JPH05102548A - Piezoelectric device - Google Patents
Piezoelectric deviceInfo
- Publication number
- JPH05102548A JPH05102548A JP35666891A JP35666891A JPH05102548A JP H05102548 A JPH05102548 A JP H05102548A JP 35666891 A JP35666891 A JP 35666891A JP 35666891 A JP35666891 A JP 35666891A JP H05102548 A JPH05102548 A JP H05102548A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- piezoelectric
- piezoelectric element
- film
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000642 polymer Polymers 0.000 claims abstract description 44
- 229910052751 metal Inorganic materials 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 claims abstract description 19
- 239000011888 foil Substances 0.000 claims abstract description 17
- 239000007921 spray Substances 0.000 claims abstract description 16
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 8
- 239000011701 zinc Substances 0.000 claims abstract description 8
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 13
- 239000000463 material Substances 0.000 abstract description 12
- 238000005476 soldering Methods 0.000 abstract description 10
- 239000010949 copper Substances 0.000 abstract description 9
- 229910052802 copper Inorganic materials 0.000 abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 abstract description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 7
- 229910000679 solder Inorganic materials 0.000 abstract description 6
- 229910001297 Zn alloy Inorganic materials 0.000 abstract description 2
- 230000002349 favourable effect Effects 0.000 abstract 1
- 238000005507 spraying Methods 0.000 description 16
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 9
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 7
- 239000012790 adhesive layer Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 230000010287 polarization Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 238000007751 thermal spraying Methods 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical group FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 description 4
- 239000011889 copper foil Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 230000002706 hydrostatic effect Effects 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229920003319 Araldite® Polymers 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000010284 wire arc spraying Methods 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、溶射被覆電極を有する
ポリマー系圧電素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer-based piezoelectric element having a spray-coated electrode.
【0002】[0002]
【従来の技術】分極処理した弗化ビニリデン系樹脂(以
下、代表的にPVDFと称する)をはじめとするポリマ
ー圧電体は、セラミックス圧電体と比較して、(1)可
撓性が大きく、薄膜化、大面積化、長尺化が容易で任意
の形状、形態のものを作ることができる;(2)静水圧
圧電ひずみ定数dh は同等またはそれ以下であるが、誘
電率εが小さいために、dh /εで定まる静水圧電圧出
力係数(gh 定数)は極めて大となり、従って感度特性
が優れる;(3)低密度、低弾性であるため、音響イン
ピーダンス(音速×密度)が、水や生体の値に近く、従
って水や生体と素子との間での反射が少なく、効率のよ
いエネルギー伝播が可能である等の特性を有する。この
ような特性を生かして、ポリマー圧電体は、スピーカ
ー、マイクロホン、超音波探触子、ハイドロフォン、震
動計、ひずみ計、血圧計、バイモルフファン等の、一般
に電気−機械(音響)変換素子あるいは焦電変換素子と
して、広汎な用途への適用が提案され、あるいは実用化
されている。2. Description of the Related Art Polymer piezoelectric materials such as a polarized vinylidene fluoride resin (hereinafter, typically referred to as PVDF) are (1) more flexible and thinner than ceramic piezoelectric materials. It is easy to increase the area, increase the area, and increase the length, and it is possible to make any shape and form; (2) The hydrostatic piezoelectric strain constant d h is the same or less, but the permittivity ε is small. a, d h / hydrostatic voltage output coefficient determined by epsilon (g h constant) is extremely large, and the thus sensitivity characteristics are excellent; (3) low density, due to low elasticity, acoustic impedance (sound velocity × density), It has characteristics such that it is close to the values of water and living organisms, therefore there is little reflection between water and living organisms and the element, and efficient energy transmission is possible. Taking advantage of such characteristics, the polymer piezoelectric material is generally used as an electro-mechanical (acoustic) conversion element such as a speaker, a microphone, an ultrasonic probe, a hydrophone, a seismograph, a strain gauge, a sphygmomanometer, and a bimorph fan. As a pyroelectric conversion element, application to a wide range of applications has been proposed or put into practical use.
【0003】フィルム状またはシート状のポリマー圧電
体(以下、包括的に、「ポリマー圧電体フィルム」と称
する。)を素子化するに際しては、通常その両面に電極
を設ける。この際に、電極としては、ポリマー圧電体
の、配向−分極等により付与された圧電特性をも含めた
耐熱性が、100℃前後であることを考慮して、一般に
銅、アルミニウム等の蒸着電極あるいは接着剤により貼
付したこれら金属の箔電極が用いられている。しかしな
がら、これら電極には、以下に述べるようにそれぞれ問
題点がある。When a film-shaped or sheet-shaped polymer piezoelectric material (hereinafter, generically referred to as "polymer piezoelectric material film") is formed into an element, electrodes are usually provided on both surfaces thereof. At this time, the electrode is generally a vapor-deposited electrode of copper, aluminum or the like, considering that the heat resistance of the polymer piezoelectric body including the piezoelectric characteristics imparted by orientation-polarization and the like is around 100 ° C. Alternatively, foil electrodes of these metals attached with an adhesive are used. However, each of these electrodes has problems as described below.
【0004】[0004]
【発明が解決すべき課題】まず蒸着電極は、一般に設け
られる電極の厚みが0.02〜0.1μm程度と薄いこ
とに加えて、ポリマー圧電体との接着強度が十分でな
く、電極へのリード線の半田付け接続が非常に困難なこ
とである。このため、蒸着電極を設けたポリマー圧電素
子については、電気信号入出力のために複雑な電極端子
固定構造を採用する必要が生じる。First, the vapor deposition electrode is generally provided with a thin electrode thickness of about 0.02 to 0.1 μm and, in addition, the adhesive strength with the polymer piezoelectric material is not sufficient and the vapor deposition electrode does not adhere to the electrode. It is very difficult to connect the lead wires by soldering. Therefore, it is necessary to adopt a complicated electrode terminal fixing structure for inputting and outputting an electric signal for the polymer piezoelectric element provided with the vapor deposition electrode.
【0005】これに対し、金属箔電極は、一般に6〜1
00μm程度の厚さの金属箔を、ポリエステル系樹脂、
ウレタン系樹脂、エポキシ系樹脂等からなる5〜40μ
m程度の接着剤層を介して、ポリマー圧電体フィルムに
貼付され、半田付によるリード線接続の可能な電極とし
て形成される。しかし、この金属箔電極は、特にポリマ
ー圧電体フィルムの両面に設けた場合、ポリマー圧電素
子の可撓性という重要な長所を損なう欠点がある。ま
た、使用状態によっては、特に外気に触れる面では、接
着剤が劣化して、圧電素子としての耐久性が問題になる
ことがある。On the other hand, the metal foil electrode is generally 6 to 1
A metal foil with a thickness of about 00 μm is coated with polyester resin,
5-40μ made of urethane resin, epoxy resin, etc.
It is attached to a polymer piezoelectric film via an adhesive layer of about m, and is formed as an electrode capable of connecting lead wires by soldering. However, this metal foil electrode has a drawback that it impairs an important advantage of flexibility of the polymer piezoelectric element, particularly when it is provided on both surfaces of the polymer piezoelectric film. In addition, depending on the state of use, especially on the surface exposed to the outside air, the adhesive may deteriorate and the durability of the piezoelectric element may become a problem.
【0006】上述した事情に基づき、従来のポリマー圧
電素子においては、可撓性を重視する場合は複雑な端子
構造をとっても蒸着電極を採用し、他方、リード線接続
が要求される場合には可撓性を犠牲にしても金属箔電極
が採用されてきた。Based on the above-mentioned circumstances, in the conventional polymer piezoelectric element, the vapor deposition electrode is adopted even if a complicated terminal structure is adopted when importance is attached to flexibility, while it is possible when the lead wire connection is required. Metal foil electrodes have been adopted even at the expense of flexibility.
【0007】本発明の主要な目的は、可撓性を本質的に
損なうことなく半田によるリード線接続性に優れた電極
構造を有するポリマー系圧電素子を提供することにあ
る。[0007] A main object of the present invention is to provide a polymer-based piezoelectric element having an electrode structure which is excellent in lead wire connectivity by solder without essentially impairing flexibility.
【0008】[0008]
【課題を解決するための手段】本発明者等は、上述の目
的で研究を続けた結果、驚くべきことに、耐熱性に乏し
いポリマー圧電素子への適用は従来顧みられなかった溶
射による電極形成が、適切な条件設定により達成可能で
あるばかりでなく、かえってポリマー圧電素子の圧電特
性を高めること、即ち感度の向上したポリマー圧電素子
を与えることを見出して本発明に到達した。As a result of continuing the research for the above-mentioned purpose, the present inventors have surprisingly found that the formation of an electrode by thermal spraying, which has not been conventionally considered for application to a polymer piezoelectric element having poor heat resistance. However, they have reached the present invention by finding that not only can this be achieved by setting appropriate conditions, but rather that the piezoelectric characteristics of the polymer piezoelectric element be enhanced, that is, a polymer piezoelectric element with improved sensitivity can be provided.
【0009】即ち、本発明の可撓性圧電素子は、ポリマ
ー圧電体フィルムの少なくとも一面に溶射被覆電極を設
けてなることを特徴とするものである。That is, the flexible piezoelectric element of the present invention is characterized in that at least one surface of a polymer piezoelectric film is provided with a thermal spray coating electrode.
【0010】溶射被覆は、一般に溶融した金属材料を相
手方基材に向けて噴射し、表面で固化させることにより
金属被覆を形成するものであり、一般にポリマーフィル
ムの表面処理用途にはほとんど用いられていない。まし
てや、材料本来の低い耐熱性に加えて、優れた圧電特性
を発現するために分極処理を受けているポリマー圧電体
フィルムにおいて、圧電特性の向上を伴った溶射被覆が
可能であることは、本発明者等にとっても極めて意外な
ことであった。The thermal spray coating is generally a method for forming a metallic coating by spraying a molten metallic material toward a counter substrate and solidifying it on the surface. Generally, it is almost used for surface treatment of polymer films. Absent. Furthermore, in addition to the low heat resistance inherent in the material, it is possible to perform thermal spray coating with improved piezoelectric properties in polymer piezoelectric films that have undergone polarization treatment in order to exhibit excellent piezoelectric properties. It was quite surprising to the inventors.
【0011】本発明において、用いられるポリマー圧電
体としては、比較的高い耐熱性を有するシアン化ビニリ
デン−酢酸ビニル共重合体が好適に用いられるほか、優
れた圧電特性のフッ化ビニリデン系樹脂圧電体が好まし
く、なかでも圧電性発現に適したβ型結晶化のために一
軸延伸の必要なフッ化ビニリデン(VDF)単独重合体
に比べて、通常の結晶条件化でβ型結晶化の可能なVD
F系共重合体(例えば優位量のVDFと劣位量のフッ化
ビニル(VF)トリフルオロエチレン(TrFE)ある
いはテトラフルオロエチレン(TFE)との共重合体)
が好ましく、更には優位量(特に70〜80モル%)の
VDFと劣位量(特に30〜20モル%)のTrFEと
の共重合体がもっとも好ましく用いられる。As the polymer piezoelectric material used in the present invention, a vinylidene cyanide-vinyl acetate copolymer having a relatively high heat resistance is preferably used, and a vinylidene fluoride resin piezoelectric material having excellent piezoelectric characteristics is also used. In particular, compared to vinylidene fluoride (VDF) homopolymer that requires uniaxial stretching for β-type crystallization suitable for exhibiting piezoelectricity, VD capable of β-type crystallization under normal crystallization conditions.
F-based copolymer (for example, a copolymer of a predominant amount of VDF and a subordinate amount of vinyl fluoride (VF) trifluoroethylene (TrFE) or tetrafluoroethylene (TFE))
Further, a copolymer of a predominant amount (particularly 70 to 80 mol%) of VDF and a subordinate amount (particularly 30 to 20 mol%) of TrFE is most preferably used.
【0012】これらポリマー圧電体材料は、溶融押出等
により成膜後、必要に応じて一軸延伸あるいは軟化温度
以下での熱処理、軟化温度以下での電界印加により分極
処理に付される。溶射被覆前において、本発明で用いる
ポリマー圧電体フィルムは、200〜2000μm程
度、特に300〜1000μmの厚さを有することが好
ましい。フィルムの厚さが200μm未満では溶射時の
熱耐性に乏しく、フィルムの変形、圧電特性のばらつき
といった問題が発生する。また、逆に2000μmを超
えると、フィルムの可撓性が損なわれ、更に分極に高電
圧が必要となるため縁面放電が発生し分極処理が極めて
困難となる。After being formed into a film by melt extrusion or the like, these polymer piezoelectric materials are subjected to polarization treatment by uniaxial stretching or heat treatment at a softening temperature or lower, and application of an electric field at a softening temperature or lower, if necessary. Before thermal spray coating, the polymer piezoelectric film used in the present invention preferably has a thickness of about 200 to 2000 μm, particularly 300 to 1000 μm. If the thickness of the film is less than 200 μm, the heat resistance during thermal spraying is poor, and problems such as film deformation and variations in piezoelectric characteristics occur. On the other hand, when the thickness exceeds 2000 μm, the flexibility of the film is impaired, and a high voltage is required for polarization, which causes edge discharge and makes polarization extremely difficult.
【0013】本発明の可撓性圧電素子は、その最も基本
的な形態において、図1に示すように、上述したような
ポリマー圧電体フィルム1の一面に溶射被覆電極2を有
する。ポリマー圧電体フィルム1の電極2による被覆面
あるいは必要に応じてフィルム1の両面は予め粗面化し
ておくことも好ましい。In its most basic form, the flexible piezoelectric element of the present invention has, as shown in FIG. 1, a spray-coated electrode 2 on one surface of a polymer piezoelectric film 1 as described above. It is also preferable to preliminarily roughen the surface of the polymer piezoelectric film 1 covered with the electrodes 2 or both surfaces of the film 1 if necessary.
【0014】溶射電極2の材料としては、銅、アルミニ
ウム、亜鉛等が挙げられるが、なかでも、比較的低温で
の溶射が可能であり、且つ半田付性に優れた電極膜を与
える亜鉛または、亜鉛と銅等との合金が好ましく用いら
れる。溶射被覆電極2の厚さは、良好な半田付性を与
え、圧電素子の可撓性を損なわない範囲で選択できる
が、一般に10〜100μm、特に20〜50μmの範
囲で設定するのが好ましい。Examples of the material of the sprayed electrode 2 include copper, aluminum, zinc and the like. Among them, zinc which can be sprayed at a relatively low temperature and which gives an electrode film excellent in solderability, or An alloy of zinc and copper is preferably used. The thickness of the spray-coated electrode 2 can be selected within a range that provides good solderability and does not impair the flexibility of the piezoelectric element, but is generally set in the range of 10 to 100 μm, particularly preferably 20 to 50 μm.
【0015】電極2の形成に用いる溶射方法は、ポリマ
ー圧電体フィルム1の圧電特性を本質的に損なわないよ
うに、ポリマー圧電体フィルム1を過度に熱しないもの
であることが必要であり、線材アーク溶射あるいはガス
溶射(プラズマ溶射)が用いられ得る。特に、線材アー
ク溶射は、他の溶射方法に比べポリマー圧電体フィルム
1への熱負荷が少なく、好ましい実施形態であるが、そ
の場合でも溶射処理は圧電体フィルム1を必要に応じて
強制冷却された回転体上に置き、前記熱負荷を制御しな
がら行なうのが好ましい。The thermal spraying method used for forming the electrode 2 needs to be one that does not excessively heat the polymer piezoelectric film 1 so that the piezoelectric characteristics of the polymer piezoelectric film 1 are not essentially impaired. Arc spraying or gas spraying (plasma spraying) can be used. In particular, the wire arc spraying is a preferred embodiment because the thermal load on the polymer piezoelectric film 1 is smaller than that of other spraying methods, and even in that case, the thermal spraying process does not force the piezoelectric film 1 to be cooled. It is preferable to place it on a rotating body and control the heat load.
【0016】本発明の可撓性圧電素子は、その圧電素子
としての使用形態において、図1に示すように、ポリマ
ー圧電体フィルム1の溶射被覆電極2を設けた面と逆側
の面に対向電極3を有する。この対向電極3は、溶射被
覆電極2と同様な溶射被覆電極であり得るほか、半田に
よるリード線接続性がそれ程要求されない場合において
は、銅、アルミニウム等の蒸着電極であってもよい。As shown in FIG. 1, the flexible piezoelectric element of the present invention, when used as the piezoelectric element, faces the surface of the polymer piezoelectric film 1 opposite to the surface on which the thermal spray coating electrode 2 is provided. It has an electrode 3. The counter electrode 3 may be a spray-coated electrode similar to the spray-coated electrode 2, or may be a vapor-deposited electrode of copper, aluminum, or the like when lead wire connectivity by soldering is not so required.
【0017】本発明の可撓性圧電素子は、その好ましい
一形態として、図2に示すようにポリマー圧電体フィル
ム1の溶射被覆電極2形成面と逆側の面に接着剤層4を
介して金属箔電極5を貼付した構造も採用し得る。接着
剤層4は、導電性粒子を分散させた導電性の接着剤によ
り形成することもできるが、より接着強度の優れるエポ
キシ系樹脂、ウレタン系樹脂、ポリエステル系樹脂、ブ
タジエン系樹脂、プロピレン系樹脂、アクリル系樹脂等
の接着剤により5〜40μm程度の厚さの層として形成
することが好ましい。As a preferred form of the flexible piezoelectric element of the present invention, as shown in FIG. 2, an adhesive layer 4 is provided on the surface of the polymer piezoelectric film 1 opposite to the surface on which the thermal spray coating electrode 2 is formed. A structure in which the metal foil electrode 5 is attached can also be adopted. The adhesive layer 4 can also be formed by a conductive adhesive in which conductive particles are dispersed, but an epoxy resin, a urethane resin, a polyester resin, a butadiene resin, a propylene resin having more excellent adhesive strength. It is preferable to form a layer having a thickness of about 5 to 40 μm with an adhesive such as an acrylic resin.
【0018】金属箔電極5は、例えば銅、アルミニウ
ム、錫、亜鉛、金、銀、白金等の良導電性の金属の厚さ
6〜200μm、更に20〜120μm、特に20〜8
0μmの箔が好ましく用いられる。The metal foil electrode 5 has a thickness of 6 to 200 μm, more preferably 20 to 120 μm, and particularly 20 to 8 of a metal having good conductivity such as copper, aluminum, tin, zinc, gold, silver and platinum.
A foil of 0 μm is preferably used.
【0019】図2の構造の可撓性圧電素子が好ましく用
いられる理由は、上記したような金属箔電極5を使用す
る場合、逆側の面に設けた溶射被覆電極2とともに両面
で半田による良好なリード線接続性が確保されるほか、
金属箔電極5がポリマー圧電体フィルムの一面に貼付さ
れた場合には、両面に貼付された場合に比べて可撓性の
低下が著しく少ないからである。The reason why the flexible piezoelectric element having the structure shown in FIG. 2 is preferably used is that when the metal foil electrode 5 as described above is used, it is preferable to solder the both sides together with the spray-coated electrode 2 provided on the opposite surface. Secure lead wire connectivity,
This is because when the metal foil electrode 5 is attached to one surface of the polymer piezoelectric film, the flexibility is remarkably less deteriorated than when it is attached to both surfaces.
【0020】本発明の他の一つの好ましい態様に従え
ば、バイモルフ振動板として図3に示すような、積層圧
電素子が形成される。この積層圧電素子は、中心層をな
す金属箔電極5の両側に、それぞれ接着剤層4を介し
て、片面に溶射被覆電極2を形成したポリマー圧電体フ
ィルム1の一対をその溶射被覆電極2が互いに外側とな
るように貼付してなるものである。図2の例でも説明し
たように金属箔電極5が一層のみ用いられる場合には、
それによる可撓性の低下も許容できる一方において、両
側に設けた溶射被覆電極2により半田による良好なリー
ド線接続性は担保される。また図3の構造は、可撓性が
中心に位置する金属箔電極5を中立軸として上下対称で
あり、振動特性も対称となる利点がある。図3の構造を
得るに際して、金属箔電極5の両面にまずポリマー圧電
体フィルム1を貼付し、その後両面に溶射被覆電極2を
溶射により形成することももちろん可能である。According to another preferred embodiment of the present invention, a laminated piezoelectric element as shown in FIG. 3 is formed as a bimorph diaphragm. In this laminated piezoelectric element, a pair of polymer piezoelectric films 1 each having a thermally sprayed coating electrode 2 formed on one surface thereof on both sides of a metal foil electrode 5 forming a central layer with an adhesive layer 4 interposed therebetween are provided. They are attached so that they are on the outer sides of each other. When only one layer of the metal foil electrode 5 is used as described in the example of FIG. 2,
While the decrease in flexibility due to this can be tolerated, the spray-coated electrodes 2 provided on both sides ensure good lead wire connectivity by soldering. Further, the structure of FIG. 3 is vertically symmetrical with the metal foil electrode 5 whose flexibility is located at the center as a neutral axis, and has an advantage that vibration characteristics are also symmetrical. When obtaining the structure of FIG. 3, it is of course possible to first attach the polymer piezoelectric film 1 on both surfaces of the metal foil electrode 5, and then form the thermal spray coating electrodes 2 on both surfaces by thermal spraying.
【0021】なお、図3の積層圧電素子は、上下のポリ
マー圧電体フィルム1の分極方向pを図示のように同一
方向とし、交流電源6から電圧を印加することにより、
団扇の扇風運動に似た動作を繰返す。この積層圧電素子
は、適度に可撓性があり、加えて溶射被覆電極2が圧電
体フィルム1上に強固に被覆されるのでバイモルフ振動
板として好適なものである。In the laminated piezoelectric element shown in FIG. 3, the polarization directions p of the upper and lower polymer piezoelectric films 1 are set to the same direction as shown, and a voltage is applied from the AC power source 6,
Repeats an action similar to the fan movement of a fan. This laminated piezoelectric element is suitable as a bimorph diaphragm because it has appropriate flexibility and the thermal spray coating electrode 2 is firmly coated on the piezoelectric film 1.
【0022】[0022]
【実施例】以下に、本発明の圧電素子の作成および評価
の実施例を示す。以下の実施例において、作成した圧電
素子については、次の特性を評価した。EXAMPLES Examples of preparation and evaluation of the piezoelectric element of the present invention will be shown below. The following characteristics were evaluated for the piezoelectric elements produced in the following examples.
【0023】圧電特性:以下の方法で静水圧圧電ひずみ
定数(dh 定数)を測定して求めた。耐圧容器に入れた
シリコン油中に試料を浸漬し、容器に窒素ガス源から圧
力P(ニュートン(N)/m2 )を加えながら試料の電
荷量Q(クーロン(C))を測定する。そして、ゲージ
圧2kg/cm2 近辺での圧力上昇dPに対する電荷の
増加量dQを得、下式で計算した。Piezoelectric property: Hydrostatic pressure piezoelectric strain constant (d h constant) was measured by the following method. The sample is immersed in silicon oil placed in a pressure resistant container, and the charge amount Q (Coulomb (C)) of the sample is measured while applying a pressure P (Newton (N) / m 2 ) from a nitrogen gas source to the container. Then, the increase amount dQ of the charge with respect to the pressure increase dP near the gauge pressure of 2 kg / cm 2 was obtained and calculated by the following formula.
【0024】dh =(dQ/dP)/A 単位は、C/Nである。ここで、Aは電極面積(m2 )
である。D h = (dQ / dP) / A The unit is C / N. Where A is the electrode area (m 2 )
Is.
【0025】可撓性:図4に示すように試料を間隔4c
mの二支点で支え、支点の中心で試料に5mm/分の速
度で荷重Wを加えて2mmたわませるのに要した1cm
幅当たりの荷重値を求め、たわみ荷重(g/cm)とし
た。Flexibility: Samples are spaced 4c apart as shown in FIG.
It is supported by two fulcrums of m and 1 cm required to bend the sample by 2 mm by applying a load W at a speed of 5 mm / min at the center of the fulcrum.
The load value per width was determined and used as the flexural load (g / cm).
【0026】電極剥離強度:厚さ35μmの銅箔にエポ
キシ系接着剤(アラルダイトAW106(樹脂):HV
953U(硬化剤)=1:1、日本チバガイギー
(株))を塗布して、圧電素子の電極形成面と張り合わ
せ、90℃、100kg重/cm2 の圧力で20分間プ
レスした。続いて、この張り合せ試料に対しJIS C
−6481に準拠して50mm/分の速度で90度剥離
試験を行なった。なお、この電極剥離強度は、電極にリ
ード線を半田接続する際にまたはその後の素子の取扱い
の際などに半田周辺部で生じる電極の亀裂や剥がれなど
の不都合の度合い、即ち半田によるリード線接続性と良
好な相関を示すことが経験的に知られている。Electrode peeling strength: An epoxy adhesive (Araldite AW106 (resin): HV) on a copper foil having a thickness of 35 μm
953 U (curing agent) = 1: 1, Nippon Ciba Geigy Co., Ltd. was applied, and it was attached to the electrode forming surface of the piezoelectric element, and pressed at 90 ° C. under a pressure of 100 kgf / cm 2 for 20 minutes. Subsequently, JIS C was applied to this laminated sample.
A 90-degree peel test was performed at a speed of 50 mm / min according to -6481. Note that this electrode peel strength is the degree of inconvenience such as cracking or peeling of the electrode around the solder when connecting the lead wire to the electrode by soldering or when handling the element thereafter, that is, lead wire connection by soldering. It is empirically known to show a good correlation with sex.
【0027】なお、可撓性、電極剥離強度の試験では、
試験機として(株)東洋精機製作所製のSTROGRA
PH−R2を用いた。In the test of flexibility and electrode peeling strength,
STROGRA manufactured by Toyo Seiki Co., Ltd. as a testing machine
PH-R2 was used.
【0028】実施例1 図2の構造の圧電素子を以下のようにして形成した。 Example 1 A piezoelectric element having the structure shown in FIG. 2 was formed as follows.
【0029】まず、VDF/TrFE(75/25モル
比)共重合体(呉羽化学工業製)をダイス温度265℃
でシート押出しし、125℃で13時間の熱処理後、7
5MV/mの電界下、123℃での保持時間5分、昇降
時間を含めて全1時間の分極処理を行ない、厚さ500
μmのポリマー圧電体フィルム1を得た。First, a VDF / TrFE (75/25 molar ratio) copolymer (manufactured by Kureha Chemical Industry) was used at a die temperature of 265 ° C.
Sheet extruded, and after heat treatment at 125 ℃ for 13 hours,
Under an electric field of 5 MV / m, a holding time of 5 minutes at 123 ° C. and a polarization process of 1 hour including the elevating time were performed, and a thickness of 500
A polymer piezoelectric film 1 having a thickness of μm was obtained.
【0030】該ポリマー圧電体フィルム1の一面を粗面
化後、厚さ20μmのポリエステル系接着剤層4を介し
て、厚さ35μmの銅箔に貼付した。After one surface of the polymer piezoelectric film 1 was roughened, it was attached to a copper foil having a thickness of 35 μm via a polyester adhesive layer 4 having a thickness of 20 μm.
【0031】次いでこのようにして貼付したポリマー圧
電体フィルム1の他方の面を粒度♯60のアルミナ系研
磨剤で表面をサンドブラストして粗面化後、電気溶線式
溶射機(加藤メタリコン(株)製、DK式金属溶射機E
型)を用い、エアー圧力5kg/cm2 、電圧15Vの
条件で溶射を行ない厚さ約40μmの亜鉛溶射電極2を
形成して、圧電素子を得た。Then, the other surface of the polymer piezoelectric film 1 thus adhered is sandblasted with an alumina-based abrasive having a grain size of # 60 to roughen the surface, and then an electric wire spraying machine (Kato Metallikon Co., Ltd.) is used. Made, DK type metal sprayer E
Type) to spray a zinc sprayed electrode 2 having a thickness of about 40 μm by performing spraying under the conditions of an air pressure of 5 kg / cm 2 and a voltage of 15 V to obtain a piezoelectric element.
【0032】実施例2 図1に示す構造の圧電素子を以下のようにして形成し
た。 Example 2 A piezoelectric element having the structure shown in FIG. 1 was formed as follows.
【0033】実施例1で形成したのと同様のポリマー圧
電体フィルム1の両面に、実施例1と同様の方法で亜鉛
溶射電極2を形成して、圧電素子を得た。Zinc sprayed electrodes 2 were formed on both sides of the same polymer piezoelectric film 1 as in Example 1 by the same method as in Example 1 to obtain a piezoelectric element.
【0034】この圧電素子に対して、90度剥離試験を
行なったところ、電極の剥離強度は、1.08kg/c
mであった。A 90-degree peel test was conducted on this piezoelectric element, and the peel strength of the electrode was found to be 1.08 kg / c.
It was m.
【0035】比較例1 実施例1で形成したポリマー圧電体フィルム1の両面に
それぞれ厚さ0.03μmのアルミニウム蒸着膜を形成
して、圧電素子を得た。この圧電素子に対して、90度
剥離試験を行なったところ、電極の剥離強度は、0.0
3kg/cmであり、簡単に剥すことができた。 Comparative Example 1 A piezoelectric element was obtained by forming a 0.03 μm thick aluminum vapor-deposited film on each side of the polymer piezoelectric film 1 formed in Example 1. When a 90-degree peel test was performed on this piezoelectric element, the peel strength of the electrode was 0.0.
It was 3 kg / cm and could be easily peeled off.
【0036】比較例2 実施例1で形成したポリマー圧電体フィルム1の両面に
それぞれ厚さ20μmのポリエステル系接着剤層を介し
て、厚さ35μmの銅箔を貼付して圧電素子を得た。 Comparative Example 2 A piezoelectric element was obtained by sticking a copper foil having a thickness of 35 μm on both sides of the polymer piezoelectric film 1 formed in Example 1 via a polyester adhesive layer having a thickness of 20 μm.
【0037】 比較例3 比較例1のアルミニウムに替えて、蒸着金属を銅として
圧電素子を得た。 Comparative Example 3 Instead of the aluminum used in Comparative Example 1, copper was used as the vapor-deposited metal to obtain a piezoelectric element.
【0038】上記各例で得た圧電素子の各電極につい
て、半田付試験を行なったところ、実施例1、2および
比較例2の亜鉛溶射電極および銅箔電極は良好な半田に
よるリード線接続性を示したが、比較例3の銅蒸着電極
は、リード線の半田接続時に半田周辺部から剥がれた
り、亀裂が入る例が見られた。A soldering test was conducted on each electrode of the piezoelectric element obtained in each of the above-mentioned examples. As a result, the zinc-sprayed electrodes and the copper foil electrodes of Examples 1 and 2 and Comparative Example 2 had good solder lead wire connectivity. However, the copper vapor-deposited electrode of Comparative Example 3 was found to be peeled from the solder peripheral portion or cracked when the lead wire was soldered.
【0039】次いで、上記各圧電素子について、圧電特
性(dh 定数)および可撓性(たわみ荷重)を測定した
ところ下表の結果が得られた。Next, the piezoelectric characteristics (d h constant) and the flexibility (deflection load) of each piezoelectric element were measured, and the results shown in the following table were obtained.
【0040】 [0040]
【0041】[0041]
【発明の効果】上述したように、本発明によれば、ポリ
マー圧電体フィルムの少なくとも一面に溶射被覆電極を
設けることにより、従来の蒸着電極を設けた素子に優る
圧電特性(高い感度)を有し、更に半田によるリード線
接続強度および可撓性のともに良好な圧電素子が得られ
る。As described above, according to the present invention, by providing the thermal spray coating electrode on at least one surface of the polymer piezoelectric film, the piezoelectric characteristics (high sensitivity) superior to the element provided with the conventional vapor deposition electrode can be obtained. In addition, a piezoelectric element having excellent strength and flexibility for connecting lead wires by soldering can be obtained.
【図1】本発明の圧電素子の一実施例の模式断面図。FIG. 1 is a schematic sectional view of an embodiment of a piezoelectric element of the present invention.
【図2】本発明の圧電素子の他の一実施例の模式断面
図。FIG. 2 is a schematic cross-sectional view of another embodiment of the piezoelectric element of the present invention.
【図3】本発明の圧電素子の他の一実施例をその結線状
態とともに示す模式断面図。FIG. 3 is a schematic cross-sectional view showing another embodiment of the piezoelectric element of the present invention together with the connection state thereof.
【図4】実施例および比較例における圧電素子の可撓性
測定法の説明図。FIG. 4 is an explanatory diagram of a method for measuring flexibility of a piezoelectric element in Examples and Comparative Examples.
1:ポリマー圧電体フィルム 2:溶射被覆電極 3:対向電極 4:接着剤層 5:金属箔電極 1: Polymer piezoelectric film 2: Thermal spray coating electrode 3: Counter electrode 4: Adhesive layer 5: Metal foil electrode
Claims (4)
少なくとも一面に溶射被覆電極を設けてなる可撓性圧電
素子。1. A flexible piezoelectric element comprising a polymer piezoelectric film or sheet provided with a spray-coated electrode on at least one surface thereof.
記載の素子。2. The device according to claim 1, wherein the spray-coated electrode is made of zinc.
溶射被覆電極を設けた面と逆側の面に金属箔電極を貼付
してなる請求項1または2のいずれかに記載の素子。3. The element according to claim 1, wherein a metal foil electrode is attached to a surface of the polymer piezoelectric film or sheet opposite to the surface provided with the sprayed coating electrode.
たは別構造の二枚の可撓性圧電素子をそれらの溶射被覆
電極を有する面が外側になるように互いに積層貼付して
なる積層圧電素子。4. The two flexible piezoelectric elements having the same or different structure according to any one of claims 1 to 3 are laminated and adhered to each other so that the surface having the spray-coated electrodes is on the outside. Multilayer piezoelectric element.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/925,279 US5288551A (en) | 1991-08-09 | 1992-08-06 | Flexible piezoelectric device |
DE69215599T DE69215599T2 (en) | 1991-08-09 | 1992-08-06 | Flexible piezoelectric device |
EP19920113422 EP0528279B1 (en) | 1991-08-09 | 1992-08-06 | Flexible piezoelectric device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7061991 | 1991-08-09 | ||
JP3-70619 | 1991-08-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05102548A true JPH05102548A (en) | 1993-04-23 |
JP3121416B2 JP3121416B2 (en) | 2000-12-25 |
Family
ID=13436807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35666891A Expired - Fee Related JP3121416B2 (en) | 1991-08-09 | 1991-12-26 | Flexible piezoelectric element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3121416B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009139237A1 (en) * | 2008-05-12 | 2009-11-19 | 学校法人関西大学 | Piezoelectric element and audio equipment |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101748858B1 (en) * | 2016-02-17 | 2017-06-20 | 한국세라믹기술원 | Manufacturing method of nanofiber composite film using lead-free piezoelectric ceramic |
KR101890259B1 (en) * | 2017-04-03 | 2018-08-22 | 한국세라믹기술원 | Manufacturing method of nanofiber composite film and structural monitoring sensor having the nanofiber composite film |
-
1991
- 1991-12-26 JP JP35666891A patent/JP3121416B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009139237A1 (en) * | 2008-05-12 | 2009-11-19 | 学校法人関西大学 | Piezoelectric element and audio equipment |
CN102027609A (en) * | 2008-05-12 | 2011-04-20 | 学校法人关西大学 | Piezoelectric element and audio equipment |
US8183751B2 (en) | 2008-05-12 | 2012-05-22 | A School Corporation Kansai University | Piezoelectric element and audio device |
Also Published As
Publication number | Publication date |
---|---|
JP3121416B2 (en) | 2000-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0528279B1 (en) | Flexible piezoelectric device | |
JP3093849B2 (en) | Flexible laminated piezoelectric element | |
JP3270527B2 (en) | Cylindrical or curved piezoelectric element | |
US7441321B2 (en) | Method of manufacturing ultrasound transducer device having acoustic backing | |
US5153859A (en) | Laminated piezoelectric structure and process of forming the same | |
WO2017170323A1 (en) | Piezoelectric wire and production method for same, and piezoelectric device provided with piezoelectric wire | |
JP3105645B2 (en) | Piezoelectric element and method of manufacturing the same | |
EP4175322A1 (en) | Piezoelectric element | |
JP3121416B2 (en) | Flexible piezoelectric element | |
US20240260476A1 (en) | Piezoelectric film and laminated piezoelectric element | |
EP3651219B1 (en) | Vibration sensor and piezoelectric element | |
JPH0587974U (en) | Multilayer piezoelectric element | |
JP3243047B2 (en) | Wave receiving piezoelectric element | |
McGrath et al. | Recent measurements on improved thick film piezoelectric PVDF polymer materials for hydrophone applications | |
JP3079175B2 (en) | Piezoelectric element and hydrophone using the same | |
EP1648194B1 (en) | Material for heat-resistant electret and heat-resistant electret | |
EP4093050B1 (en) | Polymer composite piezoelectric film | |
JPH0937394A (en) | Element structure of polymer piezoelectric probe | |
JP3229471B2 (en) | Piezoelectric transducer for stringed instruments | |
JP2971916B2 (en) | Method for manufacturing resin-based piezoelectric element | |
JPH01295169A (en) | Composite diaphragm and its production and piezoelectric acceleration sensor formed by using composite diaphragm | |
JP2001085757A (en) | Flexible piezoelectric element and method of manufacturing the same | |
JPS6212677B2 (en) | ||
JPS61184098A (en) | Manufacture of piezoelectric diaphragm | |
JPS61184097A (en) | Manufacture of piezoelectric diaphragm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071020 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081020 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091020 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101020 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111020 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |