中に試料を浸漬し、容器に窒素ガス源から圧
力P(ニュートン(N)/m2 )を加えながら試料の電
荷量Q(クーロン(C))を測定する。そして、ゲージ
圧2kg/cm2 近辺での圧力上昇dPに対する電荷の
増加量dQを得、下式で計算した。
The piezoelectric properties: was determined by measuring the hydrostatic piezoelectric constant (d h constant) in the following manner. The sample is immersed in silicon oil placed in a pressure-resistant container, and the charge Q (Coulomb (C)) of the sample is measured while applying a pressure P (Newton (N) / m 2 ) from a nitrogen gas source to the container. Then, the charge increase dQ with respect to the pressure rise dP near the gauge pressure of 2 kg / cm 2 was obtained, and was calculated by the following equation.

【0024】dh =(dQ/dP)/A 単位は、C/Nである。ここで、Aは電極面積(m2
である。
D h = (dQ / dP) / A The unit is C / N. Here, A is the electrode area (m 2 )
It is.

【0025】可撓性:図4に示すように試料を間隔4c
mの二支点で支え、支点の中心で試料に5mm/分の速
度で荷重Wを加えて2mmたわませるのに要した1cm
幅当たりの荷重値を求め、たわみ荷重(g/cm)とし
た。
Flexibility: As shown in FIG.
1cm required to apply a load W to the sample at a speed of 5 mm / min at the center of the fulcrum and to bend it by 2 mm.
The load value per width was determined and defined as the deflection load (g / cm).

【0026】電極剥離強度:厚さ35μmの銅箔にエポ
キシ系接着剤(アラルダイトAW106(樹脂):HV
953U(硬化剤)=1:1、日本チバガイギー
(株))を塗布して、圧電素子の電極形成面と張り合わ
せ、90℃、100kg重/cm2 の圧力で20分間プ
レスした。続いて、この張り合せ試料に対しJIS C
−6481に準拠して50mm/分の速度で90度剥離
試験を行なった。なお、この電極剥離強度は、電極にリ
ード線を半田接続する際にまたはその後の素子の取扱い
の際などに半田周辺部で生じる電極の亀裂や剥がれなど
の不都合の度合い、即ち半田によるリード線接続性と良
好な相関を示すことが経験的に知られている。
Electrode peel strength: An epoxy-based adhesive (Araldite AW106 (resin): HV) was applied to a copper foil having a thickness of 35 μm.
953U (hardener) = 1: 1, Ciba-Geigy Japan Co., Ltd.) was applied, bonded to the electrode forming surface of the piezoelectric element, and pressed at 90 ° C. under a pressure of 100 kgf / cm 2 for 20 minutes. Subsequently, the JIS C
A 90 degree peel test was performed at a speed of 50 mm / min in accordance with -6481. The electrode peel strength is determined by the degree of inconvenience such as cracking or peeling of the electrode around the solder when a lead wire is connected to the electrode by solder or when the element is subsequently handled, that is, the lead wire connection by solder. It is empirically known to show a good correlation with sex.

【0027】なお、可撓性、電極剥離強度の試験では、
試験機として(株)東洋精機製作所製のSTROGRA
PH−R2を用いた。
In the tests for flexibility and electrode peel strength,
STROGRA manufactured by Toyo Seiki Seisaku-sho as a testing machine
PH-R2 was used.

【0028】実施例1 図2の構造の圧電素子を以下のようにして形成した。 Example 1 A piezoelectric element having the structure shown in FIG. 2 was formed as follows.

【0029】まず、VDF/TrFE(75/25モル
比)共重合体(呉羽化学工業製)をダイス温度265℃
でシート押出しし、125℃で13時間の熱処理後、7
5MV/mの電界下、123℃での保持時間5分、昇降
時間を含めて全1時間の分極処理を行ない、厚さ500
μmのポリマー圧電体フィルム1を得た。
First, a VDF / TrFE (75/25 molar ratio) copolymer (manufactured by Kureha Chemical Industry Co., Ltd.) was heated at a die temperature of 265 ° C.
After extruding the sheet at 125 ° C. for 13 hours,
Under an electric field of 5 MV / m, a polarization treatment was performed for a total of 1 hour including a holding time of 5 minutes at 123 ° C.
A μm polymer piezoelectric film 1 was obtained.

【0030】該ポリマー圧電体フィルム1の一面を粗面
化後、厚さ20μmのポリエステル系接着剤層4を介し
て、厚さ35μmの銅箔に貼付した。
After one surface of the polymer piezoelectric film 1 was roughened, it was adhered to a 35 μm thick copper foil via a 20 μm thick polyester adhesive layer 4.

【0031】次いでこのようにして貼付したポリマー圧
電体フィルム1の他方の面を粒度♯60のアルミナ系研
磨剤で表面をサンドブラストして粗面化後、電気溶線式
溶射機(加藤メタリコン(株)製、DK式金属溶射機E
型)を用い、エアー圧力5kg/cm2 、電圧15Vの
条件で溶射を行ない厚さ約40μmの亜鉛溶射電極2を
形成して、圧電素子を得た。
Next, the other surface of the polymer piezoelectric film 1 stuck in this manner is sandblasted with an alumina abrasive having a grain size of # 60 to roughen the surface, and then an electric wire spraying machine (Kato Metallicon Co., Ltd.) Made, DK type metal spraying machine E
Using a mold, spraying was performed under the conditions of an air pressure of 5 kg / cm 2 and a voltage of 15 V to form a zinc sprayed electrode 2 having a thickness of about 40 μm, thereby obtaining a piezoelectric element.

【0032】実施例2 図1に示す構造の圧電素子を以下のようにして形成し
た。
Example 2 A piezoelectric element having the structure shown in FIG. 1 was formed as follows.

【0033】実施例1で形成したのと同様のポリマー圧
電体フィルム1の両面に、実施例1と同様の方法で亜鉛
溶射電極2を形成して、圧電素子を得た。
A zinc sprayed electrode 2 was formed on both sides of the same polymer piezoelectric film 1 as in Example 1 by the same method as in Example 1 to obtain a piezoelectric element.

【0034】この圧電素子に対して、90度剥離試験を
行なったところ、電極の剥離強度は、1.08kg/c
mであった。
When a 90 ° peel test was performed on this piezoelectric element, the peel strength of the electrode was 1.08 kg / c.
m.

【0035】比較例1 実施例1で形成したポリマー圧電体フィルム1の両面に
それぞれ厚さ0.03μmのアルミニウム蒸着膜を形成
して、圧電素子を得た。この圧電素子に対して、90度
剥離試験を行なったところ、電極の剥離強度は、0.0
3kg/cmであり、簡単に剥すことができた。
COMPARATIVE EXAMPLE 1 A 0.03 μm-thick aluminum vapor-deposited film was formed on both surfaces of the polymer piezoelectric film 1 formed in Example 1 to obtain a piezoelectric element. When a 90 degree peel test was performed on this piezoelectric element, the peel strength of the electrode was 0.0
It was 3 kg / cm and could be easily peeled off.

【0036】比較例2 実施例1で形成したポリマー圧電体フィルム1の両面に
それぞれ厚さ20μmのポリエステル系接着剤層を介し
て、厚さ35μmの銅箔を貼付して圧電素子を得た。
Comparative Example 2 A 35 μm-thick copper foil was attached to both surfaces of the polymer piezoelectric film 1 formed in Example 1 via a 20 μm-thick polyester-based adhesive layer to obtain a piezoelectric element.

【0037】 比較例3 比較例1のアルミニウムに替えて、蒸着金属を銅として
圧電素子を得た。
COMPARATIVE EXAMPLE 3 A piezoelectric element was obtained by using copper as a deposition metal instead of aluminum in Comparative Example 1.

【0038】上記各例で得た圧電素子の各電極につい
て、半田付試験を行なったところ、実施例1、2および
比較例2の亜鉛溶射電極および銅箔電極は良好な半田に
よるリード線接続性を示したが、比較例3の銅蒸着電極
は、リード線の半田接続時に半田周辺部から剥がれた
り、亀裂が入る例が見られた。
Each electrode of the piezoelectric element obtained in each of the above examples was subjected to a soldering test. As a result, the zinc sprayed electrodes and copper foil electrodes of Examples 1 and 2 and Comparative Example 2 exhibited good lead wire connectivity with good solder. However, the copper vapor-deposited electrode of Comparative Example 3 was peeled or cracked from the peripheral portion of the solder when the lead wire was connected by soldering.

【0039】次いで、上記各圧電素子について、圧電特
性(dh 定数)および可撓性(たわみ荷重)を測定した
ところ下表の結果が得られた。
[0039] Then, for each piezoelectric element, the piezoelectric properties (d h constant) and flexible (deflection load) below the results were measured was obtained.

【0040】 [0040]

【0041】[0041]

【発明の効果】上述したように、本発明によれば、ポリ
マー圧電体フィルムの少なくとも一面に溶射被覆電極を
設けることにより、従来の蒸着電極を設けた素子に優る
圧電特性(高い感度)を有し、更に半田によるリード線
接続強度および可撓性のともに良好な圧電素子が得られ
る。
As described above, according to the present invention, by providing a spray-coated electrode on at least one surface of a polymer piezoelectric film, a piezoelectric property (high sensitivity) is superior to that of a device provided with a conventional vapor deposition electrode. Furthermore, a piezoelectric element having good lead wire connection strength and flexibility by soldering can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の圧電素子の一実施例の模式断面図。FIG. 1 is a schematic sectional view of one embodiment of a piezoelectric element of the present invention.

【図2】本発明の圧電素子の他の一実施例の模式断面
図。
FIG. 2 is a schematic sectional view of another embodiment of the piezoelectric element of the present invention.

【図3】本発明の圧電素子の他の一実施例をその結線状
態とともに示す模式断面図。
FIG. 3 is a schematic cross-sectional view showing another embodiment of the piezoelectric element of the present invention together with its connection state.

【図4】実施例および比較例における圧電素子の可撓性
測定法の説明図。
FIG. 4 is an explanatory diagram of a method for measuring the flexibility of a piezoelectric element in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1:ポリマー圧電体フィルム 2:溶射被覆電極 3:対向電極 4:接着剤層 5:金属箔電極 1: Polymer piezoelectric film 2: Spray coated electrode 3: Counter electrode 4: Adhesive layer 5: Metal foil electrode

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ポリマー圧電体フィルムまたはシートの
少なくとも一面に溶射被覆電極を設けてなる可撓性圧電
素子。
1. A flexible piezoelectric element comprising a polymer piezoelectric film or sheet provided with a spray-coated electrode on at least one surface.
【請求項2】 溶射被覆電極が亜鉛からなる請求項1に
記載の素子。
2. The device according to claim 1, wherein the spray-coated electrode is made of zinc.
【請求項3】 ポリマー圧電体フィルムまたはシートの
溶射被覆電極を設けた面と逆側の面に金属箔電極を貼付
してなる請求項1または2のいずれかに記載の素子。
3. The element according to claim 1, wherein a metal foil electrode is attached to a surface of the polymer piezoelectric film or sheet opposite to the surface on which the spray-coated electrode is provided.
【請求項4】 それぞれが請求項1〜3のいずれかに記
載の構造を有する二枚の可撓性圧電素子をそれらの溶射
被覆電極を有する面が外側になるように互いに積層貼付
してなる積層圧電素子。
The two sheets of flexible piezoelectric element surface having their spray coated electrode is formed by laminating stuck together so that the outside with a 4. A structure according to any one each of claims 1 to 3 Multilayer piezoelectric element.
JP35666891A 1991-08-09 1991-12-26 Flexible piezoelectric element Expired - Fee Related JP3121416B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19920113422 EP0528279B1 (en) 1991-08-09 1992-08-06 Flexible piezoelectric device
US07/925,279 US5288551A (en) 1991-08-09 1992-08-06 Flexible piezoelectric device
DE69215599T DE69215599T2 (en) 1991-08-09 1992-08-06 Flexible piezoelectric device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7061991 1991-08-09
JP3-70619 1991-08-09

Publications (2)

Publication Number Publication Date
JPH05102548A JPH05102548A (en) 1993-04-23
JP3121416B2 true JP3121416B2 (en) 2000-12-25

Family

ID=13436807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35666891A Expired - Fee Related JP3121416B2 (en) 1991-08-09 1991-12-26 Flexible piezoelectric element

Country Status (1)

Country Link
JP (1) JP3121416B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101748858B1 (en) * 2016-02-17 2017-06-20 한국세라믹기술원 Manufacturing method of nanofiber composite film using lead-free piezoelectric ceramic
KR101890259B1 (en) * 2017-04-03 2018-08-22 한국세라믹기술원 Manufacturing method of nanofiber composite film and structural monitoring sensor having the nanofiber composite film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2290719B1 (en) * 2008-05-12 2015-08-12 Murata Manufacturing Co., Ltd. Piezoelectric element and audio equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101748858B1 (en) * 2016-02-17 2017-06-20 한국세라믹기술원 Manufacturing method of nanofiber composite film using lead-free piezoelectric ceramic
KR101890259B1 (en) * 2017-04-03 2018-08-22 한국세라믹기술원 Manufacturing method of nanofiber composite film and structural monitoring sensor having the nanofiber composite film

Also Published As

Publication number Publication date
JPH05102548A (en) 1993-04-23

Similar Documents

Publication Publication Date Title
EP0528279B1 (en) Flexible piezoelectric device
JP3093849B2 (en) Flexible laminated piezoelectric element
JP3270527B2 (en) Cylindrical or curved piezoelectric element
US5153859A (en) Laminated piezoelectric structure and process of forming the same
US20050046311A1 (en) Method of manufacturing ultrasound transducer device having acoustic backing
TWI827851B (en) Polymer composite piezoelectric body, and piezoelectric film
US20230363284A1 (en) Piezoelectric film
TW202118097A (en) Piezoelectric element
JP3105645B2 (en) Piezoelectric element and method of manufacturing the same
JP3121416B2 (en) Flexible piezoelectric element
EP4175322A1 (en) Piezoelectric element
EP3651219B1 (en) Vibration sensor and piezoelectric element
JPH0587974U (en) Multilayer piezoelectric element
JP2019062124A (en) Thermally resistive piezoelectric wire, and piezoelectric device with thermally resistive piezoelectric wire
JP3243047B2 (en) Wave receiving piezoelectric element
JPH0774407A (en) Piezoelectric high polymer film, surface wave piezoelectric element and ultrasonic transducer
WO2022190715A1 (en) Piezoelectric film
EP1648194A1 (en) Material for heat-resistant electret and heat-resistant electret
US20240260476A1 (en) Piezoelectric film and laminated piezoelectric element
JPH07240997A (en) Acoustic wave reception type piezoelectric element
CN114930556A (en) Polymer composite piezoelectric film
JPH0937394A (en) Element structure of polymer piezoelectric probe
US20240407266A1 (en) Piezoelectric element and electroacoustic transducer
JP3229471B2 (en) Piezoelectric transducer for stringed instruments
JPH06148011A (en) Piezoelectric vibration sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071020

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081020

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees