[go: up one dir, main page]

JPH02165570A - Closed lead battery - Google Patents

Closed lead battery

Info

Publication number
JPH02165570A
JPH02165570A JP63321124A JP32112488A JPH02165570A JP H02165570 A JPH02165570 A JP H02165570A JP 63321124 A JP63321124 A JP 63321124A JP 32112488 A JP32112488 A JP 32112488A JP H02165570 A JPH02165570 A JP H02165570A
Authority
JP
Japan
Prior art keywords
electrode plate
negative electrode
battery
positive electrode
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63321124A
Other languages
Japanese (ja)
Other versions
JPH0693367B2 (en
Inventor
Akio Tokunaga
徳永 昭夫
Toshiaki Hayashi
俊明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP63321124A priority Critical patent/JPH0693367B2/en
Priority to AU46088/89A priority patent/AU623712B2/en
Priority to US07/447,938 priority patent/US5035966A/en
Priority to EP89122676A priority patent/EP0377828B1/en
Priority to DE68917283T priority patent/DE68917283T2/en
Publication of JPH02165570A publication Critical patent/JPH02165570A/en
Publication of JPH0693367B2 publication Critical patent/JPH0693367B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • H01M10/10Immobilising of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/342Gastight lead accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/469Separators, membranes or diaphragms characterised by their shape tubular or cylindrical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To intend better discharge performance in a great measure with low cost by filling grain material consisting of a specific silica fine powder element in a battery for retaining electrolyte and isolating a positive electrode from a negative electrode. CONSTITUTION:A group of electrode plates, that a synthetic-resin isolating rod 1 of a certain thickness is inserted in between a positive electrode plate 5 and a negative electrode plate 4, is housed in a battery case 3. Then, in a gap between the positive electrode plate 5 and the negative electrode plate 4 and in the vicinity of a group of electrode plates, a cellar powder element 6 which is grained with a silica fine powder element of 10-40 millimicron by the use of a binder is filled and arranged to impregnate and retain a necessary and full amount of sulfuric acid electrolyte for discharge in the grain powder element 6. It is thus possible to realize excellent discharge performance for low-cost manufacture.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉式鉛蓄電池の改良に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to improvements in sealed lead-acid batteries.

従来の技術とその課題 電池の充電中に発生する酸素ガスを負極で吸収させるタ
イプの密閉式鉛蓄電池にはリテーナ式とゲル式の二SU
がある。リテーナ式は正極板と負極板との間にrRII
!Aガラス繊維を素材とするマット状セパレータ(ガラ
スセパレータ)を挿入し、これによって放電に必要な硫
a電解液の保持と両極の隔離を行っており、近年、ポー
タプル機器やコンピューターのバックアップ電源として
広く用いられるようになってきた。しかし、リテーナ式
はガラスセパレータが高価なことおよび充分な量の電解
液を保持できないために、低率放電では放電容量が電解
液量で制限されるという欠点があり、この種の密閉電池
の普及にIIIWとなっている。
Conventional technology and its challenges There are two types of sealed lead-acid batteries: a retainer type and a gel type, in which the negative electrode absorbs oxygen gas generated during battery charging.
There is. The retainer type has rRII between the positive and negative plates.
! A: A matte separator (glass separator) made of glass fiber is inserted, which holds the sulfuric acid electrolyte necessary for discharge and isolates both poles.In recent years, it has been widely used as a backup power source for portable devices and computers. It has come to be used. However, the cage type has the drawback that the discharge capacity is limited by the amount of electrolyte at low rate discharge because the glass separator is expensive and cannot hold a sufficient amount of electrolyte, and this type of sealed battery is becoming popular. It has become IIIW.

一方、ゲル式はリテーナ式よりも安価であるが、電池性
能が液式やリテーナ式に劣るという欠点があった。
On the other hand, although the gel type is cheaper than the retainer type, it has the disadvantage that its battery performance is inferior to the liquid type and retainer type.

課題を解決するための手段 本発明は上述した従来の密閉式鉛蓄電池の欠点を除去し
、優れた放電性能を有する安価な密閉式鉛蓄電池を提供
するもので、その骨子とするところは電池の充放電に必
要かつ充分な量の硫酸電解液を、極板群の周囲に充填配
置した、シリカ微小粉体をバインダーを用いて造粒した
多孔体の粉体に含浸、M持させるところにある。以下本
発明を実施例に基づいて説明する。
Means for Solving the Problems The present invention eliminates the drawbacks of the conventional sealed lead-acid batteries mentioned above and provides an inexpensive sealed lead-acid battery with excellent discharge performance. A sufficient amount of sulfuric acid electrolyte necessary for charging and discharging is impregnated into a porous powder made by granulating silica micropowder with a binder, which is filled and arranged around the electrode plate group, and is made to hold M. . The present invention will be explained below based on examples.

実施例 pb−Ca−8n会金より成る正および負極格子体に通
常の正極および負極ペーストをそれぞれ充填した後、熟
成を施して未化成極板を作製した。つ0゛でこれらの正
極および負極未化成極板を用い、第1図に示す隔離禅を
両極板の間に挿入して極板群を作製した9図に示す隔離
棒1は耐酸性の合成樹脂をE字形に成形したもので、鉛
直方向の隔離棒には波形2をつけである。第2図はこの
ようにして作製した極板群を電槽に挿入したときの正面
図を示し、第3図は第2図のA−A断面を示す、ここで
、3は電槽、4は負極板、5は正極板である。
Example Positive and negative electrode grids made of pb-Ca-8n alloy were filled with normal positive and negative electrode pastes, respectively, and then aged to produce unformed electrode plates. The isolation rod 1 shown in Figure 9 is made of acid-resistant synthetic resin. It is molded into an E-shape, with corrugations 2 attached to the vertical isolation rods. FIG. 2 shows a front view of the electrode plate group produced in this way inserted into a battery case, and FIG. 3 shows a cross section taken along line A-A in FIG. 5 is a negative electrode plate, and 5 is a positive electrode plate.

そこで極板群を電槽に挿入したところで、電槽と極板群
との隙間および極板間の、隙間に電解液の保持体を充填
する。この電解液保持体は次のように調製した。まず、
粒径が10〜40ミリミクロンの微小シリカ粉体を、バ
インダーとしてメタアクリル酸メチルを15%加えて水
で練合し、ついで粒径を100〜200ミクロンに造粒
した後乾燥した。造粒シリカ粉体はシリカ微小−成粒子
が凝集して100〜200ミクロンの二次粒子となって
おり、造粒粉体自身の気孔率は90%以上のさらさらし
た粉体である。
When the electrode plate group is inserted into the battery case, the gap between the battery case and the electrode plate group and the gap between the electrode plates is filled with an electrolyte holder. This electrolyte holder was prepared as follows. first,
Fine silica powder having a particle size of 10 to 40 millimeters was kneaded with water to which 15% of methyl methacrylate was added as a binder, then granulated to a particle size of 100 to 200 microns, and then dried. Granulated silica powder is made up of fine silica particles agglomerated to form secondary particles of 100 to 200 microns, and the granulated powder itself is a free-flowing powder with a porosity of 90% or more.

造粒シリカ粉体を充填した状態を第2図および第3図を
示す。
FIGS. 2 and 3 show the state filled with granulated silica powder.

シリカ粉体は電池に振動を加えながら充填した。The silica powder was filled into the battery while applying vibration.

図に示したように造粒シリカ粉体は、極板群の周囲およ
び極板間に密につまっていた。ここで極板間に充填した
造粒シリカ粉体はセパレータの機能も有している。造粒
シリカ粉体を充填後はフタ7を接着し排気弁8を装着し
た。充填状態での気孔率は約85%であった。
As shown in the figure, the granulated silica powder was densely packed around the electrode plate group and between the electrode plates. The granulated silica powder filled between the electrode plates also has the function of a separator. After filling the granulated silica powder, a lid 7 was glued on and an exhaust valve 8 was attached. The porosity in the filled state was about 85%.

次に試作電池の容量試験を行った。供試電池は公称容量
4.5Ahで、比較のために同じロットの正極および負
極板を用いた従来のリテーナ式電池およびゲル式電池も
試験した。その結果を第1表に示す。
Next, we conducted a capacity test on the prototype battery. The test battery had a nominal capacity of 4.5 Ah, and for comparison, a conventional retainer type battery and a gel type battery using positive and negative electrode plates from the same lot were also tested. The results are shown in Table 1.

第1表 較すると、リテーナ式は電解液比重がやや高いためにゲ
ル式よりも高率放電性能が優れていた。また、低率放@
容量はゲル式の方が若干多かったのは電解液量が多いた
めである。一方、本発明品はこれら従来の密閉式鉛蓄電
池に比べて低率放電、高率放電とも10〜20%も性能
が向上した。これは電解液量比重をゲル式よりやや高く
したこと、および電解液量をリテーナ式より多く含浸で
きたこと、さらに放電の際に抵抗となるセパレータを使
用する必要がないことや酸の拡散が優れていたことなど
の相乗効、果によるものである5発明の効果 上述の実施例から明らかなように、本発明による密閉式
鉛蓄電池は電解液の保持と正、負極間の隔離をシリカ微
粉体の造粒物を電池内に充填するという簡単な操作で、
従来の密閉式鉛11電池の放電性能を大幅に改善できた
点工業的価値は非常に大きい。
When compared in Table 1, the retainer type had a slightly higher specific gravity of the electrolyte, so the high rate discharge performance was superior to the gel type. Also, low rate release @
The gel type had a slightly higher capacity due to the larger amount of electrolyte. On the other hand, the products of the present invention have improved performance by 10 to 20% in both low rate discharge and high rate discharge compared to these conventional sealed lead acid batteries. This is because the specific gravity of the electrolyte is slightly higher than that of the gel type, and the amount of electrolyte that can be impregnated is larger than that of the retainer type.Furthermore, there is no need to use a separator that acts as a resistance during discharge, and acid diffusion is reduced. 5 Effects of the Invention This is due to synergistic effects such as excellent properties.As is clear from the above-mentioned examples, the sealed lead-acid battery according to the present invention retains the electrolyte and isolates the positive and negative electrodes using silica fine powder. With the simple operation of filling the battery with body granules,
It is of great industrial value because it can significantly improve the discharge performance of conventional sealed lead-11 batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は隔離棒の斜視図、第2図および第3図は本発明
による密閉式鉛蓄電池の正面図および断面図である。 1・・・隔離棒、3・・・電槽、4・・・負極板、5・
・・正極板、6・・・シリカ微粉体の造粒物、7・・・
電槽フタ、8・・・排気弁
FIG. 1 is a perspective view of a separator bar, and FIGS. 2 and 3 are a front view and a sectional view of a sealed lead-acid battery according to the present invention. 1... Isolation rod, 3... Battery case, 4... Negative electrode plate, 5...
...Positive electrode plate, 6... Granules of silica fine powder, 7...
Battery container lid, 8...Exhaust valve

Claims (1)

【特許請求の範囲】[Claims] 1、電池の充電中に発生する酸素ガスを負極で吸収させ
る密閉式鉛蓄電池において、正極板と負極板との間に一
定厚みの合成樹脂製隔離棒を挿入してなる極板群を電槽
内に収納すると共に、正極板と負極板との間隙および極
板群の周囲に10〜40ミリミクロンのシリカ微小粉体
をバインダーを用いて造粒した多孔性の粉体を充填、配
置し、放電に必要かつ充分な量の硫酸電解液を上記造粒
粉体に含浸、保持させることを特徴とする密閉式鉛蓄電
池。
1. In a sealed lead-acid battery where the negative electrode absorbs oxygen gas generated during charging of the battery, a group of electrode plates made by inserting a synthetic resin isolation rod of a certain thickness between the positive electrode plate and the negative electrode plate is used as a battery case. At the same time, the gap between the positive electrode plate and the negative electrode plate and around the electrode plate group are filled with porous powder made by granulating silica micropowder of 10 to 40 millimicrons using a binder, A sealed lead-acid battery characterized in that the granulated powder is impregnated with and held in a sufficient amount of sulfuric acid electrolyte necessary for discharge.
JP63321124A 1988-12-09 1988-12-20 Sealed lead acid battery Expired - Lifetime JPH0693367B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63321124A JPH0693367B2 (en) 1988-12-20 1988-12-20 Sealed lead acid battery
AU46088/89A AU623712B2 (en) 1988-12-09 1989-12-08 Sealed lead-acid battery
US07/447,938 US5035966A (en) 1988-12-09 1989-12-08 Sealed lead-acid battery
EP89122676A EP0377828B1 (en) 1988-12-09 1989-12-08 Sealed lead-acid battery
DE68917283T DE68917283T2 (en) 1988-12-09 1989-12-08 Gas-tight lead-acid battery.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63321124A JPH0693367B2 (en) 1988-12-20 1988-12-20 Sealed lead acid battery

Publications (2)

Publication Number Publication Date
JPH02165570A true JPH02165570A (en) 1990-06-26
JPH0693367B2 JPH0693367B2 (en) 1994-11-16

Family

ID=18129079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63321124A Expired - Lifetime JPH0693367B2 (en) 1988-12-09 1988-12-20 Sealed lead acid battery

Country Status (1)

Country Link
JP (1) JPH0693367B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162368A (en) * 1990-10-24 1992-06-05 Japan Storage Battery Co Ltd Manufacture for monoblock type closed lead-acid battery
US8252438B2 (en) 2009-06-26 2012-08-28 Byd Co., Ltd. Lithium ion battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7175814B2 (en) * 2019-03-22 2022-11-21 株式会社三共 game machine
JP7175815B2 (en) * 2019-03-22 2022-11-21 株式会社三共 game machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133667A (en) * 1983-12-22 1985-07-16 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery manufacturing method
JPS61198573A (en) * 1985-02-27 1986-09-02 Shin Kobe Electric Mach Co Ltd Enclosed lead storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133667A (en) * 1983-12-22 1985-07-16 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery manufacturing method
JPS61198573A (en) * 1985-02-27 1986-09-02 Shin Kobe Electric Mach Co Ltd Enclosed lead storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162368A (en) * 1990-10-24 1992-06-05 Japan Storage Battery Co Ltd Manufacture for monoblock type closed lead-acid battery
US8252438B2 (en) 2009-06-26 2012-08-28 Byd Co., Ltd. Lithium ion battery

Also Published As

Publication number Publication date
JPH0693367B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
EP0377828B1 (en) Sealed lead-acid battery
JPH02165570A (en) Closed lead battery
JPH042060A (en) Sealed type lead acid battery
JP3555177B2 (en) Sealed lead-acid battery
JPH02158063A (en) Sealed lead-storage battery
JP3261417B2 (en) Sealed lead-acid battery
JPH02158062A (en) Sealed lead-storage battery
JP2958790B2 (en) Sealed lead-acid battery
JP2794588B2 (en) Sealed lead-acid battery
JP2958791B2 (en) Sealed lead-acid battery
JPH06283191A (en) Sealed lead-acid battery
JP2591975B2 (en) Sealed clad type lead battery
JPH0676854A (en) Sealed lead-acid battery
JP2952374B2 (en) Sealed lead-acid battery
JP2995780B2 (en) Sealed lead-acid battery
JP2855677B2 (en) Sealed lead-acid battery
JPH01149376A (en) Sealed lead-acid battery
JPH0357165A (en) Sealed lead-acid battery
JPH04141961A (en) Gastight lead storage battery
JPH0492376A (en) Sealed type lead storage battery
JPH04160762A (en) Sealed type lead storage battery
JPH06283190A (en) Sealed lead-acid battery
JPH06150961A (en) Sealed lead-acid battery
JPH042059A (en) Clad type lead acid battery of sealed structure
JPH05151988A (en) Sealed type lead acid battery