JPH10294113A - Positive electrode plate for sealed lead-acid battery - Google Patents
Positive electrode plate for sealed lead-acid batteryInfo
- Publication number
- JPH10294113A JPH10294113A JP9116223A JP11622397A JPH10294113A JP H10294113 A JPH10294113 A JP H10294113A JP 9116223 A JP9116223 A JP 9116223A JP 11622397 A JP11622397 A JP 11622397A JP H10294113 A JPH10294113 A JP H10294113A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- electrode plate
- positive electrode
- active material
- grid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002253 acid Substances 0.000 title claims abstract description 15
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 17
- 239000000956 alloy Substances 0.000 claims abstract description 17
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000002994 raw material Substances 0.000 claims abstract description 4
- 229910000600 Ba alloy Inorganic materials 0.000 claims description 2
- 239000011149 active material Substances 0.000 abstract description 15
- 230000002411 adverse Effects 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 239000001999 grid alloy Substances 0.000 abstract 1
- 230000000630 rising effect Effects 0.000 abstract 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 229910014474 Ca-Sn Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910000978 Pb alloy Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、密閉型鉛蓄電池用
正極板の改良に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a positive electrode plate for a sealed lead-acid battery.
【0002】[0002]
【従来の技術】電池の充電中に発生する酸素ガスを負極
板で吸収するいわゆる酸素サイクルを利用した密閉型鉛
蓄電池には、現在リテーナ式と呼ばれている方式が一般
的に採用されている。リテーナ式は正極板と負極板との
間に挿入した微細なガラス繊維を素材とするマット状セ
パレータ(ガラスセパレータ)で電池の充放電に必要な
硫酸電解液の保持と両極の隔離を行う方式である。2. Description of the Related Art In a sealed lead-acid battery utilizing a so-called oxygen cycle in which oxygen gas generated during charging of a battery is absorbed by a negative electrode plate, a system which is currently called a retainer type is generally employed. . The retainer type is a mat type separator (glass separator) made of fine glass fiber inserted between the positive electrode plate and the negative electrode plate, which holds the sulfuric acid electrolyte necessary for battery charging and discharging and separates both electrodes. is there.
【0003】そして、無保守、無漏液、ポジションフリ
ーなどの特徴を活かして、ポータブル機器、コンピュー
タのバックアップ電源、また大型の据置用途に用いられ
ている。近年無停電電源装置(以下UPSと記す)に用
いられる密閉型鉛蓄電池は、トリクル充電され、期待寿
命が3年程度であったものが、5年以上の長寿命化を要
求されるようになってきた。その正極格子には、Pb−
Ca−Sn系合金が使用されている。寿命性能向上のた
め格子に用いられる合金は種々検討がなされてきたが、
正極板の活物質に使用する鉛粉は高純度のものが良いと
され、JISH 2015 に規定されている特種の純
鉛を用いている。Utilizing features such as maintenance-free, liquid-free, and position-free, they are used for portable equipment, backup power supplies for computers, and large stationary applications. In recent years, sealed lead-acid batteries used in uninterruptible power supplies (hereinafter referred to as UPS) have been trickle charged and have an expected life of about 3 years, but have been required to have a longer life of 5 years or more. Have been. The positive grid has Pb-
A Ca—Sn based alloy is used. Various studies have been made on alloys used for lattices to improve life performance,
The lead powder used as the active material of the positive electrode plate is preferably of high purity, and a special type of pure lead specified in JIS H2015 is used.
【0004】[0004]
【発明が解決しようとする課題】この用途で用いられる
密閉型鉛蓄電池の性能劣化原因は、正極板の活物質が格
子から浮き上がり、活物質と格子の密着性が損なわれる
ため導電性が低下することにある。The performance deterioration of the sealed lead-acid battery used in this application is caused by the fact that the active material of the positive electrode plate floats up from the grid and the adhesion between the active material and the grid is impaired, so that the conductivity is reduced. It is in.
【0005】[0005]
【課題を解決するための手段】第一の発明は、Pb−C
a系合金格子を用いた密閉型鉛蓄電池において、Pb−
Ba系合金から作製した鉛粉を原料に用いることを特徴
とするものであり、第二の発明は、格子合金中のCa量
が0.04〜0.1重量%であることを特徴とし、第三
の発明は、Ba含有量が0.001〜0.01重量%で
あるPb−Ba系合金をもちいたことを特徴とするもの
である。Means for Solving the Problems The first invention is a Pb-C
In a sealed lead-acid battery using an a-based alloy lattice, Pb-
A lead powder produced from a Ba-based alloy is used as a raw material. The second invention is characterized in that the Ca content in the lattice alloy is 0.04 to 0.1% by weight, The third invention is characterized by using a Pb-Ba alloy having a Ba content of 0.001 to 0.01% by weight.
【0006】[0006]
【実施例】以下、本発明を実施例に基づいて説明する。
鉛粉の原料となる鉛を、JISH 2015 に規定さ
れている特種の純鉛を溶融し、純度99%のBa試薬を
所定量添加することで製作した。この合金から製作した
鉛粉を希硫酸で練膏し、ペーストとしたのち、各種鉛合
金格子に充填し、正極板とした。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.
Lead as a raw material of lead powder was produced by melting a special type of pure lead specified in JIS 2015 and adding a predetermined amount of a Ba reagent having a purity of 99%. Lead powder produced from this alloy was pulverized with dilute sulfuric acid to form a paste, and then filled into various lead alloy lattices to form a positive electrode plate.
【0007】セパレータには、ガラス繊維の平均直径約
1μm、多孔度約94%の通常使用されているものを用
い、20kg/dm2の荷重下で、厚さが1.5mmの
ものを使用した。負極板、電解液についても従来のもの
を使用し2V8Ahの密閉型鉛蓄電池を製作した。電槽
化成を行ったのち容量評価試験を2サイクル行い、トリ
クル寿命試験に供した。トリクル寿命試験は、加速のた
め温度を50℃として行った。試験に用いた電池番号と
正極板の内容を表1に示す。As the separator, a commonly used glass fiber having an average diameter of about 1 μm and a porosity of about 94% was used, and a separator having a thickness of 1.5 mm under a load of 20 kg / dm 2 was used. . A sealed lead-acid battery of 2V8Ah was manufactured using a conventional negative electrode plate and electrolyte. After performing battery case formation, a capacity evaluation test was performed for two cycles and subjected to a trickle life test. The trickle life test was performed at a temperature of 50 ° C. for acceleration. Table 1 shows the battery numbers and the contents of the positive electrode plates used in the test.
【0008】[0008]
【表1】 試験条件 容量評価試験(25℃) 放電 8A 終止電圧1.7V 充電 0.8A×(放電電気量の135%) トリクル試験条件(50℃) トリクル電圧 2.3V/セル 3ヶ月毎に 容量評価試験 初期の容量評価試験の2サイクル目の放電持続時間とB
a添加量の関係を図1に示す。図に示したように鉛粉中
にBaを添加したことによる悪影響は認められず、逆に
放電持続時間は伸びる傾向が認められた。格子合金種の
影響は、認められなかった。トリクル寿命試験の結果を
図2に示す。図に示したように、従来のBaを添加して
いない鉛粉で製作した正極板を用いた電池(電池No.
1,5,9)は、約1年で寿命となった。これに対しB
aを0.001〜0.01重量%を含む鉛粉で製作し、
格子合金のCa量が0.04重量%の電池(電池No.
2,3)と、格子合金のCa量が0.10重量%の電池
(電池No.6,7)では、約18〜24ヶ月で寿命と
なり、寿命が大幅に向上した。これらの電池を試験後に
解体すると、活物質は軟化していたが、格子と活物質の
密着性は良好であった。このことが寿命が増大したこと
の原因と思われる。Baの量を0.05重量%添加した
電池(電池No.4,8,12)では、初期の放電容量
は増加したものの途中からの容量低下が大きく、寿命性
能の向上にはあまり効果がなかった。0.05重量%の
Baを添加した電池の活物質は、試験後に調査すると、
若干軟化気味であった。従来、負極に0.2〜0.5重
量%添加しているBaSO4を正極活物質に誤って混入
すると、活物質が軟化し性能が劣化すると言われいる
が、0.05重量%程度でもこの悪影響が認められた。
0.13重量%Caの格子合金を用いた電池(電池N
o.11)では、途中から容量低下を起こし、15ヶ月
目の容量確認試験では、放電持続時間が著しく短くなっ
た。この電池を試験終了後に解体調査すると、正極格子
の伸びが他に比べて大きかった。Baが活物質中に存在
すると、活物質が柔らかくなることで格子の伸びに対応
し、格子と活物質の界面の密着性が保たれ、寿命性能が
向上するものと考えられるが、格子の伸びが大きすぎる
と、対応しきれず、Ca添加量を増やしすぎると逆に悪
影響がでてしまったものと思われる。[Table 1] Test conditions Capacity evaluation test (25 ° C) Discharge 8A Final voltage 1.7V Charge 0.8A x (135% of the amount of discharged electricity) Trickle test conditions (50 ° C) Trickle voltage 2.3V / cell Every 3 months Capacity evaluation test Discharge duration and B in the second cycle of the initial capacity evaluation test
FIG. 1 shows the relationship between the amounts of addition. As shown in the figure, no adverse effect was observed due to the addition of Ba to the lead powder, and conversely, the discharge duration time tended to increase. No effect of the lattice alloy type was observed. FIG. 2 shows the result of the trickle life test. As shown in the figure, a battery using a conventional positive electrode plate made of lead powder without adding Ba (battery No. 1).
1, 5, 9) had a life of about one year. On the other hand, B
a made of lead powder containing 0.001 to 0.01% by weight,
Batteries having a lattice alloy Ca content of 0.04% by weight (Battery No.
2, 3) and the battery (battery Nos. 6, 7) in which the Ca content of the lattice alloy was 0.10% by weight, the life was extended in about 18 to 24 months, and the life was greatly improved. When these batteries were disassembled after the test, the active material was softened, but the adhesion between the grid and the active material was good. This seems to be the cause of the increased life. In the batteries (Battery Nos. 4, 8, and 12) to which 0.05% by weight of Ba was added, although the initial discharge capacity was increased, the capacity was reduced from the middle, but was not so effective in improving the life performance. Was. When the active material of the battery to which 0.05% by weight of Ba was added was examined after the test,
It was slightly softening. Conventionally, it has been said that if BaSO 4 added to the negative electrode in an amount of 0.2 to 0.5% by weight is erroneously mixed into the positive electrode active material, the active material is softened and the performance is deteriorated. This adverse effect was observed.
A battery using a 0.13 wt% Ca lattice alloy (Battery N
o. In the case of 11), the capacity was reduced halfway, and in the capacity check test at the 15th month, the discharge duration time was significantly shortened. When the battery was disassembled and inspected after completion of the test, the positive electrode lattice had a larger elongation than the others. When Ba is present in the active material, it is considered that the active material is softened to cope with the elongation of the lattice, the adhesion between the lattice and the active material is maintained, and the life performance is improved. Is too large, it seems impossible to cope with it. Conversely, if the added amount of Ca is excessively increased, adverse effects appear to have occurred.
【0009】従来の高純度の鉛粉を使用し、ペーストと
するときにBaSO4の粉末を添加することでも上記効
果を期待できるが、量産の場合一度に数百Kg単位で練
膏するためペースト中でBaが均一に拡散せず、極板毎
に性能が安定しなくなる問題がある。本発明のようにB
aを含む鉛粉を使用すれば、このような問題の発生を抑
えることができる。The above effect can be expected by using conventional high-purity lead powder and adding BaSO 4 powder when forming the paste. However, in mass production, paste is applied in units of several hundred kg at a time. There is a problem that Ba does not diffuse uniformly in the inside, and the performance becomes unstable for each electrode plate. B as in the present invention
The use of a lead powder containing a can suppress the occurrence of such a problem.
【0010】[0010]
【発明の効果】以上詳述したようにPb−Ca系合金格
子を用いた密閉型鉛蓄電池において、Pb−Ba系合金
から製作した鉛粉を原料とした活物質を使用した正極板
を用いることで、トリクル寿命性能の優れた密閉型鉛蓄
電池を製造することが可能になった。As described in detail above, in a sealed lead-acid battery using a Pb-Ca-based alloy lattice, a positive electrode plate using an active material made of a lead powder manufactured from a Pb-Ba-based alloy is used. Thus, a sealed lead-acid battery having excellent trickle life performance can be manufactured.
【図1】初期性能を示す図である。FIG. 1 is a diagram showing initial performance.
【図2】トリクル寿命特性を示す図である。FIG. 2 is a diagram showing a trickle life characteristic.
Claims (3)
電池において、Pb−Ba系合金から製作した鉛粉を原
料に用いることを特徴とする密閉型鉛蓄電池用正極板。1. A positive electrode plate for a sealed lead-acid battery, wherein a lead powder produced from a Pb-Ba-based alloy is used as a raw material in a sealed lead-acid battery using a Pb-Ca-based alloy lattice.
重量%であることを特徴とする請求項1記載の密閉型鉛
蓄電池用正極板。2. The method according to claim 2, wherein the amount of Ca in the lattice alloy is 0.04 to 0.1.
2. The positive electrode plate for a sealed lead-acid battery according to claim 1, wherein the content is by weight. 3.
であるPb−Ba系合金から製作した鉛粉を用いたこと
を特徴とする請求項1又は2記載の密閉型鉛蓄電池用正
極板。3. The content of Ba is 0.001 to 0.01% by weight.
The positive electrode plate for a sealed lead-acid battery according to claim 1 or 2, wherein a lead powder produced from a Pb-Ba alloy is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9116223A JPH10294113A (en) | 1997-04-17 | 1997-04-17 | Positive electrode plate for sealed lead-acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9116223A JPH10294113A (en) | 1997-04-17 | 1997-04-17 | Positive electrode plate for sealed lead-acid battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10294113A true JPH10294113A (en) | 1998-11-04 |
Family
ID=14681884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9116223A Pending JPH10294113A (en) | 1997-04-17 | 1997-04-17 | Positive electrode plate for sealed lead-acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10294113A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004104244A1 (en) | 2003-05-26 | 2004-12-02 | The Furukawa Battery Co., Ltd. | Lead-based alloy for lead-acid battery grid |
US7862931B2 (en) | 2002-04-18 | 2011-01-04 | The Furukawa Battery Co., Ltd. | Lead-based alloy for lead-acid battery, substrate for lead-acid battery and lead-acid battery |
JP2011258531A (en) * | 2010-06-11 | 2011-12-22 | Gs Yuasa Corp | Lead-acid storage battery |
CN110600815A (en) * | 2019-09-20 | 2019-12-20 | 南阳师范学院 | Rolled lead-acid storage battery and preparation method and application thereof |
-
1997
- 1997-04-17 JP JP9116223A patent/JPH10294113A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7862931B2 (en) | 2002-04-18 | 2011-01-04 | The Furukawa Battery Co., Ltd. | Lead-based alloy for lead-acid battery, substrate for lead-acid battery and lead-acid battery |
WO2004104244A1 (en) | 2003-05-26 | 2004-12-02 | The Furukawa Battery Co., Ltd. | Lead-based alloy for lead-acid battery grid |
AU2003292555B2 (en) * | 2003-05-26 | 2006-10-12 | The Furukawa Battery Co., Ltd. | Lead-based alloy for lead-acid battery grid |
JP2011258531A (en) * | 2010-06-11 | 2011-12-22 | Gs Yuasa Corp | Lead-acid storage battery |
CN110600815A (en) * | 2019-09-20 | 2019-12-20 | 南阳师范学院 | Rolled lead-acid storage battery and preparation method and application thereof |
CN110600815B (en) * | 2019-09-20 | 2020-10-09 | 南阳师范学院 | Rolled lead-acid battery and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4501330B2 (en) | Lead acid battery | |
CN100414763C (en) | VRLA battery | |
JPH10294113A (en) | Positive electrode plate for sealed lead-acid battery | |
US7223499B2 (en) | Lead battery | |
JPH10302783A (en) | Sealed lead-acid battery and manufacturing method thereof | |
JP4081698B2 (en) | Lead-acid battery charging method | |
JP3374462B2 (en) | Sealed lead storage battery | |
JP3094423B2 (en) | Lead storage battery | |
JPH0770321B2 (en) | Sealed lead acid battery | |
JP3577709B2 (en) | Sealed lead-acid battery | |
JP3648761B2 (en) | How to charge sealed lead-acid batteries | |
JP2002343412A (en) | Seal type lead-acid battery | |
JPH07147160A (en) | Lead-acid battery | |
JP3582068B2 (en) | How to charge lead storage batteries | |
JP2002343359A (en) | Sealed type lead storage battery | |
JPS6322428B2 (en) | ||
JP2003346887A (en) | Control valve type lead-acid battery | |
JP3496241B2 (en) | How to charge lead storage batteries | |
JP2003132937A (en) | Manufacturing method of lead storage battery | |
JPS62154579A (en) | Lead-acid battery | |
JPH0193058A (en) | Lead-acid battery | |
JPS61198574A (en) | Lead storage battery | |
JPH02114466A (en) | Sealed type lead-acid battery | |
JP2002203565A (en) | Sealed lead storage battery | |
JPS63298979A (en) | Sealed lead-acid battery |