JPH048475B2 - - Google Patents
Info
- Publication number
- JPH048475B2 JPH048475B2 JP63211494A JP21149488A JPH048475B2 JP H048475 B2 JPH048475 B2 JP H048475B2 JP 63211494 A JP63211494 A JP 63211494A JP 21149488 A JP21149488 A JP 21149488A JP H048475 B2 JPH048475 B2 JP H048475B2
- Authority
- JP
- Japan
- Prior art keywords
- components
- pitch
- solvent
- heat treatment
- insoluble
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10C—WORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
- C10C3/00—Working-up pitch, asphalt, bitumen
- C10C3/02—Working-up pitch, asphalt, bitumen by chemical means reaction
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/14—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
- D01F9/145—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10C—WORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
- C10C1/00—Working-up tar
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10C—WORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
- C10C1/00—Working-up tar
- C10C1/04—Working-up tar by distillation
- C10C1/16—Winning of pitch
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10C—WORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
- C10C3/00—Working-up pitch, asphalt, bitumen
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/14—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
- D01F9/32—Apparatus therefor
- D01F9/322—Apparatus therefor for manufacturing filaments from pitch
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Textile Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Working-Up Tar And Pitch (AREA)
- Inorganic Fibers (AREA)
Description
(産業上の利用分野)
本発明は、高性能炭素繊維製造用ピツチ、特に
超高性能炭素繊維製造用ピツチと汎用炭素繊維製
造用ピツチとを、一つの石炭系または石油系重質
物原料から、併産する方法に関する。 (従来の技術) 従来から、炭素繊維は、一般にその機械的強度
の面から、高性能炭素繊維と汎用炭素繊維に大別
されている。すなわち、一般に、強度200〜350
Kg/mm2、弾性率10〜40ton/mm2程度のものが高性
能炭素繊維といわれ、例えばロケツトや航空機等
の特殊な材料、ゴルフクラブ、テニスラケツトあ
るいは釣竿等の用途に供されている。また、強度
70〜140Kg/mm2、弾性率3〜10ton/mm2程度の物が
汎用炭素繊維といわれ、例えば断熱材、帯電防止
材、摺動材、フイルター類あるいはパツキング類
等の用途に供されている。 しかし、近年、高性能炭素繊維についてはその
用途の拡大あるいはその用途面の技術の高度化に
併い、機械的強度の一層の向上が望まれ、例えば
強度300〜600Kg/mm2というような超高性能炭素繊
維というべきものが望まれるようになつた。ま
た、汎用炭素繊維についても、その性能に応じた
種々の用途が存在し、より一層低廉に製造するこ
とが望まれている。 従つて、一つの安価な原料、例えば石炭系ある
いは石油系重質物から、高性能炭素繊維、特に超
高性能炭素繊維を製造し、高性能炭素繊維の製造
に利用できなかつた該原料の画分を利用して簡単
な操作で汎用炭素繊維を併産できるようなプロセ
スがあれば、該プロセスは高性能炭素繊維の提供
と汎用炭素繊維の製造コストの低減ということの
みならず、高性能炭素繊維の製造コストの低減に
も役立ち、工業的炭素繊維の製製造に非常に有意
義である。しかしながら、かかるプロセスは未だ
提案されていない。 上記のような高性能炭素繊維と汎用炭素繊維を
併産し得るプロセスが未だ提案されていないの
は、高性能炭素繊維製造用ピツチと汎用炭素繊維
製造用ピツチとで必要とする性質が全く異なるこ
とによるところが大きいと考えられる。高性能炭
素繊維製造用ピツチは、それを常温付近の温度で
偏光顕微鏡下に観察したとき、光学的異方性を示
すものであり、一方汎用炭素繊維製造用ピツチ
は、この光学的異方性のものを全く含んでいない
光学的等方性ピツチである。 そして、この光学的異方性部分は、重質油等を
加熱処理する際に、熱分解や熱重合等の反応によ
り、芳香族分子がある程度の広がりを持つた縮合
芳香族環平面分子となり、それが積層し、配向し
たものであり、この配向によつて光学的に異方性
であるという性質が発現されるものである。ま
た、この縮合芳香族環平面分子の配向し易いとい
う性質が、ピツチから炭素繊維を製造する上で非
常に大きな意味を持つている。すなわち、光学的
異方性ピツチを紡糸し、繊維とする際、紡糸ノズ
ルを通過する時の応力によつて縮合芳香族環平面
分子が容易に繊維軸方向に配向され、この配向は
該ピツチ繊維を炭素繊維とするために不融化し、
炭化もしくは黒鉛化した後も保持され、そしてこ
の配向が保持されているが故に光学的異方性ピツ
チから得られた炭素繊維が高強度、高弾性率を示
し得るのである。従つて、高強度、高弾性率の高
性能ピツチ系炭素繊維を製造しようとする場合、
光学的異方性ピツチを原料として用いる必要があ
り、紡糸性の良い光学的異方性ピツチを如何に製
造するかということが重要である。 一方、この光学的異方性部分は、配向性のない
光学的等方性部分とは、その粘度、比重等の性質
が異なつている場合が多く、例えば等方性部分の
中に少量の異方性部分が混存している様なピツチ
の場合、等方性部分が紡糸に適した粘度となる様
な温度で加熱溶融しても、異方性部分の粘土がま
だかなり高いままであるため、安定した紡糸困難
となる。従つて、光学的等方性ピツチから汎用炭
素繊維を製造しようとする場合、その光学的等方
性ピツチ中に光学的異方性部分が存在しない様に
する必要があり、光学的異方性部分を如何に生成
させない様にするかということが重要となる。 この様に、高性能炭素繊維製造用ピツチと汎用
炭素繊維製造用ピツチとでは、共に紡糸用ピツチ
であるという点では共通するとはいえ、光学的異
方性部分を生成させるか生成させてはならないか
という点でその開発方向は全く逆であり、そのた
め一つのプロセスの中でこの両者を併産するとい
う様なプロセスの開発が従来行なわれなかつつた
のであろうと考えられる。 (解決しようとする課題) 本発明は、上記のごとき炭素繊維分野の状況に
鑑み、石炭系あるいは石油系重質物から、高性能
炭素繊維製造用ピツチ、特に超高性能炭素繊維製
造用ピツチを製造し得ると共に、高性能炭素繊維
製造用ピツチの製造に利用されなかつた該重質物
の残余の画分を利用して汎用炭素繊維製造用ピツ
チを併産し得るプロセスの提供を目的とするもの
である。本発明で得られる高性能炭素繊維製造用
ピツチは、常温付近の温度で偏光顕微鏡下に観察
したとき実質的に光学的に異方性を示し、かつ紡
糸性が良好であるものであり、通常の溶融紡糸、
不融化、炭化もしくは黒鉛化処理によつて高強
度、高弾性率の高性能炭素繊維を与えるものであ
り、一方本発明で得られる汎用炭素繊維製造用ピ
ツチは、常温付近の温度で偏光顕微鏡下に観察し
たとき実質的に光学的に等方性を示し、通常の溶
融紡糸、不融化、炭化によつて良質の汎用炭素繊
維を与えるものである。 また、本発明は、本発明者らが上記のごとき炭
素繊維分野の状況に対応すべく種々検討した結
果、上記のごときプロセスの提供に想到し、さら
に検討を進めたところ、本発明者らが先に提案し
た特開昭62−270685号記載のような高性能炭素繊
維製造用ピツチの製法、すなわち精製された石炭
系あるいは石油系重質物を一定の条件で加熱処理
し、その加熱処理物に一定量の芳香族系炭化水素
溶剤またはそれと同等の溶解性を持つ溶剤を加
え、生成する不溶性成分を分離回収し、該不溶性
成分を水素供与性溶媒の存在下に加熱処理して水
素化し、得られた水素化ピツチを加熱処理して光
学的に異方性を示すピツチを得るという製法にお
いて、上記原料重質物の加熱処理物に一定量の芳
香族系炭化水素溶剤等を加えた際に得られる不溶
性成分を分離回収した後の残余の可溶性成分か
ら、容易に汎用炭素繊維を製造し得ることを見出
して完成されたものである。 (課題を解決するための手段) 従つて、本発明の要旨は、石炭系重質油、石油
系重質油もしくはそれらを蒸留、熱処理または水
素化処理して得られる重質成分であつて、単環の
芳香族系炭化水素溶剤に不溶の成分を実質的に含
有しないか、該不溶の成分が実質的に除去された
ものを原料とし、該原料を管式加熱炉において、
加圧下に温度400〜600℃で連続的に加熱処理し、
実質的にキノリン不溶分を含まず、キシレン不溶
分を3〜30重量%含む加熱処理物を得る第1工程
と; 第1工程で得られた加熱処理物に単環の芳香族
系炭化水素溶剤またはそれと同等の溶解性を持つ
溶剤を該加熱処理物に対して1〜5重量倍量加
え、生成する不溶性成分と可溶成分の溶剤溶液と
を連続的に分離する第2工程と; 第2工程で分離された不溶性成分である高分子
量歴青物を水素供与性溶媒の存在下に加熱処理し
て水素化する第3工程によつて; 第3工程から水素化処理混合物を、第2工程か
ら可溶性成分の溶剤溶液をそれぞれ得、該第3工
程で得られた水素化処理混合物を処理して、高性
能炭素繊維製造用の実質的に光学的異方性のピツ
チとなし、一方該第2工程で得られた可溶性成分
の溶剤溶液を処理して、汎用炭素繊維製造用の実
質的に光学的等方性のピツチとなして、高性能炭
素繊維製造用ピツチおよび汎用炭素繊維製造用ピ
ツチを製造することを特徴とする高性能炭素繊維
製造用ピツチと汎用炭素繊維製造用ピツチの併産
方法に存する。 この本発明に係る高性能炭素繊維製造用ピツチ
と汎用炭素繊維製造用ピツチの併産方法は、種々
の実施態様にて行ない得て、その一つの実施態様
は次の態様である。 すなわち、石炭系重質油、石油系重質油もしく
はそれらを蒸留、熱処理または水素化処理して得
られる重質成分であつて、単環の芳香族系炭化水
素溶剤に不溶の成分を実質的に含有しないか、該
不溶の成分が実質的に除去されたものを原料と
し、該原料を管式加熱炉において加圧下に温度
400〜600℃で連続的に加熱処理し、実質的にキノ
リン不溶分を含まず、キシレン不溶分を3〜30重
量%含む加熱処理物を得る第1工程と; 第1工程で得られた加熱処理物に単環の芳香族
系炭化水素溶剤またはそれと同等の溶解性を持つ
溶剤を該加熱処理物に対して1〜5重量倍量加
え、生成する不溶性成分と可溶性成分の溶剤溶液
とを連続的に分離する第2工程と; 第2工程で分離された不溶性成分である高分子
量歴青物を水素供与性溶媒の存在下に加熱処理し
て水素化する第3工程と; 第3工程で得られた水素化処理混合物から水素
供与性溶媒および軽質成分の一部を除去し、実質
的に光学的等方性の水素化ピツチを得る第4工程
と; 第4工程で得られた実質的に光学的等方性の水
素化ピツチを加熱処理して実質的に光学的異方性
のピツチとなし、それを高性能炭素繊維製造用ピ
ツチとして取得する第5工程と; 上記第2工程で分離された可溶性成分の溶剤溶
液から単環の芳香族系炭化水素溶剤またはそれと
同等の溶解性を持つ溶剤を除去し、可溶性成分を
得る第6工程と; 第6工程で得られた可溶性成分から軽質成分を
除去し、可溶性ピツチを得る第7工程と; 第7工程で得られた可溶性ピツチを加熱処理し
て実質的に光学的等方性の熱処理ピツチとなし、
それを汎用炭素繊維製造用ピツチとして取得する
第8工程によつて; 高性能炭素繊維製造用ピツチおよび汎用炭素繊
維製造用ピツチを製造する態様であある。以下説
明の便のため、この実施態様を基準として引用し
つつ本発明の方法をさらに詳しく説明する。 本発明の実施に当たり、原料として用いる石炭
系重質油としては、コールタール、コールタール
ピツチ、石炭液化油等があげられ、石油系重質油
としては、ナフサ分解において副生する分解残油
(ナフサタール)、ガスオイル分解において副生す
る分解残油(パイロリシスタール)、石油留分の
流動接触分解において副生する分解残油(デカン
ト油)等があげられる。また、これらの重質油に
蒸留、熱処理または水素化処理等の操作を加えて
得られるもの、あるいはこれらの混合物をも原料
として使用することができる(以下本発明で原料
として用いられる上記各種のものを総称して“重
質油等”と言う。)。 原料として用いられる重質油等の若干の例につ
いて物性例を示せば第1表のとおりである。
超高性能炭素繊維製造用ピツチと汎用炭素繊維製
造用ピツチとを、一つの石炭系または石油系重質
物原料から、併産する方法に関する。 (従来の技術) 従来から、炭素繊維は、一般にその機械的強度
の面から、高性能炭素繊維と汎用炭素繊維に大別
されている。すなわち、一般に、強度200〜350
Kg/mm2、弾性率10〜40ton/mm2程度のものが高性
能炭素繊維といわれ、例えばロケツトや航空機等
の特殊な材料、ゴルフクラブ、テニスラケツトあ
るいは釣竿等の用途に供されている。また、強度
70〜140Kg/mm2、弾性率3〜10ton/mm2程度の物が
汎用炭素繊維といわれ、例えば断熱材、帯電防止
材、摺動材、フイルター類あるいはパツキング類
等の用途に供されている。 しかし、近年、高性能炭素繊維についてはその
用途の拡大あるいはその用途面の技術の高度化に
併い、機械的強度の一層の向上が望まれ、例えば
強度300〜600Kg/mm2というような超高性能炭素繊
維というべきものが望まれるようになつた。ま
た、汎用炭素繊維についても、その性能に応じた
種々の用途が存在し、より一層低廉に製造するこ
とが望まれている。 従つて、一つの安価な原料、例えば石炭系ある
いは石油系重質物から、高性能炭素繊維、特に超
高性能炭素繊維を製造し、高性能炭素繊維の製造
に利用できなかつた該原料の画分を利用して簡単
な操作で汎用炭素繊維を併産できるようなプロセ
スがあれば、該プロセスは高性能炭素繊維の提供
と汎用炭素繊維の製造コストの低減ということの
みならず、高性能炭素繊維の製造コストの低減に
も役立ち、工業的炭素繊維の製製造に非常に有意
義である。しかしながら、かかるプロセスは未だ
提案されていない。 上記のような高性能炭素繊維と汎用炭素繊維を
併産し得るプロセスが未だ提案されていないの
は、高性能炭素繊維製造用ピツチと汎用炭素繊維
製造用ピツチとで必要とする性質が全く異なるこ
とによるところが大きいと考えられる。高性能炭
素繊維製造用ピツチは、それを常温付近の温度で
偏光顕微鏡下に観察したとき、光学的異方性を示
すものであり、一方汎用炭素繊維製造用ピツチ
は、この光学的異方性のものを全く含んでいない
光学的等方性ピツチである。 そして、この光学的異方性部分は、重質油等を
加熱処理する際に、熱分解や熱重合等の反応によ
り、芳香族分子がある程度の広がりを持つた縮合
芳香族環平面分子となり、それが積層し、配向し
たものであり、この配向によつて光学的に異方性
であるという性質が発現されるものである。ま
た、この縮合芳香族環平面分子の配向し易いとい
う性質が、ピツチから炭素繊維を製造する上で非
常に大きな意味を持つている。すなわち、光学的
異方性ピツチを紡糸し、繊維とする際、紡糸ノズ
ルを通過する時の応力によつて縮合芳香族環平面
分子が容易に繊維軸方向に配向され、この配向は
該ピツチ繊維を炭素繊維とするために不融化し、
炭化もしくは黒鉛化した後も保持され、そしてこ
の配向が保持されているが故に光学的異方性ピツ
チから得られた炭素繊維が高強度、高弾性率を示
し得るのである。従つて、高強度、高弾性率の高
性能ピツチ系炭素繊維を製造しようとする場合、
光学的異方性ピツチを原料として用いる必要があ
り、紡糸性の良い光学的異方性ピツチを如何に製
造するかということが重要である。 一方、この光学的異方性部分は、配向性のない
光学的等方性部分とは、その粘度、比重等の性質
が異なつている場合が多く、例えば等方性部分の
中に少量の異方性部分が混存している様なピツチ
の場合、等方性部分が紡糸に適した粘度となる様
な温度で加熱溶融しても、異方性部分の粘土がま
だかなり高いままであるため、安定した紡糸困難
となる。従つて、光学的等方性ピツチから汎用炭
素繊維を製造しようとする場合、その光学的等方
性ピツチ中に光学的異方性部分が存在しない様に
する必要があり、光学的異方性部分を如何に生成
させない様にするかということが重要となる。 この様に、高性能炭素繊維製造用ピツチと汎用
炭素繊維製造用ピツチとでは、共に紡糸用ピツチ
であるという点では共通するとはいえ、光学的異
方性部分を生成させるか生成させてはならないか
という点でその開発方向は全く逆であり、そのた
め一つのプロセスの中でこの両者を併産するとい
う様なプロセスの開発が従来行なわれなかつつた
のであろうと考えられる。 (解決しようとする課題) 本発明は、上記のごとき炭素繊維分野の状況に
鑑み、石炭系あるいは石油系重質物から、高性能
炭素繊維製造用ピツチ、特に超高性能炭素繊維製
造用ピツチを製造し得ると共に、高性能炭素繊維
製造用ピツチの製造に利用されなかつた該重質物
の残余の画分を利用して汎用炭素繊維製造用ピツ
チを併産し得るプロセスの提供を目的とするもの
である。本発明で得られる高性能炭素繊維製造用
ピツチは、常温付近の温度で偏光顕微鏡下に観察
したとき実質的に光学的に異方性を示し、かつ紡
糸性が良好であるものであり、通常の溶融紡糸、
不融化、炭化もしくは黒鉛化処理によつて高強
度、高弾性率の高性能炭素繊維を与えるものであ
り、一方本発明で得られる汎用炭素繊維製造用ピ
ツチは、常温付近の温度で偏光顕微鏡下に観察し
たとき実質的に光学的に等方性を示し、通常の溶
融紡糸、不融化、炭化によつて良質の汎用炭素繊
維を与えるものである。 また、本発明は、本発明者らが上記のごとき炭
素繊維分野の状況に対応すべく種々検討した結
果、上記のごときプロセスの提供に想到し、さら
に検討を進めたところ、本発明者らが先に提案し
た特開昭62−270685号記載のような高性能炭素繊
維製造用ピツチの製法、すなわち精製された石炭
系あるいは石油系重質物を一定の条件で加熱処理
し、その加熱処理物に一定量の芳香族系炭化水素
溶剤またはそれと同等の溶解性を持つ溶剤を加
え、生成する不溶性成分を分離回収し、該不溶性
成分を水素供与性溶媒の存在下に加熱処理して水
素化し、得られた水素化ピツチを加熱処理して光
学的に異方性を示すピツチを得るという製法にお
いて、上記原料重質物の加熱処理物に一定量の芳
香族系炭化水素溶剤等を加えた際に得られる不溶
性成分を分離回収した後の残余の可溶性成分か
ら、容易に汎用炭素繊維を製造し得ることを見出
して完成されたものである。 (課題を解決するための手段) 従つて、本発明の要旨は、石炭系重質油、石油
系重質油もしくはそれらを蒸留、熱処理または水
素化処理して得られる重質成分であつて、単環の
芳香族系炭化水素溶剤に不溶の成分を実質的に含
有しないか、該不溶の成分が実質的に除去された
ものを原料とし、該原料を管式加熱炉において、
加圧下に温度400〜600℃で連続的に加熱処理し、
実質的にキノリン不溶分を含まず、キシレン不溶
分を3〜30重量%含む加熱処理物を得る第1工程
と; 第1工程で得られた加熱処理物に単環の芳香族
系炭化水素溶剤またはそれと同等の溶解性を持つ
溶剤を該加熱処理物に対して1〜5重量倍量加
え、生成する不溶性成分と可溶成分の溶剤溶液と
を連続的に分離する第2工程と; 第2工程で分離された不溶性成分である高分子
量歴青物を水素供与性溶媒の存在下に加熱処理し
て水素化する第3工程によつて; 第3工程から水素化処理混合物を、第2工程か
ら可溶性成分の溶剤溶液をそれぞれ得、該第3工
程で得られた水素化処理混合物を処理して、高性
能炭素繊維製造用の実質的に光学的異方性のピツ
チとなし、一方該第2工程で得られた可溶性成分
の溶剤溶液を処理して、汎用炭素繊維製造用の実
質的に光学的等方性のピツチとなして、高性能炭
素繊維製造用ピツチおよび汎用炭素繊維製造用ピ
ツチを製造することを特徴とする高性能炭素繊維
製造用ピツチと汎用炭素繊維製造用ピツチの併産
方法に存する。 この本発明に係る高性能炭素繊維製造用ピツチ
と汎用炭素繊維製造用ピツチの併産方法は、種々
の実施態様にて行ない得て、その一つの実施態様
は次の態様である。 すなわち、石炭系重質油、石油系重質油もしく
はそれらを蒸留、熱処理または水素化処理して得
られる重質成分であつて、単環の芳香族系炭化水
素溶剤に不溶の成分を実質的に含有しないか、該
不溶の成分が実質的に除去されたものを原料と
し、該原料を管式加熱炉において加圧下に温度
400〜600℃で連続的に加熱処理し、実質的にキノ
リン不溶分を含まず、キシレン不溶分を3〜30重
量%含む加熱処理物を得る第1工程と; 第1工程で得られた加熱処理物に単環の芳香族
系炭化水素溶剤またはそれと同等の溶解性を持つ
溶剤を該加熱処理物に対して1〜5重量倍量加
え、生成する不溶性成分と可溶性成分の溶剤溶液
とを連続的に分離する第2工程と; 第2工程で分離された不溶性成分である高分子
量歴青物を水素供与性溶媒の存在下に加熱処理し
て水素化する第3工程と; 第3工程で得られた水素化処理混合物から水素
供与性溶媒および軽質成分の一部を除去し、実質
的に光学的等方性の水素化ピツチを得る第4工程
と; 第4工程で得られた実質的に光学的等方性の水
素化ピツチを加熱処理して実質的に光学的異方性
のピツチとなし、それを高性能炭素繊維製造用ピ
ツチとして取得する第5工程と; 上記第2工程で分離された可溶性成分の溶剤溶
液から単環の芳香族系炭化水素溶剤またはそれと
同等の溶解性を持つ溶剤を除去し、可溶性成分を
得る第6工程と; 第6工程で得られた可溶性成分から軽質成分を
除去し、可溶性ピツチを得る第7工程と; 第7工程で得られた可溶性ピツチを加熱処理し
て実質的に光学的等方性の熱処理ピツチとなし、
それを汎用炭素繊維製造用ピツチとして取得する
第8工程によつて; 高性能炭素繊維製造用ピツチおよび汎用炭素繊
維製造用ピツチを製造する態様であある。以下説
明の便のため、この実施態様を基準として引用し
つつ本発明の方法をさらに詳しく説明する。 本発明の実施に当たり、原料として用いる石炭
系重質油としては、コールタール、コールタール
ピツチ、石炭液化油等があげられ、石油系重質油
としては、ナフサ分解において副生する分解残油
(ナフサタール)、ガスオイル分解において副生す
る分解残油(パイロリシスタール)、石油留分の
流動接触分解において副生する分解残油(デカン
ト油)等があげられる。また、これらの重質油に
蒸留、熱処理または水素化処理等の操作を加えて
得られるもの、あるいはこれらの混合物をも原料
として使用することができる(以下本発明で原料
として用いられる上記各種のものを総称して“重
質油等”と言う。)。 原料として用いられる重質油等の若干の例につ
いて物性例を示せば第1表のとおりである。
【表】
また、本発明において、第1工程の管式加熱炉
における加熱処理に供される重質油等は、単環の
芳香族系炭化水素溶剤に不溶の成分を実質的に含
有しないか、該不溶の成分が実質的に除去された
ものであることを要する。ここで、単環の芳香族
系炭化水素溶剤に不溶の成分を実質的に含有しな
いものとは、当該重質油等をそれに対して1〜5
重量倍量の単環の芳香族系炭化水素溶剤に混合し
たときに不溶な成分を実質的に生成しないものを
意味し、また該不溶の成分が実質的に除去された
ものとは、当該重質油等をそれに対して1〜5重
量倍量の単環の芳香族系炭化水素溶剤またはそれ
と同等の溶解性を持つ溶剤に混合し、生成した不
溶の成分を実質的に除去したものを意味する。す
なわち、上記原料重質油等には、それが生成した
由来、経歴によつて、1〜5重量倍量の単環の芳
香族系炭化水素溶剤と混合したときに不溶の成分
を実質的に生成しないものもあれば、該不溶の成
分を生成するものもあつて、該不溶の成分を生成
しないような原料重質油等はそのまま第1工程に
供することができるが、該不溶の成分を生成する
ものは、あらかじめ、該不溶の成分を実質的に除
去してから第1工程に供する必要がある。 この第1工程に供する重質油等に関してさらに
具体的に説明する。上記で言う単環の芳香族系炭
化水素溶剤としては、本発明の第2工程で用いら
れる単環の芳香族系炭化水素溶剤も同様である
が、ベンゼン、トルエン、キシレン、エチルベン
ゼン等があげられ、これらの混合物であつても良
い。これらは必ずしも純品である必要はなく、実
質的にこれからなるものであつても良い。また、
原料重質油等からの不溶性成分の除去に用いられ
る溶剤は、第2工程において第1工程から得られ
た加熱処理物を不溶性成分と可溶性成分の溶剤溶
液とに分離する際に用いられる溶剤も同様である
が、必しもベンゼン、トルエン、キシレン、エチ
ルベンゼン等でなくても良く、n−ヘキサン、n
−ヘプタン、アセトン、メチルエチルケトン、メ
タノール、エタノール、灯油、軽油、ナフサ等に
代表される様な溶解性の低い貧溶剤と、キノリ
ン、ピリジン、タール軽油、洗浄油、カルボニル
油、アントラセン油、もしくは重質油を蒸留して
得られる芳香族系の軽質油等に代表される様な溶
解性の高い良溶剤とを適当な比率で混合して上記
ベンゼン、トルエン、キシレン、エチルベンゼン
等と同等の溶解性を持つ溶剤としたものを用いる
こともできる。しかし、溶剤の回収工程を簡略化
するためにはベンゼン、トルエン、キシレン、エ
チルベンゼン等の様にできるだけ単純な組成の溶
剤を用いることが好ましい。上記貧溶剤と良溶剤
の組み合わせによる溶剤もその溶解性がベンゼ
ン、トルエン、キシレン、エチルベンゼンと同等
であるという点においてベンゼン、トルエン、キ
シレン、エチルベンゼン等の単環の芳香族系炭化
水素溶剤の均等物とみなしうる。以下本発明の明
細書においては単環の芳香族系炭化水素溶剤を、
上記組み合わせ溶剤も含めて、単にBTX溶剤と
略称する。 本発明の第1工程の管式加熱炉における加熱処
理に供する原料は、上記の様に該原料に対して1
〜5重量倍量のBTX溶剤に混合したときに不溶
な成分を実質的に生成しないものである必要があ
る。コールタールを例にとつて説明すると、コー
ルタールを石炭を高温で乾留する際に副生する重
質油であるため、一般にフリーカーボンと呼ばれ
る非常に微細なすす状炭素を含んでいる。このフ
リーカーボンは重質油等を加熱処理する際に光学
的異方性組織の発達を阻害することが知られてお
り、また、本来キノリンに不溶な固体であるため
紡糸ピツチ中に存在すると紡糸時の糸切れの原因
となる。また、コールタールはBTX溶剤に不溶
な高分子量成分を含んでおり、これは加熱処理の
際に容易にキノリン不溶分となる。また、このコ
ールタール中のBTX溶剤不溶分は、コールター
ルの製造条件等によつてその量、質ともに変わる
ものであり、本来コールタールは炭素繊維製造用
の素原料とするべく調整されたものはないので、
その中のBTX溶剤不溶分をそのまま抽出して紡
糸ピツチの前駆物質として用いるとコールタール
の性状変動が得られる紡糸ピツチの性状さらには
炭素繊維の特性にまで影響することになる。従つ
て原料の重質油等からフリーカーボンやBTX溶
剤に不溶な成分をあらかじめ除去しておくこと
は、第1工程の管式加熱炉における加熱に際し、
コークス状固形物の生成による管の閉塞を防ぐ上
で重要であるばかりでなく、最終的に得られる紡
糸ピツチ中のキノリン不溶分を減少させ安定した
性状の紡糸ピツチを製造する上で重要である。 上記の原料の重質油等からのBTX溶剤による
不溶分の除去は、もし原料の重質油等がBTX溶
剤に不溶性の成分を含んでいないか、もしくはほ
とんど含んでいない場合には省略することができ
る。例えば、ナフサタールのごとき石油系重質油
は一般にBTX溶剤にすぺて可溶性の成分からな
るので、かかる石油系重質油の場合、また石炭系
の重質油であつても何らかの理由によつてそれが
BTX溶剤に不溶の成分を含んでいないか、また
はほとんど含んでいない場合には、上記の精製処
理を省略することができる。上記の場合、精製工
程を省略できるとは言うものの、より均質な高品
位の光学的異方性の紡糸用ピツチを得ようとする
場合には、原料の重質油等をああらかじめ加熱処
理し、BTX溶剤に不溶な成分を原料に対して10
重量%以下生成させこれを分離除去することは好
ましいことである。この加熱処理の方法は、オー
トクレーブによる加熱処理の様なバツチ式でも、
管式加熱炉による加熱処理の様な連続式でも良い
が、BTX溶剤により不溶分として除去される量
が多くなりすぎると、最終的に得られる光学的異
方性ピツチの収率低下をまねくため効率が悪くな
る。 不溶分の分離に用いられるBTX溶剤の量は、
処理しようとする重質油等の量に対して1〜5重
量倍量が適当である。溶剤量が少ないと、混合液
の粘度が高くなり不溶分の分離効率が悪くなる。
逆に、溶剤量を多くすると処理量の増大をまねき
不経済である。通常BTX溶剤の使用量は重質油
等に対して1〜3重量倍量が好ましい。また、重
質油等にBTX溶剤を1〜5重量倍量加えた時に
生成する不溶分量と、性状のパラメーターとして
の溶剤不溶分量を測定する際の様に数十重量倍量
以上の多量に溶剤を加えた時に生成する不溶分量
とは必ずしも同じではなく、溶剤量が少ない時に
は生成する不溶分量も少なくなる。従つて、溶剤
量を1〜5重量倍量として不溶分を生成させこれ
を除去して得られる精製重質成分を、数十重量倍
量以上の溶剤を用いて分析すると少量の不溶分が
検出されることがある。しかしこの不溶分の存在
は、本発明方法の実施には支障がない。 不溶分の分離方法は遠心分離あるいは濾過等任
意の方法で良いが、フリーカーボン、触媒、不純
物等の微細な固形物を含むものの場合には、それ
ら固形物を完全に除去することが必要であるた
め、濾過の方法を採用することが好ましい。この
様にして不溶分を除去した清澄液からBTX溶剤
を蒸留除去して精製重質成分が得られる。 本発明の第一工程に供せられる重質油等に要求
される別の望ましい性状は、沸点が200〜350℃に
ある軽質成分を10〜70重量%、好ましくは20〜60
重量%含み、かつ100℃における粘土が1000セン
チストークス以下であるということである。
BTX溶剤に不溶の成分を含まないものであつて
も、沸点350℃以下の軽質成分をまつたく含まな
いものの場合、その溶融温度が著しく高くなるた
め、第1工程にその原料を送入するためのポンプ
等の設備を高温にしなければならないという不都
合を生じるうえ、軽質成分が存在しない状態で加
熱処理した場合には熱重合速度が速くなり、好ま
しくないコークス状固形物を生成しやすくなる。
軽質成分の存在が熱重合速度に影響するというこ
とは、特開昭59−82417号、米国特許第4522701号
にも説明されている様に、すでに知られているこ
とである。一般に入手可能なコールタール、ナフ
サタール、パイロリシスタールおよびデカント油
はこの特性を満足するものであるが、これら重質
油に蒸留、熱処理または水素化処理等の操作を加
えたものを用いる場合には、上記特性の範囲から
大きく逸脱しない重質成分を得ることが望まれ
る。しかし、BTX溶剤に不溶の成分はまつたく
含まないが上記特性の範囲からはずれたものの場
合には沸点範囲が200〜350℃の間にある芳香族系
油で希釈して用いることもできる。また、重質油
等が200℃以下の軽質成分を多量に含むものであ
る場合には、第1工程の管式加熱炉での加熱処理
における蒸気圧が高くなり、不利である。 さて、本発明の第1工程は、上記の様なBTX
溶剤に不溶な成分を実質的に含有しないか、また
は該不溶な成分が実質的に除去された重質油等、
あるいは重質油等をあらかじめ熱処理して該重質
油等に対して10重量%以下のBTX溶剤に不溶な
成分を生成させ、それをBTX溶剤で処理して不
溶な成分を除去したもの等(以下これらを総称し
て“精製重質成分”と言う。)を、管式加熱炉に
おいて加熱処理し、実質的にキノリン不溶分を含
まず、キシレン不溶分を3〜30重量%含む加熱処
理物を得る工程である。 この第1工程の加熱処理は加圧下に温度400〜
600℃で実施される。このとき、管式加熱炉の出
口において温度400〜600℃、圧力1〜100Kg/cm2
Gの範囲とすることが好ましく、また温度450〜
550℃、圧力2〜50Kg/cm2Gの範囲とすることが
特に好ましい。また、この加熱処理の際には、沸
点範囲が200〜350℃の間にあり、かつ管式加熱炉
における加熱処理に際し実質的にBTX溶剤に不
溶な成分を生成しない芳香族系油を共存させるこ
とが好ましい。ここで言う芳香族系油とは、原料
として用いる重質油等を蒸留して得られる沸点範
囲が200〜350℃の間にあるものであり、例えばコ
ールタールの240〜280℃の留分である洗浄油(吸
収油とも言う。)、280〜350℃の留分であるアント
ラセン油あるいは石油系重質油の上記沸点範囲の
芳香族系油等である。かかる芳香族系油を共存さ
せることにより、管式加熱炉内での過度の熱重合
を防ぎ精製重質成分に十分な熱分解を起こさせる
だけの滞留時間を与えることができると同時に、
コークス生成による管の閉塞を防ぐことができ
る。従つて、共存させる芳香族系油自体が管式加
熱炉で著しく熱重合する様なものは、かえつて管
の閉塞を促進すことになるため不都合であり、沸
点の高い成分を多量に含むものは不適当である。
また、沸点が200℃より低い成分を多量に含むも
のは、管式加熱炉でこれを液状に保つための圧力
が著しく高くなり不利である。芳香族系油を共存
させるには、当該工程の加熱処理原料の精製重質
成分の調製に当つて、該精製重質成分が芳香族系
油を含有するよう調製しても良いし、該精製重質
成分に芳香族系油を加熱処理に際して添加しても
良い。また、芳香族系油の共存させる量は、加熱
処理原料の精製重質成分中の芳香族系油含有量が
10〜70重量%となる様な量が適当であるが、加熱
処理に際して加熱処理原料の精製重質成分に芳香
族系油を添加する様な場合には、その添加量は、
通常該精製重質成分に対して1重量倍量以下で良
い。また、加熱処理に際して芳香族系油を添加す
る場合、その芳香族系油は、加熱処理原料の精製
重質成分を得た原料の重質油等と同種の原料重質
油等から得たものを用いることが、プロセスの経
済性上好ましいことは言うまでもない。 第1工程における加熱処理の温度、滞留時間等
の条件は、得られる加熱処理物中のキシレン不溶
分が3〜30重量%となる様に、かつキノリン不溶
分が実質的に生成しない様に選択すべきであり、
一般的に言つて、加熱処理の温度が低すぎるかま
たは滞留時間が短すぎるとBTX溶剤に不溶な成
分の生成量が少なく効率が悪いばかりでなく、得
られるBTX溶剤不溶性成分の分子量が低すぎる
ため、後の工程の水素化後の加熱処理において熱
重合反応による重質化のための処理条件を厳しく
する必要が生じ、そのためかえつて得られる光学
的異方性ピツチ中のキノリン不溶分量がやや増加
する様である。逆に温度が高すぎるかまたは滞留
時間が長すぎると、過度の熱重合が起こりキノリ
ン不溶分が生成するばかりでなく、コークスの生
成による管の閉塞をまねく。温度400〜600℃にお
ける滞留時間は通常10〜2000secが適当であり、
好ましくは30〜1000secである。さらに重要なこ
とは、この第1工程の加熱処理で生成するBTX
溶剤不溶分が実質的にキノリン不溶分を含まない
ことに加え、その後の工程の水素化処理で用いる
水素供与性溶媒に不溶の成分を多量に含有しない
様な条件を選択すべきであるということである。
その量は水素供与性溶媒の種類によつて変わるの
で定量的に限定することはできないが、第1工程
で生成した加熱処理物からBTX溶剤不溶分を取
り出し、これを水素供与性溶媒の必要量に混合溶
解した後、80〜100℃で一昼夜静置したときに不
溶物の沈澱分離が見られない様であれば十分であ
る。不溶性沈澱物が多量に生成する様な場合に
は、水素化処理を連続的に実施しようとすると、
ポンプおよび配管の閉塞等により運転不能とな
る。前期静置によつて沈降しない様な微細な不溶
物の場合には水素化処理によつてそれが可溶性に
改質されるうえ、溶媒自体が水素を放出し溶解力
を増すので問題とはならない。この様なコントロ
ールは第1工程の加熱処理原料としてBTX溶剤
に不溶な成分を実質的に含まない精製重質成分を
用いることによつて初めて可能となる。 また、加熱処理の圧力が低すぎる場合、精製重
質成分または芳香族系油中の軽質成分が気化し、
気液の分離が起こり、液相部が著しく重合し易く
なりキノリン不溶分の生成と管の閉塞が起こり易
くなる。従つて、圧力は高い方が好ましいと言え
るが、圧力を100Kg/cm2G以上とすることは、装
置の建設費が高くなり経済的ではない。必要とさ
れる圧力は加熱処理される精製重質成分または芳
香族系油を実質的に液相に保つに足りる圧力であ
ればよい。 この第1工程における加熱処理は、最終的に得
られる光学的異方性ピツチの特性、ひいては炭素
繊維の特性にまで影響を及ぼす。また、この加熱
処理は一般に用いられているオートクレーブの様
なバツチ式の加圧加熱処理設備では到底実施でき
ないものである。なぜなら、バツチ式設備におい
て10〜2000secという短い滞留時間をコントロー
ルすることは不可能であるため、時間単位の長い
滞留時間を持たせるように処理温度を低くせざる
を得ない。この様な条件でBTX溶剤に不溶な成
分が十分な量生成するまで加熱処理すると、キノ
リンに不溶なコークス状固形物が多量に生成する
ことを本発明者らは経験している。十分に熱分解
反応を起させ、かつ過度の熱重合を防ぐためには
この第1工程の加熱処理を本発明の方法による管
式加熱炉を用い、特定された条件下で実施する必
要がある。 上記のようなことを考慮して、この第1工程に
おける加熱処理条件が選択されるが、その条件が
適当であるかどうかの判断をする一つの基準とし
て、得られる加熱処理物中のキノリン不溶分を測
定する方法がある。得られる加熱処理物中のキノ
リン不溶分が1重量%以上となる様な条件は、す
でに管式加熱炉において過度の熱重合が起こつて
いることを示しており、管の閉塞を予想させるも
のである。また、この様な厳しい条件で処理して
得た加熱処理物を用いる場合にはその後の工程の
どこかで、生成した高重合物を分離除去すること
が不可欠となる。逆に、加熱処理物中のキノリン
不溶分が1重量%以下である場合には、その後の
工程でこれを除去しなくても良い。 加熱処理物中のキノリン不溶分量に関して、上
記の様な厳密なコントロールと評価が可能となつ
たのは、この第1工程の加熱処理を管式加熱炉で
実施することに加え、原料としてキシレン不溶分
を含まないかもしくはこれを除去したものを用い
ることによるものである。 また、管式加熱炉の直後にソーキングドラムを
設置して加熱処理の滞留時間を調整する方法が知
られており、本発明の方法においてもこのソーキ
ングドラムを必要に応じて設置することができ
る。しかし、ソーキングドラムでの滞留時間を非
常に長くしなければならない様な温度等の条件を
選択すると、バツチ式処理の場合と同様にキノリ
ン不溶分生成の問題が発生するので好ましくな
い。従つて、必要に応じてソーキングドラムを設
置する場合であつても、管式加熱炉における前記
要件を十分に考慮しておく必要がある。 この第1工程の管式加熱炉で加熱処理を受けた
加熱処理物は、加熱処理において生成した分解ガ
スを除いただけで次の第2工程に供することもで
きるし、蒸留もしくはフラツシユ蒸留に付して加
熱処理において生成した分解ガスおよび軽質成分
の一部を除去して熱分解重質油となしてから次の
第2工程に供することもできる。第2工程で用い
られるBTX溶剤の回収を容易にすることを考慮
すれば、加熱処理物から少なくともBTX溶剤の
沸点以下の沸点の軽質成分を除去してから第2工
程に供することが望ましい。この第1工程の加熱
処理物の蒸留ないしフラツシユ蒸留は、通常0〜
3Kg/cm2Aの圧力下に200〜350℃の温度で実施さ
れる。また、管式加熱炉における加熱処理に際し
前記の様に芳香族系油が共存された場合にはその
芳香族系油をこのとき同時に分離除去しても良
い。 第1工程の管式加熱炉で得られた加熱処理物を
蒸留またはフラツシユ蒸留する場合、その条件と
して、得られる熱分解重質油が、沸点200〜350℃
(常圧換算)の間にある軽質成分を10〜70重量%、
好ましくは20〜60重量%含み、100℃における粘
度が1000センチストークス以下となる様な条件を
選択する事が望ましい。また、この加熱処理物の
蒸留またはフラツシユ蒸留を行う場合、得られた
沸点350℃以下の軽質成分を、さらに沸点範囲が
200〜350℃の間にある留分とそれ以下の沸点範囲
の留分に分ける操作を同時に行つても良い。ここ
で得られる沸点範囲が200〜350℃の間にある留分
は、第1工程の管式加熱炉において芳香族系油を
希釈油として用いる場合には、そのまま該第1工
程の希釈油として用いることができる。 次の第2工程は、第1工程で得られた加熱処理
物あるいはそれから軽質成分の一部を除去して得
た熱分解重質油にBTX溶剤を加え、生成する不
溶性成分と可溶性成分の溶剤溶液とを分離する工
程である。ここでは、BTX溶剤を加えようとす
る加熱処理物あるいは熱分解重質油が、該溶剤の
沸点以下の温度で十分流動性のある液状であるこ
とが望まれる。なぜなら、この加熱処理物あるい
は熱分解重質油が溶剤の沸点以上の温度で固体も
しくは著しく粘土の高いものである場合には、そ
れをBTX溶剤に溶解するための特別な設備、例
えば加圧加熱溶解設備の様なものが必要となり、
また常温付近での温度でこれを混合溶解しようと
すると、混合溶解のための時間が著しく長くなり
効率が悪いからである。また、軟化点の高いピツ
チをBTX溶剤に溶解する様な場合、ピツチをあ
らかじめ細かく粉砕しておくという方法が実験室
的にはよく採用されるが、かかる方法も、ピツチ
自体が付着性を持つため、ピツチを微粉砕しよう
とするとその粉砕時に発生する熱、粉砕の力等に
よつてピツチの微粉末がかなり強固に固まつてし
まうという現象があり、工業的に実施することは
かなり困難である。 この加熱処理物あるいは熱分解重質油が溶剤の
沸点以下の温度で十分流動性のある液状である場
合には、溶剤への溶解が短時間で終了するため、
この加熱処理物あるいは熱分解重質油を100℃程
度にしておき、この配管にBTX溶剤を送入する
ことでも十分混合溶解が可能であり、また必要に
応じて簡単な溶解槽の様な設備を設置するだけで
十分である。第1工程の加熱処理で得られる加熱
処理物あるいは上記した望まれる諸条件を満たす
様に該加熱処理物を蒸留もしくはフラツシユ蒸留
して取得された熱分解重質油は、一般に溶剤の沸
点以下の温度で十分流動性のある液状となる。 従つて、第2工程における溶剤処理の条件は、
通常、常温から用いる溶剤の沸点までの温度で、
かつ当該加熱処理物あるいは熱分解重質油が十分
に流動性を持つに足りる温度で、常圧〜2Kg/cm2
G程度の圧力下に、可溶性成分が溶解するに十分
な時間撹拌するのが適当であり、また、当該加熱
処理物あるいは熱分解重質油のみを加熱してお
き、これに常温近辺の溶剤を加えることも可能で
ある。 第2工程で用いるBTX溶剤の量は処理すべき
加熱処理物あるいは熱分解重質油に対し1〜5重
量倍量、好ましくは1〜3重量倍量が適当であ
る。この範囲が好ましい理由は、原料の精製にお
ける場合と同様であり、下限は不溶性成分の分離
効率から、また上限は処理操作の経済性から規定
されるものである。しかし、第2工程で使用する
溶剤量を変化させた場合、加熱処理物あるいは熱
分解重質油と溶剤の混合液中で不溶性成分として
析出するものの量は必ずしも同じではなく、溶剤
量が少ない場合、不溶性成分として析出するもの
の量は少なくなり、比較的分子量の大きいものの
みが不溶性成分として析出することになる。 また、この第2工程でBTX溶剤よりも溶解性
の著しく低い貧溶剤を用いた場合には得られる不
溶性成分の中に重質化しにくい低分子量成分が多
量に含まれることになり均質な紡糸用ピツチを得
ることが困難になる。逆にBTX溶剤よりも著し
く溶解性の高い良溶剤を用いると、得られる不溶
性成分の収率が低下するばかりでなく、可溶性成
分中に高分子量の成分が含まれることになり、か
かる高分子量の成分が含まれた可溶性成分を後記
する様に第1工程に循環して加熱処理すると、そ
の際にキノリン不溶分等の好ましくない成分が副
生成することになるので望ましくない。 不溶性成分と可溶性成分の溶剤溶液の分離の方
法は沈降分離、液体はサイクロン、遠心分離ある
いはろ過等任意の分離方法で良いが、連続運転が
可能な分離方法を選択する事が好ましいことは言
うまでもない。また、分離、回収した不溶性成分
を繰り返しBTX溶剤で洗浄しても良い。本発明
の方法の場合、特に洗浄工程を取り入れなくくて
も、十分目的とする高性能炭素繊維製造用の光学
的異方性ピツチとなり得る不溶性成分すなわち高
分子量歴青物は得られるが、重質化の遅い成分を
極力除去するために2回以内の洗浄をすることは
好ましいことである。不溶性成分の分離または回
収の条件は、用いる溶剤の沸点以下の温度が好ま
しく、通常、常温近辺の温度で十分である。ま
た、原料の精製に用いられる溶剤とこの第2工程
で用いられる溶剤の組合せは特に限定されるもの
ではないが、同一の溶剤を用いることがより好ま
しい。 この第2工程で得られる不溶性成分すなわち高
分子量歴青物は、通常、キノリン不溶分が1重量
%以下、キシレン不溶分が40重量%以上、好まし
くは50重量%以上であり、かつ光学的に等方性で
ある。また、この高分子量歴青物中にはBTX溶
剤に可溶な成分も一部残存しうるが、たとえ第2
工程に供されたものが、第1工程の加熱処理物を
200〜350℃の温度で蒸留またはフラツシユ蒸留し
て得た熱分解重質油であつたとしても、この高分
子量歴青物中に残存するBTX溶剤に可溶な成分
は該加熱処理物の蒸留またはフラツシユ蒸留の条
件に対応する沸点近辺の比較的沸点の低い成分を
含む重質油であり、従つて、その大半は例えば減
圧蒸留、熱処理等によつて容易に除去されるもの
である。上記した第1工程の加熱処理物の蒸留ま
たはフラツシユ蒸留の条件を逸脱して350℃以上
の高温で加熱処理物を蒸留して高軟化点ピツチと
したものからBTX溶剤不溶分を得た場合には、
洗浄が不十分であつたために残存する可溶性成分
はすでに高温で蒸留して除去されなかつた高沸点
のものであるため、それを後の処理で除去するの
は容易ではなく、従つて、洗浄を十分に行う必要
があり不経済とならざるを得ない。 また、この第2工程で得られる高分子量歴青物
は、その中のキシレン不溶分がほぼ100重量%近
くになるまで洗浄した場合には、メトラー法で測
定される軟化点が350℃以上となり、軟化点の測
定が不能となるが、キシレン不溶分が60〜80重量
%である場合には、150〜300℃程度の軟化点を示
す。これらの高分子量歴青物は、たとえ400℃未
満の温度で短時間加熱融解してその後冷却しても
その組織はやはり光学的に等方性であり、光学的
に異方性を示す様な高性能炭素繊維製造用の紡糸
ピツチとはならない。 その次の第3工程は、第2工程で分離された不
溶性成分である高分子量歴青物を水素供与性溶媒
の存在下に加熱処理して水素化する工程である。
この第2工程で得られた高分子量歴青物はそのま
ま触媒を用いて、水素ガス加圧下に水素化するこ
とは困難であるため、水素供与性溶媒の存在下に
加熱処理して水素化する必要がある。また第2工
程で得られる高分子量歴青物が使用したBTX溶
剤を含んだままのものである場合はこれを除去す
ることが望ましいが、その方法は、常圧下または
減圧下における単なる加熱蒸発あるいは蒸留等の
手段で良く、またその除去の時期も特に限定され
るものではなく、例えば水素供与性溶媒と混合す
る前でも良く、あるいは溶剤を含んだままのペー
スト状の不溶性成分をそのまま水素供与性溶媒に
混合した後にBTX溶剤を選択的に除去すること
もできる。 また、この第3工程の水素供与性溶媒を用いる
高分子量歴青物の水素化処理は、例えば特開昭58
−196292号、特開昭58−214531号、特開昭58−
18421号等に示されている様な公知の方法を用い
ることができるが、触媒を用いるとその触媒を分
離する工程が必要となるので、無触媒下での処理
が経済的で望ましい。また、用いる水素供与性溶
媒としては、テトラヒドロキノリン、テトラリ
ン、ジヒドロナフタリン、ジヒドロアントラセ
ン、水添した洗浄油、水添したアントラセン油、
ナフサタールまたはバイロリシスタールの軽質分
を部分水添したもの等があげられるが、水素供与
性溶媒の選択に当たつては、第2工程で得られる
高分子量歴青物に対する溶解性を十分に考慮する
ことが望ましく、高分子量歴青物に対する溶解性
を考えると、テトラヒドロキノリン、水添した洗
浄油、水添したアントラセン油が好適である。 また、水素化の方法は、オートクレーブの様な
バツチ式で自生圧下に行うこともできるが、バツ
チ式の場合、大型化するにしたがつてその温度コ
ントロールが難しくなると同時に、容器内外の温
度差が大きくなることなどの理由から、水素化処
理時にコークス状の固形物が生成し易くなる。こ
の固形物を水素化後にろ過等の方法により除去す
るのは容易ではないので、水素化処理時に固形物
を生成しない方法が好ましい。その好ましい方法
の一つは、高分子量歴青物を水素供与性溶媒の1
〜5重量倍量の存在下に、管式加熱炉において温
度350〜500℃、好ましくは400〜460℃、圧力20〜
100Kg/cm2Gの条件下に連続的に水素化する方法
である。この方法によれば、水素化が連続的に実
施できるので効率が良いばかりではなく、コーク
ス状固形物を生成させることなく、高分子量歴青
物を水素化することができる。用いる溶媒の量は
高分子量歴青物の水素化が十分効果的であり、ま
た経済的な理由から上記の様に1〜5重量倍量と
するのが好ましい。また、この方法の場合、温度
400〜460℃における滞留時間は通常10〜120分の
範囲が好ましい。 その次の第4工程は、第3工程で得られた水素
化処理混合物から水素供与性溶媒と軽質成分の一
部を除去し、実質的に等方性の水素化ピツチを得
る工程である。 この第4工程は、通常のバツチ式または連続式
の蒸留手段で実施できるが、本発明の方法の第2
工程から得られる高分子量歴青物はBTX溶剤に
可溶な比較的沸点の低い成分を一部含んでいるの
で、水素化後の当該混合物を、フラツシユ蒸留塔
において圧力0〜3Kg/cm2A、温度300〜530℃の
条件下に連続的にフラツシユ蒸留して、溶媒と高
分子量歴青物中の低沸点成分および水素化処理に
よつて生成した軽質成分等を同時に分離除去し
て、フラツシユ蒸留塔底から水素化されたピツチ
を得る方法が好適である。この方法によれば、軟
化点(JIS環球法)が100〜200℃、キノリン不溶
分が1重量%以下、キシレン不溶分が40重量%以
上の実質的に等方性である水素化ピツチを得るこ
とができる。上記以外の方法を用いて溶媒等の除
去を実施する場合においても、水素化ピツチの性
状が上の範囲になる様にすることが望ましい。キ
ノリン不溶分については少ない方が良いが、キシ
レン不溶分についてはこれが著しく少ない場合に
は次の第5工程の加熱処理でピツチ中の光学的異
方性部分の含有量を90%以上とするための処理条
件が厳しくなりすぎるため、この加熱処理によつ
てキノリン不溶分が多量に生成することになり好
ましくない。これらの条件を満足する水素化ピツ
チの軟化点(JIS環球法)は通常100〜200℃の範
囲となる。 その次の第5工程は、第4工程で得られた水素
化ピツチを加熱処理して実質的に光学的異方性の
ピツチとなし、それを高性能炭素繊維製造用ピツ
チとして取得する工程である。 この第4工程で得られた水素化ピツチの加熱処
理は、一般に減圧下もしくは不活性ガスまたは過
熱蒸気の吹き込み下に350〜500℃の温度範囲で10
〜300分間熱処理するというすでに公知の方法を
採用することができるが、380〜480℃、時間10〜
180分とすることが好ましい。また、この加熱処
理の方法は、例えばオートクレーブ等によるバツ
チ式でもよいが、減圧下あるいは常圧下に不活性
ガス等の流通下薄膜蒸発装置、流下膜式熱処理装
置等を用いて連続的に350〜500℃の温度で加熱処
理をしても良い。 用いられる不活性ガスまたは過熱蒸気として
は、窒素、ヘリウム、アルゴン等の不活性ガス、
過熱水蒸気あるいは処理温度において不活性な低
沸点有機化合物、低沸点油等を加熱して高温の過
熱蒸気としたもの等があげられる。 この加熱処理過程でピツチの熱重合による重質
化が起こり、実質的に光学的等方性の水素化ピツ
チが、実質的に光学的異方性を示すピツチへと転
換される。本発明の方法の第2工程で得られる高
分子量歴青物は、特定の方法と条件で製造された
厳選された成分からなるものであるので、容易に
ほぼ全面光学的異方性のピツチへと転換すること
が可能であり、本第5工程の加熱処理で得られる
光学的異方性ピツチの性状は通常メトラー法軟化
点310℃以下、キノリン不溶分10重量%以下、キ
シレン不溶分90重量%以上、光学的異方性部分含
有量90%以上というものである。この様に、本発
明の方法によれば従来技術では製造できなかつた
(1)難化点が低く、(2)光学的異方性部分含有量が高
く、(3)キノリン不溶分が少なく、さらに(4)キシレ
ン可溶分が少ないという4つの特性を同時に満足
する特に均質な紡糸用ピツチを製造する事ができ
る。従つて、本発明の方法で得られる光学的異方
性ピツチは特に超高性能炭素繊維製造用のピツチ
として好適である。 上記第4工程と第5工程とは、すなわち第3工
程で得られた水素化処理混合物からの溶媒および
軽質成分の除去と水素化ピツチの加熱処理による
光学的異方性ピツチへの転換とは、必要に応じて
例えば次のような手段によつて、統合して一つの
処理帯域において、換言すれば一つの工程として
実施することができる。 すなわち、本発明者らは先に、減圧ないし常圧
下で350〜500℃の温度において、重質油またはピ
ツチを不活性ガスまたは過熱蒸気の気流中に微細
な油滴状に分散させ、該不活性ガスまたは過熱蒸
気と微細な油滴状の重質油またはピツチとを接触
させる重質油またはピツチの連続的熱処理方法を
発明し、特願昭62−152064号として特許願した
(以下この方法を分散連続熱処理法と略称する。)。
この分散連続熱処理法によれば、重質油またはピ
ツチの様な過熱処理原料が、減圧ないし常圧下で
350〜500℃の温度に保持された処理帯域に連続的
に供給され、例えば当該処理帯域に設けられた回
転している円板状回転体の上に加熱処理原料を滴
下して遠心力を利用して該加熱処理原料を飛散さ
せるという方法、重油バーナーの様にポンプ等の
圧力を利用する方法あるいはエジエクターの様に
高速で流れる流体が生じる負圧を利用する方法に
よつて、当該処理帯域中に微細な油滴として分散
され、この油滴が当該処理帯域内に供給された不
活性ガスまたは過熱蒸気と接触せしめられ、過熱
処理原料中の軽質成分は気相部に移行して不活性
ガスまたは過熱蒸気と共に処理帯域の上部から処
理系外に排出され、加熱処理原料中の重質成分は
油滴状で処理帯域の下方に落下、集合しつつ加熱
を受け、処理帯域の下部から処理系外に抜き出さ
れる。処理帯域中における液状加熱処理原料ない
しその中の重質成分の分散と集合のサイクルは、
必要に応じて複数回繰り返すことができる。さら
に、この分散連続熱処理法を実施するための装置
の一例を第1図によつて説明する。 第1図において、1は回転円板、2は逆裁頭円
錐状の集合板、3は回転軸である。また4は予熱
された重質油等を送入するためのノズル、5は予
熱された不活性ガス等を送入するためのノズル、
6は目的物であるピツチを抜き出すためのノズ
ル、7は廃ガスと蒸発した軽質成分を抜き出すた
めのノズルであり、8は回転円板を回転するため
のモーターであり、10は装置本体である。ま
た、第1図に示した設備は回転板1をボルトによ
り回転軸3に固定し、集合板2をそれぞれフラン
ジ9によつて固定する様に工夫されたものであ
り、回転円板と集合板の組合せによる段数や円板
の取り付け位置を変えられる様な構造になつてい
る。第1図の設備では予熱された重質油等ががノ
ズル4から送入される。この処理塔の最上部はフ
ラツシユゾーンになつており、ある程度の軽質成
分はここで除かれノズル7を通つて排出される。
ここで生成したピツチは最上部の集合板によつて
集められ上から2番目の回転円板上に落ちる。こ
こでピツチは円板の遠心力に依つて外周部から回
転軸と実質的に直角な方向に微細な油滴となつて
分散される。この油滴は下部ノズル5から送入さ
れる予熱された不活性ガス等の流れと接触して軽
質成分が除去される。生成したピツチは2番目の
集合板で集められ、3番目の円板上に落ち、この
円板によつて油滴状に分散される。この様な分散
と集合を繰り返しながらピツチは軽質成分の除去
と適度の熱重合を受け最下部のピツチ抜き出しノ
ズル6を通つてポンプ等により取り出される。第
1図の構造を持つ設備では、分散される油滴の運
動方向とガスの流れが実質的に直交することにな
り、また、原料の重質油等の送入ノズルと不活性
ガス等の入口ノズルが上下反対側に設けてあるの
で、ピツチの流れと不活性ガス等の流れが向流と
なる。従つて、処理の進んだピツチ程新しいガス
と接触することになり効果的である。また、不活
性ガス等は処理塔の各段に分割して送入すること
も可能である。 上記分散連続熱処理法の様な手段によれば、前
記本発明の方法の第4工程と第5工程とを一つの
処理帯域において行うことができる。すなわち、
本発明の方法の第3工程で得られた水素化処理混
合物を加熱処理原料として、それをこの分散連続
熱処理法に従つて、減圧ないし常圧下で350〜500
℃の温度において、処理帯域中で微細な油滴に分
散させて不活性ガスまたは過熱蒸気と接触せし
め、必要に応じてその処理条件下で液状の成分の
分散と集合のサイクルを複数回繰り返せば、該水
素化処理混合物中の溶媒および軽質成分等の当該
処理条件で蒸発するものは蒸発し、液相部はこれ
らの除去された重質成分(水素化ピツチ成分)と
なり、かつ該液相重質成分は熱処理を受けてさら
に重質化され、この液相重質成分は光学的に異方
性を示すピツチとなつて当該処理帯域から抜き出
される。この手段における処理温度は、上記のと
おり350〜500℃が適当であるが、好ましくは380
〜480℃である。また、この分散連続熱処理法に
よれば、処理時間(滞留時間)は、設備の構造、
処理温度等他の処理条件にもよるが、通常のバツ
チ式熱処理法に比べるとかなり短くすることがで
きるため、キノリン不溶分の様な好ましくない高
分子量成分の生成が抑えられ、極めて均質なピツ
チを得ることができる。第1図に示した様な構造
の設備のばあい、処理時間(滞留時間)は通常15
分以下である。また、用いる不活性ガスまたは過
熱蒸気としては、不活性ガスとして窒素、ヘリウ
ム、アルゴン等があげられ、不活性な過熱蒸気と
しては過熱水蒸気、処理温度において不活性な低
沸点有機化合物、低沸点油等を過熱して高温の蒸
気としたものがあげられ、その使用量は、処理に
供される水素化処理混合物の単位重量当り、処理
条件下において0.1〜10m3/Kg、好ましくは0.3〜
3.0m3/Kgの範囲から選択するのが適当である。 上記の様な分散連続熱処理手段で得られる光学
的異方性ピツチの品質は、前記第4工程および第
5工程を経て得られる光学的異方性ピツチと比べ
て優るとも劣らないものであり、高性能炭素繊維
製造用ピツチとして、特に超高性能炭素繊維製造
用ピツチとして好適なものである。従つて、炭素
繊維製造用の紡糸ピツチを製造するにあたり、こ
の分散連続熱処理手段を採用することは、上記の
とおり第4工程と第5工程とを統合することがで
き、その製造工程を簡略化することができるの
で、好ましいことである。なお、この分散連続熱
処理手段は、第4工程と第5工程を統合して実施
する場合の手段として採用し得るのみならず、前
記した様に第4工程と第5工程とを順次実施する
場合の第5工程における第4工程で得られた水素
化ピツチの加熱処理の手段としても採用し得るこ
とは言うまでもない。 さて一方、第6工程は、前記第2工程で分離さ
れた可溶性成分の溶剤溶液から溶剤を除去して可
溶性成分を得る工程である。 この第6工程は、通常の蒸留操作で行うことが
できる。また、上記可溶性成分の溶剤溶液から必
要に応じ溶剤のみならず可溶性成分中の余剰の軽
質成分を合わせて除去してもよい。後記するよう
に、得られた可溶性成分の一部を第1工程の加熱
処理へ循環して加熱処理原料として再使用するこ
とを考慮すれば、この蒸留操作は、得られる可溶
性成分の性状が沸点範囲が200〜350℃の間にある
軽質成分を10〜70重量%、好ましくは20〜60重量
%含み、かつ100℃における粘度が1000センチス
トークス以下という性状、すなわち第1工程に供
される原料の重質油等の望ましい性状と同様の性
状となる様な蒸留条件を選択することが好まし
い。また、前記した様に、第1工程で得られた加
熱処理物が、蒸留もしくはフラツシユ蒸留されて
軽質成分の一部が除去された後第2工程に供され
る場合には、該加熱処理物の蒸留もしくはフラツ
シユ蒸留の条件を適宜選択することによつて、本
第6工程では溶剤を除去するるだけで得られる可
溶性成分の性状が第1工程の加熱処理原料として
好ましいものとなる様にすることも可能である。
溶剤回収の容易さ等を考慮すれば、上記の様に第
1工程で得られた加熱処理物を選択された条件下
に蒸留もしくはフラツシユ蒸留した後に第2工程
に供し、本第6工程は溶剤の分離、回収のための
蒸留操作とすることが好ましい。 この様にして得られた可溶性成分が汎用炭素繊
維製造用ピツチを得るための原料として用いられ
るが、その際、必要に応じ、得られた可溶性成分
の一部を汎用炭素繊維製造用原料として用い、残
部を第1工程に循環して第1工程の加熱処理原料
としても良い。また、得られた可溶性成分の一部
を汎用炭素繊維製造用原料として用い、他の一部
を第1工程に循環して第1工程の加熱処理原料と
して用い、残部を副産物として本発明のプロセス
の系外に抜きだしても良く、勿論一部を汎用炭素
繊維製造用原料として使用し、残部をすべて副産
物として本発明のプロセスの系外に抜きだしても
差し支えない。 第6工程で得られた可溶性成分の一部を第1工
程に循環して第1工程の加熱処理原料とすれば、
この可溶性成分も原料精製重質成分と同様に第1
工程の管式加熱炉において加熱処理を受けてキシ
レン不溶分を生成するので、第2工程で得られる
不溶性成分の量がこの第1工程に循環された可溶
成分の量に応じて増加し、結局第5工程で得られ
る高性能炭素繊維製造用の光学的異方性ピツチの
量がその分だけ増加することになる。従つて、必
要に応じ、当該可溶性成分の汎用炭素繊維製造用
原料として使用する量と第1工程に循環する量、
さらには副産物として本発明のプロセスの系外に
抜き出す量とを調整することによつて、製造する
高性能炭素繊維製造用光学的異方性ピツチの量と
汎用炭素繊維製造用ピツチの量との比率を調整す
ることができる。この点も本発明の大きな特徴の
一つである。 ちなみに、第6工程で得られる様な可溶性成分
を第1工程の様な原料の精製重質成分の加熱処理
工程に循環し、高性能炭素繊維製造用ピツチの収
量を増加させること自体は、先に本発明者らが発
明して特願昭62−287173号として特許出願したと
ころであり、上記第6工程で得られる可溶性成分
の第1工程への循環は、この特願昭62−287173号
に従えば好適に実施できる。 その次の第7工程は、上記第6工程で得られた
可溶性成分を蒸留もしくはフラツシユ蒸留して軽
質成分を除去し、可溶性ピツチを得る工程であ
り、通常の蒸留またはフラツシユ蒸留操作を用い
ることができる。第6工程で得られる可溶性成分
は上記の様に沸点が200〜350℃の間にある軽質成
分を含んでいるため、次の加熱処理工程である第
8工程をバツチ式の設備で実施しようとする場合
には、1バツチ当りの収率を高くし、加熱処理の
効率を良くするためにこの第7工程で軽質成分を
除去しておくことが好ましい。従つて、この第7
工程の蒸留もしくはフラツシユ蒸留は、第6工程
で得られた可溶性成分中の軽質成分を除去するこ
とが目的であり、この工程で熱分解、熱重合等の
反応を伴う様な条件を選択すべきではない。通常
この第7工程の蒸留またはフラツシユ蒸留の温度
は400℃以下であり、好ましくは350℃以下であ
り、圧力は減圧下、常圧下いずれでも良い。ま
た、第6工程で得られた可溶性成分中の軽質成分
量が少ない場合にはこの第7工程を省略しても良
い。この第7工程で得られる可溶性ピツチの性状
は特に限定されるものではないが、その取り扱い
易さを考えれば軟化点(JIS環球法)が200℃以上
となる様な蒸留条件を選択することは好ましくな
い。また、この可溶性ピツチ中にはキノリン不溶
分は通常ほとんど検出されない。 その次の第8工程は、上記第7工程で得られた
可溶性ピツチを、あるいは第7工程を省略し得る
場合には第6工程で得られた可溶性成分を、加熱
処理して汎用炭素繊維製造用ピツチを得る工程で
ある。この汎用炭素繊維製造用ピツチは、一般的
に、偏光顕微鏡で観察したときに全面光学的に等
方性であり、高性能炭素繊維製造用のピツチで観
察される様な光学的異方性部分を実質的に含まな
いものであり、キノリン不溶分をも実質的に含ま
ないものが好適であるとされている。 この第8工程の加熱処理は第5工程の加熱処理
とほとんど同じ操作を採用することができ、一般
に減圧下もしくは不活性ガスまたは過熱蒸気の吹
き込み下に350〜500℃の温度範囲で10〜300分間
熱処理するというすでに公知の方法を採用するこ
とができるが、380〜480℃、時間10〜180分とす
ることが好ましい。また、この加熱処理の方法
は、例えばオートクレーブ等によるバツチ式でも
よいが、減圧下あるいは常圧下に不活性ガス等の
流通下に薄膜蒸発装置、流下膜式熱処理装置等を
用いて、あるいは前記分散連続熱処理手段によつ
て連続的に350〜500℃の温度で加熱処理をしても
良い。 用いられる不活性ガスまたは加熱蒸気として
は、窒素、ヘリウム、アルゴン等の不活性ガス、
過熱水蒸気あるいは処理温度において不活性な低
沸点有機化合物、低沸点油等を加熱して高温の過
熱蒸気としたもの等があげられる。 この第8工程の加熱処理で第7工程で得られた
可溶性ピツチの重質化が起こり汎用炭素繊維製造
に好適な等方性ピツチが得られる。この加熱処理
で注意しなければならないことは、キノリン不溶
分の様な高分子量成分もしくはコークスの様な固
形分を生成しない様な条件を選択すべきであると
いうことであり、この様な高分子量成分や固形分
を含んだピツチの場合、それを溶融紡糸して繊維
化しようとするときに、紡糸用ノズルの閉塞等の
問題が発生する。一方、これら好ましくない成分
を発生させないために、加熱処理の条件を著しく
穏和にした場合には、得られるピツチの軟化点が
低く、またピツチ中の軽質成分が十分に除去され
ていないものとなり、紡糸時に多量のガスが発生
するなどの問題が起こるうえ、これを酸化雰囲気
中で加熱して不融化することが困難になる。した
がつて、汎用炭素繊維製造用のピツチといえども
ある程度高い軟化点が必要であり、一般にはメト
ラー法軟化点が200〜300℃、好ましくは220〜280
℃である。ところで、市販されているバインダー
ピツチの様なものを単に加熱処理してこの様な高
い軟化点のピツチを得ようとすると、容易にキノ
リン不溶分やコークス状固形分が生成し、汎用炭
素繊維製造用ピツチすら製造することはできな
い。しかし、本発明の第8工程で加熱処理しよう
とする可溶性ピツチは、上記のように、本発明の
第1工程で特定の条件下に加熱処理を受けたもの
であり、さらに次の第2工程でBTX溶剤の特定
量を加えたときに生成する不溶性成分を分離、除
去したものであるため、本第8工程の加熱処理の
際にキノリン不溶分やコークス状の固形物を生成
しにくく、従つて、好ましくない軽質成分を十分
に除去することが可能となり、上記汎用炭素繊維
製造用ピツチに望まれる性状を容易に達成するこ
とができる。 また、上記第7工程の可溶性成分からの軽質成
分の蒸留またはフラツシユ蒸留による除去と、第
8工程の可溶性ピツチの加熱処理とは、前記第4
工程と第5工程の場合と同様、必要に応じて例え
ば前記分散連続熱処理法によつて、結合して一つ
の処理帯域において、換言すれば一つの工程とし
て、実施することができる。すなわち、第6工程
で得られた可溶性成分を、減圧ないし常圧下に
350〜500℃の温度において処理帯域中で、微細な
油滴に分散させて不活性ガスまたは過熱蒸気と接
触せしめ、必要に応じその処理条件下で液状の成
分の分散と集合を繰り返せば、軽質成分は蒸発し
て処理帯域から排出され、液状成分(可溶性ピツ
チ成分)は加熱処理を受けて重質化して光学的に
等方法である汎用炭素繊維製造用ピツチとなつて
当該処理帯域から抜き出される。この様に第7工
程と第8工程とを統合して一つの工程とすること
は、当該ピツチの製造工程を簡略化できるという
点で好ましいことである。 さらにまた、必要に応じて上記第6工程、第7
工程および第8工程の三工程を、例えば前記分散
連続熱処理法によつて、統合して一つの処理帯域
において一つの工程として実施することもでき
る。すなわち、第2工程で得られた可溶性成分の
溶剤溶液を、上記第7工程および第8工程を統合
して一つの工程として実施する場合と同様に、減
圧下ないし常圧下に350〜500℃の温度において処
理帯域中で、微細な油滴に分散させて不活性ガス
または過熱蒸気と接触せしめ、必要に応じその処
理条件下で液状の成分の分散と集合を繰り返せ
ば、溶剤および軽質成分が蒸発して処理帯域から
排出され、液状成分(可溶性ピツチ成分)が加熱
処理を受けて重質化して光学的に等方法である汎
用炭素繊維製造用ピツチとなつて当該処理帯域か
ら抜き出される。この場合、第2工程で得られた
可溶性成分の溶剤溶液の一部は、当該処理に供す
ることなく、第1工程に溶剤を除去した後加熱処
理原料として循環しても良いことは勿論である。 この第7工程と第8工程とを統合して、あるい
は第6工程、第7工程および第8工程の三工程を
統合して一つの工程とする具体的な手段は、第4
工程と第5工程とを統合して高性能炭素繊維製造
用光学異方性ピツチを製造する方法として前記し
たものをそのまま用いることができ、その条件も
先に示した範囲の中から汎用炭素繊維製造用ピツ
チに望まれる性状のピツチが得られる様に選択す
れば良い。従つて、第4工程と第5工程および第
7工程と第8工程あるいは第6工程、第7工程と
第8工程の三工程をそれぞれ統合するならば、場
合によつては、分散連続熱処理法の設備を一つと
して、ある時は高性能炭素繊維製造用光学的異方
性ピツチの生産を行い、またある時は汎用炭素繊
維製造用光学的等方性ピツチを生産するといつ
た、いわゆるブロツク生産をすることも可能であ
る。 高性能炭素繊維製造用ピツチと汎用炭素繊維製
造用ピツチの収率は原料として用いる精製重質成
分ならびに採用する処理条件によつてかなり異な
るものであるが、本発明で言う精製重質成分の典
型例の一つであるキシレン不溶分をあらかじめ除
去した精製コールタールを例にとつて説明する
と、第6工程で得られる可溶性成分を第1工程に
循環せず、すべて汎用炭素繊維製造用ピツチの原
料とする場合には、高性能炭素繊維製造用ピツチ
の収率は3〜15重量%程度であり、また汎用炭素
繊維製造用ピツチの収率は10〜20重量%程度であ
る。逆に、第6工程で得られる可溶性成分をすべ
て第1工程に循環して高性能炭素繊維製造用のピ
ツチとする場合には、その収率は10〜40重量%程
度となり、このときには汎用炭素繊維製造用ピツ
チは生成しないこととなる。また、第6工程で得
られる可溶性成分を、その量が第1工程に供給さ
れる原料精製重質成分に対して3重量倍量程度と
なる様に循環し、残余の可溶性成分を汎用炭素繊
維製造用ピツチの原料とする場合には、高性能炭
素繊維製造用ピツチの収率は10〜25重量%程度で
あり、また汎用炭素繊維製造用ピツチの収率は10
〜20重量%程度である。汎用炭素繊維製造用ピツ
チの収率はさらに可溶性成分を副生物として系外
に取り出すことによつて調整することができる。 上記した様に、本発明の方法においては、第6
工程で得られた可溶性成分の一部を、ないしは第
2工程で得られた可溶性成分の溶剤溶液の一部を
それから溶剤を除去した後に、第1工程に加熱処
理原料として循環すること等によつて、高性能炭
素繊維製造用ピツチと汎用炭素繊維製造用ピツチ
の生産量を調整することができるが、この両ピツ
チの生産量を調整する方法として次の様なことも
できる。 第2工程の抽出工程で得られる不溶性成分の一
部を第7工程の加熱処理工程もしくは第7工程と
第8工程が統合されてなる一つの処理帯域に供給
し、第6工程で得られる可溶性成分と同時に加熱
処理して、汎用炭素繊維製造用ピツチとすること
もできる。この場合、当然のことながら、第3工
程である水素化工程に供給される不溶性成分量が
減るため、高性能炭素繊維製造用ピツチの生産量
が減ることになる。 また、第1工程で得られる熱分解重質油の一部
を第7工程もしくは第7工程と第8工程が統合さ
れてなる一つの処理帯域に供給し、第6工程で得
られる可溶性成分と同時に加熱処理して、汎用炭
素繊維製造用ピツチとすることもできる。この場
合、第2工程である油出工程に供給される熱分解
重質油の量が減り、結果として高性能炭素繊維製
造用ピツチの生産量が減ることになる。 さらに、第1工程に供給される精製重質成分の
一部を第7工程もしくは第7工程と第8工程が統
合されてなる一つの処理帯域に供給して、第6工
程で得られる可溶性成分と同時に加熱処理して汎
用炭素繊維製造用ピツチとすることもできる。こ
の場合は、精製重質成分の使用総量を同じにし
て、第1工程へ供給する量を減すことにより、高
性能炭素繊維製造用ピツチの生産量が減少する。
第1工程へ供給する精製重質成分の量を一定にし
て、第7工程もしくは第7工程と第8工程が統合
されてなる一つの処理帯域に別の精製重質成分を
供給して、汎用炭素繊維製造用ピツチの生産量を
増加することもできる。 この様に第2工程で得られる不溶性成分、第1
工程で得られる熱分解重質油さらに第1工程に供
給される精製重質成分等の一部を、第6工程で得
られる可溶性成分と混合して、同時に処理する場
合には、汎用炭素繊維製造用ピツチとして好まし
くないキノリン不溶分が生成し易い傾向がある。
しかし、それぞれの場合につき得られた汎用炭素
繊維製造用ピツチを製造し、軟化点とキノリン不
溶分量の関係を調べると、前記、汎用炭素繊維製
造用ピツチに望まれる軟化点範囲においては、キ
ノリン不溶分を実質的に含まず、良質なピツチが
得られることが確認された。 以上の様に本発明の方法は、高性能炭素繊維製
造用ピツチと汎用炭素繊維製造用ピツチの生産比
率を種々の方法で調整することができ、極めてフ
レキシビリテイーの高い方法と言うことができ
る。 また、本発明の第5工程または第4工程と第5
工程とが統合されてなる一つの処理帯域から、高
性能炭素繊維製造用ピツチが得られるが、このと
き、目的のピツチとならなかつた副生物の中には
沸点の高い重質油が含まれている。したがつて、
この重質油を第1工程もしくは、第6工程を経由
して第1工程へ供給し、管式加熱炉において加熱
処理すればさらに重質化が進み、この成分の一部
をピツチ化することが可能である。したがつて、
本発明の方法では、原料中に含まれる重質成分を
無駄なく利用して、目的のピツチを得ることがで
き、この意味においても極めて経済的な方法であ
る。 本発明の方法の二、三の実施態様例について、
さらに第2図〜第5図によつて説明する。第2図
〜第5図において、同一の設備並びに配管につい
ては同一番号を付してある。 第2図は、いわば本発明の方法の標準的な実施
態様の概略図である。第2図の例では、原料の精
製重質成分がライン11を経て第1工程の管式加
熱炉13に送入され、必要に応じて芳香族系油が
ライン12を経て原料の精製重質成分に加えら
れ、該管式加熱炉13で400〜600℃の温度で加熱
処理されて得られる加熱処理物はライン14を経
て蒸留塔もしくはフラツシユ蒸留塔15に送入さ
れる。蒸留塔もしくはフラツシユ蒸留塔15にお
いて分離された分解ガスおよび軽質成分の一部は
ライン17を経て系外に抜き出される。蒸留塔も
しくはフラツシユ蒸留塔15の塔底液として得ら
れた熱分解重質油はライン16を経て抜き出さ
れ、BTX溶剤の沸点以下に冷却された後(冷却
手段は図示省略)第2工程の不溶性成分と可溶性
成分の分離設備19に送入される。該分離設備1
9では、ライン18を経てBTX溶剤が供給され、
上記熱分解重質油とBTX溶剤が混合され、生成
した不溶性成分と可溶性成分の溶剤溶液とが分離
され、分離された不溶性成分はライン20を経て
当該分離設備19から抜き出され、一方可溶性成
分の溶剤溶液はライン21を経て抜き出される。
ライン20を経て抜き出された不溶性成分である
高分子量歴青物は、第3工程の水素化設備23に
送入され、当該水素化設備23において、ライン
22を経て供給される水素供与性溶媒と混合され
た後、所定の条件で加熱処理され、その加熱処理
がライン24を経て第4工程の水素化ピツチを得
るための蒸留塔もしくはフラツシユ蒸留塔25に
送入される。該蒸留塔もしくはフラツシユ蒸留塔
25の塔頂から使用済みの水素供与性溶媒および
必要に応じて軽質成分がライン27を経て抜き出
され、その塔底から水素化ピツチがライン26を
経て抜き出され、第5工程の水素化ピツチの加熱
処理設備28に送入される。加熱処理設備28に
おいて、水素化ピツチが所定の条件で加熱処理を
受けて重質化し、光学的異方性ピツチとなり、ラ
イン29を経て目的の高性能炭素繊維製造用ピツ
チとして抜き出され、軽質成分はライン30を経
て抜き出される。一方、ライン21を経て抜き出
された可溶性成分の溶剤溶液は第6工程の蒸留塔
もしくはフラツシユ蒸留塔31に送入され、当該
蒸留塔31においてBTX溶剤と必要に応じて軽
質成分の一部が蒸留分離されライン33を経て抜
き出される。当該蒸留塔31の塔底から可溶性成
分がライン32を経て抜き出される。この可溶性
成分はライン35を経て第7工程である軽質成分
の分離のための蒸留塔もしくはフラツシユ蒸留塔
37に送入され、軽質成分が当該蒸留塔またはフ
ラツシユ蒸留塔37の塔頂からライン39を経て
抜き出され、塔底からは可溶性ピツチがライン3
8を経て抜き出され、第8工程の可溶性ピツチの
加熱処理設備40に送入される。この加熱処理設
備40において可溶性ピツチが所定の条件で加熱
処理されて軟化点の高い熱処理ピツチとなり、ラ
イン41を経て目的の汎用炭素繊維製造用ピツチ
として抜き出される。このとき、ライン32を経
て抜き出された可溶性成分の一部を、必要に応じ
て、ライン36を経て第1工程の管式加熱炉13
に循環しても良い。また、この可溶性成分の一部
をライン34を経て副生物として系外に抜きだし
ても良い。 第3図は、上記第2図の例において、第4工程
と第5工程とを、および第7工程と第8工程とを
それぞれ統合して一つの処理帯域において一つの
工程として行なつた例であつて、上記各工程の統
合以外の点は第2図の例の場合と同様である。す
なわち、第3工程の水素化処理設備23から抜き
出された水素化処理混合物はライン24を経て分
散連続熱処理設備44に送入される。当該分散連
続熱処理設備44にはライン43を経て不活性ガ
スまたは過熱蒸気が供給され、使用済みの水素供
与性溶媒と軽質成分および供給された不活性ガス
もしくは過熱蒸気がライン46を経て抜き出され
る。当該分散連続熱処理設備44において水素化
処理混合物は水素供与性溶媒および軽質分の除去
と熱処理を受けて光学的異方性ピツチとなり、ラ
イン45を経て目的物である高性能炭素繊維製造
用ピツチとして抜き出される。一方、第6工程の
蒸留塔もしくはフラツシユ蒸留塔31の塔底から
得られた可溶性成分はライン32およびライン3
5を経て分散連続熱処理設備48に送入される。
この分散連続熱処理設備48にも不活性ガスもし
くは過熱蒸気がライン47を経て供給され、可溶
性成分中の軽質成分はライン50を経て抜き出さ
れる。当該分散連続熱処理設備48において、可
溶性成分は軽質成分の除去と熱処理を受けて軟化
点の高いピツチとなり、ライン49を経て目的物
である汎用炭素繊維製造用ピツチとして抜き出さ
れる。この第3図の実施態様においても、第6工
程の蒸留塔もしくはフラツシユ蒸留塔31の塔底
から得られる可溶性成分の一部をライン36を経
て第1工程の管式加熱炉に循環しても良いし、ラ
イン34を経て系外に副生物として抜き出しても
良い。また、この分散連続熱処理設備44を用い
て高性能炭素繊維製造用ピツチを製造する場合に
は、上記の様にライン46から水素供与性溶媒、
軽質成分および不活性ガスもしくは過熱蒸気の混
合物が抜き出されるが、このライン46から抜き
出されるものを次の様に処理することもできる。
すなわち、該ライン46から抜き出された混合物
から非凝縮性ガス状物を除き、得られた液状物を
第1工程の管式加熱炉13の後の蒸留塔15に送
入する。ただし、この場合、該蒸留塔15は、サ
イドカツト留分を抜き出せる構造のものとする。
しかして、該蒸留塔15において、それに送入さ
れる第1工程の管式加熱炉13から得られた加熱
処理物と共に該液状物を蒸留し、該蒸留塔15の
塔頂から分解ガスおよび軽質成分を留出させ、サ
イドカツト留分として水素供与性溶媒を留出さ
せ、塔底から熱分解重質油を得ると言う様に、該
加熱処理物からの分解ガスおよび軽質成分の除去
と該液状物からの水素供与性溶媒の回収とを同時
に行なうこともできる。かかる処理は、その成否
が使用する原料の精製重質成分の種類、使用する
水素供与性溶媒の種類等に依存するが、例えば原
料の精製重質成分として精製コールタールが用い
られ、水素供与性溶媒として水添したアントラセ
ン油が用いられている場合に好適に適用すること
ができる。 第4図は、第2工程の分離設備19から不溶性
成分をBTX溶剤を含んだままのものとして採取
してライン51を経て抜き出し、これにライン2
2を経て水素供与性溶媒を加えて混合した後蒸留
塔52に送入し、当該蒸留塔52において不溶性
成分に含まれていたBTX溶剤を分離して塔頂か
らライン54を経て抜き出し、塔底からライン5
3を経て水素化原料を水素化設備23に送入する
例を示したものである。本例において、上記した
点以外は第3図の例の場合と同様であり、水素化
設備23以後の高性能炭素繊維製造用ピツチを得
るための処理は第3図の例と同様に分散連続熱処
理設備44を用いて実施されるが、この分散連続
熱処理設備に代えて第2図の例の蒸留塔もしくは
フラツシユ蒸留塔25と熱処理設備28の組合せ
を用いて実施することもできる。 さらに第5図は、第2工程の分離設備19から
ライン21を経て抜き出される可溶性成分の溶剤
溶液をライン55を経てそのまま分散連続熱処理
設備48に送入して汎用炭素繊維製造用ピツチを
得る例である。この場合、分散連続熱処理設備4
8からは、可溶性成分中の軽質成分およびライン
47を経て供給された不活性ガスもしくは過熱蒸
気とともに第2工程で用いられたBTX溶剤がラ
イン56を経て抜き出されることになる。また、
必要に応じて、分離設備19からライン21を経
て抜き出される可溶性成分の溶剤溶液の一部をラ
イン57を経て蒸留塔もしくはフラツシユ蒸留塔
31に送入してBTX溶剤および必要に応じて軽
質成分を分離し、該塔の塔底からライン32を経
て抜き出される可溶性成分をライン36を経て第
1工程の管式加熱炉13に循環しても良いし、さ
らにはこの可溶性成分の一部をライン34を経て
副生物として系外に抜き出しても良いことは勿論
である。 (発明の効果) 本発明によれば、高性能炭素繊維製造用ピツ
チ、特に超高性能炭素繊維製造用ピツチと、該高
性能炭素繊維製造用ピツチの製造に利用されなか
つた原料精製重質成分の画分、すなわち従来価値
のない副生物として取り扱われていた原料精製重
質成分の画分を用いて簡単な操作で汎用炭素繊維
製造用ピツチとを製造することができ、従つて上
記両方のピツチの製造コストを低減することがで
き、ひいては高性能炭素繊維および汎用炭素繊維
の製造コストを低減することができる。さらに、
本発明によれば、一つのプロセスの中で高性能炭
素繊維製造用ピツチと汎用炭素繊維製造用ピツチ
の生産量の割合を、状況に応じて調整することが
できるので非常に経済的である。 以下、実施例によつて本発明の方法をさらに詳
しく説明する。 実施例 1 第2表に示す性状の重質コールタール(このも
のはあらかじめ300℃で蒸留して軽質成分の一部
を除去してある。)を2重量倍量のキシレンに混
合、溶解した後、連続ろ過機により生成した不溶
性成分を分離、除去した。得られたろ液を蒸留し
たキシレンを除き第2表に示す性状の精製重質成
分を得た。このものの収率はもとの重質コールタ
ールに対して92.1wt%であつた。 この精製重質成分17.5Kg/hを、内径6mm、長
さ40mの加熱管を溶融塩浴に浸した構造を持つ管
式加熱炉において、温度470〜520℃、圧力20Kg/
cm2Gの条件下に加熱処理し、続いて塔頂温度250
℃に保持されたフラツシユ蒸留塔で常圧にて軽質
成分を分離して、熱分解重質油を得た。約100℃
に加熱した熱分解重質油1重量部にキシレン2重
量部を加え混合、溶解した後室温まで冷却した。
この混合液を連続遠心分離機(石川島播磨重工業
製ミニデカンター)で不溶性成分と可溶性成分の
溶剤溶液とを分離した。得られた不溶性成分1重
量部にさらにキシレン2重量部を加え混合した
後、加圧ろ過により不溶性成分と可溶性成分の溶
剤溶液を分離した。この不溶性成分を減圧下に加
熱してキシレンを除き不溶性成分である高分子量
歴青物を得た。また、上記2回の分離で得られた
可溶性成分の溶剤溶液を蒸留してキシレンを除去
し可溶性成分を得た。各々の成分の精製重質成分
に対する収率と、不溶性成分の性状は第3表に示
すようであつた。 次に、得られた不溶性成分1重量部を水素化ア
ントラセン油の3重量部に溶解し、この混合物を
6.5Kg/hで内径が10mm、長さ100mの加熱管を溶
融塩浴に浸した構造を持つ管式加熱炉において、
温度440℃、圧力50Kg/cm2Gの条件下に連続的に
加熱処理することにより水素化し、続いて水素化
処理混合物を常圧下、塔頂温度400℃に保持され
たフラツシユ蒸留塔に送り、使用済みの溶媒と軽
質成分を除去して水素化ピツチを得た。 次に、この水素化ピツチ100gを重合フラスコ
に入れ、450℃の塩浴中で、常圧下に、窒素を8
/minで吹き込みながら30分間熱処理して高性
能炭素繊維製造用ピツチである光学的異方性ピツ
チを得た。水素化ピツチおよび高性能炭素繊維製
造用ピツチの精製重質成分に対する収率とそれぞ
れのピツチの性状を第4表に示す。 実験番号2、3、4で得られた光学的異方性ピ
ツチを径0.25mm、長さ0.75mmのノズル孔を持つ紡
糸機にて温度340℃、巻取り速度700m/minで紡
糸し、空気中1℃/minの昇温速度で320℃まで
昇温し、この温度で20分間加熱することにより不
融化し、続いて窒素雰囲気中で1000℃にて炭化し
て炭素繊維とした。このものの特性は第5表に示
す様であつた。 また、実験番号1、3、5で得られた可溶性成
分250gを重合フラスコにいれ、430℃の塩浴中
で、常圧下に、窒素を8/min吹き込みながら
70分間熱処理して汎用炭素繊維製造用ピツチであ
る熱処理ピツチを得た。このものの精製重質成分
に対する収率と性状は第6表のようであつた。 得られた熱処理ピツチを上記と同じ紡糸機で温
度285℃、巻取り速度500m/minとして紡糸し、
上記と同じ条件で不融化および炭化して炭素繊維
を得た。このものの特性は第7表の様であつた。
における加熱処理に供される重質油等は、単環の
芳香族系炭化水素溶剤に不溶の成分を実質的に含
有しないか、該不溶の成分が実質的に除去された
ものであることを要する。ここで、単環の芳香族
系炭化水素溶剤に不溶の成分を実質的に含有しな
いものとは、当該重質油等をそれに対して1〜5
重量倍量の単環の芳香族系炭化水素溶剤に混合し
たときに不溶な成分を実質的に生成しないものを
意味し、また該不溶の成分が実質的に除去された
ものとは、当該重質油等をそれに対して1〜5重
量倍量の単環の芳香族系炭化水素溶剤またはそれ
と同等の溶解性を持つ溶剤に混合し、生成した不
溶の成分を実質的に除去したものを意味する。す
なわち、上記原料重質油等には、それが生成した
由来、経歴によつて、1〜5重量倍量の単環の芳
香族系炭化水素溶剤と混合したときに不溶の成分
を実質的に生成しないものもあれば、該不溶の成
分を生成するものもあつて、該不溶の成分を生成
しないような原料重質油等はそのまま第1工程に
供することができるが、該不溶の成分を生成する
ものは、あらかじめ、該不溶の成分を実質的に除
去してから第1工程に供する必要がある。 この第1工程に供する重質油等に関してさらに
具体的に説明する。上記で言う単環の芳香族系炭
化水素溶剤としては、本発明の第2工程で用いら
れる単環の芳香族系炭化水素溶剤も同様である
が、ベンゼン、トルエン、キシレン、エチルベン
ゼン等があげられ、これらの混合物であつても良
い。これらは必ずしも純品である必要はなく、実
質的にこれからなるものであつても良い。また、
原料重質油等からの不溶性成分の除去に用いられ
る溶剤は、第2工程において第1工程から得られ
た加熱処理物を不溶性成分と可溶性成分の溶剤溶
液とに分離する際に用いられる溶剤も同様である
が、必しもベンゼン、トルエン、キシレン、エチ
ルベンゼン等でなくても良く、n−ヘキサン、n
−ヘプタン、アセトン、メチルエチルケトン、メ
タノール、エタノール、灯油、軽油、ナフサ等に
代表される様な溶解性の低い貧溶剤と、キノリ
ン、ピリジン、タール軽油、洗浄油、カルボニル
油、アントラセン油、もしくは重質油を蒸留して
得られる芳香族系の軽質油等に代表される様な溶
解性の高い良溶剤とを適当な比率で混合して上記
ベンゼン、トルエン、キシレン、エチルベンゼン
等と同等の溶解性を持つ溶剤としたものを用いる
こともできる。しかし、溶剤の回収工程を簡略化
するためにはベンゼン、トルエン、キシレン、エ
チルベンゼン等の様にできるだけ単純な組成の溶
剤を用いることが好ましい。上記貧溶剤と良溶剤
の組み合わせによる溶剤もその溶解性がベンゼ
ン、トルエン、キシレン、エチルベンゼンと同等
であるという点においてベンゼン、トルエン、キ
シレン、エチルベンゼン等の単環の芳香族系炭化
水素溶剤の均等物とみなしうる。以下本発明の明
細書においては単環の芳香族系炭化水素溶剤を、
上記組み合わせ溶剤も含めて、単にBTX溶剤と
略称する。 本発明の第1工程の管式加熱炉における加熱処
理に供する原料は、上記の様に該原料に対して1
〜5重量倍量のBTX溶剤に混合したときに不溶
な成分を実質的に生成しないものである必要があ
る。コールタールを例にとつて説明すると、コー
ルタールを石炭を高温で乾留する際に副生する重
質油であるため、一般にフリーカーボンと呼ばれ
る非常に微細なすす状炭素を含んでいる。このフ
リーカーボンは重質油等を加熱処理する際に光学
的異方性組織の発達を阻害することが知られてお
り、また、本来キノリンに不溶な固体であるため
紡糸ピツチ中に存在すると紡糸時の糸切れの原因
となる。また、コールタールはBTX溶剤に不溶
な高分子量成分を含んでおり、これは加熱処理の
際に容易にキノリン不溶分となる。また、このコ
ールタール中のBTX溶剤不溶分は、コールター
ルの製造条件等によつてその量、質ともに変わる
ものであり、本来コールタールは炭素繊維製造用
の素原料とするべく調整されたものはないので、
その中のBTX溶剤不溶分をそのまま抽出して紡
糸ピツチの前駆物質として用いるとコールタール
の性状変動が得られる紡糸ピツチの性状さらには
炭素繊維の特性にまで影響することになる。従つ
て原料の重質油等からフリーカーボンやBTX溶
剤に不溶な成分をあらかじめ除去しておくこと
は、第1工程の管式加熱炉における加熱に際し、
コークス状固形物の生成による管の閉塞を防ぐ上
で重要であるばかりでなく、最終的に得られる紡
糸ピツチ中のキノリン不溶分を減少させ安定した
性状の紡糸ピツチを製造する上で重要である。 上記の原料の重質油等からのBTX溶剤による
不溶分の除去は、もし原料の重質油等がBTX溶
剤に不溶性の成分を含んでいないか、もしくはほ
とんど含んでいない場合には省略することができ
る。例えば、ナフサタールのごとき石油系重質油
は一般にBTX溶剤にすぺて可溶性の成分からな
るので、かかる石油系重質油の場合、また石炭系
の重質油であつても何らかの理由によつてそれが
BTX溶剤に不溶の成分を含んでいないか、また
はほとんど含んでいない場合には、上記の精製処
理を省略することができる。上記の場合、精製工
程を省略できるとは言うものの、より均質な高品
位の光学的異方性の紡糸用ピツチを得ようとする
場合には、原料の重質油等をああらかじめ加熱処
理し、BTX溶剤に不溶な成分を原料に対して10
重量%以下生成させこれを分離除去することは好
ましいことである。この加熱処理の方法は、オー
トクレーブによる加熱処理の様なバツチ式でも、
管式加熱炉による加熱処理の様な連続式でも良い
が、BTX溶剤により不溶分として除去される量
が多くなりすぎると、最終的に得られる光学的異
方性ピツチの収率低下をまねくため効率が悪くな
る。 不溶分の分離に用いられるBTX溶剤の量は、
処理しようとする重質油等の量に対して1〜5重
量倍量が適当である。溶剤量が少ないと、混合液
の粘度が高くなり不溶分の分離効率が悪くなる。
逆に、溶剤量を多くすると処理量の増大をまねき
不経済である。通常BTX溶剤の使用量は重質油
等に対して1〜3重量倍量が好ましい。また、重
質油等にBTX溶剤を1〜5重量倍量加えた時に
生成する不溶分量と、性状のパラメーターとして
の溶剤不溶分量を測定する際の様に数十重量倍量
以上の多量に溶剤を加えた時に生成する不溶分量
とは必ずしも同じではなく、溶剤量が少ない時に
は生成する不溶分量も少なくなる。従つて、溶剤
量を1〜5重量倍量として不溶分を生成させこれ
を除去して得られる精製重質成分を、数十重量倍
量以上の溶剤を用いて分析すると少量の不溶分が
検出されることがある。しかしこの不溶分の存在
は、本発明方法の実施には支障がない。 不溶分の分離方法は遠心分離あるいは濾過等任
意の方法で良いが、フリーカーボン、触媒、不純
物等の微細な固形物を含むものの場合には、それ
ら固形物を完全に除去することが必要であるた
め、濾過の方法を採用することが好ましい。この
様にして不溶分を除去した清澄液からBTX溶剤
を蒸留除去して精製重質成分が得られる。 本発明の第一工程に供せられる重質油等に要求
される別の望ましい性状は、沸点が200〜350℃に
ある軽質成分を10〜70重量%、好ましくは20〜60
重量%含み、かつ100℃における粘土が1000セン
チストークス以下であるということである。
BTX溶剤に不溶の成分を含まないものであつて
も、沸点350℃以下の軽質成分をまつたく含まな
いものの場合、その溶融温度が著しく高くなるた
め、第1工程にその原料を送入するためのポンプ
等の設備を高温にしなければならないという不都
合を生じるうえ、軽質成分が存在しない状態で加
熱処理した場合には熱重合速度が速くなり、好ま
しくないコークス状固形物を生成しやすくなる。
軽質成分の存在が熱重合速度に影響するというこ
とは、特開昭59−82417号、米国特許第4522701号
にも説明されている様に、すでに知られているこ
とである。一般に入手可能なコールタール、ナフ
サタール、パイロリシスタールおよびデカント油
はこの特性を満足するものであるが、これら重質
油に蒸留、熱処理または水素化処理等の操作を加
えたものを用いる場合には、上記特性の範囲から
大きく逸脱しない重質成分を得ることが望まれ
る。しかし、BTX溶剤に不溶の成分はまつたく
含まないが上記特性の範囲からはずれたものの場
合には沸点範囲が200〜350℃の間にある芳香族系
油で希釈して用いることもできる。また、重質油
等が200℃以下の軽質成分を多量に含むものであ
る場合には、第1工程の管式加熱炉での加熱処理
における蒸気圧が高くなり、不利である。 さて、本発明の第1工程は、上記の様なBTX
溶剤に不溶な成分を実質的に含有しないか、また
は該不溶な成分が実質的に除去された重質油等、
あるいは重質油等をあらかじめ熱処理して該重質
油等に対して10重量%以下のBTX溶剤に不溶な
成分を生成させ、それをBTX溶剤で処理して不
溶な成分を除去したもの等(以下これらを総称し
て“精製重質成分”と言う。)を、管式加熱炉に
おいて加熱処理し、実質的にキノリン不溶分を含
まず、キシレン不溶分を3〜30重量%含む加熱処
理物を得る工程である。 この第1工程の加熱処理は加圧下に温度400〜
600℃で実施される。このとき、管式加熱炉の出
口において温度400〜600℃、圧力1〜100Kg/cm2
Gの範囲とすることが好ましく、また温度450〜
550℃、圧力2〜50Kg/cm2Gの範囲とすることが
特に好ましい。また、この加熱処理の際には、沸
点範囲が200〜350℃の間にあり、かつ管式加熱炉
における加熱処理に際し実質的にBTX溶剤に不
溶な成分を生成しない芳香族系油を共存させるこ
とが好ましい。ここで言う芳香族系油とは、原料
として用いる重質油等を蒸留して得られる沸点範
囲が200〜350℃の間にあるものであり、例えばコ
ールタールの240〜280℃の留分である洗浄油(吸
収油とも言う。)、280〜350℃の留分であるアント
ラセン油あるいは石油系重質油の上記沸点範囲の
芳香族系油等である。かかる芳香族系油を共存さ
せることにより、管式加熱炉内での過度の熱重合
を防ぎ精製重質成分に十分な熱分解を起こさせる
だけの滞留時間を与えることができると同時に、
コークス生成による管の閉塞を防ぐことができ
る。従つて、共存させる芳香族系油自体が管式加
熱炉で著しく熱重合する様なものは、かえつて管
の閉塞を促進すことになるため不都合であり、沸
点の高い成分を多量に含むものは不適当である。
また、沸点が200℃より低い成分を多量に含むも
のは、管式加熱炉でこれを液状に保つための圧力
が著しく高くなり不利である。芳香族系油を共存
させるには、当該工程の加熱処理原料の精製重質
成分の調製に当つて、該精製重質成分が芳香族系
油を含有するよう調製しても良いし、該精製重質
成分に芳香族系油を加熱処理に際して添加しても
良い。また、芳香族系油の共存させる量は、加熱
処理原料の精製重質成分中の芳香族系油含有量が
10〜70重量%となる様な量が適当であるが、加熱
処理に際して加熱処理原料の精製重質成分に芳香
族系油を添加する様な場合には、その添加量は、
通常該精製重質成分に対して1重量倍量以下で良
い。また、加熱処理に際して芳香族系油を添加す
る場合、その芳香族系油は、加熱処理原料の精製
重質成分を得た原料の重質油等と同種の原料重質
油等から得たものを用いることが、プロセスの経
済性上好ましいことは言うまでもない。 第1工程における加熱処理の温度、滞留時間等
の条件は、得られる加熱処理物中のキシレン不溶
分が3〜30重量%となる様に、かつキノリン不溶
分が実質的に生成しない様に選択すべきであり、
一般的に言つて、加熱処理の温度が低すぎるかま
たは滞留時間が短すぎるとBTX溶剤に不溶な成
分の生成量が少なく効率が悪いばかりでなく、得
られるBTX溶剤不溶性成分の分子量が低すぎる
ため、後の工程の水素化後の加熱処理において熱
重合反応による重質化のための処理条件を厳しく
する必要が生じ、そのためかえつて得られる光学
的異方性ピツチ中のキノリン不溶分量がやや増加
する様である。逆に温度が高すぎるかまたは滞留
時間が長すぎると、過度の熱重合が起こりキノリ
ン不溶分が生成するばかりでなく、コークスの生
成による管の閉塞をまねく。温度400〜600℃にお
ける滞留時間は通常10〜2000secが適当であり、
好ましくは30〜1000secである。さらに重要なこ
とは、この第1工程の加熱処理で生成するBTX
溶剤不溶分が実質的にキノリン不溶分を含まない
ことに加え、その後の工程の水素化処理で用いる
水素供与性溶媒に不溶の成分を多量に含有しない
様な条件を選択すべきであるということである。
その量は水素供与性溶媒の種類によつて変わるの
で定量的に限定することはできないが、第1工程
で生成した加熱処理物からBTX溶剤不溶分を取
り出し、これを水素供与性溶媒の必要量に混合溶
解した後、80〜100℃で一昼夜静置したときに不
溶物の沈澱分離が見られない様であれば十分であ
る。不溶性沈澱物が多量に生成する様な場合に
は、水素化処理を連続的に実施しようとすると、
ポンプおよび配管の閉塞等により運転不能とな
る。前期静置によつて沈降しない様な微細な不溶
物の場合には水素化処理によつてそれが可溶性に
改質されるうえ、溶媒自体が水素を放出し溶解力
を増すので問題とはならない。この様なコントロ
ールは第1工程の加熱処理原料としてBTX溶剤
に不溶な成分を実質的に含まない精製重質成分を
用いることによつて初めて可能となる。 また、加熱処理の圧力が低すぎる場合、精製重
質成分または芳香族系油中の軽質成分が気化し、
気液の分離が起こり、液相部が著しく重合し易く
なりキノリン不溶分の生成と管の閉塞が起こり易
くなる。従つて、圧力は高い方が好ましいと言え
るが、圧力を100Kg/cm2G以上とすることは、装
置の建設費が高くなり経済的ではない。必要とさ
れる圧力は加熱処理される精製重質成分または芳
香族系油を実質的に液相に保つに足りる圧力であ
ればよい。 この第1工程における加熱処理は、最終的に得
られる光学的異方性ピツチの特性、ひいては炭素
繊維の特性にまで影響を及ぼす。また、この加熱
処理は一般に用いられているオートクレーブの様
なバツチ式の加圧加熱処理設備では到底実施でき
ないものである。なぜなら、バツチ式設備におい
て10〜2000secという短い滞留時間をコントロー
ルすることは不可能であるため、時間単位の長い
滞留時間を持たせるように処理温度を低くせざる
を得ない。この様な条件でBTX溶剤に不溶な成
分が十分な量生成するまで加熱処理すると、キノ
リンに不溶なコークス状固形物が多量に生成する
ことを本発明者らは経験している。十分に熱分解
反応を起させ、かつ過度の熱重合を防ぐためには
この第1工程の加熱処理を本発明の方法による管
式加熱炉を用い、特定された条件下で実施する必
要がある。 上記のようなことを考慮して、この第1工程に
おける加熱処理条件が選択されるが、その条件が
適当であるかどうかの判断をする一つの基準とし
て、得られる加熱処理物中のキノリン不溶分を測
定する方法がある。得られる加熱処理物中のキノ
リン不溶分が1重量%以上となる様な条件は、す
でに管式加熱炉において過度の熱重合が起こつて
いることを示しており、管の閉塞を予想させるも
のである。また、この様な厳しい条件で処理して
得た加熱処理物を用いる場合にはその後の工程の
どこかで、生成した高重合物を分離除去すること
が不可欠となる。逆に、加熱処理物中のキノリン
不溶分が1重量%以下である場合には、その後の
工程でこれを除去しなくても良い。 加熱処理物中のキノリン不溶分量に関して、上
記の様な厳密なコントロールと評価が可能となつ
たのは、この第1工程の加熱処理を管式加熱炉で
実施することに加え、原料としてキシレン不溶分
を含まないかもしくはこれを除去したものを用い
ることによるものである。 また、管式加熱炉の直後にソーキングドラムを
設置して加熱処理の滞留時間を調整する方法が知
られており、本発明の方法においてもこのソーキ
ングドラムを必要に応じて設置することができ
る。しかし、ソーキングドラムでの滞留時間を非
常に長くしなければならない様な温度等の条件を
選択すると、バツチ式処理の場合と同様にキノリ
ン不溶分生成の問題が発生するので好ましくな
い。従つて、必要に応じてソーキングドラムを設
置する場合であつても、管式加熱炉における前記
要件を十分に考慮しておく必要がある。 この第1工程の管式加熱炉で加熱処理を受けた
加熱処理物は、加熱処理において生成した分解ガ
スを除いただけで次の第2工程に供することもで
きるし、蒸留もしくはフラツシユ蒸留に付して加
熱処理において生成した分解ガスおよび軽質成分
の一部を除去して熱分解重質油となしてから次の
第2工程に供することもできる。第2工程で用い
られるBTX溶剤の回収を容易にすることを考慮
すれば、加熱処理物から少なくともBTX溶剤の
沸点以下の沸点の軽質成分を除去してから第2工
程に供することが望ましい。この第1工程の加熱
処理物の蒸留ないしフラツシユ蒸留は、通常0〜
3Kg/cm2Aの圧力下に200〜350℃の温度で実施さ
れる。また、管式加熱炉における加熱処理に際し
前記の様に芳香族系油が共存された場合にはその
芳香族系油をこのとき同時に分離除去しても良
い。 第1工程の管式加熱炉で得られた加熱処理物を
蒸留またはフラツシユ蒸留する場合、その条件と
して、得られる熱分解重質油が、沸点200〜350℃
(常圧換算)の間にある軽質成分を10〜70重量%、
好ましくは20〜60重量%含み、100℃における粘
度が1000センチストークス以下となる様な条件を
選択する事が望ましい。また、この加熱処理物の
蒸留またはフラツシユ蒸留を行う場合、得られた
沸点350℃以下の軽質成分を、さらに沸点範囲が
200〜350℃の間にある留分とそれ以下の沸点範囲
の留分に分ける操作を同時に行つても良い。ここ
で得られる沸点範囲が200〜350℃の間にある留分
は、第1工程の管式加熱炉において芳香族系油を
希釈油として用いる場合には、そのまま該第1工
程の希釈油として用いることができる。 次の第2工程は、第1工程で得られた加熱処理
物あるいはそれから軽質成分の一部を除去して得
た熱分解重質油にBTX溶剤を加え、生成する不
溶性成分と可溶性成分の溶剤溶液とを分離する工
程である。ここでは、BTX溶剤を加えようとす
る加熱処理物あるいは熱分解重質油が、該溶剤の
沸点以下の温度で十分流動性のある液状であるこ
とが望まれる。なぜなら、この加熱処理物あるい
は熱分解重質油が溶剤の沸点以上の温度で固体も
しくは著しく粘土の高いものである場合には、そ
れをBTX溶剤に溶解するための特別な設備、例
えば加圧加熱溶解設備の様なものが必要となり、
また常温付近での温度でこれを混合溶解しようと
すると、混合溶解のための時間が著しく長くなり
効率が悪いからである。また、軟化点の高いピツ
チをBTX溶剤に溶解する様な場合、ピツチをあ
らかじめ細かく粉砕しておくという方法が実験室
的にはよく採用されるが、かかる方法も、ピツチ
自体が付着性を持つため、ピツチを微粉砕しよう
とするとその粉砕時に発生する熱、粉砕の力等に
よつてピツチの微粉末がかなり強固に固まつてし
まうという現象があり、工業的に実施することは
かなり困難である。 この加熱処理物あるいは熱分解重質油が溶剤の
沸点以下の温度で十分流動性のある液状である場
合には、溶剤への溶解が短時間で終了するため、
この加熱処理物あるいは熱分解重質油を100℃程
度にしておき、この配管にBTX溶剤を送入する
ことでも十分混合溶解が可能であり、また必要に
応じて簡単な溶解槽の様な設備を設置するだけで
十分である。第1工程の加熱処理で得られる加熱
処理物あるいは上記した望まれる諸条件を満たす
様に該加熱処理物を蒸留もしくはフラツシユ蒸留
して取得された熱分解重質油は、一般に溶剤の沸
点以下の温度で十分流動性のある液状となる。 従つて、第2工程における溶剤処理の条件は、
通常、常温から用いる溶剤の沸点までの温度で、
かつ当該加熱処理物あるいは熱分解重質油が十分
に流動性を持つに足りる温度で、常圧〜2Kg/cm2
G程度の圧力下に、可溶性成分が溶解するに十分
な時間撹拌するのが適当であり、また、当該加熱
処理物あるいは熱分解重質油のみを加熱してお
き、これに常温近辺の溶剤を加えることも可能で
ある。 第2工程で用いるBTX溶剤の量は処理すべき
加熱処理物あるいは熱分解重質油に対し1〜5重
量倍量、好ましくは1〜3重量倍量が適当であ
る。この範囲が好ましい理由は、原料の精製にお
ける場合と同様であり、下限は不溶性成分の分離
効率から、また上限は処理操作の経済性から規定
されるものである。しかし、第2工程で使用する
溶剤量を変化させた場合、加熱処理物あるいは熱
分解重質油と溶剤の混合液中で不溶性成分として
析出するものの量は必ずしも同じではなく、溶剤
量が少ない場合、不溶性成分として析出するもの
の量は少なくなり、比較的分子量の大きいものの
みが不溶性成分として析出することになる。 また、この第2工程でBTX溶剤よりも溶解性
の著しく低い貧溶剤を用いた場合には得られる不
溶性成分の中に重質化しにくい低分子量成分が多
量に含まれることになり均質な紡糸用ピツチを得
ることが困難になる。逆にBTX溶剤よりも著し
く溶解性の高い良溶剤を用いると、得られる不溶
性成分の収率が低下するばかりでなく、可溶性成
分中に高分子量の成分が含まれることになり、か
かる高分子量の成分が含まれた可溶性成分を後記
する様に第1工程に循環して加熱処理すると、そ
の際にキノリン不溶分等の好ましくない成分が副
生成することになるので望ましくない。 不溶性成分と可溶性成分の溶剤溶液の分離の方
法は沈降分離、液体はサイクロン、遠心分離ある
いはろ過等任意の分離方法で良いが、連続運転が
可能な分離方法を選択する事が好ましいことは言
うまでもない。また、分離、回収した不溶性成分
を繰り返しBTX溶剤で洗浄しても良い。本発明
の方法の場合、特に洗浄工程を取り入れなくくて
も、十分目的とする高性能炭素繊維製造用の光学
的異方性ピツチとなり得る不溶性成分すなわち高
分子量歴青物は得られるが、重質化の遅い成分を
極力除去するために2回以内の洗浄をすることは
好ましいことである。不溶性成分の分離または回
収の条件は、用いる溶剤の沸点以下の温度が好ま
しく、通常、常温近辺の温度で十分である。ま
た、原料の精製に用いられる溶剤とこの第2工程
で用いられる溶剤の組合せは特に限定されるもの
ではないが、同一の溶剤を用いることがより好ま
しい。 この第2工程で得られる不溶性成分すなわち高
分子量歴青物は、通常、キノリン不溶分が1重量
%以下、キシレン不溶分が40重量%以上、好まし
くは50重量%以上であり、かつ光学的に等方性で
ある。また、この高分子量歴青物中にはBTX溶
剤に可溶な成分も一部残存しうるが、たとえ第2
工程に供されたものが、第1工程の加熱処理物を
200〜350℃の温度で蒸留またはフラツシユ蒸留し
て得た熱分解重質油であつたとしても、この高分
子量歴青物中に残存するBTX溶剤に可溶な成分
は該加熱処理物の蒸留またはフラツシユ蒸留の条
件に対応する沸点近辺の比較的沸点の低い成分を
含む重質油であり、従つて、その大半は例えば減
圧蒸留、熱処理等によつて容易に除去されるもの
である。上記した第1工程の加熱処理物の蒸留ま
たはフラツシユ蒸留の条件を逸脱して350℃以上
の高温で加熱処理物を蒸留して高軟化点ピツチと
したものからBTX溶剤不溶分を得た場合には、
洗浄が不十分であつたために残存する可溶性成分
はすでに高温で蒸留して除去されなかつた高沸点
のものであるため、それを後の処理で除去するの
は容易ではなく、従つて、洗浄を十分に行う必要
があり不経済とならざるを得ない。 また、この第2工程で得られる高分子量歴青物
は、その中のキシレン不溶分がほぼ100重量%近
くになるまで洗浄した場合には、メトラー法で測
定される軟化点が350℃以上となり、軟化点の測
定が不能となるが、キシレン不溶分が60〜80重量
%である場合には、150〜300℃程度の軟化点を示
す。これらの高分子量歴青物は、たとえ400℃未
満の温度で短時間加熱融解してその後冷却しても
その組織はやはり光学的に等方性であり、光学的
に異方性を示す様な高性能炭素繊維製造用の紡糸
ピツチとはならない。 その次の第3工程は、第2工程で分離された不
溶性成分である高分子量歴青物を水素供与性溶媒
の存在下に加熱処理して水素化する工程である。
この第2工程で得られた高分子量歴青物はそのま
ま触媒を用いて、水素ガス加圧下に水素化するこ
とは困難であるため、水素供与性溶媒の存在下に
加熱処理して水素化する必要がある。また第2工
程で得られる高分子量歴青物が使用したBTX溶
剤を含んだままのものである場合はこれを除去す
ることが望ましいが、その方法は、常圧下または
減圧下における単なる加熱蒸発あるいは蒸留等の
手段で良く、またその除去の時期も特に限定され
るものではなく、例えば水素供与性溶媒と混合す
る前でも良く、あるいは溶剤を含んだままのペー
スト状の不溶性成分をそのまま水素供与性溶媒に
混合した後にBTX溶剤を選択的に除去すること
もできる。 また、この第3工程の水素供与性溶媒を用いる
高分子量歴青物の水素化処理は、例えば特開昭58
−196292号、特開昭58−214531号、特開昭58−
18421号等に示されている様な公知の方法を用い
ることができるが、触媒を用いるとその触媒を分
離する工程が必要となるので、無触媒下での処理
が経済的で望ましい。また、用いる水素供与性溶
媒としては、テトラヒドロキノリン、テトラリ
ン、ジヒドロナフタリン、ジヒドロアントラセ
ン、水添した洗浄油、水添したアントラセン油、
ナフサタールまたはバイロリシスタールの軽質分
を部分水添したもの等があげられるが、水素供与
性溶媒の選択に当たつては、第2工程で得られる
高分子量歴青物に対する溶解性を十分に考慮する
ことが望ましく、高分子量歴青物に対する溶解性
を考えると、テトラヒドロキノリン、水添した洗
浄油、水添したアントラセン油が好適である。 また、水素化の方法は、オートクレーブの様な
バツチ式で自生圧下に行うこともできるが、バツ
チ式の場合、大型化するにしたがつてその温度コ
ントロールが難しくなると同時に、容器内外の温
度差が大きくなることなどの理由から、水素化処
理時にコークス状の固形物が生成し易くなる。こ
の固形物を水素化後にろ過等の方法により除去す
るのは容易ではないので、水素化処理時に固形物
を生成しない方法が好ましい。その好ましい方法
の一つは、高分子量歴青物を水素供与性溶媒の1
〜5重量倍量の存在下に、管式加熱炉において温
度350〜500℃、好ましくは400〜460℃、圧力20〜
100Kg/cm2Gの条件下に連続的に水素化する方法
である。この方法によれば、水素化が連続的に実
施できるので効率が良いばかりではなく、コーク
ス状固形物を生成させることなく、高分子量歴青
物を水素化することができる。用いる溶媒の量は
高分子量歴青物の水素化が十分効果的であり、ま
た経済的な理由から上記の様に1〜5重量倍量と
するのが好ましい。また、この方法の場合、温度
400〜460℃における滞留時間は通常10〜120分の
範囲が好ましい。 その次の第4工程は、第3工程で得られた水素
化処理混合物から水素供与性溶媒と軽質成分の一
部を除去し、実質的に等方性の水素化ピツチを得
る工程である。 この第4工程は、通常のバツチ式または連続式
の蒸留手段で実施できるが、本発明の方法の第2
工程から得られる高分子量歴青物はBTX溶剤に
可溶な比較的沸点の低い成分を一部含んでいるの
で、水素化後の当該混合物を、フラツシユ蒸留塔
において圧力0〜3Kg/cm2A、温度300〜530℃の
条件下に連続的にフラツシユ蒸留して、溶媒と高
分子量歴青物中の低沸点成分および水素化処理に
よつて生成した軽質成分等を同時に分離除去し
て、フラツシユ蒸留塔底から水素化されたピツチ
を得る方法が好適である。この方法によれば、軟
化点(JIS環球法)が100〜200℃、キノリン不溶
分が1重量%以下、キシレン不溶分が40重量%以
上の実質的に等方性である水素化ピツチを得るこ
とができる。上記以外の方法を用いて溶媒等の除
去を実施する場合においても、水素化ピツチの性
状が上の範囲になる様にすることが望ましい。キ
ノリン不溶分については少ない方が良いが、キシ
レン不溶分についてはこれが著しく少ない場合に
は次の第5工程の加熱処理でピツチ中の光学的異
方性部分の含有量を90%以上とするための処理条
件が厳しくなりすぎるため、この加熱処理によつ
てキノリン不溶分が多量に生成することになり好
ましくない。これらの条件を満足する水素化ピツ
チの軟化点(JIS環球法)は通常100〜200℃の範
囲となる。 その次の第5工程は、第4工程で得られた水素
化ピツチを加熱処理して実質的に光学的異方性の
ピツチとなし、それを高性能炭素繊維製造用ピツ
チとして取得する工程である。 この第4工程で得られた水素化ピツチの加熱処
理は、一般に減圧下もしくは不活性ガスまたは過
熱蒸気の吹き込み下に350〜500℃の温度範囲で10
〜300分間熱処理するというすでに公知の方法を
採用することができるが、380〜480℃、時間10〜
180分とすることが好ましい。また、この加熱処
理の方法は、例えばオートクレーブ等によるバツ
チ式でもよいが、減圧下あるいは常圧下に不活性
ガス等の流通下薄膜蒸発装置、流下膜式熱処理装
置等を用いて連続的に350〜500℃の温度で加熱処
理をしても良い。 用いられる不活性ガスまたは過熱蒸気として
は、窒素、ヘリウム、アルゴン等の不活性ガス、
過熱水蒸気あるいは処理温度において不活性な低
沸点有機化合物、低沸点油等を加熱して高温の過
熱蒸気としたもの等があげられる。 この加熱処理過程でピツチの熱重合による重質
化が起こり、実質的に光学的等方性の水素化ピツ
チが、実質的に光学的異方性を示すピツチへと転
換される。本発明の方法の第2工程で得られる高
分子量歴青物は、特定の方法と条件で製造された
厳選された成分からなるものであるので、容易に
ほぼ全面光学的異方性のピツチへと転換すること
が可能であり、本第5工程の加熱処理で得られる
光学的異方性ピツチの性状は通常メトラー法軟化
点310℃以下、キノリン不溶分10重量%以下、キ
シレン不溶分90重量%以上、光学的異方性部分含
有量90%以上というものである。この様に、本発
明の方法によれば従来技術では製造できなかつた
(1)難化点が低く、(2)光学的異方性部分含有量が高
く、(3)キノリン不溶分が少なく、さらに(4)キシレ
ン可溶分が少ないという4つの特性を同時に満足
する特に均質な紡糸用ピツチを製造する事ができ
る。従つて、本発明の方法で得られる光学的異方
性ピツチは特に超高性能炭素繊維製造用のピツチ
として好適である。 上記第4工程と第5工程とは、すなわち第3工
程で得られた水素化処理混合物からの溶媒および
軽質成分の除去と水素化ピツチの加熱処理による
光学的異方性ピツチへの転換とは、必要に応じて
例えば次のような手段によつて、統合して一つの
処理帯域において、換言すれば一つの工程として
実施することができる。 すなわち、本発明者らは先に、減圧ないし常圧
下で350〜500℃の温度において、重質油またはピ
ツチを不活性ガスまたは過熱蒸気の気流中に微細
な油滴状に分散させ、該不活性ガスまたは過熱蒸
気と微細な油滴状の重質油またはピツチとを接触
させる重質油またはピツチの連続的熱処理方法を
発明し、特願昭62−152064号として特許願した
(以下この方法を分散連続熱処理法と略称する。)。
この分散連続熱処理法によれば、重質油またはピ
ツチの様な過熱処理原料が、減圧ないし常圧下で
350〜500℃の温度に保持された処理帯域に連続的
に供給され、例えば当該処理帯域に設けられた回
転している円板状回転体の上に加熱処理原料を滴
下して遠心力を利用して該加熱処理原料を飛散さ
せるという方法、重油バーナーの様にポンプ等の
圧力を利用する方法あるいはエジエクターの様に
高速で流れる流体が生じる負圧を利用する方法に
よつて、当該処理帯域中に微細な油滴として分散
され、この油滴が当該処理帯域内に供給された不
活性ガスまたは過熱蒸気と接触せしめられ、過熱
処理原料中の軽質成分は気相部に移行して不活性
ガスまたは過熱蒸気と共に処理帯域の上部から処
理系外に排出され、加熱処理原料中の重質成分は
油滴状で処理帯域の下方に落下、集合しつつ加熱
を受け、処理帯域の下部から処理系外に抜き出さ
れる。処理帯域中における液状加熱処理原料ない
しその中の重質成分の分散と集合のサイクルは、
必要に応じて複数回繰り返すことができる。さら
に、この分散連続熱処理法を実施するための装置
の一例を第1図によつて説明する。 第1図において、1は回転円板、2は逆裁頭円
錐状の集合板、3は回転軸である。また4は予熱
された重質油等を送入するためのノズル、5は予
熱された不活性ガス等を送入するためのノズル、
6は目的物であるピツチを抜き出すためのノズ
ル、7は廃ガスと蒸発した軽質成分を抜き出すた
めのノズルであり、8は回転円板を回転するため
のモーターであり、10は装置本体である。ま
た、第1図に示した設備は回転板1をボルトによ
り回転軸3に固定し、集合板2をそれぞれフラン
ジ9によつて固定する様に工夫されたものであ
り、回転円板と集合板の組合せによる段数や円板
の取り付け位置を変えられる様な構造になつてい
る。第1図の設備では予熱された重質油等ががノ
ズル4から送入される。この処理塔の最上部はフ
ラツシユゾーンになつており、ある程度の軽質成
分はここで除かれノズル7を通つて排出される。
ここで生成したピツチは最上部の集合板によつて
集められ上から2番目の回転円板上に落ちる。こ
こでピツチは円板の遠心力に依つて外周部から回
転軸と実質的に直角な方向に微細な油滴となつて
分散される。この油滴は下部ノズル5から送入さ
れる予熱された不活性ガス等の流れと接触して軽
質成分が除去される。生成したピツチは2番目の
集合板で集められ、3番目の円板上に落ち、この
円板によつて油滴状に分散される。この様な分散
と集合を繰り返しながらピツチは軽質成分の除去
と適度の熱重合を受け最下部のピツチ抜き出しノ
ズル6を通つてポンプ等により取り出される。第
1図の構造を持つ設備では、分散される油滴の運
動方向とガスの流れが実質的に直交することにな
り、また、原料の重質油等の送入ノズルと不活性
ガス等の入口ノズルが上下反対側に設けてあるの
で、ピツチの流れと不活性ガス等の流れが向流と
なる。従つて、処理の進んだピツチ程新しいガス
と接触することになり効果的である。また、不活
性ガス等は処理塔の各段に分割して送入すること
も可能である。 上記分散連続熱処理法の様な手段によれば、前
記本発明の方法の第4工程と第5工程とを一つの
処理帯域において行うことができる。すなわち、
本発明の方法の第3工程で得られた水素化処理混
合物を加熱処理原料として、それをこの分散連続
熱処理法に従つて、減圧ないし常圧下で350〜500
℃の温度において、処理帯域中で微細な油滴に分
散させて不活性ガスまたは過熱蒸気と接触せし
め、必要に応じてその処理条件下で液状の成分の
分散と集合のサイクルを複数回繰り返せば、該水
素化処理混合物中の溶媒および軽質成分等の当該
処理条件で蒸発するものは蒸発し、液相部はこれ
らの除去された重質成分(水素化ピツチ成分)と
なり、かつ該液相重質成分は熱処理を受けてさら
に重質化され、この液相重質成分は光学的に異方
性を示すピツチとなつて当該処理帯域から抜き出
される。この手段における処理温度は、上記のと
おり350〜500℃が適当であるが、好ましくは380
〜480℃である。また、この分散連続熱処理法に
よれば、処理時間(滞留時間)は、設備の構造、
処理温度等他の処理条件にもよるが、通常のバツ
チ式熱処理法に比べるとかなり短くすることがで
きるため、キノリン不溶分の様な好ましくない高
分子量成分の生成が抑えられ、極めて均質なピツ
チを得ることができる。第1図に示した様な構造
の設備のばあい、処理時間(滞留時間)は通常15
分以下である。また、用いる不活性ガスまたは過
熱蒸気としては、不活性ガスとして窒素、ヘリウ
ム、アルゴン等があげられ、不活性な過熱蒸気と
しては過熱水蒸気、処理温度において不活性な低
沸点有機化合物、低沸点油等を過熱して高温の蒸
気としたものがあげられ、その使用量は、処理に
供される水素化処理混合物の単位重量当り、処理
条件下において0.1〜10m3/Kg、好ましくは0.3〜
3.0m3/Kgの範囲から選択するのが適当である。 上記の様な分散連続熱処理手段で得られる光学
的異方性ピツチの品質は、前記第4工程および第
5工程を経て得られる光学的異方性ピツチと比べ
て優るとも劣らないものであり、高性能炭素繊維
製造用ピツチとして、特に超高性能炭素繊維製造
用ピツチとして好適なものである。従つて、炭素
繊維製造用の紡糸ピツチを製造するにあたり、こ
の分散連続熱処理手段を採用することは、上記の
とおり第4工程と第5工程とを統合することがで
き、その製造工程を簡略化することができるの
で、好ましいことである。なお、この分散連続熱
処理手段は、第4工程と第5工程を統合して実施
する場合の手段として採用し得るのみならず、前
記した様に第4工程と第5工程とを順次実施する
場合の第5工程における第4工程で得られた水素
化ピツチの加熱処理の手段としても採用し得るこ
とは言うまでもない。 さて一方、第6工程は、前記第2工程で分離さ
れた可溶性成分の溶剤溶液から溶剤を除去して可
溶性成分を得る工程である。 この第6工程は、通常の蒸留操作で行うことが
できる。また、上記可溶性成分の溶剤溶液から必
要に応じ溶剤のみならず可溶性成分中の余剰の軽
質成分を合わせて除去してもよい。後記するよう
に、得られた可溶性成分の一部を第1工程の加熱
処理へ循環して加熱処理原料として再使用するこ
とを考慮すれば、この蒸留操作は、得られる可溶
性成分の性状が沸点範囲が200〜350℃の間にある
軽質成分を10〜70重量%、好ましくは20〜60重量
%含み、かつ100℃における粘度が1000センチス
トークス以下という性状、すなわち第1工程に供
される原料の重質油等の望ましい性状と同様の性
状となる様な蒸留条件を選択することが好まし
い。また、前記した様に、第1工程で得られた加
熱処理物が、蒸留もしくはフラツシユ蒸留されて
軽質成分の一部が除去された後第2工程に供され
る場合には、該加熱処理物の蒸留もしくはフラツ
シユ蒸留の条件を適宜選択することによつて、本
第6工程では溶剤を除去するるだけで得られる可
溶性成分の性状が第1工程の加熱処理原料として
好ましいものとなる様にすることも可能である。
溶剤回収の容易さ等を考慮すれば、上記の様に第
1工程で得られた加熱処理物を選択された条件下
に蒸留もしくはフラツシユ蒸留した後に第2工程
に供し、本第6工程は溶剤の分離、回収のための
蒸留操作とすることが好ましい。 この様にして得られた可溶性成分が汎用炭素繊
維製造用ピツチを得るための原料として用いられ
るが、その際、必要に応じ、得られた可溶性成分
の一部を汎用炭素繊維製造用原料として用い、残
部を第1工程に循環して第1工程の加熱処理原料
としても良い。また、得られた可溶性成分の一部
を汎用炭素繊維製造用原料として用い、他の一部
を第1工程に循環して第1工程の加熱処理原料と
して用い、残部を副産物として本発明のプロセス
の系外に抜きだしても良く、勿論一部を汎用炭素
繊維製造用原料として使用し、残部をすべて副産
物として本発明のプロセスの系外に抜きだしても
差し支えない。 第6工程で得られた可溶性成分の一部を第1工
程に循環して第1工程の加熱処理原料とすれば、
この可溶性成分も原料精製重質成分と同様に第1
工程の管式加熱炉において加熱処理を受けてキシ
レン不溶分を生成するので、第2工程で得られる
不溶性成分の量がこの第1工程に循環された可溶
成分の量に応じて増加し、結局第5工程で得られ
る高性能炭素繊維製造用の光学的異方性ピツチの
量がその分だけ増加することになる。従つて、必
要に応じ、当該可溶性成分の汎用炭素繊維製造用
原料として使用する量と第1工程に循環する量、
さらには副産物として本発明のプロセスの系外に
抜き出す量とを調整することによつて、製造する
高性能炭素繊維製造用光学的異方性ピツチの量と
汎用炭素繊維製造用ピツチの量との比率を調整す
ることができる。この点も本発明の大きな特徴の
一つである。 ちなみに、第6工程で得られる様な可溶性成分
を第1工程の様な原料の精製重質成分の加熱処理
工程に循環し、高性能炭素繊維製造用ピツチの収
量を増加させること自体は、先に本発明者らが発
明して特願昭62−287173号として特許出願したと
ころであり、上記第6工程で得られる可溶性成分
の第1工程への循環は、この特願昭62−287173号
に従えば好適に実施できる。 その次の第7工程は、上記第6工程で得られた
可溶性成分を蒸留もしくはフラツシユ蒸留して軽
質成分を除去し、可溶性ピツチを得る工程であ
り、通常の蒸留またはフラツシユ蒸留操作を用い
ることができる。第6工程で得られる可溶性成分
は上記の様に沸点が200〜350℃の間にある軽質成
分を含んでいるため、次の加熱処理工程である第
8工程をバツチ式の設備で実施しようとする場合
には、1バツチ当りの収率を高くし、加熱処理の
効率を良くするためにこの第7工程で軽質成分を
除去しておくことが好ましい。従つて、この第7
工程の蒸留もしくはフラツシユ蒸留は、第6工程
で得られた可溶性成分中の軽質成分を除去するこ
とが目的であり、この工程で熱分解、熱重合等の
反応を伴う様な条件を選択すべきではない。通常
この第7工程の蒸留またはフラツシユ蒸留の温度
は400℃以下であり、好ましくは350℃以下であ
り、圧力は減圧下、常圧下いずれでも良い。ま
た、第6工程で得られた可溶性成分中の軽質成分
量が少ない場合にはこの第7工程を省略しても良
い。この第7工程で得られる可溶性ピツチの性状
は特に限定されるものではないが、その取り扱い
易さを考えれば軟化点(JIS環球法)が200℃以上
となる様な蒸留条件を選択することは好ましくな
い。また、この可溶性ピツチ中にはキノリン不溶
分は通常ほとんど検出されない。 その次の第8工程は、上記第7工程で得られた
可溶性ピツチを、あるいは第7工程を省略し得る
場合には第6工程で得られた可溶性成分を、加熱
処理して汎用炭素繊維製造用ピツチを得る工程で
ある。この汎用炭素繊維製造用ピツチは、一般的
に、偏光顕微鏡で観察したときに全面光学的に等
方性であり、高性能炭素繊維製造用のピツチで観
察される様な光学的異方性部分を実質的に含まな
いものであり、キノリン不溶分をも実質的に含ま
ないものが好適であるとされている。 この第8工程の加熱処理は第5工程の加熱処理
とほとんど同じ操作を採用することができ、一般
に減圧下もしくは不活性ガスまたは過熱蒸気の吹
き込み下に350〜500℃の温度範囲で10〜300分間
熱処理するというすでに公知の方法を採用するこ
とができるが、380〜480℃、時間10〜180分とす
ることが好ましい。また、この加熱処理の方法
は、例えばオートクレーブ等によるバツチ式でも
よいが、減圧下あるいは常圧下に不活性ガス等の
流通下に薄膜蒸発装置、流下膜式熱処理装置等を
用いて、あるいは前記分散連続熱処理手段によつ
て連続的に350〜500℃の温度で加熱処理をしても
良い。 用いられる不活性ガスまたは加熱蒸気として
は、窒素、ヘリウム、アルゴン等の不活性ガス、
過熱水蒸気あるいは処理温度において不活性な低
沸点有機化合物、低沸点油等を加熱して高温の過
熱蒸気としたもの等があげられる。 この第8工程の加熱処理で第7工程で得られた
可溶性ピツチの重質化が起こり汎用炭素繊維製造
に好適な等方性ピツチが得られる。この加熱処理
で注意しなければならないことは、キノリン不溶
分の様な高分子量成分もしくはコークスの様な固
形分を生成しない様な条件を選択すべきであると
いうことであり、この様な高分子量成分や固形分
を含んだピツチの場合、それを溶融紡糸して繊維
化しようとするときに、紡糸用ノズルの閉塞等の
問題が発生する。一方、これら好ましくない成分
を発生させないために、加熱処理の条件を著しく
穏和にした場合には、得られるピツチの軟化点が
低く、またピツチ中の軽質成分が十分に除去され
ていないものとなり、紡糸時に多量のガスが発生
するなどの問題が起こるうえ、これを酸化雰囲気
中で加熱して不融化することが困難になる。した
がつて、汎用炭素繊維製造用のピツチといえども
ある程度高い軟化点が必要であり、一般にはメト
ラー法軟化点が200〜300℃、好ましくは220〜280
℃である。ところで、市販されているバインダー
ピツチの様なものを単に加熱処理してこの様な高
い軟化点のピツチを得ようとすると、容易にキノ
リン不溶分やコークス状固形分が生成し、汎用炭
素繊維製造用ピツチすら製造することはできな
い。しかし、本発明の第8工程で加熱処理しよう
とする可溶性ピツチは、上記のように、本発明の
第1工程で特定の条件下に加熱処理を受けたもの
であり、さらに次の第2工程でBTX溶剤の特定
量を加えたときに生成する不溶性成分を分離、除
去したものであるため、本第8工程の加熱処理の
際にキノリン不溶分やコークス状の固形物を生成
しにくく、従つて、好ましくない軽質成分を十分
に除去することが可能となり、上記汎用炭素繊維
製造用ピツチに望まれる性状を容易に達成するこ
とができる。 また、上記第7工程の可溶性成分からの軽質成
分の蒸留またはフラツシユ蒸留による除去と、第
8工程の可溶性ピツチの加熱処理とは、前記第4
工程と第5工程の場合と同様、必要に応じて例え
ば前記分散連続熱処理法によつて、結合して一つ
の処理帯域において、換言すれば一つの工程とし
て、実施することができる。すなわち、第6工程
で得られた可溶性成分を、減圧ないし常圧下に
350〜500℃の温度において処理帯域中で、微細な
油滴に分散させて不活性ガスまたは過熱蒸気と接
触せしめ、必要に応じその処理条件下で液状の成
分の分散と集合を繰り返せば、軽質成分は蒸発し
て処理帯域から排出され、液状成分(可溶性ピツ
チ成分)は加熱処理を受けて重質化して光学的に
等方法である汎用炭素繊維製造用ピツチとなつて
当該処理帯域から抜き出される。この様に第7工
程と第8工程とを統合して一つの工程とすること
は、当該ピツチの製造工程を簡略化できるという
点で好ましいことである。 さらにまた、必要に応じて上記第6工程、第7
工程および第8工程の三工程を、例えば前記分散
連続熱処理法によつて、統合して一つの処理帯域
において一つの工程として実施することもでき
る。すなわち、第2工程で得られた可溶性成分の
溶剤溶液を、上記第7工程および第8工程を統合
して一つの工程として実施する場合と同様に、減
圧下ないし常圧下に350〜500℃の温度において処
理帯域中で、微細な油滴に分散させて不活性ガス
または過熱蒸気と接触せしめ、必要に応じその処
理条件下で液状の成分の分散と集合を繰り返せ
ば、溶剤および軽質成分が蒸発して処理帯域から
排出され、液状成分(可溶性ピツチ成分)が加熱
処理を受けて重質化して光学的に等方法である汎
用炭素繊維製造用ピツチとなつて当該処理帯域か
ら抜き出される。この場合、第2工程で得られた
可溶性成分の溶剤溶液の一部は、当該処理に供す
ることなく、第1工程に溶剤を除去した後加熱処
理原料として循環しても良いことは勿論である。 この第7工程と第8工程とを統合して、あるい
は第6工程、第7工程および第8工程の三工程を
統合して一つの工程とする具体的な手段は、第4
工程と第5工程とを統合して高性能炭素繊維製造
用光学異方性ピツチを製造する方法として前記し
たものをそのまま用いることができ、その条件も
先に示した範囲の中から汎用炭素繊維製造用ピツ
チに望まれる性状のピツチが得られる様に選択す
れば良い。従つて、第4工程と第5工程および第
7工程と第8工程あるいは第6工程、第7工程と
第8工程の三工程をそれぞれ統合するならば、場
合によつては、分散連続熱処理法の設備を一つと
して、ある時は高性能炭素繊維製造用光学的異方
性ピツチの生産を行い、またある時は汎用炭素繊
維製造用光学的等方性ピツチを生産するといつ
た、いわゆるブロツク生産をすることも可能であ
る。 高性能炭素繊維製造用ピツチと汎用炭素繊維製
造用ピツチの収率は原料として用いる精製重質成
分ならびに採用する処理条件によつてかなり異な
るものであるが、本発明で言う精製重質成分の典
型例の一つであるキシレン不溶分をあらかじめ除
去した精製コールタールを例にとつて説明する
と、第6工程で得られる可溶性成分を第1工程に
循環せず、すべて汎用炭素繊維製造用ピツチの原
料とする場合には、高性能炭素繊維製造用ピツチ
の収率は3〜15重量%程度であり、また汎用炭素
繊維製造用ピツチの収率は10〜20重量%程度であ
る。逆に、第6工程で得られる可溶性成分をすべ
て第1工程に循環して高性能炭素繊維製造用のピ
ツチとする場合には、その収率は10〜40重量%程
度となり、このときには汎用炭素繊維製造用ピツ
チは生成しないこととなる。また、第6工程で得
られる可溶性成分を、その量が第1工程に供給さ
れる原料精製重質成分に対して3重量倍量程度と
なる様に循環し、残余の可溶性成分を汎用炭素繊
維製造用ピツチの原料とする場合には、高性能炭
素繊維製造用ピツチの収率は10〜25重量%程度で
あり、また汎用炭素繊維製造用ピツチの収率は10
〜20重量%程度である。汎用炭素繊維製造用ピツ
チの収率はさらに可溶性成分を副生物として系外
に取り出すことによつて調整することができる。 上記した様に、本発明の方法においては、第6
工程で得られた可溶性成分の一部を、ないしは第
2工程で得られた可溶性成分の溶剤溶液の一部を
それから溶剤を除去した後に、第1工程に加熱処
理原料として循環すること等によつて、高性能炭
素繊維製造用ピツチと汎用炭素繊維製造用ピツチ
の生産量を調整することができるが、この両ピツ
チの生産量を調整する方法として次の様なことも
できる。 第2工程の抽出工程で得られる不溶性成分の一
部を第7工程の加熱処理工程もしくは第7工程と
第8工程が統合されてなる一つの処理帯域に供給
し、第6工程で得られる可溶性成分と同時に加熱
処理して、汎用炭素繊維製造用ピツチとすること
もできる。この場合、当然のことながら、第3工
程である水素化工程に供給される不溶性成分量が
減るため、高性能炭素繊維製造用ピツチの生産量
が減ることになる。 また、第1工程で得られる熱分解重質油の一部
を第7工程もしくは第7工程と第8工程が統合さ
れてなる一つの処理帯域に供給し、第6工程で得
られる可溶性成分と同時に加熱処理して、汎用炭
素繊維製造用ピツチとすることもできる。この場
合、第2工程である油出工程に供給される熱分解
重質油の量が減り、結果として高性能炭素繊維製
造用ピツチの生産量が減ることになる。 さらに、第1工程に供給される精製重質成分の
一部を第7工程もしくは第7工程と第8工程が統
合されてなる一つの処理帯域に供給して、第6工
程で得られる可溶性成分と同時に加熱処理して汎
用炭素繊維製造用ピツチとすることもできる。こ
の場合は、精製重質成分の使用総量を同じにし
て、第1工程へ供給する量を減すことにより、高
性能炭素繊維製造用ピツチの生産量が減少する。
第1工程へ供給する精製重質成分の量を一定にし
て、第7工程もしくは第7工程と第8工程が統合
されてなる一つの処理帯域に別の精製重質成分を
供給して、汎用炭素繊維製造用ピツチの生産量を
増加することもできる。 この様に第2工程で得られる不溶性成分、第1
工程で得られる熱分解重質油さらに第1工程に供
給される精製重質成分等の一部を、第6工程で得
られる可溶性成分と混合して、同時に処理する場
合には、汎用炭素繊維製造用ピツチとして好まし
くないキノリン不溶分が生成し易い傾向がある。
しかし、それぞれの場合につき得られた汎用炭素
繊維製造用ピツチを製造し、軟化点とキノリン不
溶分量の関係を調べると、前記、汎用炭素繊維製
造用ピツチに望まれる軟化点範囲においては、キ
ノリン不溶分を実質的に含まず、良質なピツチが
得られることが確認された。 以上の様に本発明の方法は、高性能炭素繊維製
造用ピツチと汎用炭素繊維製造用ピツチの生産比
率を種々の方法で調整することができ、極めてフ
レキシビリテイーの高い方法と言うことができ
る。 また、本発明の第5工程または第4工程と第5
工程とが統合されてなる一つの処理帯域から、高
性能炭素繊維製造用ピツチが得られるが、このと
き、目的のピツチとならなかつた副生物の中には
沸点の高い重質油が含まれている。したがつて、
この重質油を第1工程もしくは、第6工程を経由
して第1工程へ供給し、管式加熱炉において加熱
処理すればさらに重質化が進み、この成分の一部
をピツチ化することが可能である。したがつて、
本発明の方法では、原料中に含まれる重質成分を
無駄なく利用して、目的のピツチを得ることがで
き、この意味においても極めて経済的な方法であ
る。 本発明の方法の二、三の実施態様例について、
さらに第2図〜第5図によつて説明する。第2図
〜第5図において、同一の設備並びに配管につい
ては同一番号を付してある。 第2図は、いわば本発明の方法の標準的な実施
態様の概略図である。第2図の例では、原料の精
製重質成分がライン11を経て第1工程の管式加
熱炉13に送入され、必要に応じて芳香族系油が
ライン12を経て原料の精製重質成分に加えら
れ、該管式加熱炉13で400〜600℃の温度で加熱
処理されて得られる加熱処理物はライン14を経
て蒸留塔もしくはフラツシユ蒸留塔15に送入さ
れる。蒸留塔もしくはフラツシユ蒸留塔15にお
いて分離された分解ガスおよび軽質成分の一部は
ライン17を経て系外に抜き出される。蒸留塔も
しくはフラツシユ蒸留塔15の塔底液として得ら
れた熱分解重質油はライン16を経て抜き出さ
れ、BTX溶剤の沸点以下に冷却された後(冷却
手段は図示省略)第2工程の不溶性成分と可溶性
成分の分離設備19に送入される。該分離設備1
9では、ライン18を経てBTX溶剤が供給され、
上記熱分解重質油とBTX溶剤が混合され、生成
した不溶性成分と可溶性成分の溶剤溶液とが分離
され、分離された不溶性成分はライン20を経て
当該分離設備19から抜き出され、一方可溶性成
分の溶剤溶液はライン21を経て抜き出される。
ライン20を経て抜き出された不溶性成分である
高分子量歴青物は、第3工程の水素化設備23に
送入され、当該水素化設備23において、ライン
22を経て供給される水素供与性溶媒と混合され
た後、所定の条件で加熱処理され、その加熱処理
がライン24を経て第4工程の水素化ピツチを得
るための蒸留塔もしくはフラツシユ蒸留塔25に
送入される。該蒸留塔もしくはフラツシユ蒸留塔
25の塔頂から使用済みの水素供与性溶媒および
必要に応じて軽質成分がライン27を経て抜き出
され、その塔底から水素化ピツチがライン26を
経て抜き出され、第5工程の水素化ピツチの加熱
処理設備28に送入される。加熱処理設備28に
おいて、水素化ピツチが所定の条件で加熱処理を
受けて重質化し、光学的異方性ピツチとなり、ラ
イン29を経て目的の高性能炭素繊維製造用ピツ
チとして抜き出され、軽質成分はライン30を経
て抜き出される。一方、ライン21を経て抜き出
された可溶性成分の溶剤溶液は第6工程の蒸留塔
もしくはフラツシユ蒸留塔31に送入され、当該
蒸留塔31においてBTX溶剤と必要に応じて軽
質成分の一部が蒸留分離されライン33を経て抜
き出される。当該蒸留塔31の塔底から可溶性成
分がライン32を経て抜き出される。この可溶性
成分はライン35を経て第7工程である軽質成分
の分離のための蒸留塔もしくはフラツシユ蒸留塔
37に送入され、軽質成分が当該蒸留塔またはフ
ラツシユ蒸留塔37の塔頂からライン39を経て
抜き出され、塔底からは可溶性ピツチがライン3
8を経て抜き出され、第8工程の可溶性ピツチの
加熱処理設備40に送入される。この加熱処理設
備40において可溶性ピツチが所定の条件で加熱
処理されて軟化点の高い熱処理ピツチとなり、ラ
イン41を経て目的の汎用炭素繊維製造用ピツチ
として抜き出される。このとき、ライン32を経
て抜き出された可溶性成分の一部を、必要に応じ
て、ライン36を経て第1工程の管式加熱炉13
に循環しても良い。また、この可溶性成分の一部
をライン34を経て副生物として系外に抜きだし
ても良い。 第3図は、上記第2図の例において、第4工程
と第5工程とを、および第7工程と第8工程とを
それぞれ統合して一つの処理帯域において一つの
工程として行なつた例であつて、上記各工程の統
合以外の点は第2図の例の場合と同様である。す
なわち、第3工程の水素化処理設備23から抜き
出された水素化処理混合物はライン24を経て分
散連続熱処理設備44に送入される。当該分散連
続熱処理設備44にはライン43を経て不活性ガ
スまたは過熱蒸気が供給され、使用済みの水素供
与性溶媒と軽質成分および供給された不活性ガス
もしくは過熱蒸気がライン46を経て抜き出され
る。当該分散連続熱処理設備44において水素化
処理混合物は水素供与性溶媒および軽質分の除去
と熱処理を受けて光学的異方性ピツチとなり、ラ
イン45を経て目的物である高性能炭素繊維製造
用ピツチとして抜き出される。一方、第6工程の
蒸留塔もしくはフラツシユ蒸留塔31の塔底から
得られた可溶性成分はライン32およびライン3
5を経て分散連続熱処理設備48に送入される。
この分散連続熱処理設備48にも不活性ガスもし
くは過熱蒸気がライン47を経て供給され、可溶
性成分中の軽質成分はライン50を経て抜き出さ
れる。当該分散連続熱処理設備48において、可
溶性成分は軽質成分の除去と熱処理を受けて軟化
点の高いピツチとなり、ライン49を経て目的物
である汎用炭素繊維製造用ピツチとして抜き出さ
れる。この第3図の実施態様においても、第6工
程の蒸留塔もしくはフラツシユ蒸留塔31の塔底
から得られる可溶性成分の一部をライン36を経
て第1工程の管式加熱炉に循環しても良いし、ラ
イン34を経て系外に副生物として抜き出しても
良い。また、この分散連続熱処理設備44を用い
て高性能炭素繊維製造用ピツチを製造する場合に
は、上記の様にライン46から水素供与性溶媒、
軽質成分および不活性ガスもしくは過熱蒸気の混
合物が抜き出されるが、このライン46から抜き
出されるものを次の様に処理することもできる。
すなわち、該ライン46から抜き出された混合物
から非凝縮性ガス状物を除き、得られた液状物を
第1工程の管式加熱炉13の後の蒸留塔15に送
入する。ただし、この場合、該蒸留塔15は、サ
イドカツト留分を抜き出せる構造のものとする。
しかして、該蒸留塔15において、それに送入さ
れる第1工程の管式加熱炉13から得られた加熱
処理物と共に該液状物を蒸留し、該蒸留塔15の
塔頂から分解ガスおよび軽質成分を留出させ、サ
イドカツト留分として水素供与性溶媒を留出さ
せ、塔底から熱分解重質油を得ると言う様に、該
加熱処理物からの分解ガスおよび軽質成分の除去
と該液状物からの水素供与性溶媒の回収とを同時
に行なうこともできる。かかる処理は、その成否
が使用する原料の精製重質成分の種類、使用する
水素供与性溶媒の種類等に依存するが、例えば原
料の精製重質成分として精製コールタールが用い
られ、水素供与性溶媒として水添したアントラセ
ン油が用いられている場合に好適に適用すること
ができる。 第4図は、第2工程の分離設備19から不溶性
成分をBTX溶剤を含んだままのものとして採取
してライン51を経て抜き出し、これにライン2
2を経て水素供与性溶媒を加えて混合した後蒸留
塔52に送入し、当該蒸留塔52において不溶性
成分に含まれていたBTX溶剤を分離して塔頂か
らライン54を経て抜き出し、塔底からライン5
3を経て水素化原料を水素化設備23に送入する
例を示したものである。本例において、上記した
点以外は第3図の例の場合と同様であり、水素化
設備23以後の高性能炭素繊維製造用ピツチを得
るための処理は第3図の例と同様に分散連続熱処
理設備44を用いて実施されるが、この分散連続
熱処理設備に代えて第2図の例の蒸留塔もしくは
フラツシユ蒸留塔25と熱処理設備28の組合せ
を用いて実施することもできる。 さらに第5図は、第2工程の分離設備19から
ライン21を経て抜き出される可溶性成分の溶剤
溶液をライン55を経てそのまま分散連続熱処理
設備48に送入して汎用炭素繊維製造用ピツチを
得る例である。この場合、分散連続熱処理設備4
8からは、可溶性成分中の軽質成分およびライン
47を経て供給された不活性ガスもしくは過熱蒸
気とともに第2工程で用いられたBTX溶剤がラ
イン56を経て抜き出されることになる。また、
必要に応じて、分離設備19からライン21を経
て抜き出される可溶性成分の溶剤溶液の一部をラ
イン57を経て蒸留塔もしくはフラツシユ蒸留塔
31に送入してBTX溶剤および必要に応じて軽
質成分を分離し、該塔の塔底からライン32を経
て抜き出される可溶性成分をライン36を経て第
1工程の管式加熱炉13に循環しても良いし、さ
らにはこの可溶性成分の一部をライン34を経て
副生物として系外に抜き出しても良いことは勿論
である。 (発明の効果) 本発明によれば、高性能炭素繊維製造用ピツ
チ、特に超高性能炭素繊維製造用ピツチと、該高
性能炭素繊維製造用ピツチの製造に利用されなか
つた原料精製重質成分の画分、すなわち従来価値
のない副生物として取り扱われていた原料精製重
質成分の画分を用いて簡単な操作で汎用炭素繊維
製造用ピツチとを製造することができ、従つて上
記両方のピツチの製造コストを低減することがで
き、ひいては高性能炭素繊維および汎用炭素繊維
の製造コストを低減することができる。さらに、
本発明によれば、一つのプロセスの中で高性能炭
素繊維製造用ピツチと汎用炭素繊維製造用ピツチ
の生産量の割合を、状況に応じて調整することが
できるので非常に経済的である。 以下、実施例によつて本発明の方法をさらに詳
しく説明する。 実施例 1 第2表に示す性状の重質コールタール(このも
のはあらかじめ300℃で蒸留して軽質成分の一部
を除去してある。)を2重量倍量のキシレンに混
合、溶解した後、連続ろ過機により生成した不溶
性成分を分離、除去した。得られたろ液を蒸留し
たキシレンを除き第2表に示す性状の精製重質成
分を得た。このものの収率はもとの重質コールタ
ールに対して92.1wt%であつた。 この精製重質成分17.5Kg/hを、内径6mm、長
さ40mの加熱管を溶融塩浴に浸した構造を持つ管
式加熱炉において、温度470〜520℃、圧力20Kg/
cm2Gの条件下に加熱処理し、続いて塔頂温度250
℃に保持されたフラツシユ蒸留塔で常圧にて軽質
成分を分離して、熱分解重質油を得た。約100℃
に加熱した熱分解重質油1重量部にキシレン2重
量部を加え混合、溶解した後室温まで冷却した。
この混合液を連続遠心分離機(石川島播磨重工業
製ミニデカンター)で不溶性成分と可溶性成分の
溶剤溶液とを分離した。得られた不溶性成分1重
量部にさらにキシレン2重量部を加え混合した
後、加圧ろ過により不溶性成分と可溶性成分の溶
剤溶液を分離した。この不溶性成分を減圧下に加
熱してキシレンを除き不溶性成分である高分子量
歴青物を得た。また、上記2回の分離で得られた
可溶性成分の溶剤溶液を蒸留してキシレンを除去
し可溶性成分を得た。各々の成分の精製重質成分
に対する収率と、不溶性成分の性状は第3表に示
すようであつた。 次に、得られた不溶性成分1重量部を水素化ア
ントラセン油の3重量部に溶解し、この混合物を
6.5Kg/hで内径が10mm、長さ100mの加熱管を溶
融塩浴に浸した構造を持つ管式加熱炉において、
温度440℃、圧力50Kg/cm2Gの条件下に連続的に
加熱処理することにより水素化し、続いて水素化
処理混合物を常圧下、塔頂温度400℃に保持され
たフラツシユ蒸留塔に送り、使用済みの溶媒と軽
質成分を除去して水素化ピツチを得た。 次に、この水素化ピツチ100gを重合フラスコ
に入れ、450℃の塩浴中で、常圧下に、窒素を8
/minで吹き込みながら30分間熱処理して高性
能炭素繊維製造用ピツチである光学的異方性ピツ
チを得た。水素化ピツチおよび高性能炭素繊維製
造用ピツチの精製重質成分に対する収率とそれぞ
れのピツチの性状を第4表に示す。 実験番号2、3、4で得られた光学的異方性ピ
ツチを径0.25mm、長さ0.75mmのノズル孔を持つ紡
糸機にて温度340℃、巻取り速度700m/minで紡
糸し、空気中1℃/minの昇温速度で320℃まで
昇温し、この温度で20分間加熱することにより不
融化し、続いて窒素雰囲気中で1000℃にて炭化し
て炭素繊維とした。このものの特性は第5表に示
す様であつた。 また、実験番号1、3、5で得られた可溶性成
分250gを重合フラスコにいれ、430℃の塩浴中
で、常圧下に、窒素を8/min吹き込みながら
70分間熱処理して汎用炭素繊維製造用ピツチであ
る熱処理ピツチを得た。このものの精製重質成分
に対する収率と性状は第6表のようであつた。 得られた熱処理ピツチを上記と同じ紡糸機で温
度285℃、巻取り速度500m/minとして紡糸し、
上記と同じ条件で不融化および炭化して炭素繊維
を得た。このものの特性は第7表の様であつた。
【表】
【表】
【表】
【表】
【表】
【表】
【表】
実施例 2
実施例1で得た精製重質成分を原料として、第
2図に示した方法で第1工程の管式加熱炉による
加熱処理およびそれに続く軽質成分の蒸留除去、
第2工程の新たに生成した不溶性成分と可溶性成
分の溶剤溶液の分離と不溶性成分の洗浄、および
第6工程の溶剤除去による可溶性成分の回収とを
連続的に実施した。このとき、第6工程で得られ
た可溶性成分を精製重質成分1重量部に対して3
重量倍量となる様に第1工程の管式加熱炉に循環
した。また、各工程の運転条件は以下の様に設定
した。 第1工程 フイード量 精製重質成分 4.4Kg/h 可溶性成分循環量 13.2Kg/h 循環比(リサイクル比) 3 管式加熱炉 内径6cm、長さ40mの加熱管を溶融塩浴中に浸
した構造のもの。 加熱管出口温度 500℃ 加熱管圧力 20Kg/cm2G 蒸留塔 充填塔 塔頂温度 290℃ 圧 力 常圧 第2工程 溶 剤 キシレン 溶剤比 第1工程の加熱処理物を蒸留して得られた熱分
解重質油(蒸留塔底液)1重量部に対して1.5重
量部。 熱分解重質油と溶剤の混合方法 常圧下、約100℃で流れる熱分解重質油の配管
中に1.5重量倍量のキシレンを送入し、この混合
液を平均滞留時間が約2分となる小型撹拌混合槽
において約50℃で撹拌した後、クーラーにて常温
まで冷却。 不溶性成分の分離、回収 分離機 遠心分離機(石川島播磨重工業製ミニ
デカンター) 条件 常温、常圧 不溶性成分の洗浄 上記遠心分離機で得られた不溶性成分1重量部
にキシレン2重量部を加え、常温下に混合、分散
後、加圧ろ過。 第6工程 溶剤回収塔 充填塔 塔頂温度 145℃ 圧 力 常圧 この運転で得た不溶性成分を減圧下に加熱して
キシレンを除去して得た高分子量歴青物の精製重
質成分に対する収率は25.3wt%であり、その性状
はキシレン不溶分69.9wt%、キノリン不溶分
0.1wt%であり、偏光顕微鏡下で観察したところ
全面等方性であつた。また、この運転中に各工程
での生成物をサンプリングし分析した結果は第8
表の様であつた。 次に、この高分子量歴青物1重量部に3重量部
の水素化アントラセン油を加えて溶解した後、実
施例1と同じ管式加熱炉を用いて、実施例1と同
一条件で加熱処理することにより水素化し、続い
て、やはり実施例1と同じフラツシユ蒸留塔で、
同一条件でフラツシユ蒸留して水素化ピツチを得
た。この水素化ピツチの収率は精製重質成分に対
して23.0wt%であり、その性状はJIS環球法軟化
点151℃、キシレン不溶分55.6wt%、キノリン不
溶分0.2wt%であつた。 さらにこの水素化ピツチを実施例1と同様に重
合フラスコに入れ、常圧下、窒素を8/minで
吹き込みながら450℃の塩浴中で30分間熱処理し
て高性能炭素繊維製造用ピツチである光学的異方
性ピツチを得た。このものの収率は精製重質成分
に対して16.4wt%であり、その性状はメトラー法
軟化点304℃、キシレン不溶分95.8wt%、キノリ
ン不溶分0.7wt%であり、偏光顕微鏡で観察した
ところ光学的異方性部分はほぼ100%であつた。 この光学的異方性ピツチを実施例1で用いた紡
糸機により、温度330℃、巻取り速度700m/min
で紡糸し、実施例1と同じ条件で不融化および
1000℃での炭化を行つて得た炭素繊維の特性は強
度315Kg/mm2、弾性率17.8toz/mm2であつた。さら
に、このものを窒素雰囲気中で2500℃にて黒鉛化
して得た黒鉛繊維の特性は強度421Kg/mm2、弾性
率62.8ton/mm2であつた。 また、第6工程で得られた可溶性成分のうち第
1工程の管式加熱炉に循環されなかつたものを減
圧下に蒸留して常圧換算で350℃以下の軽質成分
を除去し可溶性ピツチとした。このものの精製重
質成分に対する収率は55.5wt%であり、また、
JIS環球法軟化点58℃、キノリン不溶分0.1wt%以
下であつた。 この可溶性ピツチ200gを実施例1と同じ重合
フラスコに入れ、常圧下、8/minの窒素を吹
き込みながら、430℃の塩浴中で60〜120分間熱処
理して汎用炭素繊維製造用ピツチである熱処理ピ
ツチを得た。このものの精製重質成分に対する収
率および性状は第9表に示す様であつた。 また、実験番号7の熱処理ピツチを実施例1と
同じ紡糸機で温度290℃、巻取り速度500m/min
で紡糸し、実施例1と同じ条件で不融化および
1000℃での炭化を行つて得た炭素繊維の特性は強
度110Kg/mm2、弾性率5.8ton/mm2であつた。
2図に示した方法で第1工程の管式加熱炉による
加熱処理およびそれに続く軽質成分の蒸留除去、
第2工程の新たに生成した不溶性成分と可溶性成
分の溶剤溶液の分離と不溶性成分の洗浄、および
第6工程の溶剤除去による可溶性成分の回収とを
連続的に実施した。このとき、第6工程で得られ
た可溶性成分を精製重質成分1重量部に対して3
重量倍量となる様に第1工程の管式加熱炉に循環
した。また、各工程の運転条件は以下の様に設定
した。 第1工程 フイード量 精製重質成分 4.4Kg/h 可溶性成分循環量 13.2Kg/h 循環比(リサイクル比) 3 管式加熱炉 内径6cm、長さ40mの加熱管を溶融塩浴中に浸
した構造のもの。 加熱管出口温度 500℃ 加熱管圧力 20Kg/cm2G 蒸留塔 充填塔 塔頂温度 290℃ 圧 力 常圧 第2工程 溶 剤 キシレン 溶剤比 第1工程の加熱処理物を蒸留して得られた熱分
解重質油(蒸留塔底液)1重量部に対して1.5重
量部。 熱分解重質油と溶剤の混合方法 常圧下、約100℃で流れる熱分解重質油の配管
中に1.5重量倍量のキシレンを送入し、この混合
液を平均滞留時間が約2分となる小型撹拌混合槽
において約50℃で撹拌した後、クーラーにて常温
まで冷却。 不溶性成分の分離、回収 分離機 遠心分離機(石川島播磨重工業製ミニ
デカンター) 条件 常温、常圧 不溶性成分の洗浄 上記遠心分離機で得られた不溶性成分1重量部
にキシレン2重量部を加え、常温下に混合、分散
後、加圧ろ過。 第6工程 溶剤回収塔 充填塔 塔頂温度 145℃ 圧 力 常圧 この運転で得た不溶性成分を減圧下に加熱して
キシレンを除去して得た高分子量歴青物の精製重
質成分に対する収率は25.3wt%であり、その性状
はキシレン不溶分69.9wt%、キノリン不溶分
0.1wt%であり、偏光顕微鏡下で観察したところ
全面等方性であつた。また、この運転中に各工程
での生成物をサンプリングし分析した結果は第8
表の様であつた。 次に、この高分子量歴青物1重量部に3重量部
の水素化アントラセン油を加えて溶解した後、実
施例1と同じ管式加熱炉を用いて、実施例1と同
一条件で加熱処理することにより水素化し、続い
て、やはり実施例1と同じフラツシユ蒸留塔で、
同一条件でフラツシユ蒸留して水素化ピツチを得
た。この水素化ピツチの収率は精製重質成分に対
して23.0wt%であり、その性状はJIS環球法軟化
点151℃、キシレン不溶分55.6wt%、キノリン不
溶分0.2wt%であつた。 さらにこの水素化ピツチを実施例1と同様に重
合フラスコに入れ、常圧下、窒素を8/minで
吹き込みながら450℃の塩浴中で30分間熱処理し
て高性能炭素繊維製造用ピツチである光学的異方
性ピツチを得た。このものの収率は精製重質成分
に対して16.4wt%であり、その性状はメトラー法
軟化点304℃、キシレン不溶分95.8wt%、キノリ
ン不溶分0.7wt%であり、偏光顕微鏡で観察した
ところ光学的異方性部分はほぼ100%であつた。 この光学的異方性ピツチを実施例1で用いた紡
糸機により、温度330℃、巻取り速度700m/min
で紡糸し、実施例1と同じ条件で不融化および
1000℃での炭化を行つて得た炭素繊維の特性は強
度315Kg/mm2、弾性率17.8toz/mm2であつた。さら
に、このものを窒素雰囲気中で2500℃にて黒鉛化
して得た黒鉛繊維の特性は強度421Kg/mm2、弾性
率62.8ton/mm2であつた。 また、第6工程で得られた可溶性成分のうち第
1工程の管式加熱炉に循環されなかつたものを減
圧下に蒸留して常圧換算で350℃以下の軽質成分
を除去し可溶性ピツチとした。このものの精製重
質成分に対する収率は55.5wt%であり、また、
JIS環球法軟化点58℃、キノリン不溶分0.1wt%以
下であつた。 この可溶性ピツチ200gを実施例1と同じ重合
フラスコに入れ、常圧下、8/minの窒素を吹
き込みながら、430℃の塩浴中で60〜120分間熱処
理して汎用炭素繊維製造用ピツチである熱処理ピ
ツチを得た。このものの精製重質成分に対する収
率および性状は第9表に示す様であつた。 また、実験番号7の熱処理ピツチを実施例1と
同じ紡糸機で温度290℃、巻取り速度500m/min
で紡糸し、実施例1と同じ条件で不融化および
1000℃での炭化を行つて得た炭素繊維の特性は強
度110Kg/mm2、弾性率5.8ton/mm2であつた。
【表】
【表】
実施例 3
実施例2の第3工程である管式加熱炉で水素化
処理を受けた水素化処理混合物を次のフラツシユ
蒸留塔に送ることなく、そのまま約100℃まで冷
却した。この水素化処理混合物を原料として第1
図に示した構造の分散連続熱処理設備で熱処理を
おこなつた。 この分散連続熱処理設備は、容器内径が100mm、
集合板と集合板の間隔130mm、回転円板の直径70
mm、集合板の下端の穴径40mmであり、集合板と回
転円板の組み合わせによる処理段数は8段であ
る。 この設備に上記水素化処理混合物を6.5Kg/h
でフイードし、円板の回転数を800rpm、窒素吹
き込み量を80N/minとして、常圧下、温度
445℃で熱処理し、容器下部から高性能炭素繊維
製造用ピツチである光学的異方性ピツチをギアー
ポンプにより連続的に抜きだした。この光学的異
方性ピツチの精製重質成分に対する収率は16.3wt
%であり、その性状はメトラー法軟化点306℃、
キシレン不溶分94.7wt%、キノリン不溶分0.5wt
%であり偏光顕微鏡で観察したところ光学的異方
性部分はほぼ100%であつた。 また、この光学的異方性ピツチから実施例1と
同じ紡糸機で、温度335℃、巻取り速度700m/
minで紡糸し、実施例1と同じ不融化および1000
℃での炭化を行つて得た炭素繊維の特性は強度
318Kg/mm2、弾性率17.5ton/mm2であり、また2500
℃で黒鉛化した黒鉛繊維の特性は強度430Kg/mm2、
弾性率61.4ton/mm2であつた。 実施例 4 実施例2で得た可溶性成分を原料として、実施
例3で用いたと同じ分散連続熱処理設備で連続的
に熱処理した。このとき原料フイード量を5.0
Kg/h、吹き込み窒素量を120N/min、処理
温度を465℃とする以外は実施例3と同一条件と
した。 得られた汎用炭素繊維製造用ピツチである熱処
理ピツチの収率は精製重質成分に対して16.2wt%
であり、その性状はメトラー法軟化点261℃、キ
シレン不溶分62.0wt%、キノリン不溶分0.1wt%
以下であり、偏光顕微鏡で観察したところ光学的
異方性部分は全く観察されなかつた。 また、この熱処理ピツチを実施例1と同じ紡糸
機で温度290℃、巻取り速度500m/minで紡糸
し、実施例1と同じ条件で不融化および1000℃で
の炭化を行つて得た炭素繊維の特性は強度108
Kg/mm2、弾性率5.4ton/mm2であつた。 実施例 5 実施例1で得た精製重質成分を原料として、第
1工程の加熱処理とそれに続く軽質成分の蒸留、
第2工程の不溶性成分と可溶性成分の溶剤溶液の
分離および第6工程の溶剤蒸留除去による可溶性
成分の回収とを連続的に実施した。このとき、熱
分解重質油と溶剤であるキシレンの混合比を熱分
解重質油1重量部に対してキシレンを2重量部と
したこと以外は実施例2と同じ条件で運転を行つ
た。 この運転で第2工程から得られるキシレンを含
んだ不溶性成分を、キシレンを除去することなく
水素化アントラセン油の1.6重量倍量に混合し、
この混合液を蒸留してキシレンを除去した。得ら
れた混合液をそのまま実施例1の第3工程である
管式加熱炉と同じ設備を用い、実施例1と同じ条
件で加熱処理して水素化を行つた。得られた水素
化混合物を実施例3で用いたと同じ分散連続熱処
理設備で熱処理して、連続的に高性能炭素繊維製
造用ピツチである光学的異方性ピツチを得た。こ
のとき処理温度を455℃とする以外は実施例3と
同一条件で処理した。 得られた光学的異方性ピツチの精製重質成分に
対する収率は17.8wt%であり、その性状はメトラ
ー法軟化点308℃、キシレン不溶分94.7wt%、キ
ノリン不溶分0.7wt%であり、偏光顕微鏡で観察
したところ光学的異方性部分はほぼ100%であつ
た。 また、このものから実施例3と同一条件で1000
℃で処理した炭素繊維を製造したところ、その特
性は強度309Kg/mm2、弾性率18.5ton/mm2であつ
た。 また、この運転で第6工程から得られる可溶性
成分のうち第1工程の管式加熱炉に循環されなか
つた余剰の可溶性成分は精製重質成分に対して
59.4wt%であつたので、このうちの29.4wt%を副
生油として抜き出し、残りの30wt%を実施例4
と同様に分散連続熱処理設備で熱処理して汎用炭
素繊維製造用ピツチである熱処理ピツチを得た。
このものの収率は精製重質成分に対して6.6wt%
であり、その性状はメトラー法軟化点254℃、キ
シレン不溶分59.8wt%、キノリン不溶分0.1wt%
以下であり、偏光顕微鏡で観察したところ光学的
異方性部分は全く観察されなかつた。 また、この熱処理ピツチから実施例4と同様に
して炭素繊維を製造したところ、その特性は強度
96Kg/mm2、弾性率4.9ton/mm2であつた。 実施例 6 実施例1で得た精製重質成分を原料として、第
1工程の管式加熱炉における処理温度を480℃と
する以外は実施例5と同一条件で、第1工程の加
熱処理とそれに続く軽質成分の蒸留、第2工程の
不溶性成分と可溶性成分の溶剤溶液の分離および
第6工程の溶剤蒸留除去による可溶性成分の回収
とを連続的に実施した。 第2工程で得られた不溶性成分をキシレンを除
去することなくそのまま3重量倍量の水素化アン
トラセン油を混合し、この混合液を実施例5と同
様にして、蒸留によるキシレンの除去、第3工程
である管式加熱炉による水素化処理、さらに第4
工程と第5工程を統合した分散連続熱処理設備に
よる熱処理を行つて光学的異方性ピツチを得た。 このものの精製重質成分に対する収率は13.8wt
%であり、その性状はメトラー法軟化点305℃、
キシレン不溶分93.5wt%、キノリン不溶分0.1wt
%であり、偏光顕微鏡で観察したところ光学的異
方性部分はほぼ100%であつた。 また、この運転で第6工程から得られる可溶性
成分のうち第1工程の管式加熱炉に循環されなか
つた可溶性成分の200gを、実施例1と同様に重
合フラスコで常圧下、窒素を8/minで吹き込
みながら、450℃の塩浴中で40分間熱処理した。
得られた熱処理ピツチの精製重質成分に対する収
率は14.1wt%であり、その性状はメトラー法軟化
点263℃、キシレン不溶分63.6wt%、キノリン不
溶分0.1wt%以下であり、偏光顕微鏡下に観察し
たところ光学的異方性部分は全く認められなかつ
た。 実施例 7 第10表に示す性状の別のコールタールを常圧
下、280℃で蒸留して軽質成分を除去し、得られ
た重質成分に2重量倍量のキシレンを加え混合溶
解した後、常温下に連続的にろ過をして、生成し
た不溶性成分を分離除去し、得られたろ液を蒸留
してキシレンを除去して第10表に示す性状の精製
重質成分を得た。このものの収率はコールタール
に対して70.0wt%であつた。 この精製重質成分を原料として、第2図に示し
た方法で第1工程の管式加熱炉による加熱処理お
よびそれに続く軽質成分の蒸留除去、第2工程の
新たに生成した不溶性成分と可溶性成分の溶剤溶
液の分離と不溶性成分の洗浄、および第6工程の
溶剤除去による可溶性成分の回収とを連続的に実
施した。このとき、第6工程で得られた可溶性成
分を精製重質成分1重量部に対して3重量部とな
る様に第1工程の管式加熱炉に循環した。また、
各工程の運転条件は以下の様に設定した。 第1工程 フイード量 精製重質成分 3.0Kg/h 可溶性成分循環量 9.0Kg/h 循環比(リサイクル比) 3 管式加熱炉 内径6mm、長さ27.5mの加熱管を溶融塩浴中に
浸した構造のもの。 加熱管出口温度 510℃ 加熱管圧力 20Kg/cm2G 蒸留塔 フラツシユ蒸留塔 塔頂温度 290℃ 圧 力 常圧 第2工程 溶 剤 キシレン 溶剤比 第1工程の加熱処理物をフラツシユ蒸留して得
られた熱分解重質油(蒸留塔底液)1重量部に対
して2重量部。 熱分解重質油と溶剤の混合方法 常圧下、約100℃で流れる熱分解重質油の配管
中に2重量倍量のキシレンを送入し、クーラーに
て常温まで冷却。 不溶性成分の分離、回収 分離機 遠心分離機(石川島播磨重工業製ミニ
デカンター) 条件 常温、常圧 不溶性成分の洗浄 上記遠心分離機で得られた不溶性成分1重量部
にキシレン2重量部を加え、常温下に混合、分散
後、遠心分離。 第6工程 溶剤回収塔 充填塔 塔頂温度 145℃ 圧 力 常圧 この運転で得た不溶性成分を減圧下に加熱して
キシレンを除去して得た高分子量歴青物の精製重
質成分に対する収率は31.0wt%であり、その性状
はキシレン不溶分74.7wt%、キノリン不溶分
0.2wt%であり、偏光顕微鏡下で観察したところ
全面等方性であつた。また、この運転中に各工程
での生成物をサンプリングし分析した結果は第11
表の様であつた。 次に、この高分子量歴青物1重量部に3重量部
の水素化アントラセン油を加えて溶解した後、実
施例1と同じ管式加熱炉を用いて、実施例1と同
一条件で加熱処理することにより水素化し、続い
て、やはり実施例1と同じフラツシユ蒸留塔で、
同一条件でフラツシユ蒸留して水素化ピツチを得
た。この水素化ピツチの収率は精製重質成分に対
して26.9wt%であり、その性状はJIS環球法軟化
点139℃、キシレン不溶分56.2wt%、キノリン不
溶分0.2wt%であつた。 さらにこの水素化ピツチを実施例1と同様に重
合フラスコに入れ、常圧下、窒素をを8/min
で吹き込みながら450℃の塩浴中で55分間熱処理
して高性能炭素繊維製造用ピツチである光学的異
方性ピツチを得た。このものの収率は精製重質成
分に対して20.2wt%であり、その性状はメトラー
法軟化点302℃、キシレン不溶分95.1wt%、キノ
リン不溶分3.4wt%であり、偏光顕微鏡で観察し
たところ光学的異方性部分はほぼ100%であつた。 この光学的異方性ピツチを実施例1で用いた紡
糸機により、温度330℃、巻取り速度700m/min
で紡糸し、実施例1と同じ条件で不融化および
1000℃での炭化を行つて得た炭素繊維の特性は強
度344Kg/mm2、弾性率18.2ton/mm2であつた。さら
に、このものを窒素雰囲気中で2500℃にて黒鉛化
して得た黒鉛繊維の特性は強度438Kg/mm2、弾性
率67.2ton/mm2であつた。 また、第6工程で得られた可溶性成分のうち第
1工程の管式加熱炉に循環されなかつたものを減
圧下に蒸留して常圧換算で350℃以下の軽質成分
を除去し、可溶性ピツチとした。このものの精製
重質成分に対する収率は39.0wt%であり、また、
JIS環球法軟化点62℃、キノリン不溶分0.1wt%以
下であつた。 この可溶性ピツチ200gを実施例1と同じ重合
フラスコに入れ、常圧下、8/minの窒素を吹
き込みながら、430℃の塩浴中で90分間熱処理し
て汎用炭素繊維製造用ピツチである熱処理ピツチ
を得た。このものの精製重質成分に対する収率は
11.5wt%であり、その性状はメトラー法軟化点
270℃、キシレン不溶分65.2wt%、キノリン不溶
分0.1wt%以下であり、偏光顕微鏡で観察したと
きに光学的異方性部分は全く認められなかつた。 また、この熱処理ピツチを実施例1と同じ紡糸
機で温度290℃、巻取り速度500m/minで紡糸
し、実施例1と同じ条件で不融化し、1000℃での
炭化を行つて得た炭素繊維の特性は強度113Kg/
mm2、弾性率6.3ton/mm2であつた。
処理を受けた水素化処理混合物を次のフラツシユ
蒸留塔に送ることなく、そのまま約100℃まで冷
却した。この水素化処理混合物を原料として第1
図に示した構造の分散連続熱処理設備で熱処理を
おこなつた。 この分散連続熱処理設備は、容器内径が100mm、
集合板と集合板の間隔130mm、回転円板の直径70
mm、集合板の下端の穴径40mmであり、集合板と回
転円板の組み合わせによる処理段数は8段であ
る。 この設備に上記水素化処理混合物を6.5Kg/h
でフイードし、円板の回転数を800rpm、窒素吹
き込み量を80N/minとして、常圧下、温度
445℃で熱処理し、容器下部から高性能炭素繊維
製造用ピツチである光学的異方性ピツチをギアー
ポンプにより連続的に抜きだした。この光学的異
方性ピツチの精製重質成分に対する収率は16.3wt
%であり、その性状はメトラー法軟化点306℃、
キシレン不溶分94.7wt%、キノリン不溶分0.5wt
%であり偏光顕微鏡で観察したところ光学的異方
性部分はほぼ100%であつた。 また、この光学的異方性ピツチから実施例1と
同じ紡糸機で、温度335℃、巻取り速度700m/
minで紡糸し、実施例1と同じ不融化および1000
℃での炭化を行つて得た炭素繊維の特性は強度
318Kg/mm2、弾性率17.5ton/mm2であり、また2500
℃で黒鉛化した黒鉛繊維の特性は強度430Kg/mm2、
弾性率61.4ton/mm2であつた。 実施例 4 実施例2で得た可溶性成分を原料として、実施
例3で用いたと同じ分散連続熱処理設備で連続的
に熱処理した。このとき原料フイード量を5.0
Kg/h、吹き込み窒素量を120N/min、処理
温度を465℃とする以外は実施例3と同一条件と
した。 得られた汎用炭素繊維製造用ピツチである熱処
理ピツチの収率は精製重質成分に対して16.2wt%
であり、その性状はメトラー法軟化点261℃、キ
シレン不溶分62.0wt%、キノリン不溶分0.1wt%
以下であり、偏光顕微鏡で観察したところ光学的
異方性部分は全く観察されなかつた。 また、この熱処理ピツチを実施例1と同じ紡糸
機で温度290℃、巻取り速度500m/minで紡糸
し、実施例1と同じ条件で不融化および1000℃で
の炭化を行つて得た炭素繊維の特性は強度108
Kg/mm2、弾性率5.4ton/mm2であつた。 実施例 5 実施例1で得た精製重質成分を原料として、第
1工程の加熱処理とそれに続く軽質成分の蒸留、
第2工程の不溶性成分と可溶性成分の溶剤溶液の
分離および第6工程の溶剤蒸留除去による可溶性
成分の回収とを連続的に実施した。このとき、熱
分解重質油と溶剤であるキシレンの混合比を熱分
解重質油1重量部に対してキシレンを2重量部と
したこと以外は実施例2と同じ条件で運転を行つ
た。 この運転で第2工程から得られるキシレンを含
んだ不溶性成分を、キシレンを除去することなく
水素化アントラセン油の1.6重量倍量に混合し、
この混合液を蒸留してキシレンを除去した。得ら
れた混合液をそのまま実施例1の第3工程である
管式加熱炉と同じ設備を用い、実施例1と同じ条
件で加熱処理して水素化を行つた。得られた水素
化混合物を実施例3で用いたと同じ分散連続熱処
理設備で熱処理して、連続的に高性能炭素繊維製
造用ピツチである光学的異方性ピツチを得た。こ
のとき処理温度を455℃とする以外は実施例3と
同一条件で処理した。 得られた光学的異方性ピツチの精製重質成分に
対する収率は17.8wt%であり、その性状はメトラ
ー法軟化点308℃、キシレン不溶分94.7wt%、キ
ノリン不溶分0.7wt%であり、偏光顕微鏡で観察
したところ光学的異方性部分はほぼ100%であつ
た。 また、このものから実施例3と同一条件で1000
℃で処理した炭素繊維を製造したところ、その特
性は強度309Kg/mm2、弾性率18.5ton/mm2であつ
た。 また、この運転で第6工程から得られる可溶性
成分のうち第1工程の管式加熱炉に循環されなか
つた余剰の可溶性成分は精製重質成分に対して
59.4wt%であつたので、このうちの29.4wt%を副
生油として抜き出し、残りの30wt%を実施例4
と同様に分散連続熱処理設備で熱処理して汎用炭
素繊維製造用ピツチである熱処理ピツチを得た。
このものの収率は精製重質成分に対して6.6wt%
であり、その性状はメトラー法軟化点254℃、キ
シレン不溶分59.8wt%、キノリン不溶分0.1wt%
以下であり、偏光顕微鏡で観察したところ光学的
異方性部分は全く観察されなかつた。 また、この熱処理ピツチから実施例4と同様に
して炭素繊維を製造したところ、その特性は強度
96Kg/mm2、弾性率4.9ton/mm2であつた。 実施例 6 実施例1で得た精製重質成分を原料として、第
1工程の管式加熱炉における処理温度を480℃と
する以外は実施例5と同一条件で、第1工程の加
熱処理とそれに続く軽質成分の蒸留、第2工程の
不溶性成分と可溶性成分の溶剤溶液の分離および
第6工程の溶剤蒸留除去による可溶性成分の回収
とを連続的に実施した。 第2工程で得られた不溶性成分をキシレンを除
去することなくそのまま3重量倍量の水素化アン
トラセン油を混合し、この混合液を実施例5と同
様にして、蒸留によるキシレンの除去、第3工程
である管式加熱炉による水素化処理、さらに第4
工程と第5工程を統合した分散連続熱処理設備に
よる熱処理を行つて光学的異方性ピツチを得た。 このものの精製重質成分に対する収率は13.8wt
%であり、その性状はメトラー法軟化点305℃、
キシレン不溶分93.5wt%、キノリン不溶分0.1wt
%であり、偏光顕微鏡で観察したところ光学的異
方性部分はほぼ100%であつた。 また、この運転で第6工程から得られる可溶性
成分のうち第1工程の管式加熱炉に循環されなか
つた可溶性成分の200gを、実施例1と同様に重
合フラスコで常圧下、窒素を8/minで吹き込
みながら、450℃の塩浴中で40分間熱処理した。
得られた熱処理ピツチの精製重質成分に対する収
率は14.1wt%であり、その性状はメトラー法軟化
点263℃、キシレン不溶分63.6wt%、キノリン不
溶分0.1wt%以下であり、偏光顕微鏡下に観察し
たところ光学的異方性部分は全く認められなかつ
た。 実施例 7 第10表に示す性状の別のコールタールを常圧
下、280℃で蒸留して軽質成分を除去し、得られ
た重質成分に2重量倍量のキシレンを加え混合溶
解した後、常温下に連続的にろ過をして、生成し
た不溶性成分を分離除去し、得られたろ液を蒸留
してキシレンを除去して第10表に示す性状の精製
重質成分を得た。このものの収率はコールタール
に対して70.0wt%であつた。 この精製重質成分を原料として、第2図に示し
た方法で第1工程の管式加熱炉による加熱処理お
よびそれに続く軽質成分の蒸留除去、第2工程の
新たに生成した不溶性成分と可溶性成分の溶剤溶
液の分離と不溶性成分の洗浄、および第6工程の
溶剤除去による可溶性成分の回収とを連続的に実
施した。このとき、第6工程で得られた可溶性成
分を精製重質成分1重量部に対して3重量部とな
る様に第1工程の管式加熱炉に循環した。また、
各工程の運転条件は以下の様に設定した。 第1工程 フイード量 精製重質成分 3.0Kg/h 可溶性成分循環量 9.0Kg/h 循環比(リサイクル比) 3 管式加熱炉 内径6mm、長さ27.5mの加熱管を溶融塩浴中に
浸した構造のもの。 加熱管出口温度 510℃ 加熱管圧力 20Kg/cm2G 蒸留塔 フラツシユ蒸留塔 塔頂温度 290℃ 圧 力 常圧 第2工程 溶 剤 キシレン 溶剤比 第1工程の加熱処理物をフラツシユ蒸留して得
られた熱分解重質油(蒸留塔底液)1重量部に対
して2重量部。 熱分解重質油と溶剤の混合方法 常圧下、約100℃で流れる熱分解重質油の配管
中に2重量倍量のキシレンを送入し、クーラーに
て常温まで冷却。 不溶性成分の分離、回収 分離機 遠心分離機(石川島播磨重工業製ミニ
デカンター) 条件 常温、常圧 不溶性成分の洗浄 上記遠心分離機で得られた不溶性成分1重量部
にキシレン2重量部を加え、常温下に混合、分散
後、遠心分離。 第6工程 溶剤回収塔 充填塔 塔頂温度 145℃ 圧 力 常圧 この運転で得た不溶性成分を減圧下に加熱して
キシレンを除去して得た高分子量歴青物の精製重
質成分に対する収率は31.0wt%であり、その性状
はキシレン不溶分74.7wt%、キノリン不溶分
0.2wt%であり、偏光顕微鏡下で観察したところ
全面等方性であつた。また、この運転中に各工程
での生成物をサンプリングし分析した結果は第11
表の様であつた。 次に、この高分子量歴青物1重量部に3重量部
の水素化アントラセン油を加えて溶解した後、実
施例1と同じ管式加熱炉を用いて、実施例1と同
一条件で加熱処理することにより水素化し、続い
て、やはり実施例1と同じフラツシユ蒸留塔で、
同一条件でフラツシユ蒸留して水素化ピツチを得
た。この水素化ピツチの収率は精製重質成分に対
して26.9wt%であり、その性状はJIS環球法軟化
点139℃、キシレン不溶分56.2wt%、キノリン不
溶分0.2wt%であつた。 さらにこの水素化ピツチを実施例1と同様に重
合フラスコに入れ、常圧下、窒素をを8/min
で吹き込みながら450℃の塩浴中で55分間熱処理
して高性能炭素繊維製造用ピツチである光学的異
方性ピツチを得た。このものの収率は精製重質成
分に対して20.2wt%であり、その性状はメトラー
法軟化点302℃、キシレン不溶分95.1wt%、キノ
リン不溶分3.4wt%であり、偏光顕微鏡で観察し
たところ光学的異方性部分はほぼ100%であつた。 この光学的異方性ピツチを実施例1で用いた紡
糸機により、温度330℃、巻取り速度700m/min
で紡糸し、実施例1と同じ条件で不融化および
1000℃での炭化を行つて得た炭素繊維の特性は強
度344Kg/mm2、弾性率18.2ton/mm2であつた。さら
に、このものを窒素雰囲気中で2500℃にて黒鉛化
して得た黒鉛繊維の特性は強度438Kg/mm2、弾性
率67.2ton/mm2であつた。 また、第6工程で得られた可溶性成分のうち第
1工程の管式加熱炉に循環されなかつたものを減
圧下に蒸留して常圧換算で350℃以下の軽質成分
を除去し、可溶性ピツチとした。このものの精製
重質成分に対する収率は39.0wt%であり、また、
JIS環球法軟化点62℃、キノリン不溶分0.1wt%以
下であつた。 この可溶性ピツチ200gを実施例1と同じ重合
フラスコに入れ、常圧下、8/minの窒素を吹
き込みながら、430℃の塩浴中で90分間熱処理し
て汎用炭素繊維製造用ピツチである熱処理ピツチ
を得た。このものの精製重質成分に対する収率は
11.5wt%であり、その性状はメトラー法軟化点
270℃、キシレン不溶分65.2wt%、キノリン不溶
分0.1wt%以下であり、偏光顕微鏡で観察したと
きに光学的異方性部分は全く認められなかつた。 また、この熱処理ピツチを実施例1と同じ紡糸
機で温度290℃、巻取り速度500m/minで紡糸
し、実施例1と同じ条件で不融化し、1000℃での
炭化を行つて得た炭素繊維の特性は強度113Kg/
mm2、弾性率6.3ton/mm2であつた。
【表】
【表】
実施例 8
実施例1で得られた精製重質成分を原料とし
て、第6工程で得られる可溶性成分を第1工程の
管式加熱炉に循環する量を精製重質成分に対して
5重量倍量とする以外は実施例2と同一条件で処
理して高性能炭素繊維製造用ピツチである光学的
異方性ピツチと汎用炭素繊維製造用ピツチである
熱処理ピツチを得た。ただし、水素化ピツチを重
合フラスコで加熱処理する時間を40分とし、可溶
性ピツチを重合フラスコで加熱処理する時間は90
分とした。これらのものの精製重質成分に対する
収率およびその性状は第12表の様であつた。
て、第6工程で得られる可溶性成分を第1工程の
管式加熱炉に循環する量を精製重質成分に対して
5重量倍量とする以外は実施例2と同一条件で処
理して高性能炭素繊維製造用ピツチである光学的
異方性ピツチと汎用炭素繊維製造用ピツチである
熱処理ピツチを得た。ただし、水素化ピツチを重
合フラスコで加熱処理する時間を40分とし、可溶
性ピツチを重合フラスコで加熱処理する時間は90
分とした。これらのものの精製重質成分に対する
収率およびその性状は第12表の様であつた。
【表】
実施例 9
第13表に示す性状のさらに別のコールタールを
常圧下、280℃で蒸留して軽質成分を除去し、得
られた重質成分に2重量倍量のキシレンを加え混
合溶解した後、常温下に連続的にろ過をして、生
成した不溶性成分を分離除去し、得られたろ液を
蒸留してキシレンを除去して第13表に示す性状の
精製重質成分を得た。このものの収率はコールタ
ールに対して69.7wt%であつた。 この精製重質成分を原料として、第2図に示し
た方法で第1工程の管式加熱炉による加熱処理お
よびそれに続く軽質成分の蒸留除去、第2工程の
新たに生成した不溶性成分と可溶性成分の溶剤溶
液の分離と不溶性成分の洗浄、および第6工程の
溶剤除去による可溶性成分の回収とを連続的に実
施した。このとき、第6工程で得られた可溶性成
分を精製重質成分1重量部に対して3重量部とな
る様に第1工程の管式加熱炉に循環し、さらに、
比重1.053、10vol%留出温度245℃、90vol%留出
温度277℃という性状の洗浄油(コールタールの
蒸留によつて得られたもの)を第1工程の管式加
熱炉に送入される精製重質成分と可溶性成分の合
計量の0.5重量倍量になる様に添加した。この第
1工程に添加された洗浄油は次のフラツシユ蒸留
塔で分離、除去したが、熱分解重質油の収率は精
製重質成分に対して101wt%であり一部洗浄油が
熱分解重質油中に混入していた。 また、各工程の運転条件は以下の様に設定し
た。 第1工程 フイード量 精製重質成分 3.0Kg/h 可溶性成分循環量 9.0Kg/h 循環比(リサイクル比) 3 洗浄油(希釈油) 6.0Kg/h 管式加熱炉 内径6mm、長さ40mの加熱管を溶融塩浴中に浸
した構造のもの。 加熱管出口温度 510℃ 加熱管圧力 20Kg/cm2G 蒸留塔 フラツシユ蒸留塔 塔頂温度 280℃ 圧 力 常圧 第2工程 溶 剤 キシレン 溶剤比 第1工程の加熱処理物をフラツシユ蒸留して得
られた熱分解重質油(蒸留塔底塔)1重量部に対
して2重量部。 熱分解重質油と溶剤の混合方法 常圧下、約100℃で流れる熱分解重質油の配管
中に2重量倍量のキシレンを送入し、クーラーに
て常温まで冷却。 不溶性成分の分離、回収 分離機 遠心分離機(石川島播磨重工業製ミニ
デカンター) 条件 常温、常圧 不溶性成分の洗浄 上記遠心分離機で得られた不溶性成分1重量部
にキシレン2重量部を加え、常温下に混合、分散
後、遠心分離。 第6工程 溶剤回収塔 充填塔 塔頂温度 145℃ 圧 力 常圧 この運転で得た不溶性成分を減圧下に加熱して
キシレンを除去して得た高分子量歴青物の精製重
質成分に対する収率は19.9wt%であり、その性状
はキシレン不溶分73.5wt%、キノリン不溶分
0.1wt%であり、偏光顕微鏡下で観察したところ
全面等方性であつた。また、この運転中に各工程
での生成物をサンプリングし分析した結果は第14
表の様であつた。 次に、この高分子量歴青物1重量部に3重量部
の水素化アントラセン油を加えて溶解した後、実
施例1と同じ管式加熱炉を用いて、実施例1と同
一条件で加熱処理することにより水素化し、水素
化処理混合物を得た。この、水素化処理混合物を
原料として実施例3で用いたと同様の分散連続熱
処理設備で処理して光学的異方性ピツチを得た。
このとき、処理温度を449℃とする以外は実施例
3と同じ条件とした。 この光学的異方性ピツチの収率は精製重質成分
に対して11.9wt%であり、その性状はメトラー法
軟化点300℃、キシレン不溶分92.8wt%、キノリ
ン不溶分0.6wt%であり、偏光顕微鏡で観察した
ところ光学的異方性部分はほぼ100%であつた。 この光学的異方性ピツチを実施例1で用いた紡
糸機により、温度325℃、巻取り速度700m/min
で紡糸し、実施例1と同じ条件で不融化および
1000℃での炭化を行つて得た炭素繊維の特性は強
度328Kg/mm2、弾性率16.6ton/mm2であつた。 また、第6工程で得られた可溶性成分のうち第
1工程の管式加熱炉に循環されなかつたものを原
料として実施例3で用いたと同様の分散連続熱処
理設備で加熱処理して熱処理ピツチを得た。この
とき、原料フイード量を4.5Kg/h、処理温度を
460℃とする以外は実施例4と同一条件とした。
このものの精製重質成分に対する収率は12.5wt%
であり、その性状はメトラー法軟化点259℃、キ
シレン不溶分61.7wt%、キノリン不溶分0.1wt%
以下であり、偏光顕微鏡で観察したときに光学的
異方性部分は全く認められなかつた。 また、この熱処理ピツチを実施例1と同じ紡糸
機で温度285℃、巻取り速度500m/minで紡糸
し、実施例1と同じ条件で不融化し、1000℃での
炭化を行つて得た炭素繊維の特性は強度121Kg/
mm2、弾性率5.8ton/mm2であつた。
常圧下、280℃で蒸留して軽質成分を除去し、得
られた重質成分に2重量倍量のキシレンを加え混
合溶解した後、常温下に連続的にろ過をして、生
成した不溶性成分を分離除去し、得られたろ液を
蒸留してキシレンを除去して第13表に示す性状の
精製重質成分を得た。このものの収率はコールタ
ールに対して69.7wt%であつた。 この精製重質成分を原料として、第2図に示し
た方法で第1工程の管式加熱炉による加熱処理お
よびそれに続く軽質成分の蒸留除去、第2工程の
新たに生成した不溶性成分と可溶性成分の溶剤溶
液の分離と不溶性成分の洗浄、および第6工程の
溶剤除去による可溶性成分の回収とを連続的に実
施した。このとき、第6工程で得られた可溶性成
分を精製重質成分1重量部に対して3重量部とな
る様に第1工程の管式加熱炉に循環し、さらに、
比重1.053、10vol%留出温度245℃、90vol%留出
温度277℃という性状の洗浄油(コールタールの
蒸留によつて得られたもの)を第1工程の管式加
熱炉に送入される精製重質成分と可溶性成分の合
計量の0.5重量倍量になる様に添加した。この第
1工程に添加された洗浄油は次のフラツシユ蒸留
塔で分離、除去したが、熱分解重質油の収率は精
製重質成分に対して101wt%であり一部洗浄油が
熱分解重質油中に混入していた。 また、各工程の運転条件は以下の様に設定し
た。 第1工程 フイード量 精製重質成分 3.0Kg/h 可溶性成分循環量 9.0Kg/h 循環比(リサイクル比) 3 洗浄油(希釈油) 6.0Kg/h 管式加熱炉 内径6mm、長さ40mの加熱管を溶融塩浴中に浸
した構造のもの。 加熱管出口温度 510℃ 加熱管圧力 20Kg/cm2G 蒸留塔 フラツシユ蒸留塔 塔頂温度 280℃ 圧 力 常圧 第2工程 溶 剤 キシレン 溶剤比 第1工程の加熱処理物をフラツシユ蒸留して得
られた熱分解重質油(蒸留塔底塔)1重量部に対
して2重量部。 熱分解重質油と溶剤の混合方法 常圧下、約100℃で流れる熱分解重質油の配管
中に2重量倍量のキシレンを送入し、クーラーに
て常温まで冷却。 不溶性成分の分離、回収 分離機 遠心分離機(石川島播磨重工業製ミニ
デカンター) 条件 常温、常圧 不溶性成分の洗浄 上記遠心分離機で得られた不溶性成分1重量部
にキシレン2重量部を加え、常温下に混合、分散
後、遠心分離。 第6工程 溶剤回収塔 充填塔 塔頂温度 145℃ 圧 力 常圧 この運転で得た不溶性成分を減圧下に加熱して
キシレンを除去して得た高分子量歴青物の精製重
質成分に対する収率は19.9wt%であり、その性状
はキシレン不溶分73.5wt%、キノリン不溶分
0.1wt%であり、偏光顕微鏡下で観察したところ
全面等方性であつた。また、この運転中に各工程
での生成物をサンプリングし分析した結果は第14
表の様であつた。 次に、この高分子量歴青物1重量部に3重量部
の水素化アントラセン油を加えて溶解した後、実
施例1と同じ管式加熱炉を用いて、実施例1と同
一条件で加熱処理することにより水素化し、水素
化処理混合物を得た。この、水素化処理混合物を
原料として実施例3で用いたと同様の分散連続熱
処理設備で処理して光学的異方性ピツチを得た。
このとき、処理温度を449℃とする以外は実施例
3と同じ条件とした。 この光学的異方性ピツチの収率は精製重質成分
に対して11.9wt%であり、その性状はメトラー法
軟化点300℃、キシレン不溶分92.8wt%、キノリ
ン不溶分0.6wt%であり、偏光顕微鏡で観察した
ところ光学的異方性部分はほぼ100%であつた。 この光学的異方性ピツチを実施例1で用いた紡
糸機により、温度325℃、巻取り速度700m/min
で紡糸し、実施例1と同じ条件で不融化および
1000℃での炭化を行つて得た炭素繊維の特性は強
度328Kg/mm2、弾性率16.6ton/mm2であつた。 また、第6工程で得られた可溶性成分のうち第
1工程の管式加熱炉に循環されなかつたものを原
料として実施例3で用いたと同様の分散連続熱処
理設備で加熱処理して熱処理ピツチを得た。この
とき、原料フイード量を4.5Kg/h、処理温度を
460℃とする以外は実施例4と同一条件とした。
このものの精製重質成分に対する収率は12.5wt%
であり、その性状はメトラー法軟化点259℃、キ
シレン不溶分61.7wt%、キノリン不溶分0.1wt%
以下であり、偏光顕微鏡で観察したときに光学的
異方性部分は全く認められなかつた。 また、この熱処理ピツチを実施例1と同じ紡糸
機で温度285℃、巻取り速度500m/minで紡糸
し、実施例1と同じ条件で不融化し、1000℃での
炭化を行つて得た炭素繊維の特性は強度121Kg/
mm2、弾性率5.8ton/mm2であつた。
【表】
第1図は、本発明の方法の実施に当り好適に採
用し得る分散連続熱処理を行なう装置の一例の概
略図であり、第2図は、本発明の方法の一実施態
様例の概略図であり、第3図は、本発明の方法の
他の一つの実施態様例の概略図であり、第4図
は、本発明の方法のさらに他の一つの実施態様例
の概略図であり、そして第5図は、本発明のなお
さらに他の一つの実施態様例の概略図である。1
は回転円板、2は集合板、3は回転板、4は原料
等の送入ノズル、5は不活性ガス等の送入ノズ
ル、6は目的のピツチを抜き出すためのノズル、
7は廃ガスおよび蒸発した軽質成分の抜き出しノ
ズル、8はモーター、9は集合板固定用フラン
ジ、10は容器本体であり、11は原料の重質油
等の供給ライン、12は芳香族系油の供給ライ
ン、13は第1工程の管式加熱炉、15は第1工
程に続く蒸留塔もしくはフラツシユ蒸留塔、18
はBTX溶剤の供給ライン、19は不溶性成分と
可溶性成分の溶剤溶液の分離設備、20は不溶性
成分の抜き出しライン、21は可溶性成分の溶剤
溶液の抜き出しライン、22は水素供与性溶媒の
供給ライン、23は水素化設備、25は溶媒と軽
質成分分離のための蒸留塔もしくはフラツシユ蒸
留塔、28は重質化のための熱処理設備、31は
溶剤および必要に応じて軽質成分を分離するため
の蒸留塔もしくはフラツシユ蒸留塔、32は可溶
性成分の抜き出しライン、35は可溶性成分の供
給ライン、37は軽質成分分離のための蒸留塔も
しくはフラツシユ蒸留塔、40は汎用炭素繊維製
造用ピツチを得るための熱処理設備、36は可溶
性成分の一部を第1工程に循環するためのライ
ン、34は可溶性成分を副生物として抜き出すラ
インであり;44は第3工程の水素化処理混合物
を熱処理するための分散連続熱処理設備、43は
不活性ガスもしくは過熱蒸気の供給ライン、45
は目的物である高性能炭素繊維製造用ピツチの抜
き出しラインであり、また、48は第6工程で得
られた可溶性成分を加熱処理して汎用炭素繊維製
造用ピツチを得るための分散連続熱処理設備、4
7は不活性ガスもしくは過熱蒸気の供給ライン、
49は目的物である汎用炭素繊維製造用ピツチを
抜き出すラインであり;51はBTX溶剤を含ん
だままの不溶性成分の抜き出しライン、22は水
素供与性溶媒の供給ライン、52は不溶性成分に
含まれたBTX溶剤を除去するための蒸留塔、5
3は不溶性成分と水素供与性溶媒との混合物であ
る水素化原料を抜き出して水素化設備に送入する
ラインであり;55は第2工程からライン21を
経て抜き出された可溶性成分の溶剤溶液を分散連
続熱処理設備48に供給するためのラインであ
り、57は必要に応じ上記ライン21を経て抜き
出された可溶性成分の溶剤溶液の一部を蒸留塔も
しくはフラツシユ蒸留塔31に供給するためのラ
インである。
用し得る分散連続熱処理を行なう装置の一例の概
略図であり、第2図は、本発明の方法の一実施態
様例の概略図であり、第3図は、本発明の方法の
他の一つの実施態様例の概略図であり、第4図
は、本発明の方法のさらに他の一つの実施態様例
の概略図であり、そして第5図は、本発明のなお
さらに他の一つの実施態様例の概略図である。1
は回転円板、2は集合板、3は回転板、4は原料
等の送入ノズル、5は不活性ガス等の送入ノズ
ル、6は目的のピツチを抜き出すためのノズル、
7は廃ガスおよび蒸発した軽質成分の抜き出しノ
ズル、8はモーター、9は集合板固定用フラン
ジ、10は容器本体であり、11は原料の重質油
等の供給ライン、12は芳香族系油の供給ライ
ン、13は第1工程の管式加熱炉、15は第1工
程に続く蒸留塔もしくはフラツシユ蒸留塔、18
はBTX溶剤の供給ライン、19は不溶性成分と
可溶性成分の溶剤溶液の分離設備、20は不溶性
成分の抜き出しライン、21は可溶性成分の溶剤
溶液の抜き出しライン、22は水素供与性溶媒の
供給ライン、23は水素化設備、25は溶媒と軽
質成分分離のための蒸留塔もしくはフラツシユ蒸
留塔、28は重質化のための熱処理設備、31は
溶剤および必要に応じて軽質成分を分離するため
の蒸留塔もしくはフラツシユ蒸留塔、32は可溶
性成分の抜き出しライン、35は可溶性成分の供
給ライン、37は軽質成分分離のための蒸留塔も
しくはフラツシユ蒸留塔、40は汎用炭素繊維製
造用ピツチを得るための熱処理設備、36は可溶
性成分の一部を第1工程に循環するためのライ
ン、34は可溶性成分を副生物として抜き出すラ
インであり;44は第3工程の水素化処理混合物
を熱処理するための分散連続熱処理設備、43は
不活性ガスもしくは過熱蒸気の供給ライン、45
は目的物である高性能炭素繊維製造用ピツチの抜
き出しラインであり、また、48は第6工程で得
られた可溶性成分を加熱処理して汎用炭素繊維製
造用ピツチを得るための分散連続熱処理設備、4
7は不活性ガスもしくは過熱蒸気の供給ライン、
49は目的物である汎用炭素繊維製造用ピツチを
抜き出すラインであり;51はBTX溶剤を含ん
だままの不溶性成分の抜き出しライン、22は水
素供与性溶媒の供給ライン、52は不溶性成分に
含まれたBTX溶剤を除去するための蒸留塔、5
3は不溶性成分と水素供与性溶媒との混合物であ
る水素化原料を抜き出して水素化設備に送入する
ラインであり;55は第2工程からライン21を
経て抜き出された可溶性成分の溶剤溶液を分散連
続熱処理設備48に供給するためのラインであ
り、57は必要に応じ上記ライン21を経て抜き
出された可溶性成分の溶剤溶液の一部を蒸留塔も
しくはフラツシユ蒸留塔31に供給するためのラ
インである。
Claims (1)
- 【特許請求の範囲】 1 石炭系重質油、石油系重質油もしくはそれら
を蒸留、熱処理または水素化処理して得られる重
質成分であつて、単環の芳香族系炭化水素溶剤に
不溶の成分を実質的に含有しないか、該不溶の成
分が実質的に除去されたものを原料とし、該原料
を管式加熱炉において、加圧下に温度400〜600℃
で連続的に加熱処理し、実質的にキノリン不溶分
を含まず、キシレン不溶分を3〜30重量%含む加
熱処理物を第1工程と; 第1工程で得られた加熱処理物に単環の芳香族
系炭化水素溶剤またはそれと同等の溶解性を持つ
溶剤を該加熱処理物に対して1〜5重量倍量加
え、生成する不溶性成分と可溶性成分の溶剤溶液
とを連続的に分離する第2工程と; 第2工程で分離された不溶性成分である高分子
量歴青物を水素供与性溶媒の存在下に加熱処理し
て水素化する第3工程によつて; 第3工程から水素化処理混合物を、第2工程か
ら可溶性成分の溶剤溶液をそれぞれ得、該第3工
程で得られた水素化処理混合物を処理して、高性
能炭素繊維製造用の実質的に光学的異方性のピツ
チとなし、一方該第2工程で得られた可溶性成分
の溶剤溶液を処理して、汎用炭素繊維製造用の実
質的に光学的等方性のピツチとなして、高性能炭
素繊維製造用ピツチおよび汎用炭素繊維製造用ピ
ツチを製造することを特徴とする高性能炭素繊維
製造用ピツチと汎用炭素繊維製造用ピツチの併産
方法。 2 第3工程で得られた水素化処理混合物の処理
が、該水素化処理混合物から水素供与性溶媒およ
び軽質成分の一部を除去し、実質的に光学的等方
性の水素化ピツチを得る第4工程と; 第4工程で得られた実質的に光学的等方性の水
素化ピツチを加熱処理して高性能炭素繊維製造用
の実質的に光学的異方性のピツチとなす第5工程
によつて行なわれ; 一方、第2工程で得られた可溶性成分の溶剤溶
液の処理が、該可溶性成分の溶剤溶液から単環の
芳香族系炭化水素溶剤またはそれと同等の溶解性
を持つ溶剤を除去し、可溶性成分を得る第6工程
と; 第6工程で得られた可溶性成分から軽質成分を
除去し、可溶性ピツチを得る第7工程と; 第7工程で得られた可溶性ピツチを加熱処理し
て汎用炭素繊維製造用の実質的に光学的等方性の
熱処理ピツチとなす第8工程によつて行なわれ
る、請求項1記載の方法。 3 第1工程の管式加熱炉における原料の加熱処
理が、沸点範囲が200〜350℃の間にあり、かつ加
熱処理に際して実質的に単環の芳香族系炭化水素
溶剤に不溶の成分を生成しない芳香族系油の存在
下に行なわれる請求項1または2記載の方法。 4 原料が、沸点範囲が200〜350℃の間にあり、
かつ加熱処理に際して実質的に単環の芳香族系炭
化水素溶剤に不溶の成分を生成しない芳香族系油
を10〜70重量%含有している請求項3記載の方
法。 5 原料に、沸点範囲が200〜350℃の間にあり、
かつ加熱処理に際して実質的に単環の芳香族系炭
化水素溶剤に不溶の成分を生成しない芳香族系油
を、該原料に対して1重量倍量以下の量加える請
求項3記載の方法。 6 第1工程で得られた加熱処理物が、それから
分解ガスおよび軽質成分の一部が除去された後第
2工程に供せられる請求項1〜5記載のいずれか
の方法。 7 第1工程で得られた加熱処理物が、200〜350
℃の範囲の温度で蒸留もしくはフラツシユ蒸留さ
れ、分解ガスおよび軽質成分の一部が除去された
後第2工程に供せられる請求項6記載の方法。 8 第4工程と第5工程が一つの工程に統合され
て、第3工程で得られた水素化処理混合物を、不
活性ガスまたは過熱蒸気の気流中に微細な油滴状
に分散させ、減圧ないし常圧下で350〜500℃の温
度において、該分散された油滴と該不活性ガスま
たは過熱蒸気とを接触させて、水素供与性溶媒お
よび軽質成分を除去すると共に実質的に光学的等
方性の水素化ピツチ成分を実質的に光学的異方性
のピツチとなす分散連続熱処理によつて行なわれ
る請求項2〜7記載のいずれかの方法。 9 第7工程と第8工程が一つの工程に統合され
て、第6工程で得られた可溶性成分を、不活性ガ
スまたは過熱蒸気の気流中に微細な油滴状に分散
させ、減圧ないし常圧下で350〜500℃の温度にお
いて、該分散された油滴と該不活性ガスまたは過
熱蒸気とを接触させて、軽質成分を除去すると共
に可溶性ピツチ成分を実質的に光学的等方性の熱
処理ピツチとなす分散連続熱処理によつて行なわ
れる請求項2〜8記載のいずれかの方法。 10 第6工程、第7工程および第8工程が一つ
の工程に統合されて、第2工程で分離された可溶
性成分の溶剤溶液を、不活性ガスまたは過熱蒸気
の気流中に微細な油滴状に分散させ、減圧ないし
常圧下で350〜500℃の温度において、該分散され
た油滴と該不活性ガスまたは過熱蒸気とを接触さ
せて、単環の芳香族系炭化水素溶剤またはそれと
同等の溶解性を持つ溶剤および軽質成分を除去す
ると共に可溶性ピツチ成分を実質的に光学的等方
性の熱処理ピツチとなす分散連続処理によつて行
なわれる請求項2〜8記載のいずれかの方法。 11 第6工程で得られた可溶性成分の一部が第
7工程もしくは第7工程と第8工程が一つの工程
に統合された分散連続熱処理に付され、該可溶性
成分の残部の少なくとも一部が第1工程に加熱処
理の原料として循環される請求項2〜9記載のい
ずれかの方法。 12 第2工程で分離された可溶性成分の溶剤溶
液の一部が、第6工程、第7工程および第8工程
が一つの工程に統合された分散連続熱処理に付さ
れ、該溶剤溶液の残部の少なくとも一部が、それ
から単環の芳香族系炭化水素溶剤またはそれと同
等の溶解性を持つ溶剤を除去した後第1工程に加
熱処理の原料として循環される請求項2〜8およ
び10記載のいずれかの方法。 13 第5工程の加熱処理において副生する重質
油もしくは第4工程と第5工程が一つの工程に統
合された分散連続熱処理において副生する水素供
与性溶媒と重質油の混合物から水素供与性溶媒を
実質的に除去して得られた重質油が、第1工程に
加熱処理の原料として循環される請求項2〜12
記載のいずれかの方法。 14 第2工程で分離された不溶性成分の一部が
第3工程に付され、該不溶性成分の残部が第7工
程もしくは第7工程と第8工程が一つの工程に統
合された分散連続熱処理に処理原料として供給さ
れる請求項2〜9、11および13記載のいずれ
かの方法。 15 第1工程で得られた加熱処理物の一部が第
2工程に付され、該加熱処理物の残部が第7工程
もしくは第7工程と第8工程が一つの工程に統合
された分散連続熱処理に処理原料として供給され
る請求項2〜9、11および13記載のいずれか
の方法。 16 第1工程の原料である石炭系重質油、石油
系重質油もしくはそれらを蒸留、熱処理または水
素化処理して得られる重質成分であつて、単環の
芳香族系炭化水素溶剤に不溶の成分を実質的に含
有しないか、該不溶の成分が実質的に除去された
原料の一部が、第1工程に供給されることなく、
第7工程もしくは第7工程と第8工程がが一つの
工程に統合された分散連続処理に処理原料として
供給される請求項2〜9、11および13記載の
いずれかの方法。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63211494A JPH0258596A (ja) | 1988-08-25 | 1988-08-25 | 高性能炭素繊維製造用ピッチと汎用炭素繊維製造用ピッチの併産方法 |
CA000608043A CA1317248C (en) | 1988-08-25 | 1989-08-10 | Process for producing pitch for the manufacture of high-performance carbon fibers together with pitch for the manufacture of general-purpose carbon fibers |
US07/397,135 US4925547A (en) | 1988-08-25 | 1989-08-21 | Process for producing pitch for the manufacture of high-performance carbon fibers together with pitch for the manufacture of general-purpose carbon fibers |
EP89115563A EP0358048B1 (en) | 1988-08-25 | 1989-08-23 | Process for producing pitch for the manufacture of high-performance carbon fibers together with pitch for the manufacture of general-purpose carbon fibers |
AU40178/89A AU621145B2 (en) | 1988-08-25 | 1989-08-23 | Process for producing pitch for the manufacture of high- performance carbon fibers together with pitch for the manufacture of general-purpose carbon fibers |
DE8989115563T DE68903460T2 (de) | 1988-08-25 | 1989-08-23 | Verfahren zur herstellung von spitzenleistungspechkohlenstoffasern zusammen mit der herstellung von pech fuer kohlenstoffasern fuer jeden zweck. |
CN89106510A CN1020622C (zh) | 1988-08-25 | 1989-08-24 | 制备用于制造高性能型碳纤维的沥青及用于制造通用型碳纤维的沥青的方法 |
KR1019890012157A KR930006813B1 (ko) | 1988-08-25 | 1989-08-25 | 고성능 탄소섬유 제조용 피치와 범용 탄소섬유 제조용 피치의 병산방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63211494A JPH0258596A (ja) | 1988-08-25 | 1988-08-25 | 高性能炭素繊維製造用ピッチと汎用炭素繊維製造用ピッチの併産方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0258596A JPH0258596A (ja) | 1990-02-27 |
JPH048475B2 true JPH048475B2 (ja) | 1992-02-17 |
Family
ID=16606878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63211494A Granted JPH0258596A (ja) | 1988-08-25 | 1988-08-25 | 高性能炭素繊維製造用ピッチと汎用炭素繊維製造用ピッチの併産方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US4925547A (ja) |
EP (1) | EP0358048B1 (ja) |
JP (1) | JPH0258596A (ja) |
KR (1) | KR930006813B1 (ja) |
CN (1) | CN1020622C (ja) |
AU (1) | AU621145B2 (ja) |
CA (1) | CA1317248C (ja) |
DE (1) | DE68903460T2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4677862B2 (ja) * | 2005-09-05 | 2011-04-27 | 東レ株式会社 | 炭素繊維の製造方法およびその装置 |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5182011A (en) * | 1987-06-18 | 1993-01-26 | Maruzen Petrochemical Co., Ltd. | Process for preparing pitches |
JP2655127B2 (ja) * | 1995-03-11 | 1997-09-17 | 日本電気株式会社 | Fmcwレーダ装置 |
KR100503437B1 (ko) * | 1996-12-13 | 2006-01-27 | 주식회사 휴비스 | 폴리에스테르계복합섬유의제조방법 |
CN1091425C (zh) * | 1998-08-18 | 2002-09-25 | 中国石油化工集团公司 | 高性能碳纤维用纺丝沥青的制备方法 |
KR20040000121A (ko) * | 2002-06-24 | 2004-01-03 | 주식회사 새 한 | 잠재권축 특성을 가지는 폴리에스터 분섬사의 제조방법 |
WO2005090664A1 (ja) * | 2004-03-22 | 2005-09-29 | Otas Company, Limited | 等方性ピッチ系炭素繊維紡績糸、それを用いた複合糸及び織物、並びにそれらの製造方法 |
US7220348B1 (en) | 2004-07-27 | 2007-05-22 | Marathon Ashland Petroleum Llc | Method of producing high softening point pitch |
CN102504853B (zh) * | 2011-10-31 | 2014-01-08 | 沈建立 | 一种生产碳纤维用高软化点沥青的方法 |
US9222027B1 (en) | 2012-04-10 | 2015-12-29 | Advanced Carbon Products, LLC | Single stage pitch process and product |
CN102925186B (zh) * | 2012-11-15 | 2014-04-02 | 四川创越炭材料有限公司 | 一种制备高软化点纺丝沥青的方法 |
CN103014919B (zh) * | 2012-12-28 | 2014-09-10 | 陕西师范大学 | 通用级沥青基碳纤维的制备方法 |
US20140346085A1 (en) * | 2013-05-24 | 2014-11-27 | Gs Caltex Corporation | Method of preparing pitch for carbon fiber |
KR102249296B1 (ko) * | 2013-11-19 | 2021-05-07 | 에스케이이노베이션 주식회사 | 등방성피치 제조용 원료의 제조방법 |
CN103865558B (zh) * | 2014-03-26 | 2015-07-01 | 聂郁栋 | 一种由重质油制备炭素材料的方法 |
KR101593808B1 (ko) * | 2014-07-16 | 2016-02-15 | 지에스칼텍스 주식회사 | 등방성 피치의 제조 방법 |
CN108291151A (zh) | 2015-11-20 | 2018-07-17 | 理查德·斯通 | 单级沥青工艺和产品 |
CN110978655B (zh) * | 2019-10-16 | 2022-05-31 | 上海阿莱德实业股份有限公司 | 各向同性型碳纤维网络结构及其制作方法 |
JP6948490B1 (ja) * | 2020-03-03 | 2021-10-13 | 帝人株式会社 | ピッチ系極細炭素繊維、及びピッチ系極細炭素繊維分散体 |
CN111363578B (zh) * | 2020-04-14 | 2021-04-02 | 湖南东映长联科技有限公司 | 一种加氢及链转移改性精制中间相沥青的方法 |
CN111718740B (zh) * | 2020-06-23 | 2021-11-26 | 郑州中科新兴产业技术研究院 | 溶剂协同氢化制备的可纺中间相沥青、制备方法及应用 |
KR102474281B1 (ko) * | 2020-11-02 | 2022-12-06 | 한국화학연구원 | 메조겐분리 방식을 포함하는 중질유 유래 탄소섬유용 이방성피치의 제조방법 |
KR102583031B1 (ko) * | 2021-07-01 | 2023-09-27 | 한국화학연구원 | 헤테로상 바인더 피치 제조방법 및 이로부터 제조된 헤테로상 바인더 피치 |
CN115032112B (zh) * | 2022-06-08 | 2025-03-25 | 广东电网有限责任公司 | 一种变压器油的游离碳含量测定方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR657120A (fr) * | 1927-07-06 | 1929-05-17 | Kohlenveredlung Ag | Procédé de chauffage et de vaporisation d'huile de goudron et de produits de goudron |
US4271006A (en) * | 1980-04-23 | 1981-06-02 | Exxon Research And Engineering Company | Process for production of carbon artifact precursor |
US4402928A (en) * | 1981-03-27 | 1983-09-06 | Union Carbide Corporation | Carbon fiber production using high pressure treatment of a precursor material |
JPS5818421A (ja) * | 1981-07-27 | 1983-02-03 | Agency Of Ind Science & Technol | 炭素繊維の製造方法 |
US4522701A (en) * | 1982-02-11 | 1985-06-11 | E. I. Du Pont De Nemours And Company | Process for preparing an anisotropic aromatic pitch |
EP0087749B1 (en) * | 1982-02-23 | 1986-05-07 | Mitsubishi Oil Company, Limited | Pitch as a raw material for making carbon fibers and process for producing the same |
JPS602352B2 (ja) * | 1982-05-12 | 1985-01-21 | 工業技術院長 | プリメソフエ−ス炭素質の製造方法 |
JPS58214531A (ja) * | 1982-06-08 | 1983-12-13 | Agency Of Ind Science & Technol | ピツチ系炭素繊維製造用ピツチの調製方法 |
US4443324A (en) * | 1982-06-14 | 1984-04-17 | Exxon Research And Engineering Co. | Low melting mesophase pitches |
US4502943A (en) * | 1983-03-28 | 1985-03-05 | E. I. Du Pont De Nemours And Company | Post-treatment of spinnable precursors from petroleum pitch |
US4575412A (en) * | 1984-08-28 | 1986-03-11 | Kawasaki Steel Corporation | Method for producing a precursor pitch for carbon fiber |
US4578177A (en) * | 1984-08-28 | 1986-03-25 | Kawasaki Steel Corporation | Method for producing a precursor pitch for carbon fiber |
JPS61163991A (ja) * | 1985-01-16 | 1986-07-24 | Fuji Standard Res Kk | 炭素繊維用原料として好適なピツチの連続的製造方法 |
JPS62270685A (ja) * | 1986-05-19 | 1987-11-25 | Maruzen Petrochem Co Ltd | メソフェ−ズピッチの製造法 |
JPS62277491A (ja) * | 1986-05-26 | 1987-12-02 | Maruzen Petrochem Co Ltd | メソフエ−ズピツチの製法 |
CA1302934C (en) * | 1987-06-18 | 1992-06-09 | Masatoshi Tsuchitani | Process for preparing pitches |
-
1988
- 1988-08-25 JP JP63211494A patent/JPH0258596A/ja active Granted
-
1989
- 1989-08-10 CA CA000608043A patent/CA1317248C/en not_active Expired - Fee Related
- 1989-08-21 US US07/397,135 patent/US4925547A/en not_active Expired - Fee Related
- 1989-08-23 AU AU40178/89A patent/AU621145B2/en not_active Ceased
- 1989-08-23 DE DE8989115563T patent/DE68903460T2/de not_active Expired - Fee Related
- 1989-08-23 EP EP89115563A patent/EP0358048B1/en not_active Expired - Lifetime
- 1989-08-24 CN CN89106510A patent/CN1020622C/zh not_active Expired - Fee Related
- 1989-08-25 KR KR1019890012157A patent/KR930006813B1/ko not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4677862B2 (ja) * | 2005-09-05 | 2011-04-27 | 東レ株式会社 | 炭素繊維の製造方法およびその装置 |
Also Published As
Publication number | Publication date |
---|---|
CN1040608A (zh) | 1990-03-21 |
EP0358048B1 (en) | 1992-11-11 |
KR930006813B1 (ko) | 1993-07-24 |
AU4017889A (en) | 1990-03-01 |
JPH0258596A (ja) | 1990-02-27 |
EP0358048A1 (en) | 1990-03-14 |
DE68903460D1 (de) | 1992-12-17 |
CN1020622C (zh) | 1993-05-12 |
AU621145B2 (en) | 1992-03-05 |
CA1317248C (en) | 1993-05-04 |
KR900003335A (ko) | 1990-03-26 |
US4925547A (en) | 1990-05-15 |
DE68903460T2 (de) | 1993-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH048475B2 (ja) | ||
KR930005526B1 (ko) | 피치의 제조방법 | |
KR930005525B1 (ko) | 중간상 피치(Pitch)의 제조방법 | |
JP3609406B2 (ja) | 溶媒和メソフェースピッチの製造方法及びそれからの炭素物品 | |
JPS6138755B2 (ja) | ||
JPS61238885A (ja) | 炭素製品製造用素原料の精製法 | |
JPS635433B2 (ja) | ||
US5182011A (en) | Process for preparing pitches | |
JPH0336869B2 (ja) | ||
CN110776943B (zh) | 一种可纺中间相沥青的制备方法 | |
US4810437A (en) | Process for manufacturing carbon fiber and graphite fiber | |
JPS60106882A (ja) | 重質瀝青物の精製方法 | |
JPH04189895A (ja) | メソフェーズピッチの単離方法 | |
JPS63317589A (ja) | ピッチの連続製造方法 | |
JPH048474B2 (ja) | ||
JPH0247190A (ja) | 炭素織維用異方性ピッチの製造方法 | |
JPH058757B2 (ja) | ||
JPS61241391A (ja) | メソ相ピツチの製造方法 | |
JPS6250513B2 (ja) | ||
JPH0834977A (ja) | 等方性ピッチの製造方法 | |
JPH0324516B2 (ja) |