JP2007250495A - Control valve type lead-acid storage battery - Google Patents
Control valve type lead-acid storage battery Download PDFInfo
- Publication number
- JP2007250495A JP2007250495A JP2006076150A JP2006076150A JP2007250495A JP 2007250495 A JP2007250495 A JP 2007250495A JP 2006076150 A JP2006076150 A JP 2006076150A JP 2006076150 A JP2006076150 A JP 2006076150A JP 2007250495 A JP2007250495 A JP 2007250495A
- Authority
- JP
- Japan
- Prior art keywords
- electrode plate
- control valve
- type lead
- valve type
- electrolytic solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002253 acid Substances 0.000 title claims abstract description 17
- 238000003860 storage Methods 0.000 title abstract description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 48
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 25
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 18
- 239000000758 substrate Substances 0.000 claims abstract description 4
- 239000011149 active material Substances 0.000 claims abstract description 3
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 3
- 239000011575 calcium Substances 0.000 claims abstract description 3
- 239000010419 fine particle Substances 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 12
- 229910000978 Pb alloy Inorganic materials 0.000 claims description 2
- 239000007788 liquid Substances 0.000 abstract description 7
- 239000000243 solution Substances 0.000 abstract description 5
- 239000003365 glass fiber Substances 0.000 abstract description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 abstract 1
- 239000000956 alloy Substances 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 abstract 1
- 239000003792 electrolyte Substances 0.000 description 19
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 16
- 238000000034 method Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 6
- 238000001879 gelation Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000013517 stratification Methods 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000882 Ca alloy Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000019635 sulfation Effects 0.000 description 1
- 238000005670 sulfation reaction Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
Description
本発明は、圧力により作動する制御弁を有し、主にサイクルユ−ス用に用いられる制御弁式鉛蓄電池に関するものである。 The present invention relates to a control valve type lead-acid battery having a control valve that operates by pressure and mainly used for cycle use.
鉛蓄電池は、ニッケル−カドミウム電池と並んで、長い歴史を持ち、その安価さもさることながら、安定した性能からくる高い信頼性故に現在でも蓄電池の主流を占めており、自動車用のSLI用電源、小型電子機器や電動車に用いられる移動用電源、或いはコンピュータ等の電源の停電時に作動するバックアップ用据え置き用電源として広く使用され続けている。 Lead-acid batteries, along with nickel-cadmium batteries, have a long history and are inexpensive, but still occupy the mainstream of storage batteries because of their high reliability resulting from their stable performance. It continues to be widely used as a moving power source used in small electronic devices and electric vehicles, or as a deferred power source for backup that operates in the event of a power failure in a computer or the like.
この鉛蓄電池は、近年、保守不要の観点から電解液の補充等が不要な圧力制御弁を備える制御弁式鉛蓄電池が主流となりつつあり、その普及率は急速に拡大しつつある。 In recent years, control valve type lead storage batteries including a pressure control valve that does not require replenishment of an electrolyte from the viewpoint of maintenance are becoming mainstream, and the penetration rate of this lead storage battery is rapidly expanding.
この制御弁式鉛蓄電池をサイクルユース用に用いた場合、容量低下の原因の1つとして電解液の成層化の課題がある。 When this control valve type lead-acid battery is used for cycle use, there is a problem of stratification of the electrolyte as one of the causes of capacity reduction.
電解液の成層化は、充放電サイクルによって極板群内に含まれた硫酸濃度に分布が生じ、下部ほど高濃度、上部ほど低濃度の液が存在するというものであり、電池および極板サイズが大きくなればなるほど、これらの現象が起こり易いとされてきた。また常に満充電に近い状態でスタンバイしているフロートユースに比し、サイクルユースではこの傾向が顕著である。この成層化が生じると充電しても極板下部で正負極板とも著しいサルフェ−ションが生成し、極板の一部しか充放電反応に関与しなくなる為、著しい容量低下を引き起こすことになる。また、極板下部の高濃度域に接する極板では格子腐食も進行し格子自体が集電機能に預からなくなる為、短寿命の原因ともなる。また制御弁式鉛蓄電池の場合、必要最小限の電解液しか電池内には保持されておらず、液式のように過充電で成層化を防止しようとすると、電解液の電気分解が起こり液枯れなどによる短寿命を招くことになる。 The stratification of the electrolyte is a distribution in the concentration of sulfuric acid contained in the electrode group due to the charge / discharge cycle, with the lower portion having a higher concentration and the upper portion having a lower concentration. It has been said that these phenomena are more likely to occur as the value of becomes larger. This tendency is more pronounced for cycle use than for float use that is always on standby at almost full charge. When this stratification occurs, even if it is charged, significant sulfation is generated in both the positive and negative electrode plates at the lower part of the electrode plate, and only a part of the electrode plate is involved in the charge / discharge reaction. Further, in the electrode plate in contact with the high concentration region at the lower part of the electrode plate, the lattice corrosion also progresses and the lattice itself is not kept in the current collecting function, which causes a short life. In the case of a control valve type lead-acid battery, only the minimum necessary amount of electrolyte is retained in the battery. If liquid charge is used to prevent stratification by overcharging, the electrolyte will be electrolyzed and the liquid will be It will lead to short life due to withering.
この為、これらを防止する手段として、従来から電解液にシリカ粒子を添加することが行われており、例えば、極板群内に粒子径が10〜20ミリミクロンのシリカ粒子を1ないし7重量%含んだ希硫酸電解液を均一に吸収保持させる方法(特許文献1)が知られているが、充分なものではなかった。 For this reason, as a means for preventing these problems, silica particles are conventionally added to the electrolytic solution. For example, 1 to 7 weights of silica particles having a particle diameter of 10 to 20 millimicrons in the electrode plate group. A method of uniformly absorbing and holding a dilute sulfuric acid electrolyte solution (Patent Document 1) is known, but it is not sufficient.
そこで、シリカ粒子の長さが太さの2倍以上ある細長い形状を有するシリカゾルを用いゲル化させたゲル状電解液を用い、そのシリカ濃度を電解液の2〜8wt%とする方法(特許文献2)や、極板群と電槽との間にコロイダルシリカ等の添加によりゲル化した電解液を配置することにより極板群の周囲に電解液を保持させる方法(特許文献3)などが知られている。 Therefore, a method of using a gel electrolyte solution that is gelled using a silica sol having an elongated shape in which the length of silica particles is at least twice the thickness, and setting the silica concentration to 2-8 wt% of the electrolyte solution (Patent Document) 2) and a method of holding the electrolyte solution around the electrode plate group by disposing an electrolyte solution gelled by adding colloidal silica or the like between the electrode plate group and the battery case (Patent Document 3), etc. It has been.
しかしながら、特許文献2記載の方法はシリカ粒子の形状・濃度を規定することで放電容量や寿命性能の改善ができるものの、ゲル化時間が比較的早く注液作業の困難性が伴い早く注液しなければならないと言う問題がある。
特許文献3記載の方法はゲル化が加速されると、注液栓より注液した電解液が極板内部まで浸透せず、充放電反応に預からない部分が生じ、特性がばらつく要因となる。この為、ゾル状の電解液の温度を10℃以下に下げる等の方法が考えられているものの、実用的ではない。
However, although the method described in Patent Document 2 can improve the discharge capacity and life performance by regulating the shape and concentration of the silica particles, the gelation time is relatively fast and the liquid injection work is difficult, so the liquid is injected quickly. There is a problem that it must be.
In the method described in Patent Document 3, when gelation is accelerated, the electrolyte solution injected from the injection plug does not penetrate into the electrode plate, resulting in a portion that cannot be stored in the charge / discharge reaction, which causes variations in characteristics. . For this reason, although a method such as lowering the temperature of the sol electrolyte solution to 10 ° C. or less is considered, it is not practical.
これらに用いられるシリカゾルは、シリカ粒子の表面に電気二重層を形成させて準安定化しているため、この電気二重層を破壊するような働きがあると粒子間の結合が生じゲル化が起こる。このシリカゾルは、pH8〜11のようなアルカリ性に維持されており、この領域において非常に安定である。しかしながら、電解液のような強酸である硫酸に添加すると、シリカ粒子の表面の電位が下がり反撥性がなくなり、凝集が起こり易くなり、従って、蓄電池への注液は電解液に添加後素早く注液する必要があり、遅れると蓄電池に注液前にゲル化し、最終的には電池へ注液できないこともある。特に高温になればなるほど凝集が加速され、その作業性は一層困難を極めることとなってしまう。
そこで、アルカリ性のシリカゾルに代え、電解液と同性の酸性のシリカゾル(pH2〜4)が用いること考えられる。このものは電解液と同性であるため直ぐにはゲル化し難い。しかし、酸性のシリカゾルを電解液に添加すると徐々に凝集は起こるが、シリカ粒子の粒径によっては極板とセパレータ面に入り難く不均一となりサイクル特性の向上に寄与しないことが分かった。
Since the silica sol used in these materials is metastable by forming an electric double layer on the surface of the silica particles, if there is an action that destroys the electric double layer, bonding between particles occurs and gelation occurs. This silica sol is kept alkaline, such as pH 8-11, and is very stable in this region. However, when added to sulfuric acid, which is a strong acid such as an electrolytic solution, the surface potential of the silica particles is lowered and repulsion is lost, and aggregation tends to occur. Therefore, the injection into the storage battery is performed quickly after the addition to the electrolytic solution. If it is delayed, it may gel before pouring into the storage battery, and eventually it may not be possible to fill the battery. In particular, the higher the temperature, the more the aggregation is accelerated, and the workability becomes even more difficult.
Therefore, it is conceivable to use an acidic silica sol (pH 2 to 4) that is the same as the electrolytic solution in place of the alkaline silica sol. Since this is the same as the electrolyte, it is difficult to gel immediately. However, when acidic silica sol was added to the electrolytic solution, aggregation gradually occurred. However, depending on the particle size of the silica particles, it was difficult to enter the electrode plate and the separator surface and became non-uniform and did not contribute to the improvement of the cycle characteristics.
このような背景の下、電解液の注液性が良好であり、且つ、寿命サイクルの向上した制御弁式鉛蓄電池を提供することが望まれている。 Under such a background, it is desired to provide a control valve type lead-acid battery having good electrolyte pouring property and an improved life cycle.
所定量の水及び希硫酸を練合してなる活物質ペーストを、鉛−カルシウム系鉛合金からなる格子基板に充填してなる正極板と、正極板と同様にして作製した負極板とを積層し、ガラス繊維を抄造してなるリテーナマットを介して構成する際、電解液中に所定サイズのシリカ微粒子を中心とした所定量のシリカゾルを電解液と同性の酸性を示すシリカゾルを電解液と同性の酸性を示すシリカゾルを用いるものである。 Laminating a positive plate made by filling a lattice substrate made of a lead-calcium-based lead alloy with an active material paste made by kneading a predetermined amount of water and dilute sulfuric acid, and a negative plate made in the same manner as the positive plate When a glass fiber is made through a retainer mat, a predetermined amount of silica sol centered on silica particles of a predetermined size is used in the electrolyte solution, and a silica sol having the same acidity as the electrolyte solution is the same as the electrolyte solution. A silica sol exhibiting the acidity of is used.
この時、電解液中のシリカ微粒子は、シリカ微粒子の平均粒径を7nm以下とし、且つ、全電解液量の0.5〜5.0wt%とするものである。 At this time, the silica fine particles in the electrolytic solution have an average particle size of 7 nm or less and 0.5 to 5.0 wt% of the total amount of the electrolytic solution.
請求項1記載の発明によると、電解液のような強酸である硫酸に添加するシリカゾルの性状を、予めpH2〜4で維持されたものを使用することにより、硫酸中でシリカ粒子の表面の電位が下がり反撥性がなくなることを緩和でき、比較的安定に硫酸と混合した電解液を注液することが可能となる。このようにすることで、電池内に混合した電解液をスムーズに注入でき、その電解液中のシリカ微粒子をセパレ−タ、正極板、負極板間に、沈着、或いは半固定状態に保つことができ、電池内の電解液を極板全体において、より一様にトラップさせ、極板上下での電解液比重差が生じ難くなり、長期に亘り極板全体での均一な充放電が保持され、特性ばらつきが減少し、長寿命化に更に有効である。 According to the first aspect of the invention, the surface potential of the silica particles in sulfuric acid is obtained by using the silica sol added to sulfuric acid, which is a strong acid such as an electrolytic solution, previously maintained at pH 2-4. It is possible to relieve the decrease in rebound and the repelling property, and it becomes possible to inject an electrolytic solution mixed with sulfuric acid relatively stably. In this way, the electrolyte mixed in the battery can be smoothly injected, and the silica fine particles in the electrolyte can be kept deposited or semi-fixed between the separator, the positive electrode plate, and the negative electrode plate. It is possible to trap the electrolyte in the battery more uniformly in the entire electrode plate, and it is difficult for the electrolyte specific gravity difference between the upper and lower electrodes to occur, and uniform charge and discharge in the entire electrode plate is maintained over a long period of time. The variation in characteristics is reduced, which is more effective for extending the service life.
また、シリカ微粒子の平均粒径を7nm以下とすることが好ましく、7nm超過の場合シリカゾルは極板とセパレータに入り難く不均一となり、蓄電池とした時容量低下が著しい。
更に、シリカ微粒子の添加量を0.5〜5.0wt%とすることが好ましく、0.5wt%未満の場合、効能薄く、添加効果が認められない。逆に、5.0wt%以上の場合、ゲル化し効果期待以前に、注液困難等のハンドリング上の問題が生じる。
The average particle size of the silica fine particles is preferably 7 nm or less. When the average particle size exceeds 7 nm, the silica sol hardly enters the electrode plate and the separator and becomes non-uniform, and the capacity is significantly reduced when the battery is used.
Furthermore, the addition amount of the silica fine particles is preferably 0.5 to 5.0 wt%. When the addition amount is less than 0.5 wt%, the effect is thin and the addition effect is not recognized. On the other hand, when it is 5.0 wt% or more, gelation occurs and handling problems such as difficulty in pouring occur before the effect is expected.
本発明により、電解液の注液性が良好であり、且つ、寿命サイクルの向上した制御弁式鉛蓄電池を提供することが可能である。 According to the present invention, it is possible to provide a control valve type lead-acid battery having good electrolyte pouring property and improved life cycle.
まず、所定量の水及び希硫酸を練合してなる活物質ペーストを、カルシウム系合金からなる格子基板に4.2g/cc密度で充填してなる正極板を化成し、20kgf/dm2で測定した際、1.4mmであるガラス繊維を抄造してなるリテーナマットを2枚介して正極板と同様にして作製した公知の負極板を積層して、正極板25枚/負極板26枚構成の極板群を構成した後、該極板群を電槽に40kgf/dm2の群圧になるように組み込んだ。次に、同極性耳群を常法によりストラップ溶接すると同時に端子を形成した。次いで、電槽と蓋を接着した後、シリカ微粒子を含むシリカゾル溶液を所望の量だけ注液して封口した後、2V、定格容量1000Ahの制御弁式鉛蓄電池とした。 First, a positive electrode plate formed by filling a lattice substrate made of a calcium alloy with a predetermined amount of water and dilute sulfuric acid at a density of 4.2 g / cc is formed, and at 20 kgf / dm 2 . When measuring, a known negative electrode plate produced in the same manner as the positive electrode plate is laminated through two retainer mats made by making glass fibers of 1.4 mm to constitute 25 positive electrode plates / 26 negative electrode plates After forming the electrode plate group, the electrode plate group was assembled in a battery case so as to have a group pressure of 40 kgf / dm 2 . Next, a terminal was formed simultaneously with strap welding of the same polarity ear group by a conventional method. Next, after the battery case and the lid were adhered, a desired amount of silica sol solution containing silica fine particles was injected and sealed, and then a control valve type lead storage battery with 2 V and a rated capacity of 1000 Ah was obtained.
上記方法によって作製される制御弁式鉛蓄電池において、予め、酸性(pH値が2〜4)の溶液に調整された平均粒径7nmのシリカ微粒子を含むシリカゾル溶液を、シリカ微粒子が全電解液量の0.5、2.5、4.5wt%となるように計量し、電解液を注液し2V、定格容量1000Ahの制御弁式鉛蓄電池を作製した(本発明1〜3)。
なお、本発明で用いた酸性の溶液に調整されたシリカ微粒子を含むシリカゾル溶液とはSiO2濃度が20%の酸性領域で安定化されたものである。
In the control valve type lead-acid battery produced by the above method, a silica sol solution containing silica fine particles having an average particle diameter of 7 nm previously adjusted to an acidic (pH value of 2 to 4) solution is used, and the silica fine particles contain the total amount of electrolyte. The control valve type lead storage battery of 2V, rated capacity 1000Ah was manufactured by injecting the electrolyte solution to 0.5, 2.5, and 4.5 wt% (Inventions 1 to 3).
In addition, the silica sol solution containing silica fine particles prepared in the acidic solution used in the present invention is one that is stabilized in an acidic region having a SiO 2 concentration of 20%.
(比較例1)
シリカ微粒子の添加量を本発明規定値外(0.2、5.5wt%)とした他は、実施例1と同じ方法により2V、定格容量1000Ahの制御弁式鉛蓄電池を作製した(比較例1、2)。
(比較例2)
シリカ微粒子の平均粒径10nm、添加量を0.5wt%とした他は、実施例1と同じ方法により2V、定格容量1000Ahの制御弁式鉛蓄電池を作製した(比較例3)。
(Comparative Example 1)
A control valve type lead-acid battery with 2V and a rated capacity of 1000 Ah was produced by the same method as in Example 1 except that the addition amount of silica fine particles was outside the specified value of the present invention (0.2, 5.5 wt%) (Comparative Example). 1, 2).
(Comparative Example 2)
A control valve type lead storage battery having a rated capacity of 2 V and a rated capacity of 1000 Ah was produced in the same manner as in Example 1 except that the average particle size of silica fine particles was 10 nm and the addition amount was 0.5 wt% (Comparative Example 3).
(従来例1)
平均粒子径10nmのシリカ微粒子を用いこれをアルカリ性とした以外は、実施例1と同じ方法により2V、定格容量1000Ahの制御弁式鉛蓄電池を作製した(従来例1〜3)。
(Conventional example 1)
A control valve type lead-acid battery having a rated capacity of 2 V and a rated capacity of 1000 Ah was produced by the same method as in Example 1 except that silica fine particles having an average particle diameter of 10 nm were used and made alkaline (conventional examples 1 to 3).
表1に、種々作製した制御弁式鉛蓄電池の、電解液のpH値、シリカ添加量、平均粒径、注液性および寿命サイクルを示す。なお、注液性の○は良好、×は困難を示す。また、寿命サイクルは本発明1を100とした時の比率で表したものである。 Table 1 shows the pH value of the electrolyte, the amount of silica added, the average particle diameter, the liquid injection property, and the life cycle of various control valve type lead-acid batteries. In addition, (circle) of liquid injection property shows favorable and x shows difficulty. The life cycle is expressed as a ratio when the present invention 1 is set to 100.
表1に示すように、本発明1〜3の寿命サイクルが90以上であるのに対し、比較例1〜3および従来例1〜3のサイクルは90未満であり、寿命サイクルにおいて本発明1〜3の方が優れることが判った。これは、電解液と同性の酸性を示すシリカゾルを用いることでシリカ粒子のゲル化が進行し難くなり、電解液が極板内部まで浸透し均一になったものと考えられる。しかし、本発明1に比し比較例3のサイクル特性が極端に低下しているのは、シリカ微粒子の平均粒径が大きく、シリカ微粒子が極板とセパレータ面に入り難く不均一となり、電解液の成層化を防止することができなかったためであると思われる。
また、電解液と同性の酸性を示すシリカゾルを用いることで、アルカリ性を示すシリカゾルを用いたときに比し注入性が良好であった。これは、前記する通りシリカ粒子のゲル化が進行し難くなったためである。
As shown in Table 1, while the life cycles of the present invention 1 to 3 are 90 or more, the cycles of Comparative Examples 1 to 3 and Conventional Examples 1 to 3 are less than 90. 3 was found to be superior. This is presumably because the use of a silica sol that exhibits the same acidity as the electrolyte makes it difficult for the silica particles to gel, and the electrolyte penetrates into the electrode plate and becomes uniform. However, the cycle characteristics of Comparative Example 3 are extremely deteriorated compared to the first aspect of the present invention because the average particle size of the silica fine particles is large, and the silica fine particles are difficult to enter the electrode plate and the separator surface and become non-uniform. This is probably because the stratification of the layer could not be prevented.
In addition, by using a silica sol having the same acidity as the electrolytic solution, injectability was better than when a silica sol showing alkalinity was used. This is because the gelation of the silica particles is difficult to proceed as described above.
以上の結果より、電解液中にシリカ微粒子を中心とした所定量のシリカゾルを電解液と同性の酸性を示すシリカゾルを用いることで、電解液の注液性が良好となり、且つ、寿命サイクルの向上した制御弁式鉛蓄電池を提供することが可能である。
From the above results, by using a silica sol that shows the same acidity as the electrolyte and a predetermined amount of silica sol centered on silica fine particles in the electrolyte, the electrolyte can be injected well and the life cycle can be improved. It is possible to provide a control valve type lead acid battery.
Claims (1)
An electrode plate group in which a positive electrode plate formed by filling a substrate made of a lead-calcium-based lead alloy with an active material paste and a negative electrode plate via a retainer mat is housed in a battery case, and is poured into the battery case. The control is characterized by adding 0.5 to 5.0% by mass of a silica sol composed of silica fine particles having an average particle size of 7 nm or less and having the same acidity as the electrolytic solution as the electrolytic solution to be added. Valve-type lead acid battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006076150A JP2007250495A (en) | 2006-03-20 | 2006-03-20 | Control valve type lead-acid storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006076150A JP2007250495A (en) | 2006-03-20 | 2006-03-20 | Control valve type lead-acid storage battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007250495A true JP2007250495A (en) | 2007-09-27 |
Family
ID=38594540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006076150A Pending JP2007250495A (en) | 2006-03-20 | 2006-03-20 | Control valve type lead-acid storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007250495A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012174361A (en) * | 2011-02-17 | 2012-09-10 | Gs Yuasa Corp | Control valve type lead-acid storage battery and method for manufacturing the same |
US9548485B2 (en) | 2011-05-02 | 2017-01-17 | Gs Yuasa International Ltd. | Valve regulated lead-acid battery |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0729593A (en) * | 1993-07-08 | 1995-01-31 | Japan Storage Battery Co Ltd | Retainer type sealed lead-acid battery |
JP2003259563A (en) * | 2002-02-27 | 2003-09-12 | Japan Storage Battery Co Ltd | Charge control method for control valve type (seal type) lead storage battery |
WO2005050770A1 (en) * | 2003-11-21 | 2005-06-02 | Akzo Nobel N.V. | Composition |
-
2006
- 2006-03-20 JP JP2006076150A patent/JP2007250495A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0729593A (en) * | 1993-07-08 | 1995-01-31 | Japan Storage Battery Co Ltd | Retainer type sealed lead-acid battery |
JP2003259563A (en) * | 2002-02-27 | 2003-09-12 | Japan Storage Battery Co Ltd | Charge control method for control valve type (seal type) lead storage battery |
WO2005050770A1 (en) * | 2003-11-21 | 2005-06-02 | Akzo Nobel N.V. | Composition |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012174361A (en) * | 2011-02-17 | 2012-09-10 | Gs Yuasa Corp | Control valve type lead-acid storage battery and method for manufacturing the same |
US9548485B2 (en) | 2011-05-02 | 2017-01-17 | Gs Yuasa International Ltd. | Valve regulated lead-acid battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0584033B2 (en) | ||
JP6168138B2 (en) | Liquid lead-acid battery | |
CN103700898B (en) | A kind of lead-acid battery repair agent and preparation method thereof | |
JP2008130516A (en) | Liquid lead-acid storage battery | |
JP5138391B2 (en) | Control valve type lead acid battery | |
JP2009289576A (en) | Negative electrode active material mixture for lead-acid storage battery | |
JP2008204638A (en) | Control valve type lead-acid battery, and manufacturing method thereof | |
JP5591141B2 (en) | Control valve type lead storage battery manufacturing method | |
JP5545975B2 (en) | Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same | |
JP2007250495A (en) | Control valve type lead-acid storage battery | |
JP4509660B2 (en) | Lead acid battery | |
JP2010102922A (en) | Control valve type lead-acid battery | |
JP2021111445A (en) | Lead-acid battery | |
JP2007250308A (en) | Control valve type lead acid battery | |
JP2008171709A (en) | Manufacturing method of control valve type lead-acid storage battery | |
JP4812257B2 (en) | Sealed lead-acid battery for cycle use | |
JP5061460B2 (en) | Control valve type lead acid battery manufacturing method and control valve type lead acid battery | |
JP4491384B2 (en) | Sealed lead acid battery | |
JP2002110125A (en) | Lead-acid battery and its manufacturing method | |
JP2008103180A (en) | Control valve type lead-acid battery | |
JP2008091189A (en) | Sealed lead acid storage battery | |
JP4250910B2 (en) | Lead-acid battery separator and control valve type lead-acid battery using the same | |
JP2006185743A (en) | Control valve type lead-acid battery | |
JP6699383B2 (en) | Lead acid battery | |
JP4742424B2 (en) | Control valve type lead acid battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090115 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110607 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110614 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120124 |