JPH04337256A - Sealed lead-acid battery - Google Patents
Sealed lead-acid batteryInfo
- Publication number
- JPH04337256A JPH04337256A JP3141018A JP14101891A JPH04337256A JP H04337256 A JPH04337256 A JP H04337256A JP 3141018 A JP3141018 A JP 3141018A JP 14101891 A JP14101891 A JP 14101891A JP H04337256 A JPH04337256 A JP H04337256A
- Authority
- JP
- Japan
- Prior art keywords
- antimony
- positive electrode
- lead
- lattice
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002253 acid Substances 0.000 title claims abstract description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 58
- 239000000843 powder Substances 0.000 claims abstract description 33
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 29
- 229910001245 Sb alloy Inorganic materials 0.000 claims abstract description 20
- 239000002140 antimony alloy Substances 0.000 claims abstract description 20
- 230000005496 eutectics Effects 0.000 claims abstract description 13
- 239000003792 electrolyte Substances 0.000 claims abstract description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 7
- 230000000717 retained effect Effects 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 2
- 229910001882 dioxygen Inorganic materials 0.000 claims description 2
- 229910052787 antimony Inorganic materials 0.000 abstract description 54
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 abstract description 54
- 239000011149 active material Substances 0.000 abstract description 9
- 238000010828 elution Methods 0.000 abstract description 8
- 230000007797 corrosion Effects 0.000 abstract description 5
- 238000005260 corrosion Methods 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 230000009467 reduction Effects 0.000 abstract description 3
- 239000012770 industrial material Substances 0.000 abstract description 2
- 239000007788 liquid Substances 0.000 description 17
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 14
- 229910000978 Pb alloy Inorganic materials 0.000 description 10
- 239000011521 glass Substances 0.000 description 8
- 239000002142 lead-calcium alloy Substances 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 6
- 229910006654 β-PbO2 Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000007774 positive electrode material Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 206010067482 No adverse event Diseases 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000001999 grid alloy Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は密閉式鉛蓄電池の改良に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvements in sealed lead-acid batteries.
【0002】0002
【従来の技術とその課題】現在、電池の充電中に発生す
る酸素ガスを負極で吸収させるタイプの密閉式鉛蓄電池
にはリテーナ式とゲル式の2種類がある。リテーナ式は
正極板と負極板との間に微細ガラス繊維を素材とするマ
ット状セパレータ(ガラスセパレータ)を挿入し、これ
によって放電に必要な硫酸電解液の保持と両極の隔離を
行なっており、無保守、無漏液、ポジションフリーなど
の特徴を生かして、近年、ポータブル機器やコンピュー
タのバックアップ電源として広く用いられるようになっ
てきた。BACKGROUND OF THE INVENTION At present, there are two types of sealed lead-acid batteries in which the negative electrode absorbs oxygen gas generated during charging of the battery: a retainer type and a gel type. The retainer type inserts a matte separator (glass separator) made of fine glass fiber between the positive and negative electrode plates, which holds the sulfuric acid electrolyte necessary for discharge and isolates the two electrodes. In recent years, it has become widely used as a backup power source for portable equipment and computers, taking advantage of its characteristics such as no maintenance, no leakage, and no positioning.
【0003】しかし、反面ガラスセパレータが高価なこ
とや極板群を強く圧迫する必要から電槽の強度も大きく
しなければならないなど電池の製造コストが高くなる要
因が多く、さらに流動液が過剰にある電池(以下、液式
電池という)に比べて低率放電性能が劣るなどの欠点が
あって、この種の密閉電池の普及に障害となっている。However, on the other hand, there are many factors that increase the manufacturing cost of the battery, such as the high cost of the glass separator and the need to press the electrode plate group strongly and increase the strength of the battery case. They have drawbacks such as inferior low rate discharge performance compared to certain batteries (hereinafter referred to as liquid batteries), which is an obstacle to the widespread use of this type of sealed battery.
【0004】一方、ゲル式はリテーナ式よりも安価であ
るが、電池性能が液式やリテーナ式に劣るという欠点を
有している。また、リテーナ、ゲル式密閉式鉛蓄電池の
いずれにおいてもその大半が格子体にアンチモンを含ま
ない鉛合金を用いている。これらの電池で鉛−アンチモ
ン系合金を使用した場合、アンチモンが充放電中に正極
格子体より溶出し、負極板上に析出して水素過電圧を低
下させるために水分解による水素発生量が増加し、その
結果密閉式鉛蓄電池では致命的なドライアップが起こっ
て寿命となってしまう。On the other hand, although the gel type is cheaper than the retainer type, it has the disadvantage that its battery performance is inferior to the liquid type and retainer type. In addition, most of both retainers and gel-type sealed lead-acid batteries use a lead alloy that does not contain antimony for the lattice. When a lead-antimony alloy is used in these batteries, antimony is eluted from the positive electrode grid during charging and discharging and deposits on the negative electrode plate, reducing the hydrogen overvoltage and increasing the amount of hydrogen generated by water splitting. As a result, a fatal dry-up occurs in sealed lead-acid batteries, resulting in the end of their lifespan.
【0005】このような理由でリテーナ、ゲル式密閉式
鉛蓄電池では、アンチモンを含まない合金として例えば
鉛−カルシウム系合金を用いている。しかし、鉛−カル
シウム系合金は深い放電を含む充放電サイクルを行なっ
た場合、放電時に格子−活物質界面に緻密な不導体であ
る硫酸鉛が生成して早期に容量が低下したり、活物質で
ある二酸化鉛粒子間の結合が弱まり活物質が脱落しやす
くなるという欠点を有している。また、鉛−カルシウム
系合金は鉛−アンチモン系合金に比べて非常に軟らかい
ために格子の伸びによるショートが発生し易いという欠
点も有している。[0005] For these reasons, in caged and gel type sealed lead-acid batteries, for example, a lead-calcium alloy is used as an antimony-free alloy. However, when lead-calcium alloys are subjected to charge-discharge cycles that include deep discharge, lead sulfate, a dense nonconductor, is formed at the lattice-active material interface during discharge, resulting in early capacity loss and active material This has the disadvantage that the bond between the lead dioxide particles weakens and the active material easily falls off. Furthermore, since lead-calcium alloys are much softer than lead-antimony alloys, they also have the disadvantage of being more susceptible to short circuits due to lattice elongation.
【0006】一方、鉛−アンチモン系合金の場合はアン
チモンが格子−活物質界面に生成する腐食層を多孔性に
し、また二酸化鉛粒子間の結合力を強固にするために早
期容量低下や活物質の脱落はなく、さらに格子の伸びに
よるショートも起こりにくい。これらの事から現在の密
閉式鉛蓄電池においては、コストダウンと同時に電池寿
命性能を改善することが最大の課題であった。On the other hand, in the case of lead-antimony alloys, antimony makes the corrosion layer formed at the lattice-active material interface porous, and also strengthens the bonding force between lead dioxide particles, leading to early capacity loss and active material There is no falling off, and short circuits due to grid stretching are also less likely to occur. For these reasons, the biggest challenge for current sealed lead-acid batteries is to reduce costs and improve battery life performance at the same time.
【0007】[0007]
【課題を解決するための手段】我々は、上述した従来の
密閉式鉛蓄電池の欠点を除去するためには、正極格子に
鉛−アンチモン系合金を使用可能にすることが最良と考
えた。しかし、このためには正極格子からのアンチモン
溶出を防ぐこと、および正極から負極へのアンチモンの
移動を防ぐことが大きな問題点となる。本発明は、この
2点を解決するものである。[Means for Solving the Problems] We believe that in order to eliminate the above-mentioned drawbacks of the conventional sealed lead-acid batteries, it is best to make it possible to use a lead-antimony alloy for the positive electrode grid. However, for this purpose, there are major problems in preventing antimony elution from the positive electrode lattice and preventing antimony from moving from the positive electrode to the negative electrode. The present invention solves these two problems.
【0008】まず、正極格子からのアンチモン溶出を防
止するために、低アンチモン鉛合金の金属組織を調整す
ることにより、格子腐食時のアンチモンの溶出を極力抑
制することを特徴としている。よく知られているように
鉛−アンチモン系合金の組織は、樹枝状に発達した鉛の
固溶体層(α層)を取り囲むように鉛とアンチモンの共
晶(α+β層)が存在する。このような鉛合金が陽極酸
化をうけて腐食すると、合金表面から共晶部分が侵食さ
れて腐食していく。共晶部分はアンチモンの含有量が極
めて高いから、この部分が腐食されると多量のアンチモ
ンが電解液中に溶出する。本発明の第1点は、典型的な
このような鉛−アンチモン系合金組織を熱処理などによ
って再編成し、共晶部のような高アンチモン含有部分を
なくしたことにある。First, in order to prevent the elution of antimony from the positive electrode grid, the metal structure of the low-antimony lead alloy is adjusted to suppress the elution of antimony during grid corrosion as much as possible. As is well known, in the structure of a lead-antimony alloy, a eutectic of lead and antimony (α+β layer) exists surrounding a lead solid solution layer (α layer) developed in a dendritic shape. When such a lead alloy undergoes anodization and corrodes, the eutectic portion is eroded from the alloy surface and corrodes. Since the eutectic portion has an extremely high antimony content, when this portion is corroded, a large amount of antimony is eluted into the electrolyte. The first point of the present invention is that the structure of a typical lead-antimony alloy is reorganized by heat treatment or the like to eliminate high antimony-containing portions such as eutectic portions.
【0009】もう一つは、シリカ微粉体がアンチモンを
吸着することを利用し、シリカ微粉体を密閉式鉛蓄電池
に用いた点である。すなわち鉛−アンチモン系合金より
成る正極格子を用い、かつ少なくとも正極板と負極板と
の間隙にシリカ微粉体を充填、配置し充放電に必要な量
の硫酸電解液を該微粉体及び正負極板に含浸、保持させ
ることを特徴としている。Another point is that fine silica powder is used in sealed lead-acid batteries by taking advantage of the fact that fine silica powder adsorbs antimony. In other words, a positive electrode grid made of a lead-antimony alloy is used, silica fine powder is filled and arranged at least in the gap between the positive electrode plate and the negative electrode plate, and the amount of sulfuric acid electrolyte required for charging and discharging is applied to the fine powder and the positive and negative electrode plates. It is characterized by being impregnated with and retained.
【0010】正極格子に鉛−アンチモン系合金を用いる
ことでアンチモンが正極格子−活物質界面に生成する腐
食層を多孔性にし、粒子間の結合を強固にするために、
早期容量低下や活物質の脱落を防ぐことができ、さらに
格子の伸びによるショートも減らすことができる。正極
格子の共晶部をなくすことで、正極格子からのアンチモ
ン溶出量は大幅に低減でき、また正極板と負極板との間
隙に配置したシリカ微粉体がアンチモンを吸着し、正極
から負極へのアンチモンの移動を阻止する。その結果、
アンチモンによる水素過電圧の低下が非常に少なくなる
ために水分解はほとんど増加せず、密閉式鉛蓄電池の最
大の特徴である無保守、無補水という特徴が損なわれる
ことはない。さらにシリカ微粉体は非常に安価な工業材
料であって、また硫酸の保持能力も優れているためにリ
テーナ、ゲル式に代わる密閉式鉛蓄電池を安価に作製す
ることができる。[0010] By using a lead-antimony alloy for the positive electrode lattice, antimony makes the corrosion layer formed at the positive electrode lattice-active material interface porous and strengthens the bond between particles.
It is possible to prevent early capacity reduction and active material falling off, and it is also possible to reduce short circuits due to lattice elongation. By eliminating the eutectic part of the positive electrode lattice, the amount of antimony eluted from the positive electrode lattice can be significantly reduced, and the silica fine powder placed in the gap between the positive electrode plate and the negative electrode plate adsorbs antimony and prevents antimony from flowing from the positive electrode to the negative electrode. Prevent the movement of antimony. the result,
Since the drop in hydrogen overvoltage due to antimony is extremely small, water splitting hardly increases, and the most important feature of sealed lead-acid batteries, which is no maintenance and no water replenishment, is not impaired. Furthermore, fine silica powder is a very inexpensive industrial material and has an excellent ability to retain sulfuric acid, making it possible to manufacture sealed lead-acid batteries at low cost in place of retainer and gel types.
【0011】[0011]
【実施例】以下、本発明を実施例に基づいて説明する。
まず、鉛−アンチモン合金の合金組織がアンチモン溶出
量におよぼす影響を調べた。アンチモン含有量を0.5
〜4.0重量%に調整した鉛合金板を鋳造後、約240
℃に1時間保持し、その後急冷した。鉛合金板の寸法は
、10cm×10cm、厚さ1mmとした。この鉛合金
板Aを2枚ずつ硫酸中に入れ、アンチモン溶出試験を行
なった。EXAMPLES The present invention will be explained below based on examples. First, the influence of the alloy structure of the lead-antimony alloy on the amount of antimony elution was investigated. Antimony content 0.5
After casting a lead alloy plate adjusted to ~4.0% by weight, approximately 240%
The mixture was kept at 0.degree. C. for 1 hour and then rapidly cooled. The dimensions of the lead alloy plate were 10 cm x 10 cm and a thickness of 1 mm. Two of these lead alloy plates A were placed in sulfuric acid and an antimony elution test was conducted.
【0012】また、比較用として熱処理をしていない鉛
合金板Bについても同様の試験をした。硫酸比重は、1
.30、温度は50℃とし、電流1Aで1週間通電した
。試験終了後のアンチモン溶出量を図1に示した。[0012] For comparison, a similar test was also conducted on lead alloy plate B which had not been heat treated. The specific gravity of sulfuric acid is 1
.. 30. The temperature was 50° C., and a current of 1 A was applied for one week. Figure 1 shows the amount of antimony eluted after the test.
【0013】熱処理を施した鉛合金板Aのアンチモン溶
出量は、熱処理なしBに比べ大幅に減少した。溶出量の
減少は、合金中のアンチモン量が多くなるほど大きくな
った。この理由は、次のように考えられる。熱処理によ
り鉛合金の金属組織は、従来のように樹枝状晶ではなく
、α層中にβ層がとけ込んだ特有の組織を呈する。合金
中のアンチモン量が多くなるほど共晶部が多くなるため
、共晶部が減少したときの効果が大きくなる。固溶体相
は、前にも述べたように共晶組成のβ相に比べてはるか
に耐食性がありアンチモンの溶出を阻止したものと思わ
れる。The amount of antimony eluted from the heat-treated lead alloy sheet A was significantly reduced compared to the non-heat-treated sheet B. The decrease in elution amount increased as the amount of antimony in the alloy increased. The reason for this is thought to be as follows. Through heat treatment, the metal structure of the lead alloy exhibits a unique structure in which the β layer is dissolved into the α layer, rather than the dendrite structure as in conventional metal structures. As the amount of antimony in the alloy increases, the number of eutectic parts increases, so the effect when the number of eutectic parts decreases increases. As mentioned earlier, the solid solution phase is far more resistant to corrosion than the β phase with a eutectic composition, and is thought to have prevented the elution of antimony.
【0014】次に、シリカ微粉体として一次粒子が10
〜40ミリミクロン、表面積が約120m2 /gのも
のを用いて多孔度、保液量を調べた。まず、シリカ微粉
体の特性を知るために保液量を調べ、現行のリテーナ式
密閉式鉛蓄電池で用いられている直径約1μmのガラス
繊維よりなるガラスセパレータと比較した。保液量とは
、シリカ微粉体やガラスセパレータが保持できる液量で
実験により求めた。まず、比重1.30(20℃)の希
硫酸をガラスフィルター上に置いたシリカ微粉体やガラ
スセパレータでろ過し、この後これらに保持されている
液量を保液量とした。結果を表1に示す。Next, as fine silica powder, the primary particles are 10
The porosity and liquid retention amount were investigated using a material with a diameter of ~40 millimicrons and a surface area of approximately 120 m2/g. First, in order to understand the characteristics of the silica fine powder, we investigated the amount of liquid it can hold and compared it with a glass separator made of glass fiber with a diameter of about 1 μm that is used in current cage-type sealed lead-acid batteries. The amount of liquid retained is the amount of liquid that can be held by the silica fine powder or the glass separator, and was determined through experiments. First, dilute sulfuric acid with a specific gravity of 1.30 (20° C.) was filtered through fine silica powder or a glass separator placed on a glass filter, and the amount of liquid retained therein was defined as the amount of retained liquid. The results are shown in Table 1.
【0015】[0015]
【表1】[Table 1]
【0016】シリカ微粉体の保液量は、ガラスセパレー
タに比べやや劣るものの、0.87cc/cm3 と優
れた液保持能力を有するために、リテーナ、ゲル式に代
わる新しいタイプの密閉式鉛蓄電池を作製できることが
わかった。Although the liquid holding capacity of silica fine powder is slightly inferior to that of glass separators, it has an excellent liquid holding capacity of 0.87cc/cm3, so a new type of sealed lead-acid battery is used to replace the retainer and gel type. It turns out that it can be made.
【0017】また、上記シリカ微粉体のアンチモン吸着
力についても調べた。比較のためにβ−PbO2 や
TiO2 (ルチル型)も同時に試験した。試験は、ア
ンチモンを含む比重1.30の希硫酸中にシリカ微粉体
、β−PbO2 、 TiO2 (ルチル型)をいれ、
一定時間攪拌し、希硫酸中のアンチモン減少量を調べそ
れを吸着量とする方法で行なった。結果を図2に示す。
図2は希硫酸中のアンチモン濃度とアンチモン吸着量と
の関係を示している。The antimony adsorption power of the above-mentioned silica fine powder was also investigated. For comparison, β-PbO2 and
TiO2 (rutile type) was also tested at the same time. In the test, fine silica powder, β-PbO2, and TiO2 (rutile type) were placed in dilute sulfuric acid with a specific gravity of 1.30 containing antimony.
After stirring for a certain period of time, the amount of antimony reduced in dilute sulfuric acid was determined and used as the amount of adsorption. The results are shown in Figure 2. FIG. 2 shows the relationship between the antimony concentration in dilute sulfuric acid and the amount of antimony adsorbed.
【0018】一般にβ−PbO2 や TiO2 (ル
チル型)など正方晶の結晶構造をもつ金属酸化物は、溶
液中のアンチモンを吸着することが知られている。しか
し、鉛蓄電池中で用いるためには耐硫酸性があること、
アンチモン吸着力が高いこと、安価であること、その他
電池に害を及ぼさないことなどの条件を満たす必要があ
る。Generally, metal oxides having a tetragonal crystal structure, such as β-PbO2 and TiO2 (rutile type), are known to adsorb antimony in a solution. However, for use in lead-acid batteries, it must be resistant to sulfuric acid;
It must meet other conditions such as having high antimony adsorption power, being inexpensive, and not causing any harm to the battery.
【0019】β−PbO2 は正極活物質として用いら
れているが、図2に示す様にアンチモン吸着力が小さい
ために、鉛蓄電池中でアンチモンの正極板から負極板へ
の移動を充分阻止できない。β-PbO2 is used as a positive electrode active material, but as shown in FIG. 2, it has a small antimony adsorption power, so it cannot sufficiently prevent the movement of antimony from the positive electrode plate to the negative electrode plate in a lead-acid battery.
【0020】TiO2 (ルチル型)は、シリカ微粉体
とほぼ同等のアンチモン吸着力を持つが、高価であるた
めにアンチモン移動を阻止できるだけの量を電池内に添
加すると大幅なコストアップとなってしまう。TiO2 (rutile type) has almost the same antimony adsorption power as fine silica powder, but it is expensive, so adding it to the battery in an amount sufficient to prevent antimony migration will result in a significant increase in cost. .
【0021】一方、シリカ微粉体は、優れたアンチモン
吸着力を有していること、安価であること、電池に対し
ても無害であることなどから上記条件をすべて満足する
。シリカ微粉体を電解液保持体とし、正極格子に鉛−ア
ンチモン系合金を用いた場合、シリカ微粉体が正極より
負極へと移動するアンチモンを吸着するために前述した
アンチモンによる弊害のほとんどない電池を作製するこ
とが可能である。On the other hand, fine silica powder satisfies all of the above conditions because it has excellent antimony adsorption power, is inexpensive, and is harmless to batteries. When fine silica powder is used as an electrolyte holder and a lead-antimony alloy is used for the positive electrode grid, the fine silica powder adsorbs antimony that moves from the positive electrode to the negative electrode, creating a battery with almost no adverse effects caused by antimony as described above. It is possible to create one.
【0022】次に実際に電池を作製し、試験を行なった
。Next, a battery was actually produced and tested.
【0023】[0023]
【表2】[Table 2]
【0024】比較を行なうために、表2に示すように正
極格子合金として熱処理をしていない鉛−アンチモン系
合金および鉛−カルシウム系合金、電解液保持体として
ガラスセパレータを用いた電池についても試験を行なっ
た。鉛−アンチモン系合金のアンチモン量は2.5重量
%とし、熱処理条件は、上述した鉛合金板の場合と同じ
にした。なお、負極格子には、鉛−カルシウム系合金を
用いた。正負極活物質などは標準的なものを用い、電解
液には比重1.30の希硫酸を用い、5時間率で約28
Ahの容量を持つ自動車用密閉式鉛蓄電池を組み立てた
。For comparison purposes, as shown in Table 2, tests were also conducted on batteries using lead-antimony alloys and lead-calcium alloys that were not heat-treated as positive electrode grid alloys, and glass separators as electrolyte holders. I did it. The amount of antimony in the lead-antimony alloy was 2.5% by weight, and the heat treatment conditions were the same as in the case of the lead alloy plate described above. Note that a lead-calcium alloy was used for the negative electrode grid. Standard positive and negative electrode active materials were used, and dilute sulfuric acid with a specific gravity of 1.30 was used as the electrolyte, and approximately 2.8
A sealed lead acid battery for automobiles with a capacity of Ah was assembled.
【0025】これらの電池を用いてJISD−5301
の寿命試験を行ない、放電容量の推移および減液量を調
べた。放電容量は、試験前の容量を100%として比較
したもので、減液量は試験前を0%として液減少量を重
量%で示したものである。結果を図3に示す。[0025] Using these batteries, JISD-5301
We conducted a lifespan test to examine changes in discharge capacity and amount of liquid loss. The discharge capacity is compared with the capacity before the test as 100%, and the amount of liquid reduction is expressed in weight % with the capacity before the test as 0%. The results are shown in Figure 3.
【0026】No.3の電池は、寿命が最も短く、減液
量も多かった。これは正極格子より溶出したアンチモン
が負極板上に析出して水分解が増加し、電解液量が減少
したことがその原因である。No.4,5の電池では減
液量は少ないもののNo.1の電池に比べ寿命が短かっ
た。これは、アンチモンを含まないために正極活物質の
劣化が発生し易かったことおよび鉛−カルシウム系合金
は鉛−アンチモン系合金に比べて軟らかいために格子が
伸びてショートが起こったことなどが寿命原因となって
いる。No.2の電池は、No.3、4、5の電池に比
べて寿命はかなり良くなっているが、No.1の電池に
比べると容量低下や減液量が多い。これは、シリカ微粉
体がアンチモンをある程度吸着するものの、一部は、板
上に析出してしまったからである。[0026]No. Battery No. 3 had the shortest lifespan and a large amount of fluid loss. This is because antimony eluted from the positive electrode grid is deposited on the negative electrode plate, increasing water decomposition and reducing the amount of electrolyte. No. Although the amount of fluid loss was small for batteries No. 4 and 5, No. The lifespan was shorter than that of battery No. 1. This is because the positive electrode active material deteriorates easily because it does not contain antimony, and because lead-calcium alloys are softer than lead-antimony alloys, the lattice stretches and short circuits occur. It is the cause. No. The battery No. 2 is No. The lifespan is considerably better than batteries No. 3, 4, and 5, but No. Compared to the battery No. 1, the capacity decreases and the amount of liquid decreases more. This is because although the silica fine powder adsorbed antimony to some extent, some of it was precipitated on the plate.
【0027】これらに対して、本発明品であるNo.1
の正極格子に鉛−アンチモン系合金の熱処理品、電解液
保持体にシリカ微粉体を用いた電池では、寿命回数が最
も長く減液量も非常に少ないという結果が得られた。こ
れは、正極格子に鉛−アンチモン系合金を用いているた
めに正極活物質の劣化や格子の伸びが少なかったこと、
熱処理により共晶部がなくなりアンチモンの溶出量が少
なくなったこと、およびシリカ微粉体がアンチモンの正
極から負極への移動を阻止したために減液量が少なくな
ったことなどがその理由である。In contrast, No. 1, which is a product of the present invention. 1
A battery using a heat-treated lead-antimony alloy for the positive electrode lattice and a fine silica powder for the electrolyte holder had the longest life cycle and had the least amount of liquid loss. This is because a lead-antimony alloy is used for the positive electrode lattice, which causes less deterioration of the positive electrode active material and less elongation of the lattice.
The reasons for this are that the heat treatment eliminated the eutectic part and the amount of antimony eluted decreased, and that the silica fine powder prevented antimony from moving from the positive electrode to the negative electrode, resulting in a decreased amount of liquid loss.
【0028】今回、シリカ微粉体として一次粒子が10
〜40ミリミクロン、表面積が約120m2 /gのも
のを用いたが、表面積が20m2 /g以上のシリカ微
粉体であれば同様の効果を得ることができる。また、正
極格子に鉛−アンチモン系合金の共晶部をなくしたもの
を用い、電解液保持体に上記のシリカ微粉体を用いたク
ラッド式密閉鉛蓄電池についても本実施例と同じ効果、
すなわち減液量が少なく長寿命という性能が期待できる
。[0028] This time, the number of primary particles as fine silica powder was 10
Although silica fine powder having a surface area of 40 millimicrons and a surface area of approximately 120 m2/g was used, the same effect can be obtained with any silica fine powder having a surface area of 20 m2/g or more. In addition, the same effect as in this example can be obtained for a clad sealed lead-acid battery using a lead-antimony alloy without the eutectic part in the positive electrode lattice and using the above-mentioned silica fine powder in the electrolyte holder.
In other words, it can be expected to have a long life with less liquid loss.
【0029】[0029]
【発明の効果】上述の実施例からも明らかなように、本
発明による密閉式鉛蓄電池は共晶部をなくした鉛−アン
チモン系合金の正極格子を用い、かつ少なくとも正極板
と負極板との間隙にシリカ微粉体を充填、配置し充放電
に必要な量の硫酸電解液を該微粉体及び正負極板に含浸
、保持させるという方法で従来の密閉式鉛蓄電池の短所
を克服することができ、その工業的価値は甚だ大なるも
のである。Effects of the Invention As is clear from the above embodiments, the sealed lead-acid battery according to the present invention uses a positive electrode lattice of a lead-antimony alloy without a eutectic part, and has at least a positive electrode plate and a negative electrode plate. The disadvantages of conventional sealed lead-acid batteries can be overcome by filling and disposing fine silica powder in the gap and impregnating and holding the fine powder and positive and negative electrode plates with the amount of sulfuric acid electrolyte required for charging and discharging. , its industrial value is enormous.
【図1】合金中のアンチモン量とアンチモン溶出量との
関係を比較した図[Figure 1] Diagram comparing the relationship between the amount of antimony in the alloy and the amount of antimony eluted
【図2】シリカ微粉体、TiO2 、β−PbO2 の
アンチモン吸着量と希硫酸中のアンチモン濃度との関係
を示した図[Figure 2] Diagram showing the relationship between the amount of antimony adsorbed by fine silica powder, TiO2, and β-PbO2 and the antimony concentration in dilute sulfuric acid.
【図3】サイクル寿命試験中の容量推移および減液量を
示した図[Figure 3] Diagram showing volume change and liquid loss amount during cycle life test
Claims (1)
極で吸収させる密閉式鉛蓄電池であって、鉛−アンチモ
ン系合金より成る正極格子を用いた密閉式鉛蓄電池にお
いて、前記正極格子の合金組織は実質的に共晶部をもた
ず、かつ正極板と負極板との間隙にシリカ微粉体を充填
、配置し充放電に必要な量の硫酸電解液を該微粉体及び
正負極板に含浸、保持させたことを特徴とする密閉式鉛
蓄電池。1. A sealed lead-acid battery in which oxygen gas generated during charging of the battery is absorbed by a negative electrode, the battery having a positive electrode grid made of a lead-antimony alloy, wherein the positive electrode grid is made of an alloy. The structure has substantially no eutectic part, and fine silica powder is filled and arranged in the gap between the positive electrode plate and the negative electrode plate, and the amount of sulfuric acid electrolyte required for charging and discharging is applied to the fine powder and the positive and negative electrode plates. A sealed lead-acid battery characterized by being impregnated and retained.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3141018A JPH04337256A (en) | 1991-05-15 | 1991-05-15 | Sealed lead-acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3141018A JPH04337256A (en) | 1991-05-15 | 1991-05-15 | Sealed lead-acid battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04337256A true JPH04337256A (en) | 1992-11-25 |
Family
ID=15282286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3141018A Pending JPH04337256A (en) | 1991-05-15 | 1991-05-15 | Sealed lead-acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04337256A (en) |
-
1991
- 1991-05-15 JP JP3141018A patent/JPH04337256A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6032498B2 (en) | Control valve type lead acid battery | |
JPH11121028A (en) | Sealed lead-acid battery | |
JPH042060A (en) | Sealed type lead acid battery | |
JPH04337256A (en) | Sealed lead-acid battery | |
JP2995780B2 (en) | Sealed lead-acid battery | |
JPS61165956A (en) | Sealed type lead acid battery | |
JPH10199562A (en) | Sealed lead-acid battery | |
JPH06283191A (en) | Sealed lead-acid battery | |
JP3261417B2 (en) | Sealed lead-acid battery | |
JPH02165570A (en) | Closed lead battery | |
JP2855706B2 (en) | Sealed lead-acid battery | |
JP2958791B2 (en) | Sealed lead-acid battery | |
JPH042059A (en) | Clad type lead acid battery of sealed structure | |
JPH06295739A (en) | Sealed lead-acid battery | |
JPH11354128A (en) | Sealed lead-acid battery | |
JPH06283190A (en) | Sealed lead-acid battery | |
JPS6322428B2 (en) | ||
JPS63221564A (en) | Sealed lead-acid battery | |
JPH0787095B2 (en) | Sealed clad lead acid battery | |
JPS62170173A (en) | Sealed lead-acid battery | |
JPH0432158A (en) | Closed lead acid battery | |
JPH02123665A (en) | Lead-acid battery | |
JPS62208566A (en) | Sealed lead-acid battery | |
JPS63237365A (en) | Enclosed type lead storage battery | |
JPH0676854A (en) | Sealed lead-acid battery |