JPH02165570A - Closed lead battery - Google Patents
Closed lead batteryInfo
- Publication number
- JPH02165570A JPH02165570A JP63321124A JP32112488A JPH02165570A JP H02165570 A JPH02165570 A JP H02165570A JP 63321124 A JP63321124 A JP 63321124A JP 32112488 A JP32112488 A JP 32112488A JP H02165570 A JPH02165570 A JP H02165570A
- Authority
- JP
- Japan
- Prior art keywords
- electrode plate
- negative electrode
- battery
- positive electrode
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000000843 powder Substances 0.000 claims abstract description 18
- 239000003792 electrolyte Substances 0.000 claims abstract description 14
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 13
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000011230 binding agent Substances 0.000 claims abstract description 4
- 229920003002 synthetic resin Polymers 0.000 claims abstract description 3
- 239000000057 synthetic resin Substances 0.000 claims abstract description 3
- 239000002253 acid Substances 0.000 claims description 11
- 238000002955 isolation Methods 0.000 claims description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 2
- 229910001882 dioxygen Inorganic materials 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 abstract 1
- 239000011521 glass Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/06—Lead-acid accumulators
- H01M10/08—Selection of materials as electrolytes
- H01M10/10—Immobilising of electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/34—Gastight accumulators
- H01M10/342—Gastight lead accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/463—Separators, membranes or diaphragms characterised by their shape
- H01M50/469—Separators, membranes or diaphragms characterised by their shape tubular or cylindrical
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
Description
【発明の詳細な説明】 産業上の利用分野 本発明は密閉式鉛蓄電池の改良に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to improvements in sealed lead-acid batteries.
従来の技術とその課題
電池の充電中に発生する酸素ガスを負極で吸収させるタ
イプの密閉式鉛蓄電池にはリテーナ式とゲル式の二SU
がある。リテーナ式は正極板と負極板との間にrRII
!Aガラス繊維を素材とするマット状セパレータ(ガラ
スセパレータ)を挿入し、これによって放電に必要な硫
a電解液の保持と両極の隔離を行っており、近年、ポー
タプル機器やコンピューターのバックアップ電源として
広く用いられるようになってきた。しかし、リテーナ式
はガラスセパレータが高価なことおよび充分な量の電解
液を保持できないために、低率放電では放電容量が電解
液量で制限されるという欠点があり、この種の密閉電池
の普及にIIIWとなっている。Conventional technology and its challenges There are two types of sealed lead-acid batteries: a retainer type and a gel type, in which the negative electrode absorbs oxygen gas generated during battery charging.
There is. The retainer type has rRII between the positive and negative plates.
! A: A matte separator (glass separator) made of glass fiber is inserted, which holds the sulfuric acid electrolyte necessary for discharge and isolates both poles.In recent years, it has been widely used as a backup power source for portable devices and computers. It has come to be used. However, the cage type has the drawback that the discharge capacity is limited by the amount of electrolyte at low rate discharge because the glass separator is expensive and cannot hold a sufficient amount of electrolyte, and this type of sealed battery is becoming popular. It has become IIIW.
一方、ゲル式はリテーナ式よりも安価であるが、電池性
能が液式やリテーナ式に劣るという欠点があった。On the other hand, although the gel type is cheaper than the retainer type, it has the disadvantage that its battery performance is inferior to the liquid type and retainer type.
課題を解決するための手段
本発明は上述した従来の密閉式鉛蓄電池の欠点を除去し
、優れた放電性能を有する安価な密閉式鉛蓄電池を提供
するもので、その骨子とするところは電池の充放電に必
要かつ充分な量の硫酸電解液を、極板群の周囲に充填配
置した、シリカ微小粉体をバインダーを用いて造粒した
多孔体の粉体に含浸、M持させるところにある。以下本
発明を実施例に基づいて説明する。Means for Solving the Problems The present invention eliminates the drawbacks of the conventional sealed lead-acid batteries mentioned above and provides an inexpensive sealed lead-acid battery with excellent discharge performance. A sufficient amount of sulfuric acid electrolyte necessary for charging and discharging is impregnated into a porous powder made by granulating silica micropowder with a binder, which is filled and arranged around the electrode plate group, and is made to hold M. . The present invention will be explained below based on examples.
実施例
pb−Ca−8n会金より成る正および負極格子体に通
常の正極および負極ペーストをそれぞれ充填した後、熟
成を施して未化成極板を作製した。つ0゛でこれらの正
極および負極未化成極板を用い、第1図に示す隔離禅を
両極板の間に挿入して極板群を作製した9図に示す隔離
棒1は耐酸性の合成樹脂をE字形に成形したもので、鉛
直方向の隔離棒には波形2をつけである。第2図はこの
ようにして作製した極板群を電槽に挿入したときの正面
図を示し、第3図は第2図のA−A断面を示す、ここで
、3は電槽、4は負極板、5は正極板である。Example Positive and negative electrode grids made of pb-Ca-8n alloy were filled with normal positive and negative electrode pastes, respectively, and then aged to produce unformed electrode plates. The isolation rod 1 shown in Figure 9 is made of acid-resistant synthetic resin. It is molded into an E-shape, with corrugations 2 attached to the vertical isolation rods. FIG. 2 shows a front view of the electrode plate group produced in this way inserted into a battery case, and FIG. 3 shows a cross section taken along line A-A in FIG. 5 is a negative electrode plate, and 5 is a positive electrode plate.
そこで極板群を電槽に挿入したところで、電槽と極板群
との隙間および極板間の、隙間に電解液の保持体を充填
する。この電解液保持体は次のように調製した。まず、
粒径が10〜40ミリミクロンの微小シリカ粉体を、バ
インダーとしてメタアクリル酸メチルを15%加えて水
で練合し、ついで粒径を100〜200ミクロンに造粒
した後乾燥した。造粒シリカ粉体はシリカ微小−成粒子
が凝集して100〜200ミクロンの二次粒子となって
おり、造粒粉体自身の気孔率は90%以上のさらさらし
た粉体である。When the electrode plate group is inserted into the battery case, the gap between the battery case and the electrode plate group and the gap between the electrode plates is filled with an electrolyte holder. This electrolyte holder was prepared as follows. first,
Fine silica powder having a particle size of 10 to 40 millimeters was kneaded with water to which 15% of methyl methacrylate was added as a binder, then granulated to a particle size of 100 to 200 microns, and then dried. Granulated silica powder is made up of fine silica particles agglomerated to form secondary particles of 100 to 200 microns, and the granulated powder itself is a free-flowing powder with a porosity of 90% or more.
造粒シリカ粉体を充填した状態を第2図および第3図を
示す。FIGS. 2 and 3 show the state filled with granulated silica powder.
シリカ粉体は電池に振動を加えながら充填した。The silica powder was filled into the battery while applying vibration.
図に示したように造粒シリカ粉体は、極板群の周囲およ
び極板間に密につまっていた。ここで極板間に充填した
造粒シリカ粉体はセパレータの機能も有している。造粒
シリカ粉体を充填後はフタ7を接着し排気弁8を装着し
た。充填状態での気孔率は約85%であった。As shown in the figure, the granulated silica powder was densely packed around the electrode plate group and between the electrode plates. The granulated silica powder filled between the electrode plates also has the function of a separator. After filling the granulated silica powder, a lid 7 was glued on and an exhaust valve 8 was attached. The porosity in the filled state was about 85%.
次に試作電池の容量試験を行った。供試電池は公称容量
4.5Ahで、比較のために同じロットの正極および負
極板を用いた従来のリテーナ式電池およびゲル式電池も
試験した。その結果を第1表に示す。Next, we conducted a capacity test on the prototype battery. The test battery had a nominal capacity of 4.5 Ah, and for comparison, a conventional retainer type battery and a gel type battery using positive and negative electrode plates from the same lot were also tested. The results are shown in Table 1.
第1表
較すると、リテーナ式は電解液比重がやや高いためにゲ
ル式よりも高率放電性能が優れていた。また、低率放@
容量はゲル式の方が若干多かったのは電解液量が多いた
めである。一方、本発明品はこれら従来の密閉式鉛蓄電
池に比べて低率放電、高率放電とも10〜20%も性能
が向上した。これは電解液量比重をゲル式よりやや高く
したこと、および電解液量をリテーナ式より多く含浸で
きたこと、さらに放電の際に抵抗となるセパレータを使
用する必要がないことや酸の拡散が優れていたことなど
の相乗効、果によるものである5発明の効果
上述の実施例から明らかなように、本発明による密閉式
鉛蓄電池は電解液の保持と正、負極間の隔離をシリカ微
粉体の造粒物を電池内に充填するという簡単な操作で、
従来の密閉式鉛11電池の放電性能を大幅に改善できた
点工業的価値は非常に大きい。When compared in Table 1, the retainer type had a slightly higher specific gravity of the electrolyte, so the high rate discharge performance was superior to the gel type. Also, low rate release @
The gel type had a slightly higher capacity due to the larger amount of electrolyte. On the other hand, the products of the present invention have improved performance by 10 to 20% in both low rate discharge and high rate discharge compared to these conventional sealed lead acid batteries. This is because the specific gravity of the electrolyte is slightly higher than that of the gel type, and the amount of electrolyte that can be impregnated is larger than that of the retainer type.Furthermore, there is no need to use a separator that acts as a resistance during discharge, and acid diffusion is reduced. 5 Effects of the Invention This is due to synergistic effects such as excellent properties.As is clear from the above-mentioned examples, the sealed lead-acid battery according to the present invention retains the electrolyte and isolates the positive and negative electrodes using silica fine powder. With the simple operation of filling the battery with body granules,
It is of great industrial value because it can significantly improve the discharge performance of conventional sealed lead-11 batteries.
第1図は隔離棒の斜視図、第2図および第3図は本発明
による密閉式鉛蓄電池の正面図および断面図である。
1・・・隔離棒、3・・・電槽、4・・・負極板、5・
・・正極板、6・・・シリカ微粉体の造粒物、7・・・
電槽フタ、8・・・排気弁FIG. 1 is a perspective view of a separator bar, and FIGS. 2 and 3 are a front view and a sectional view of a sealed lead-acid battery according to the present invention. 1... Isolation rod, 3... Battery case, 4... Negative electrode plate, 5...
...Positive electrode plate, 6... Granules of silica fine powder, 7...
Battery container lid, 8...Exhaust valve
Claims (1)
る密閉式鉛蓄電池において、正極板と負極板との間に一
定厚みの合成樹脂製隔離棒を挿入してなる極板群を電槽
内に収納すると共に、正極板と負極板との間隙および極
板群の周囲に10〜40ミリミクロンのシリカ微小粉体
をバインダーを用いて造粒した多孔性の粉体を充填、配
置し、放電に必要かつ充分な量の硫酸電解液を上記造粒
粉体に含浸、保持させることを特徴とする密閉式鉛蓄電
池。1. In a sealed lead-acid battery where the negative electrode absorbs oxygen gas generated during charging of the battery, a group of electrode plates made by inserting a synthetic resin isolation rod of a certain thickness between the positive electrode plate and the negative electrode plate is used as a battery case. At the same time, the gap between the positive electrode plate and the negative electrode plate and around the electrode plate group are filled with porous powder made by granulating silica micropowder of 10 to 40 millimicrons using a binder, A sealed lead-acid battery characterized in that the granulated powder is impregnated with and held in a sufficient amount of sulfuric acid electrolyte necessary for discharge.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63321124A JPH0693367B2 (en) | 1988-12-20 | 1988-12-20 | Sealed lead acid battery |
AU46088/89A AU623712B2 (en) | 1988-12-09 | 1989-12-08 | Sealed lead-acid battery |
US07/447,938 US5035966A (en) | 1988-12-09 | 1989-12-08 | Sealed lead-acid battery |
EP89122676A EP0377828B1 (en) | 1988-12-09 | 1989-12-08 | Sealed lead-acid battery |
DE68917283T DE68917283T2 (en) | 1988-12-09 | 1989-12-08 | Gas-tight lead-acid battery. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63321124A JPH0693367B2 (en) | 1988-12-20 | 1988-12-20 | Sealed lead acid battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02165570A true JPH02165570A (en) | 1990-06-26 |
JPH0693367B2 JPH0693367B2 (en) | 1994-11-16 |
Family
ID=18129079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63321124A Expired - Lifetime JPH0693367B2 (en) | 1988-12-09 | 1988-12-20 | Sealed lead acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0693367B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04162368A (en) * | 1990-10-24 | 1992-06-05 | Japan Storage Battery Co Ltd | Manufacture for monoblock type closed lead-acid battery |
US8252438B2 (en) | 2009-06-26 | 2012-08-28 | Byd Co., Ltd. | Lithium ion battery |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7175814B2 (en) * | 2019-03-22 | 2022-11-21 | 株式会社三共 | game machine |
JP7175815B2 (en) * | 2019-03-22 | 2022-11-21 | 株式会社三共 | game machine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60133667A (en) * | 1983-12-22 | 1985-07-16 | Shin Kobe Electric Mach Co Ltd | Sealed lead-acid battery manufacturing method |
JPS61198573A (en) * | 1985-02-27 | 1986-09-02 | Shin Kobe Electric Mach Co Ltd | Enclosed lead storage battery |
-
1988
- 1988-12-20 JP JP63321124A patent/JPH0693367B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60133667A (en) * | 1983-12-22 | 1985-07-16 | Shin Kobe Electric Mach Co Ltd | Sealed lead-acid battery manufacturing method |
JPS61198573A (en) * | 1985-02-27 | 1986-09-02 | Shin Kobe Electric Mach Co Ltd | Enclosed lead storage battery |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04162368A (en) * | 1990-10-24 | 1992-06-05 | Japan Storage Battery Co Ltd | Manufacture for monoblock type closed lead-acid battery |
US8252438B2 (en) | 2009-06-26 | 2012-08-28 | Byd Co., Ltd. | Lithium ion battery |
Also Published As
Publication number | Publication date |
---|---|
JPH0693367B2 (en) | 1994-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0377828B1 (en) | Sealed lead-acid battery | |
JPH02165570A (en) | Closed lead battery | |
JPH042060A (en) | Sealed type lead acid battery | |
JP3555177B2 (en) | Sealed lead-acid battery | |
JPH02158063A (en) | Sealed lead-storage battery | |
JP3261417B2 (en) | Sealed lead-acid battery | |
JPH02158062A (en) | Sealed lead-storage battery | |
JP2958790B2 (en) | Sealed lead-acid battery | |
JP2794588B2 (en) | Sealed lead-acid battery | |
JP2958791B2 (en) | Sealed lead-acid battery | |
JPH06283191A (en) | Sealed lead-acid battery | |
JP2591975B2 (en) | Sealed clad type lead battery | |
JPH0676854A (en) | Sealed lead-acid battery | |
JP2952374B2 (en) | Sealed lead-acid battery | |
JP2995780B2 (en) | Sealed lead-acid battery | |
JP2855677B2 (en) | Sealed lead-acid battery | |
JPH01149376A (en) | Sealed lead-acid battery | |
JPH0357165A (en) | Sealed lead-acid battery | |
JPH04141961A (en) | Gastight lead storage battery | |
JPH0492376A (en) | Sealed type lead storage battery | |
JPH04160762A (en) | Sealed type lead storage battery | |
JPH06283190A (en) | Sealed lead-acid battery | |
JPH06150961A (en) | Sealed lead-acid battery | |
JPH042059A (en) | Clad type lead acid battery of sealed structure | |
JPH05151988A (en) | Sealed type lead acid battery |