[go: up one dir, main page]

JPH042059A - Clad type lead acid battery of sealed structure - Google Patents

Clad type lead acid battery of sealed structure

Info

Publication number
JPH042059A
JPH042059A JP2101469A JP10146990A JPH042059A JP H042059 A JPH042059 A JP H042059A JP 2101469 A JP2101469 A JP 2101469A JP 10146990 A JP10146990 A JP 10146990A JP H042059 A JPH042059 A JP H042059A
Authority
JP
Japan
Prior art keywords
titanium dioxide
fine powder
battery
lead
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2101469A
Other languages
Japanese (ja)
Inventor
Tomonori Mukasa
武笠 朝則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2101469A priority Critical patent/JPH042059A/en
Publication of JPH042059A publication Critical patent/JPH042059A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To suppress costs and prolong the lifetime of a battery by using a pos. electrode grating consisting of an alloy of Pb-Sb series, and filling the space between a pos. electrode plate and a neg. electrode plate with fine powder of a mixture of silica and titanium dioxide in a specific mix proportion. CONSTITUTION:5-15% fine powder of titanium dioxide is mixed with fine powder of silica as major component having excellent liquid absorptiveness, and the space between a pos. electrode plate and a neg. electrode plate and their surrounding are filled with this mixture. Therein the fine powder of titanium dioxide adsorbs the Sb, which is thus hindered from movement from the pos. to neg. electrode. This eliminates drop of the hydrogen over voltage because of Sb, so that the water decomposition will not increase, and there is no fear of impairing such features as being free from maintenance and water refilling. This enables fabricating an excellent lead acid storage battery of sealed type at a low cost.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はクラッド式正極板を用いた密閉形鉛蓄電池の改
良に間するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to the improvement of a sealed lead-acid battery using a clad positive electrode plate.

従来の技術とその課題 一般に正極にクラッド式極板を用いた電池は正極活物質
がガラスチューブなどに保護されているため、深い充放
電を繰り返しても活物質の脱落が少なく、ペースト式極
板を用いた電池に比べ寿命性能、耐振動性に優れている
Conventional technology and its issues In general, in batteries that use clad type plates for the positive electrode, the positive electrode active material is protected by a glass tube, etc., so there is less active material falling off even after repeated deep charging and discharging, and paste type plates are used. It has superior life performance and vibration resistance compared to batteries using

近年、鉛蓄を池に対しメンテナンス・フリー化への要求
が高まりクラッド式電池にも密閉化が望まれている。従
来、密閉形鉛蓄電池にはリテーナ式とゲル式の2種類が
ある。リテーナ式は正極板と負極板との間に微細カラス
繊鱈を素材とするマット状セパレータ(ガラスセパレー
タ)を挿入し、これによって充放電に必要な硫酸電解液
の保持と両極の隔離を行なっており、無保守、無漏液、
ポジションフリーなどの特徴を生かして近年、ポータプ
ルallやコンピュータのバックアップ電源として広く
用いられるようになってきた。しかし、ガラスセパレー
タが高価なことや極板群を強く圧迫する必要から電槽の
強度も大きくしなければならないなど電池の製造コスト
が高くなる要因が多く、さらに流動液が過剰にある電池
(以下、液式電池という)に比べて低率放電性能が劣る
などの欠点があって、この種の密閉電池の普及に障害と
なっている。
In recent years, there has been an increasing demand for lead-acid batteries to be maintenance-free, and clad batteries are also desired to be sealed. Conventionally, there are two types of sealed lead-acid batteries: retainer type and gel type. The retainer type inserts a matte separator (glass separator) made of fine glass fiber cod between the positive and negative electrode plates, which holds the sulfuric acid electrolyte necessary for charging and discharging and isolates the two electrodes. No maintenance, no leakage,
Taking advantage of its position-free characteristics, it has recently become widely used as a backup power source for portable devices and computers. However, there are many factors that increase the manufacturing cost of batteries, such as the expensive glass separator and the need to press the electrode plates strongly and increase the strength of the battery case. They have drawbacks such as inferior low rate discharge performance compared to liquid type batteries (also called liquid type batteries), which is an obstacle to the widespread use of this type of sealed battery.

一方、ゲル式はリテーナ式より安価であるが、電池性能
が液式やリテーナ式に劣るという欠点を有している。
On the other hand, although the gel type is cheaper than the retainer type, it has the disadvantage that its battery performance is inferior to the liquid type and retainer type.

また、リテーナ式、ゲル式密閉形鉛蓄電池のいずれにお
いてもその大半が格子体にアンチモンを含まない鉛合金
を用いている。これらの電池で鉛アンチモン系合金を使
用した場合、アンチモンが充放電中に正極格子体より溶
出し、負極板上に析出して水素過電圧を低下させるため
に、水分解による水素発生量が増加し、その結果密閉形
鉛蓄電池では致命的なドライアップが起って寿命となっ
てしまう。このような理由でリテーナ式、ゲル式密閉形
鉛蓄電池では、アンチモンを含まない合金として例えば
鉛−カルシウム系合金が用いられている。しかし、鉛−
カルシウム系合金は深い放電を含む充放電サイクルを行
なった場合、放電時に格子−活物質界面に不導体である
緻密な硫酸鉛の層が生成して早期に容量が低下したり、
活物質の二酸化鉛粒子間の結合が弱まり活物質が脱落し
易くなるという欠点を有している。また、鉛−カルシウ
ム系合金は鈴−アンチモン系合金に比べて強度が小さい
ために格子の伸びによるショートが発生しやすいという
欠点も有している。
In addition, most of both cage-type and gel-type sealed lead-acid batteries use a lead alloy that does not contain antimony for the lattice body. When a lead-antimony alloy is used in these batteries, antimony is eluted from the positive electrode grid during charging and discharging and precipitates on the negative electrode plate, reducing the hydrogen overvoltage, resulting in an increase in the amount of hydrogen generated due to water splitting. As a result, a fatal dry-up occurs in sealed lead-acid batteries, resulting in the end of their lifespan. For this reason, in cage-type and gel-type sealed lead-acid batteries, for example, a lead-calcium alloy is used as an antimony-free alloy. However, lead-
When calcium-based alloys are subjected to charge-discharge cycles that include deep discharge, a dense layer of lead sulfate, which is a nonconductor, forms at the lattice-active material interface during discharge, resulting in early capacity loss.
This has the disadvantage that the bond between the lead dioxide particles of the active material is weakened and the active material is likely to fall off. Furthermore, since lead-calcium alloys have lower strength than tin-antimony alloys, they also have the disadvantage that short circuits are more likely to occur due to lattice elongation.

一方、釣−アンチモン系合金の場合は、アンチモンが格
子−活物質界面に生成する腐食層を多孔性にし、また二
酸化鉛粒子間の結合力を強固にするために早期容量低下
や活物質の脱落はなく、さらに格子の伸びによるショー
トも起りにくい。これらのことから現在の密閉形鉛蓄電
池においては、コストダウンと同時に電池寿命性能を改
善することが最大の課組であった。
On the other hand, in the case of antimony-based alloys, antimony makes the corrosion layer formed at the lattice-active material interface porous, and also strengthens the bonding force between lead dioxide particles, leading to early capacity loss and drop-off of the active material. Furthermore, short circuits due to lattice stretching are less likely to occur. For these reasons, the biggest challenge for current sealed lead-acid batteries has been to reduce costs and improve battery life performance at the same time.

課題を解決するための手段 上述した従来の密閉形鉛蓄電池の欠点を除去するために
は、正極格子に鉛−アンチモン系合金を使用可能にする
ことが最良である。しかし、このためには正極から負極
へのアンチモンの移動を防ぐことが大きな問題点となる
。研究を重ねた結果、二酸化チタン微粉末がアンチモン
を吸着することを見出したが、二酸化チタン微粉末は希
硫酸の吸液性が劣る欠点を有する。そこでさらに検討を
重ねた結果、吸液性の優れたシリカ微粉末を主体とし、
二酸化チタン微粉末を併用することで、優れた電池性能
を有する安価な密閉形鉛蓄電池を開発することかできた
。その骨子とするところは、鉛−アンチモン系合金より
なる正極格子を用いたクラッド式鉛蓄電池で正極板と負
極板との間およびその周囲にシリカ微粉末と二酸化チタ
ン微粉末とを混合した微粉末を充填することにある。
Means for Solving the Problems In order to eliminate the drawbacks of the conventional sealed lead-acid batteries mentioned above, it is best to make it possible to use a lead-antimony based alloy for the positive electrode grid. However, for this purpose, preventing the movement of antimony from the positive electrode to the negative electrode is a major problem. As a result of repeated research, it was discovered that fine titanium dioxide powder adsorbs antimony.However, fine titanium dioxide powder has the disadvantage of poor absorption of dilute sulfuric acid. As a result of further investigation, we decided to use fine silica powder as the main ingredient, which has excellent liquid absorption properties.
By using titanium dioxide fine powder in combination, we were able to develop an inexpensive sealed lead-acid battery with excellent battery performance. The basic idea is to use a clad lead-acid battery that uses a positive electrode lattice made of a lead-antimony alloy, and uses a mixture of fine silica powder and fine titanium dioxide powder between and around the positive and negative plates. The purpose is to fill the

作用 正極格子に鉛−アンチモン系合金を用いることでアンチ
モンが正極格子−活物質界面に生成する腐食層を多孔性
にし、粒子間の結合を強固にするために早期容量低下や
活物質の脱落を防ぐことができ、さらに格子の伸びによ
るショートも減らすことができる。また、正極板と負極
板との間隙に配置した二酸化チタン微粉末がアンチモン
を吸着し、正極から負極へのアンチモンの移動を阻止す
る。その結果、アンチモンによる水素過電圧の低下がな
くなるために水分解は増加せず密閉形鉛蓄電池の最大の
特徴である無保守、無補水という特徴が損なわれること
はない。さらに、二酸化微粉末およびシリカ微粉末は安
価な工業材料であって、またシリカ微粉末は硫酸の保持
能力も優れているなめに、この混合粉末を電解液保持体
として使えはリテーナ式、ゲル式に代わる密閉形鉛蓄電
池を安価に作製することができる。
By using a lead-antimony alloy for the active positive electrode lattice, antimony makes the corrosion layer that forms at the positive electrode lattice-active material interface porous, which strengthens the bond between particles and prevents early capacity loss and drop-off of the active material. In addition, short circuits due to grid elongation can be reduced. Further, fine titanium dioxide powder placed in the gap between the positive electrode plate and the negative electrode plate adsorbs antimony and prevents antimony from moving from the positive electrode to the negative electrode. As a result, there is no reduction in hydrogen overvoltage due to antimony, so water decomposition does not increase, and the most important feature of sealed lead-acid batteries, which is no maintenance and no water replenishment, is maintained. Furthermore, since fine dioxide powder and fine silica powder are inexpensive industrial materials, and fine silica powder has an excellent ability to retain sulfuric acid, this mixed powder can be used as an electrolyte retainer using either a retainer type or a gel type. A sealed lead-acid battery that can replace the battery can be manufactured at low cost.

実施例 以下、本発明による密閉形クラッド式鉛蓄電池を実施例
を用いて説明する。
EXAMPLES Hereinafter, a sealed clad lead-acid battery according to the present invention will be explained using examples.

電池は極板高さ70inのクラッド式正極板3枚とペー
スト成員極板4枚とで構成し、正負極板間の極間は樹脂
製の上部および下部連座により保持した。なお、正極板
の芯金には鉛−アンチモン系合金、負極板の格子には鉛
−カルシウム系合金を各々用いた。
The battery was composed of three clad positive electrode plates with a height of 70 inches and four paste member electrode plates, and the gap between the positive and negative electrode plates was held by resin upper and lower joints. Note that a lead-antimony alloy was used for the core of the positive electrode plate, and a lead-calcium alloy was used for the lattice of the negative electrode plate.

この電池にシリカ微粉末のみおよびシリカ微粉末と平均
粒子径が約0,30μのルチル形の二酸化チタンの微粉
末とを混合する割合を変えて充填した。
This battery was filled with only silica fine powder and with varying mixing ratios of silica fine powder and rutile-type titanium dioxide fine powder having an average particle size of about 0.30 μm.

次に電池の充放電に必要かつ充分な量の硫酸電解液を、
シリカ微粉末またはシリカ微粉末と二酸化チタン微粉末
との混合粉末および正・負極板に保持させて遊離液のほ
とんどない密閉形クラッド式鉛蓄電池A〜Eを作製した
Next, add a sufficient amount of sulfuric acid electrolyte to charge and discharge the battery.
Closed clad lead-acid batteries A to E containing almost no free liquid were prepared by using fine silica powder or a mixed powder of fine silica powder and fine titanium dioxide powder and holding it between positive and negative electrode plates.

比較のため正・負極板間にガラスセパレータを挿入し、
正極芯金に鉛−アンチモン系合金を用いて密閉形とした
リテーナ式電池F、JE極芯金に鉛カルシウム系合金を
用いたリテーナ式電池Gも作製した。なお、電池F、G
の負極板の格子には電池A〜Eと同じ鉛−カルシウム系
合金を用いた。
For comparison, a glass separator was inserted between the positive and negative electrode plates.
A sealed cage type battery F using a lead-antimony alloy for the positive electrode core metal and a cage type battery G using a lead-calcium alloy for the JE electrode core metal were also manufactured. In addition, batteries F and G
The same lead-calcium alloy as in batteries A to E was used for the grid of the negative electrode plate.

初期容量試験(2HR)を行なった後、充放電サイクル
試験(放電深さ75%、充電量125%)をおこなって
、各電池性能および減液量を調査した。
After conducting an initial capacity test (2HR), a charge/discharge cycle test (discharge depth 75%, charge amount 125%) was conducted to investigate each battery's performance and amount of liquid loss.

ここで、減液量は試験前を0%として減液量を重量%で
示したものである。その結果を第1表に示す。
Here, the amount of liquid reduction is expressed in weight percent, with the value before the test being 0%. The results are shown in Table 1.

第1表から、電池Fの寿命は正極芯金に鉛−カルシウム
系合金を用いた電池Gの寿命に比べ、F300〜と比較
的長かったが、減液量が20%と極めて多く前述した鉛
−アンチモン系合金を用いた場合の水素発生による減液
量が多いという欠点が顕著に現れている。これに対し、
いわゆるリテーナ式電池Gの減液量は3%と極めて少な
いが、寿命が600〜と短かった。この原因はアンチモ
ンを含まないため正極活物質が劣化しやすかったことお
よび鉛−カルシウム系合金は鉛−アンチモン系合金に比
べて強度が小さいために格子が伸びてショートが起った
こと等であった。
From Table 1, it can be seen that the life of Battery F was relatively long at F300~ compared to the life of Battery G, which used a lead-calcium alloy for the positive electrode core, but the amount of liquid loss was extremely large at 20%. -The drawback of using antimony-based alloys is that the amount of liquid loss due to hydrogen generation is large. On the other hand,
The so-called retainer type battery G had a very small amount of liquid loss of 3%, but had a short lifespan of 600 mA or more. The causes of this were that the positive electrode active material deteriorated easily because it did not contain antimony, and that the strength of lead-calcium alloys was lower than that of lead-antimony alloys, which caused the lattice to stretch and short circuits to occur. Ta.

第1表 これらに対して正極芯金に鈴−アンチモン系合金、電解
液保持体にシリカ微粉末を用いた電池Aまたはシリカ微
粉末と二酸化チタン微粉末とめ混合微粉末を用いた本発
明品である電池B〜Dはリテーナ式に比べ減液量は多い
が、寿命が大幅に改善されるという結果が得られた。電
解液保持体にシリカ微粉末のみを用いた電池Aでも従来
のリテーナ式電池Gに比べれば寿命は600〜から10
00〜と大幅に改善されているか減液量が多い。しかる
に、シリカ微粉末を主体とし、二酸化チタン微粉末を添
加した本発明品である電池B〜Dは、減液量はリテーナ
式に比べて多いものの、寿命性能が大幅に改善されてい
ることがわかる。ところが二酸化チタン微粉末を20%
混入した電池Eでは減液量は二酸化チタンのアンチモン
吸収の効果により改善され5%と少ないものの、寿命が
950〜と減少し、二酸化チタンの吸液性のよくない性
質が顕著になり、シリカ微粉末のみを添加した電池A以
下の寿命になったと推測される0本結果より、二酸化チ
タン微粉末は5〜15%混入することが最も効果のある
ことがわかる。
Table 1 In contrast to these, battery A uses a bell-antimony alloy for the positive electrode core and fine silica powder for the electrolyte holder, or the product of the present invention uses a fine powder mixture of fine silica powder and fine titanium dioxide powder. Certain batteries B to D had a greater amount of fluid loss than the retainer type, but the results showed that their lifespans were significantly improved. Even Battery A, which uses only fine silica powder for the electrolyte holder, has a lifespan of 600 to 10% compared to conventional retainer type Battery G.
00~, which is a significant improvement or the amount of liquid reduction is large. However, batteries B to D, which are products of the present invention that are mainly composed of silica fine powder and added with titanium dioxide fine powder, have significantly improved life performance, although the amount of fluid lost is greater than that of the retainer type. Recognize. However, 20% titanium dioxide fine powder
In the mixed battery E, the amount of liquid loss was improved by the antimony absorption effect of titanium dioxide and was as low as 5%, but the life span was reduced to 950~, and the poor liquid absorption property of titanium dioxide became noticeable, and the silica From the results of 0 samples, which are estimated to have a lifespan lower than that of Battery A in which only powder was added, it can be seen that mixing 5 to 15% of titanium dioxide fine powder is most effective.

上記実施例では結晶構造がルチル形の二酸化チタン微粉
末を用いた場合の結果を示したが、結晶構造がアナター
ゼ形の二酸化チタン微粉末を用いた場合にも、アンチモ
ン吸着量はルチル形に比べやや少ないものの、ルチル形
を用いた場合とほぼ同様の寿命性能、減液特性が得られ
た。これらはクラッド式正極板のため正極芯金から脱落
したアンチモンの一部が芯金周囲の活物質である二酸化
鉛に吸着され、正極板の外へ溶出してくるアンチモンの
量か減少するため、アンチモン吸着量がやや劣るアナタ
ーゼ形の二酸化チタン微粉末でも電池性能が余り変わら
なかったものと思われる。
In the above example, the results were shown when titanium dioxide fine powder with a rutile crystal structure was used, but even when titanium dioxide fine powder with an anatase crystal structure was used, the amount of antimony adsorbed was lower than that of the rutile type. Although slightly less, almost the same life performance and liquid reduction characteristics as when using the rutile type were obtained. Because these are clad type positive electrode plates, some of the antimony that falls off from the positive electrode core metal is adsorbed by lead dioxide, an active material around the core metal, and the amount of antimony leached out of the positive electrode plate is reduced. It seems that even with the anatase type titanium dioxide fine powder, which has a slightly lower antimony adsorption amount, the battery performance did not change much.

発明の効果 以上のように本発明による密閉形クラッド式鉛蓄電池は
、減液量も少なく寿命性能が優れかつ安価であり、その
工業的価値は極めて大きい。
Effects of the Invention As described above, the sealed clad lead-acid battery according to the present invention has a small amount of liquid loss, excellent life performance, and is inexpensive, and its industrial value is extremely large.

Claims (1)

【特許請求の範囲】[Claims] 1、芯金にPb−Sb系合金を用いたクラッド式鉛蓄電
池において、正極板と負極板との間および周囲に、シリ
カ微粉末とシリカ微粉末重量に対し5〜15%の二酸化
チタン微粉末とを混合した微粉末を充填し、混合微粉末
に電解液を保持させたことを特徴とする密閉形クラッド
式鉛蓄電池。
1. In a clad lead-acid battery using a Pb-Sb alloy for the core, fine silica powder and fine titanium dioxide powder of 5 to 15% of the weight of the fine silica powder are added between and around the positive and negative plates. A sealed clad lead-acid battery characterized in that it is filled with a fine powder mixed with the above, and the mixed fine powder holds an electrolyte.
JP2101469A 1990-04-17 1990-04-17 Clad type lead acid battery of sealed structure Pending JPH042059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2101469A JPH042059A (en) 1990-04-17 1990-04-17 Clad type lead acid battery of sealed structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2101469A JPH042059A (en) 1990-04-17 1990-04-17 Clad type lead acid battery of sealed structure

Publications (1)

Publication Number Publication Date
JPH042059A true JPH042059A (en) 1992-01-07

Family

ID=14301582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2101469A Pending JPH042059A (en) 1990-04-17 1990-04-17 Clad type lead acid battery of sealed structure

Country Status (1)

Country Link
JP (1) JPH042059A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6567455B1 (en) 1998-11-19 2003-05-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser-excited solid laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6567455B1 (en) 1998-11-19 2003-05-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser-excited solid laser

Similar Documents

Publication Publication Date Title
JP6032498B2 (en) Control valve type lead acid battery
JP5182467B2 (en) Control valve type lead storage battery manufacturing method
JP2009170234A (en) Control valve type lead-acid battery
JP2009289576A (en) Negative electrode active material mixture for lead-acid storage battery
JP3952483B2 (en) Sealed lead acid battery
JPH042060A (en) Sealed type lead acid battery
JPH042059A (en) Clad type lead acid battery of sealed structure
JP2004014283A (en) Valve regulated lead battery
JP5598368B2 (en) Lead acid battery and negative electrode active material thereof
JP4812257B2 (en) Sealed lead-acid battery for cycle use
JP5034159B2 (en) Negative electrode active material for lead acid battery and lead acid battery using the same
WO2019116704A1 (en) Control valve type lead acid storage battery
JPS61165956A (en) Sealed type lead acid battery
JP2995780B2 (en) Sealed lead-acid battery
JPH06283191A (en) Sealed lead-acid battery
JPH02165570A (en) Closed lead battery
JPH10294113A (en) Positive electrode plate for sealed lead-acid battery
JP2958791B2 (en) Sealed lead-acid battery
JP2007250495A (en) Control valve type lead-acid storage battery
JP2003132937A (en) Manufacturing method of lead storage battery
JP2855706B2 (en) Sealed lead-acid battery
JPH06283190A (en) Sealed lead-acid battery
JPH04337256A (en) Sealed lead-acid battery
JPS63237365A (en) Enclosed type lead storage battery
JP2553598B2 (en) Sealed lead acid battery