JP6156459B2 - Method for forging steel material and method for producing steel material using the forging method - Google Patents
Method for forging steel material and method for producing steel material using the forging method Download PDFInfo
- Publication number
- JP6156459B2 JP6156459B2 JP2015161232A JP2015161232A JP6156459B2 JP 6156459 B2 JP6156459 B2 JP 6156459B2 JP 2015161232 A JP2015161232 A JP 2015161232A JP 2015161232 A JP2015161232 A JP 2015161232A JP 6156459 B2 JP6156459 B2 JP 6156459B2
- Authority
- JP
- Japan
- Prior art keywords
- steel material
- thickness
- reduction
- forging
- width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 95
- 239000010959 steel Substances 0.000 title claims description 95
- 239000000463 material Substances 0.000 title claims description 86
- 238000005242 forging Methods 0.000 title claims description 52
- 238000000034 method Methods 0.000 title claims description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000002184 metal Substances 0.000 claims description 40
- 229910052751 metal Inorganic materials 0.000 claims description 40
- 238000005096 rolling process Methods 0.000 claims description 22
- 238000011946 reduction process Methods 0.000 claims description 20
- 238000012840 feeding operation Methods 0.000 claims description 3
- 239000011800 void material Substances 0.000 description 9
- 238000001514 detection method Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 5
- 230000004323 axial length Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000011835 investigation Methods 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 238000002788 crimping Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 102220062469 rs786203185 Human genes 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Forging (AREA)
- Metal Rolling (AREA)
Description
本発明は、鋼材とりわけ厚肉の鋼材の鍛造方法に関し、特に鋼材のポロシティー圧着能力を向上させ、さらには仕上がり形状の有利な改善を図ろうとするものである。 The present invention relates to a method for forging a steel material, in particular, a thick-walled steel material. In particular, the present invention is intended to improve the porosity crimping ability of the steel material and to further improve the finished shape advantageously.
一般に厚鋼板は、連続鋳造スラブを圧延することによって製造されている。鋳造したままのスラブでは、凝固収縮時に生じた空隙(ポロシティー)が、特に凝固が遅い厚さ中心部に多量に残存している。また、鋳片の凝固は幅端面からも進むため、早い段階で凝固する幅端部近傍は空隙の残存は少なく、その他の部分に残存する。そのため、幅/厚さ比が大きくなると、幅端面からの凝固の影響がない幅方向の広い領域で空隙が残存する。かような空隙部は、通常、後続の熱間圧延工程にて消滅し、内質欠陥のない製品厚鋼板となる。
空隙を消滅(閉鎖−圧着)させるには、厚み方向の加工量(圧下率)を大きくすることが有効である。しかしながら、それ故、所定厚さのスラブから製造できる製品板厚は限られてくる。
Generally, thick steel plates are manufactured by rolling continuous cast slabs. In the as-cast slab, a large amount of voids (porosity) generated at the time of solidification shrinkage remain in the central part of the thickness where solidification is slow. Further, since solidification of the slab also proceeds from the width end face, there is little remaining void in the vicinity of the width end portion that solidifies at an early stage, and remains in other portions. Therefore, when the width / thickness ratio is increased, voids remain in a wide region in the width direction where there is no influence of solidification from the width end face. Such voids usually disappear in the subsequent hot rolling process, resulting in a product thick steel plate without internal defects.
In order to eliminate the gap (closed-crimping), it is effective to increase the processing amount (rolling rate) in the thickness direction. However, the product plate thickness that can be manufactured from a slab having a predetermined thickness is limited.
例えば、特許文献1には、圧延に先立って、平坦な金敷でスラブの板厚方向への加工を加える鍛造を併用し、鍛造工程での圧下率と厚板圧延での圧下率の範囲を定め、総圧下率が30%以上、70%以下で極厚鋼板を製造する方法が提案されている。 For example, in Patent Document 1, forging in which a slab is processed in the plate thickness direction with a flat anvil prior to rolling is used in combination, and a range of rolling reduction in the forging process and rolling reduction in the plate rolling is determined. In addition, a method of manufacturing an extra heavy steel sheet with a total rolling reduction of 30% to 70% has been proposed.
また、特許文献2には、スラブの鍛造工程で幅方向に150mm以上減尺させることにより、厚板圧延での全圧下率が20〜60%にて極厚鋼板を製造する方法が提案されている。 Patent Document 2 proposes a method for producing an extra heavy steel plate with a total rolling reduction of 20 to 60% in a thick plate rolling by reducing the width by 150 mm or more in the slab forging step. Yes.
さらに、特許文献3には、幅方向圧下によりスラブ幅を300mm以上減尺させると共に、連続鋳造スラブに対する上金敷の接触長さよりも、下金敷の接触長さを3倍以上とした上下非対称の鍛造金敷を用い、全圧下率が16%以上、20%以下の範囲の加工条件で極厚鋼板を製造する方法が提案されている。 Further, in Patent Document 3, the slab width is reduced by 300 mm or more by reduction in the width direction, and the contact length of the lower anvil with respect to the continuous cast slab is set to be 3 times or more of the contact length of the lower anvil. There has been proposed a method of manufacturing an extra heavy steel plate using an anvil under a processing condition in which the total rolling reduction is in the range of 16% or more and 20% or less.
しかしながら、板厚中心部の機械的特性を要求される製品においては、超音波探傷試験に合格しても、伸びが仕様を満たさない場合があり、かような傾向は特に高強度材で多く見られる。このような鋼材の破面を観察すると、超音波探傷試験の検出感度よりも小さい0.1〜0.2mm程度の微少な空隙が残存しており、特許文献1〜3の方法では、十分な空隙消滅性能が得られるとは言い難かった。 However, in products that require mechanical properties at the center of the plate thickness, the elongation may not meet the specifications even after passing the ultrasonic flaw detection test. It is done. When such a fracture surface of the steel material is observed, a minute gap of about 0.1 to 0.2 mm smaller than the detection sensitivity of the ultrasonic flaw detection test remains, and the methods of Patent Documents 1 to 3 are sufficient. It was difficult to say that void elimination performance was obtained.
さらに、特許文献4には、材料幅の0.4〜0.7倍の幅を有し、かつ材料高さの0.3〜0.5倍の軸方向長さを有する上金敷と、材料幅の1〜1.5倍の幅を有し、かつ材料長さの1〜1.5倍の軸方向長さを有する下金敷とを用いて、空隙が残存しやすい大型鋼塊の中心部に十分な圧下力を加えて欠陥を効率的に消滅させる熱間鍛錬方法が提案されている。
このとき、軸方向長さについては、上金敷は材料高さを基準に、下金敷は材料長さを基準にその軸方向長さを定めており、その相互の関係は明らかになっていない。
また、特に幅/厚み比が大きくなると、幅方向の広い領域で厚さ中心近傍に空隙が存在するため、幅方向の中心部に局所的に圧下を加えても、空隙を完全に消滅することはできない。
Further, Patent Document 4 discloses an upper anvil having a width 0.4 to 0.7 times the material width and an axial length 0.3 to 0.5 times the material height, The central part of a large steel ingot, in which a gap is likely to remain, using a lower anvil having a width of 1 to 1.5 times the width and an axial length of 1 to 1.5 times the material length There has been proposed a hot forging method that applies a sufficient rolling force to effectively eliminate defects.
At this time, the axial length is determined based on the material height of the upper anvil and the axial length of the lower anvil based on the material length, and the mutual relationship is not clear.
In particular, when the width / thickness ratio is large, there is a gap near the center of the thickness in a wide area in the width direction, so that the gap disappears completely even if local reduction is applied to the center in the width direction. I can't.
この点、特許文献5では、特許文献3と同様な非対称な金敷を用いた鍛造法において、一方の金敷長さを他方の2倍以上とすることで、より大きなφ25.4mmの空孔が20%の圧下で閉鎖する方法が提案されている。 In this regard, in Patent Document 5, in the forging method using an asymmetrical anvil similar to that in Patent Document 3, by making one anvil length more than twice the other, a larger hole of φ25.4 mm is 20 A method of closing under% pressure has been proposed.
また、特許文献6には、非対称な金敷を用いたFM(Free from Mannesmann effect)鍛造法において、FM鍛造を2回にするとともに、2回目のFM鍛造で1回目のFM鍛造の送り代の境界部を鍛造することにより、1回目のFM鍛造で残存した空隙部を2回目の鍛造で消滅させる方法が提案されている。この方法によれば、超音波探傷試験はいうまでもなく、マクロ試験や中心ミクロ研磨顕微鏡観察でも有害な中心未圧着が見られない、優れた空隙消滅性能が得られることが報告されている。 Patent Document 6 discloses that in the FM (Free from Mannesmann effect) forging method using an asymmetric anvil, the FM forging is performed twice, and the boundary of the feed allowance of the first FM forging in the second FM forging. There has been proposed a method in which a void portion remaining in the first FM forging is eliminated by a second forging by forging the portion. According to this method, it is reported that excellent void disappearance performance is obtained in which no harmful center unbonding is observed even in the macro test or the center micro polishing microscope observation, not to mention the ultrasonic flaw detection test.
特許文献5では、貫通した孔の両端を溶接で塞いだ形状の空隙の閉鎖特性を評価している。しかしながら、例えば特許文献6の実施例では、下金敷寸法を上金敷の2倍としても1回の鍛造では超音波欠陥が見られたとされていることからも推測できるように、実際の鋳片に存在する空隙に対して充分な閉鎖能力を有するとは言いがたい。一般に、貫通した空隙は、球状の空隙に比べて閉鎖しやすいとの報告(例えば、非特許文献1)があり、少なくとも特許文献5では、連続鋳造スラブに見られるような貫通していない空隙に対しての閉鎖能力は明らかになっていない。 In patent document 5, the closing characteristic of the space | gap of the shape which closed the both ends of the penetrated hole with welding is evaluated. However, for example, in the example of Patent Document 6, even if the lower anvil size is twice that of the upper anvil, it can be assumed that an ultrasonic defect was seen in one forging, so that it can be estimated that It is difficult to say that it has sufficient closing ability for the existing voids. In general, there is a report (for example, Non-Patent Document 1) that the penetrated void is easier to close than the spherical void, and at least in Patent Literature 5, the void does not penetrate as seen in a continuous cast slab. The ability to close is not clear.
特許文献6は、1回目と2回目とで圧下位置をずらす方法であるが、1回目の圧下による軸方向の伸びがあるため、2回目の送り代は1回目の送り代よりも大きくなる。この時の伸びは圧下率や金敷との摩擦係数により種々に変化するため、2回目の圧下の送り代も一定ではない。特に、特許文献6の実施例で開示されているのは、鍛錬比が2.4(断面減少率は58%)と大きな圧下の場合であり、2回目の送り代が1回目の2倍前後と大きくなり、広幅のスラブ材では設備の荷重の荷重限界を超える場合が出てくるため、適用できない場合が出てくる。 Patent Document 6 is a method of shifting the reduction position between the first time and the second time. However, since there is axial extension due to the first reduction, the second feeding allowance is larger than the first feeding allowance. Since the elongation at this time changes variously depending on the rolling reduction ratio and the friction coefficient with the anvil, the feeding allowance for the second rolling reduction is not constant. In particular, the example of Patent Document 6 discloses a case where the forging ratio is 2.4 (the cross-section reduction rate is 58%) and the reduction is large, and the second feeding allowance is about twice the first. With wide slab material, it may exceed the load limit of the equipment load, so it may not be applicable.
また、一般に、スラブの幅と最終製品の幅は異なるため、鍛造時に、まず幅方向の圧下を行って幅サイズを整えたのち、厚み方向の圧下を行う。かような鍛造において、非対称金敷を用いて幅方向圧下を行う、すなわち上下金敷の接触長さや接触位置が異なる状態で圧下を行うと、変形が上下非対称となって幅反りが発生する。 In general, since the width of the slab and the width of the final product are different, at the time of forging, first the width direction is reduced to adjust the width size, and then the thickness direction is reduced. In such forging, if the rolling in the width direction is performed using an asymmetrical anvil, that is, the rolling is performed in a state where the contact lengths and contact positions of the upper and lower anvils are different, the deformation becomes asymmetrical in the vertical direction and a width warpage occurs.
上記したような鍛造プロセスの後、幅反りが発生した状態で厚み方向圧下を行うとさらなる形状不良を誘発する。また、幅反りが残存したまま熱間圧延を行うと、蛇行のような通板不良を招く懸念があるため、鍛造後に幅反りを有しない形状に切断する工程が生じ、歩留りが低下する。
なお、通常、金敷の長さはスラブ長さに対して非常に短いため、鍛造時に幅反りの矯正を行うのは極めて困難であり、またたとえ矯正を行えたとしてもその場合は鍛造能率が大幅に低下する。
After the forging process as described above, if a reduction in the thickness direction is performed in a state where the width warpage has occurred, further shape defects are induced. In addition, if hot rolling is performed with the width warpage remaining, there is a concern that a threading defect such as meandering may occur, so that a step of cutting into a shape having no width warpage occurs after forging, resulting in a decrease in yield.
Normally, the length of anvil is very short compared to the length of the slab, so it is extremely difficult to correct the width warp during forging, and even if it can be corrected, the forging efficiency is greatly increased in that case. To drop.
本発明は、上記の問題を有利に解決するもので、第1の目的は、上下金敷の長さが異なる非対称の平金敷きを用いた鋼材の厚み方向圧下(減厚処理)において、超音波探傷試験はいうまでもなく、マクロ試験や中心ミクロ研磨顕微鏡観察でも未圧着の空隙が見られない、優れた空隙消滅性能を有する鋼材の鍛造方法を提供することである。 The present invention advantageously solves the above problem, and a first object is to reduce the ultrasonic wave in the thickness direction reduction (thickening treatment) of a steel material using asymmetric flat metal lays having different lengths of upper and lower metal lays. Needless to say, a flaw detection test is to provide a method for forging a steel material having excellent void disappearance performance in which an uncompressed void is not observed even in a macro test or central micro polishing microscope observation.
また、本発明の第2の目的は、鋼材の幅方向圧下および厚み方向圧下を非対称の平金敷を用いて連続的に行う場合であっても、幅方向圧下時における幅反りの発生を効果的に抑制して、優れた仕上がり形状が得られる鋼材の鍛造方法を提供することである。
さらに、本発明の第3の目的は、上記の鍛造方法により得られる鋼材を提供することである。
Further, the second object of the present invention is to effectively generate the width warp during the width direction reduction even when the width direction reduction and the thickness direction reduction of the steel material are continuously performed using an asymmetric flat metal laying. It is to provide a method for forging a steel material that can be suppressed to an excellent finished shape.
Furthermore, the third object of the present invention is to provide a steel material obtained by the forging method described above.
さて、発明者等は、上記問題を解決すべく、非対称の平金敷を用いた厚み方向圧下(減厚処理)時、さらには幅方向圧下時における鋼材の変形挙動に着目し、ポロシティーの圧着、さらには幅反りの防止を図るべく鋭意検討を行った結果、以下に述べる知見を得た。 In order to solve the above problems, the inventors focused on the deformation behavior of steel during thickness direction reduction (thickening treatment) using an asymmetric flat metal slab, and further in the width direction reduction, and bonded with porosity. Furthermore, as a result of intensive studies to prevent width warpage, the following knowledge was obtained.
非対称の平金敷を用いて鋼材の厚み方向圧下、すなわち減厚処理を行った場合、長さが短い平金敷で押圧された加工面側と長さが長い平金敷で押圧された加工面側とでは、被加工材である鋼材に対する歪みの導入形態が異なり、必ずしも鋼材の内部に適切に歪みを導入できるとは限らないことが判明した。
そこで、鋼材の内部により効果的に歪みを導入できる方法について種々検討を重ねた結果、厚み方向の圧下を行う際の上下一対の平金敷の端部位置を、少なくとも未鍛造側で、鋼材の圧下前の板厚に応じた所定の距離だけずらすことによって、所期した目的が達成されることの知見を得た。
When using asymmetric flat metal laying down in the thickness direction of the steel material, that is, when performing a thickness reduction process, the processing surface side pressed with a flat metal slab with a short length and the processing surface side pressed with a long flat chin Then, it turned out that the distortion | strain introduction form with respect to the steel material which is a workpiece is different, and cannot necessarily introduce | transduce distortion appropriately into the inside of steel material.
Therefore, as a result of various investigations on methods that can effectively introduce strain into the steel material, the end position of the pair of upper and lower flat metal mats when performing the reduction in the thickness direction is reduced at least on the unforged side. It was found that the intended purpose was achieved by shifting by a predetermined distance according to the previous plate thickness.
また、スラブの幅方向圧下時における幅反りの発生原因についても、上下平金敷の圧下位置のずれあるいは上下平金敷の接触長の違いに起因した上下非対称変形であることが判明した。
そこで、上下平金敷の端部位置(スラブ長手中央側)のずれを、上下平金敷の接触長さのうち短い方の平金敷の接触長さに対して一定値以下に制御したところ、上下非対称変形が抑制されて幅反りが低減されることが判明した。
本発明は、上記の知見を基に、さらに検討を加えた末に開発されたものである。
It was also found that the cause of the width warpage when the slab was reduced in the width direction was asymmetrical vertical deformation due to the displacement of the down-sliding position of the upper and lower flat metal mats or the difference in the contact length of the upper and lower flat metal mates.
Therefore, when the displacement of the end position of the upper and lower flat anvils (slab longitudinal center side) is controlled below a certain value with respect to the contact length of the shorter flat anvil, the vertical asymmetry It has been found that deformation is suppressed and width warpage is reduced.
The present invention was developed after further studies based on the above findings.
すなわち、本発明の要旨構成は次のとおりである。
1.鋼材に対し、上金敷と下金敷の長さが同じ又は異なる一対の平金敷を用いた2方向からの圧下と、同一軸方向への送り動作を交互に繰り返すパス操作によって減厚処理を行う、鋼材の鍛造方法であって、上下一対の平金敷の端部位置が、未鍛造側で、(圧下前の鋼材の厚さH)/2以上離れていることを特徴とする鋼材の鍛造方法。
That is, the gist configuration of the present invention is as follows.
1. For steel materials, the thickness of the upper and lower anvils is reduced by two passes using a pair of flat anvils with the same or different lengths, and a pass operation that alternately repeats the feeding operation in the same axial direction. A method for forging a steel material, wherein the end positions of a pair of upper and lower flat metal lays are separated by (thickness H of the steel material before rolling) / 2 or more on the non-forged side.
2.鋼材に対し、上金敷と下金敷の長さが異なる一対の平金敷を用いた2方向からの圧下と、同一軸方向への送り動作を交互に繰り返すパス操作によって減厚処理を行う、鋼材の鍛造方法であって、上下一対の平金敷の端部位置が、未鍛造側および既鍛造側の両方で、(圧下前の鋼材の厚さH)/2以上離れていることを特徴とする鋼材の鍛造方法。 2. The steel material is subjected to a thickness reduction process by alternately repeating a reduction from two directions using a pair of flat anvils with different lengths of upper and lower anvils and a feed operation in the same axial direction. A steel material characterized in that the end positions of a pair of upper and lower flat metal lays are separated by (thickness H of steel material before reduction) / 2 or more on both the unforged side and the already forged side. Forging method.
3.前記パス操作による減厚処理をn回(nは2以上の整数とする)に分けて厚み方向圧下を行うものとし、iを2〜nの整数としたとき、i−1回目の減厚処理における送り境界部を、i回目の減厚処理において長さが短い方の金敷の所定位置±(送り量/6)の範囲に位置させることを特徴とする前記1または2に記載の鋼材の鍛造方法。 3. The thickness reduction process by the pass operation is divided into n times (n is an integer of 2 or more) and the thickness direction reduction is performed, and when i is an integer of 2 to n, the i-1th thickness reduction process. The forging of the steel material according to 1 or 2 above, wherein the feed boundary is positioned in a range of a predetermined position ± (feed amount / 6) of an anvil having a shorter length in the i-th thickness reduction process. Method.
4.鋼材に対し、上金敷と下金敷の長さが異なる一対の平金敷を用いて、連続的に幅方向ついで厚み方向に圧下を加えることからなる鋼材の鍛造方法において、
上記の幅方向の圧下を鋼材の長手方向の端部から行うものとし、その際、鋼材長手中央側における上下金敷の端部位置のずれ量をΔL、上下金敷のうち鋼材との接触長さが短い方の接触長さをBとするとき、これらの比ΔL/Bを0.20以下の条件で幅圧下を行い、
一方、厚み方向圧下を行うに際しては、前記1〜3のいずれかに記載の減厚処理を適用する
ことを特徴とする鋼材の鍛造方法。
4). For a steel material, using a pair of flat anvils with different lengths of upper and lower anvils, in a forging method for steel materials consisting of continuously reducing in the width direction and then in the thickness direction,
The above-mentioned reduction in the width direction is performed from the end in the longitudinal direction of the steel material. At that time, the amount of shift of the end position of the upper and lower anvils at the longitudinal center side of the steel material is ΔL, and the contact length with the steel material of the upper and lower anvils is When the shorter contact length is B, the ratio ΔL / B is width-reduced under the condition of 0.20 or less,
On the other hand, when performing thickness direction reduction, the forging method of the steel materials characterized by applying the thickness reduction process in any one of said 1-3.
5.素材である鋳片の幅/厚み比が3以上であることを特徴とする前記1〜4のいずれかに記載の鋼材の鍛造方法 5. 5. The method for forging a steel material according to any one of 1 to 4 above, wherein a width / thickness ratio of a cast slab is 3 or more
6.前記1〜5のいずれかに記載の鍛造方法により製造したことを特徴とする鋼材。 6). A steel material produced by the forging method according to any one of 1 to 5 above.
本発明によれば、空隙の残存のない、特に超音波探傷では検出できないが材料の機械的特性に影響を及ぼす0.2mm程度の空隙も残存しない鋼材を得ることができる。
また、本発明によれば、ポロシティー圧着能力の高い上下非対称金敷を用いた鍛造を、厚み方向圧下のみならず幅方向圧下に適用した場合においても、鍛造後のスラブの仕上がり形状を向上させることができる。
According to the present invention, it is possible to obtain a steel material in which no voids remain, in particular, which cannot be detected by ultrasonic flaw detection, but does not leave voids of about 0.2 mm that affect the mechanical properties of the material.
In addition, according to the present invention, when forging using an up-and-down asymmetric anvil with high porosity crimping capability is applied not only in thickness direction reduction but also in width direction reduction, the finished shape of the slab after forging is improved. Can do.
以下、本発明を図面に従い具体的に説明する。
上金敷と下金敷の長さが異なる一対の平金敷を用いて鋼材の減厚処理(厚み方向圧下)を行う場合の圧下要領を、図1(a)〜(d)に基づいて説明する。図中、符号1は上金敷、2は下金敷であり、この例では上金敷1が長さが短い平金敷を、下金敷2が長さが長い平金敷を構成している。3は鋼材(スラブ)である。
Hereinafter, the present invention will be specifically described with reference to the drawings.
A reduction procedure in the case of performing a steel thickness reduction process (thickness reduction) using a pair of flat anvils having different upper and lower anvil lengths will be described with reference to FIGS. In the figure, reference numeral 1 is an upper anvil, and 2 is a lower anvil. In this example, the upper anvil 1 constitutes a short flat anvil and the lower anvil 2 constitutes a long anvil. 3 is a steel material (slab).
図1(a)は、鋼材3の上下面に非対称の平金敷1,2を当接した状態を示している。このように、鋼材の厚み方向圧下は、鋼材3の端部から行う。
図1(b)は、上記の平金敷対1,2により、実際に2方向から圧下を加えた状態を示している。
上記した端部圧下終了後、平金敷対1,2の間隙を初期状態に復帰させたのち、予め定めた所定の長さだけ鋼材3を同一軸方向に送り、あらためて鋼材3の上下面に非対称の平金敷1,2を当接する。この状態を示したのが図1(c)である。
そして、図1(b)に示したところと同様に、平金敷対1,2により鋼材に対して2方向から圧下を加える。この状態を示したのが図1(d)である。
このように、鋼材の厚み方向圧下は、鋼材の端部から順次、平金敷を用いた2方向からの圧下と、同一軸方向への送り動作とを交互に繰り返すパス操作によって行う。
FIG. 1 (a) shows a state in which asymmetric flat metal mats 1 and 2 are in contact with the upper and lower surfaces of the steel material 3. Thus, the thickness direction reduction of the steel material is performed from the end of the steel material 3.
FIG. 1 (b) shows a state where the reduction is actually applied from two directions by the flat metal mat pairs 1 and 2 described above.
After the end pressure reduction is completed, after the gap between the flat metal mats 1 and 2 is returned to the initial state, the steel material 3 is fed in the same axial direction by a predetermined length, and asymmetrically formed on the upper and lower surfaces of the steel material 3 again. The flat metal mats 1 and 2 are brought into contact. FIG. 1C shows this state.
Then, as in the case shown in FIG. 1 (b), the steel material is pressed down from two directions by the flat metal mat pairs 1 and 2. FIG. 1D shows this state.
As described above, the thickness direction reduction of the steel material is performed by a pass operation that alternately repeats the reduction from the two directions using the flat metal laying and the feeding operation in the same axial direction sequentially from the end of the steel material.
さて、本発明では、上記したような減厚処理に際し、図2(a)に示すように、鋼材の未鍛造側で、上下一対の平金敷の端部位置を一致させるのではなく、記号ΔBEで示すように適正量のずれを設けるのである。
また、図2(b)に示すように、鋼材の未鍛造側にずれΔBEを設けるだけでなく、既鍛造側にも記号ΔBDで示すずれを設けることが、一層有利である。
Now, in the present invention, in the thickness reduction process as described above, as shown in FIG. 2A, the end positions of the pair of upper and lower flat metal mats are not matched on the non-forged side of the steel material. As shown by E , an appropriate amount of deviation is provided.
Further, as shown in FIG. 2 (b), not only providing the .DELTA.B E shifted to non-forged side of the steel, be provided with a displacement indicated with .DELTA.B D also already forging side, it is more advantageous.
以下、平金敷と鋼材の接触長さが対向する上下の平金敷で異なる場合における、鋼材内部の変形をFE解析により調査した結果について説明する。
初期厚310mmの鋳片を、平金敷1の長さを310mmとして、平金敷2の長さおよびその端部位置を種々に変えて、送り量310mmで25mm鍛造した後の、幅中央、厚さ中央部における長手方向の最小歪みと、平金敷端部のずれ量ΔBE、ΔBDとの関係について調べた結果を、図3に示す。なお、図3には、参考のため、既鍛造側のみに端部位置ずれを設けた場合(ΔBE=0)についての調査結果も併せて示す。
Hereinafter, the result of investigating the deformation inside the steel material by the FE analysis when the contact length between the flat metal plate and the upper and lower flat metal plates is different will be described.
The slab of initial thickness 310 mm, the length of the flat anvil 1 is 310 mm, the length of the flat anvil 2 and its end position are changed variously, and after forging 25 mm at a feed amount of 310 mm, the width center, thickness and the minimum distortion in the longitudinal direction at the central portion, of the flat anvil end deviation amount .DELTA.B E, the results of examining the relationship between .DELTA.B D, shown in FIG. For reference, FIG. 3 also shows the results of an investigation for the case where an end position shift is provided only on the forged side (ΔB E = 0).
図3に示したとおり、未鍛造側のみに端部位置ずれΔBEを設けた場合および未鍛造側と既鍛造側の両方に端部位置ずれΔBE、ΔBDを設けた場合のいずれの場合も、ΔBE、ΔBDをそれぞれ、圧下前の鋼材の厚さHに対する比で0.50以上とすることによって幅中央、厚さ中央部における長手方向の最小歪みを増大させることができた。そして、この効果は、未鍛造側と既鍛造側の両方に端部位置ずれを設けた場合の方が一層大きいことも確認された。
なお、既鍛造側のみに端部位置ずれを設けた場合には、ずれ量の如何にかかわらず、最小歪みを増大させることはできなかった。
As shown in FIG. 3, for any case of non-forged side only when it is providing the end position deviation .DELTA.B E and untreated forging side and already forging side of both the end position deviation .DELTA.B E, the .DELTA.B D provided However, by setting ΔB E and ΔB D to 0.50 or more in the ratio to the thickness H of the steel material before rolling, the minimum strain in the longitudinal direction at the width center and the thickness center portion could be increased. It was also confirmed that this effect was even greater when the end position displacement was provided on both the unforged side and the already forged side.
In the case where the end position shift is provided only on the already forged side, the minimum strain could not be increased regardless of the shift amount.
そこで、本発明では、上下平金敷の端部位置を、少なくとも未鍛造側でずらすこととし、そのずれ量を圧下前の鋼材厚さの0.5倍以上とすることにしたのである。なお、ずれ量の上限については特に制限はないが、ずれ量があまりに大きくなると、金敷が大きくなりその製作費が増加するとともに交換作業も専用の機器が必要になる場合がある。また、金敷の端部位置のずれ量を小さくして幅方向の圧下をした後に、厚み方向に圧下を加える鍛造方法において、ずれ量を確保するために金敷の位置を大きく移動する必要があり、その設定に時間を要する等の弊害が生じるので、ずれ量の上限は鋼材厚さの1.0倍程度とするのが実際的である。 Therefore, in the present invention, the end positions of the upper and lower flat anvils are shifted at least on the non-forged side, and the shift amount is set to be 0.5 times or more the steel material thickness before rolling. The upper limit of the amount of deviation is not particularly limited, but if the amount of deviation is too large, the anvil becomes larger and its manufacturing cost increases, and a dedicated device may be required for replacement work. In addition, in the forging method of reducing the width direction by reducing the shift amount of the end position of the anvil and then reducing the thickness direction, it is necessary to move the position of the anvil greatly in order to ensure the shift amount, Since adverse effects such as the time required for the setting occur, it is practical to set the upper limit of the deviation amount to about 1.0 times the steel thickness.
ところで、鋼材の厚みを所定の厚さまで減厚する場合、かかる減厚処理は、1回だけの厚み方向圧下で行うとは限らず、厚み方向圧下を複数回行って、所定の厚みに減厚することが考えられる。なお、送り方向での複数回の圧下を合わせて所定厚さまで圧下する工程を1回の減厚処理という。
この場合に、減厚処理をn回(nは2以上の整数)に分けて厚み方向圧下を行うものとし、iを1〜nの整数としたとき、i−1回目の減厚処理における送り境界部を、i回目の減厚処理時に長さが短い方の平金敷の所定位置±(送り量/6)の範囲に位置させることが有利である。その理由を以下に示す。
なお、ここでいう送り境界部とは、i−1回目の減厚処理において、長さが短い方の平金敷の平坦部の端部(未鍛造側)で減厚された位置であり、平金敷の所定位置とは、長さが短い方の平金敷の平坦部の端部(未鍛造側)から送り量/2の位置である。
By the way, when the thickness of the steel material is reduced to a predetermined thickness, the thickness reduction process is not necessarily performed only once in the thickness direction, but the thickness is reduced to a predetermined thickness by performing the thickness direction reduction a plurality of times. It is possible to do. Note that a process of reducing the thickness to a predetermined thickness by combining a plurality of times of reduction in the feeding direction is referred to as one thickness reduction process.
In this case, the thickness reduction process is divided into n times (n is an integer of 2 or more), and when i is an integer of 1 to n, the feed in the i-1th thickness reduction process is performed. It is advantageous that the boundary portion is positioned within a range of a predetermined position ± (feed amount / 6) of the flat metal plate having a shorter length during the i-th thickness reduction process. The reason is as follows.
The feed boundary here is a position where the thickness is reduced at the end (unforged side) of the flat portion of the flat metal stake having a shorter length in the i-1th thickness reduction process. The predetermined position of the anvil is a position of the feed amount / 2 from the end (unforged side) of the flat portion of the flat anvil having a shorter length.
まず、図4に、上下非対称の平金敷を用いて厚み方向圧下を行った場合に、鋼材に導入される歪みの状態について調べた結果を示す。ここで、送り後に加工を付与した領域は黒枠で囲まれた部分である(以下、加工領域と記す)。
図4に示すように、厚み方向の中心部をみると、加工領域の端部で歪みが小さくなっている。
すなわち、厚み方向の中心部において、平金敷の長さ方向中央域ではそれなりの加圧力が作用して歪みが導入されているものの、両サイドでは十分な加圧力が作用してなく導入歪み量は小さい。
そこで、i−1回目の厚み方向圧下において歪みが小さい部分に、i回目において大きな歪みを与えることで、鋼材内に導入される歪みが鋼材長手方向でより均等になる。このとき、図4のように、厚み方向の中心部で圧下率相当以上の大きな歪みが加わるのは、平金敷の長さ方向中央域、特に平金敷の長さ方向中央域における送り量の1/3の範囲であり、この部分が送り境界域に含まれるように、i−1回目の減厚処理における送り境界部を、i回目の減厚処理時に長さが短い方の平金敷の所定位置±(送り量/6)の範囲に位置させることが望ましい。
なお、送り量は、通常、厚み方向の中心部に圧下率相当の歪みが加わる、減厚前の板厚の1/2以上とされる。また、送り量を大きくすると全長を減厚処理するための処理回数が少なくなるので生産性が向上するが、荷重が増大する。このため、送り量は、設備許容荷重の中で、できる限り大きくされる。
また、減厚処理の回数は2回以上とすることができるが、回数が多くなりすぎると、生産性の低下を招くため、上限は6回程度とすることが好ましい。さらに、鋼材の厚み中心部における歪みの導入形態をさらに均質化する観点からは、偶数回とすることが好ましい。
First, FIG. 4 shows the result of examining the state of strain introduced into the steel material when the thickness direction reduction is performed using an asymmetrical flat metal floor. Here, the region to which the processing is given after feeding is a portion surrounded by a black frame (hereinafter referred to as a processing region).
As shown in FIG. 4, when looking at the central portion in the thickness direction, the distortion is reduced at the end of the processed region.
That is, in the central part in the thickness direction, a moderate pressure is applied in the central area in the length direction of the flat metal mat, and distortion is introduced, but sufficient pressure is not applied on both sides and the amount of distortion introduced is small.
Therefore, the strain introduced into the steel material becomes more uniform in the longitudinal direction of the steel material by giving a large strain at the i-th time to a portion where the strain is small at the i-1th thickness direction pressure reduction. At this time, as shown in FIG. 4, a large strain equal to or greater than the rolling reduction is applied at the central portion in the thickness direction because the feed amount in the central region in the longitudinal direction of the flat metal mat, particularly in the central region in the longitudinal direction of the flat metal mat. The feed boundary in the (i-1) th thinning process is set to a predetermined length of the flat metal mat with a shorter length during the i-th thinning process so that this portion is included in the feed boundary area. It is desirable that the position is within a range of position ± (feed amount / 6).
The feed amount is normally set to 1/2 or more of the plate thickness before thickness reduction in which distortion corresponding to the rolling reduction is applied to the central portion in the thickness direction. Further, when the feed amount is increased, the number of processes for reducing the total length is reduced, so that the productivity is improved, but the load is increased. For this reason, the feed amount is increased as much as possible within the equipment allowable load.
Moreover, the number of times of the thickness reduction treatment can be set to 2 times or more, but if the number is too large, the productivity is lowered, and therefore the upper limit is preferably about 6 times. Further, from the viewpoint of further homogenizing the strain introduction mode at the thickness center portion of the steel material, it is preferable that the number of times is even.
以上、上下平金敷として非対称の平金敷を用いる場合について説明したが、未鍛造側のみに端部位置ずれΔBEを設ける場合には、図5に示すように、上下金敷とも長さが等しい対称の平金敷を用いることもできる。 While there has been described the case of using the asymmetric flat anvil as a vertical flat anvils, if only the non-forging side providing the end position deviation .DELTA.B E, as shown in FIG. 5, is equal both the upper and lower anvil length symmetry It is also possible to use a flat anvil.
次に、図6を参照して、上金敷と下金敷の長さが異なる非対称平金敷を用いて鋼材の幅方向圧下を行う場合について説明する。この例では、上金敷1が長さが短い方の平金敷を、一方下金敷2が長さが長い方の平金敷を示している。なお、図中、l1で平金敷1の幅を、l2で平金敷2の長さを示す。また、B1は平金敷1の鋼材に対する接触長さを、B2は平金敷2の鋼材に対する接触長さを示している。従って、この例で、上下金敷のうち鋼材との接触長さが短い方の接触長さBとはB1を指す。さらに、ΔLは鋼材長手中央側における上下金敷の端部位置のずれ量を示す。 Next, with reference to FIG. 6, the case where the width reduction of steel materials is performed using the asymmetric flat anvil in which the length of an upper anvil and a lower anvil is different is demonstrated. In this example, the upper anvil 1 has a shorter flat anvil and the lower anvil 2 has a longer flat anvil. In the figure, l 1 indicates the width of the flat anvil 1 and l 2 indicates the length of the flat anvil 2. B 1 represents the contact length of the flat metal lay 1 with respect to the steel material, and B 2 represents the contact length of the flat metal lay 2 with respect to the steel material. Thus, in this example, it refers to B 1 and the contact length B of the shorter length of contact between the steel material of the upper and lower anvil. Furthermore, ΔL indicates the amount of deviation of the end positions of the upper and lower anvils on the steel material longitudinal center side.
さて、図6に示したところにおいて、幅方向の圧下を鋼材の長手方向端部から行うに際し、上下平金敷の端部位置(スラブ長手中央側)のずれ量ΔLを次第に小さくしていった。その結果、このΔLを小さくすることにより、具体的にはΔLを上下平金敷のうち鋼材に対する接触長さが短い方の接触長さB(この例でB1)に対して0.20以下とした場合に、上下非対称変形が効果的に抑制されて幅反りが軽減されることが判明した。より好ましいΔLの範囲は、接触長さが短い方の接触長さBに対して0.10以下である。ΔLは0であってもよい。
なお、図6ではB1がB2より小さい場合について示しているが、B1がB2より大きい場合も同様に、ΔLを上下平金敷のうち鋼材に対する接触長さが短い方の接触長さB(B2)に対して0.20以下、好ましくは0.10以下とすることで幅反りが軽減される。
Now, in the case shown in FIG. 6, when the reduction in the width direction is performed from the end in the longitudinal direction of the steel material, the shift amount ΔL of the end position (the slab longitudinal center side) of the upper and lower flat metal mats is gradually reduced. As a result, by reducing this ΔL, specifically, ΔL is 0.20 or less with respect to the contact length B (B 1 in this example) of the upper and lower flat anvils with the shorter contact length to the steel material. In this case, it was found that the vertical asymmetric deformation is effectively suppressed and the width warpage is reduced. A more preferable range of ΔL is 0.10 or less with respect to the contact length B of the shorter contact length. ΔL may be zero.
FIG. 6 shows the case where B 1 is smaller than B 2. Similarly, when B 1 is larger than B 2 , ΔL is the contact length of the upper and lower flat anvil with the shorter contact length to the steel material. The width warpage is reduced by setting it to 0.20 or less, preferably 0.10 or less with respect to B (B 2 ).
また、この際、接触長さが短い方の平金敷1の接触長さB1は、平金敷1の長さl1の(0.60〜1.00)倍に設定するのが好ましいことも判明した。B1がl1の0.60倍に満たないと、バス数が増大して鍛造能率の低下を招くからである。より好適なB1/l1比は0.80〜0.95の範囲である。 At this time, the contact length B 1 of the flat metal mat 1 having the shorter contact length is preferably set to (0.60 to 1.00) times the length l 1 of the flat metal mat 1. found. This is because if B 1 is less than 0.60 times l 1, the number of buses increases and the forging efficiency decreases. A more preferred B 1 / l 1 ratio is in the range of 0.80 to 0.95.
上述したように、たとえ上下金敷の長さが異なる、さらには上下金敷のセンター位置がずれた状態であっても、スラブに対する幅方向の圧下を、好ましくは適正な接触長さの下で、なおかつ上下金敷の端部位置(スラブ長手中央側)のずれ量を所定の範囲に制御して行うことにより、上下金敷による変形位置と面圧が同等となって、圧下時の幅反りを効果的に抑制できることが究明されたのである。 As described above, even if the lengths of the upper and lower anvils are different, and even if the center positions of the upper and lower anvils are shifted, the reduction in the width direction against the slab is preferably performed under an appropriate contact length, and By controlling the amount of deviation of the end position of the upper and lower anvils (slab longitudinal center side) within a predetermined range, the deformation position by the upper and lower anvils is equivalent to the surface pressure, effectively reducing the width warpage during the reduction. It was discovered that it can be suppressed.
素材鋳片に残存する空隙が少ない幅端部近傍は、幅方向に厚さの1/2程度にすぎず、従って、幅方向で「幅−厚さ」の中央域に空隙が多く残存することが知られている。つまり、素材鋳片の幅/厚さ比が3以上となると、幅の2/3以上の広い領域にわたって空隙が残存しており、圧下を加える幅が広くなり金敷との接触面積が増加し、鍛造荷重の増加につながる。このため、送り方向の接触長さを低減できる本発明を適用することが好ましい。 The vicinity of the width end where there are few voids remaining in the raw slab is only about ½ of the thickness in the width direction, and therefore there are many voids remaining in the center area of the “width-thickness” in the width direction. It has been known. In other words, when the width / thickness ratio of the material slab is 3 or more, voids remain over a wide region of 2/3 or more of the width, the width to which the reduction is applied becomes wider, and the contact area with the anvil increases. This leads to an increase in forging load. For this reason, it is preferable to apply this invention which can reduce the contact length of a feed direction.
なお、上下金敷の端部位置のずれ量を調整するには、上下各金敷位置をスライドさせるといった方法が挙げられる。
また、本発明は、圧下されるスラブの成分組成の影響を受けないので、どのような成分組成のスラブにも適用可能である。
In addition, in order to adjust the deviation | shift amount of the edge part position of an up-and-down anvil, the method of sliding an up-and-down each anvil position is mentioned.
Further, the present invention is not affected by the component composition of the slab to be pressed, and thus can be applied to a slab having any component composition.
実施例1
連続鋳造で製造した一般構造用400MPa級鋼、一般構造用490MPa級鋼、調質780MPa級鋼、炭素鋼S35CおよびSUS304鋼について、それぞれ厚み310mm、幅1800mm、長さ3500mmの鋳片を準備した。これらを、加熱炉で1250℃に再加熱した後、端部から長手方向に順次、全幅を一度に、厚さ方向に圧下し、厚さ280mmまで1回の圧下で仕上げた。また、一部の鋳片については、加熱炉で1250℃に再加熱した後、端部から長手方向に270mmずつ送りながら、全幅を一度に厚さ方向に、295mm厚まで圧下した。引き続き、圧下した鋳片を反転して平金敷と接触する面を反対にし、長手方向に290mmずつ送りながら、厚さ280mmまで2回目の圧下を行った。このとき、平金敷の鋳片長手方向は両側ともR80mmの逃げを設け、端部位置の調整は長さが長い下金敷の位置を長手方向に移動させることにより行った。また、圧下を2回行う場合には、2回目の圧下において、長さの短い上平金敷の位置を長手方向に移動させることで、1回目の圧下の送り境界部が、上平金敷の長さ方向の所定位置から40mm以内となるように調整した。
Example 1
Cast pieces having a thickness of 310 mm, a width of 1800 mm, and a length of 3500 mm were prepared for general structural 400 MPa grade steel, general structural 490 MPa grade steel, tempered 780 MPa grade steel, carbon steel S35C and SUS304 steel, respectively. These were reheated to 1250 ° C. in a heating furnace, and then the whole width was sequentially reduced from the end portion in the longitudinal direction at a time in the thickness direction, and finished in one reduction to a thickness of 280 mm. In addition, some slabs were reheated to 1250 ° C. in a heating furnace, and then the entire width was reduced to 295 mm in the thickness direction at a time while feeding 270 mm in the longitudinal direction from the end. Subsequently, the pressed slab was reversed so that the surface in contact with the flat metal lay was reversed, and the second squeezing was performed up to a thickness of 280 mm while feeding 290 mm in the longitudinal direction. At this time, the slab longitudinal direction of the flat anvil was provided with relief of R80 mm on both sides, and the end position was adjusted by moving the position of the lower anvil with a long length in the longitudinal direction. In addition, when the reduction is performed twice, the position of the upper flat anvil having a short length is moved in the longitudinal direction in the second reduction, so that the feeding boundary portion of the first reduction becomes the length of the upper flat anvil. It adjusted so that it might become within 40 mm from the predetermined position of a horizontal direction.
かくして得られた鋼材の幅中央部から、厚さ中心±10mm、長さ中心±250mmのサンプルを採取し、まず20倍の投影機でポロシティーの有無を観察し、ポロシティーが観察された場合には100倍に拡大して寸法を確認し、長手方向にわたって0.1mm以上のポロシティーの数を調査した。
鍛造条件およびポロシティーの調査結果を表1−1および1−2に示す。なお、平金敷長さは平坦部と逃げR部を合わせた長さである。また、鋼種A〜Eごとに鍛造条件に数字01〜12を付けている。
When a sample with a thickness center of ± 10 mm and a length center of ± 250 mm is taken from the center of the width of the steel material thus obtained, and the presence or absence of porosity is first observed with a 20 × projector, and porosity is observed The size was confirmed by enlarging 100 times, and the number of porosity of 0.1 mm or more was investigated over the longitudinal direction.
The forging conditions and the investigation results of porosity are shown in Tables 1-1 and 1-2. The flat metal lay length is the total length of the flat portion and the relief R portion. Moreover, the numbers 01-12 are attached | subjected to the forging conditions for every steel types AE.
同表に示したとおり、本発明の要件を満足する03,04,09,10,11,12の条件では0.2〜0.5mmのポロシティーは残存しておらず、特に両側で端部位置をずらした09,10,12は、ポロシティーが全く残存しておらず、とりわけ優れていることが分かる。また、条件03は、下金敷の長さが上金敷の長さの1.6倍と2倍以下であったが、充分なポロシティー圧着効果が得られていた。
これに対し、上下金敷の長さは異なるが、端部位置のずれが十分ではない02,08では、超音波探傷で検出される0.5mm以上のポロシティーはないものの、0.2〜0.5mmのポロシティーは残存していた。また、未鍛造側の金敷端部位置を同じ位置とした05,06,07では、0.5mm以上のポロシティーも残存しており、例えば07のように金敷の長さが2倍であっても、不充分であることが分かる。
As shown in the table, the porosity of 0.2 to 0.5 mm does not remain under the conditions of 03, 04, 09, 10, 11, and 12 that satisfy the requirements of the present invention, and particularly the end portions on both sides. It can be seen that 09, 10, and 12 in which the positions are shifted are particularly excellent with no porosity remaining. In condition 03, the length of the lower anvil was 1.6 times and less than twice the length of the upper anvil, but a sufficient porosity pressing effect was obtained.
On the other hand, although the lengths of the upper and lower anvils are different, in the case of 02,08 where the shift of the end position is not sufficient, although there is no porosity of 0.5 mm or more detected by ultrasonic flaw detection, 0.2-0 A porosity of 5 mm remained. In addition, in 05,06,07 in which the position of the end of the anvil on the unforged side is the same position, a porosity of 0.5 mm or more remains, for example, the length of the anvil is doubled as in 07 However, it turns out that it is insufficient.
実施例2
表2に示す種々の条件でスラブの幅方向圧下を行ったときの圧下後のスラブの幅反り量について調査した結果を、表2に併記する。
なお、スラブの幅反り量は、図7に示すように、幅方向圧下後のスラブの長さをL、スラブの両幅端部を結んだ線から反りの内側までの長さの最大値をΔWmaxとした場合、ΔWmax/L×100(%)で評価するものとし、この値が0.8%以下となる場合を合格とした。
Example 2
Table 2 shows the results of the investigation on the amount of warpage of the slab after the reduction when the slab is reduced in the width direction under various conditions shown in Table 2.
As shown in FIG. 7, the slab width warpage amount is L as the length of the slab after the reduction in the width direction, and the maximum value from the line connecting both width ends of the slab to the inside of the warp. When it was set as ΔW max , it was assumed that ΔW max / L × 100 (%) was evaluated, and a case where this value was 0.8% or less was regarded as acceptable.
同表に示したとおり、本発明に従う条件で幅方向圧下を行ったNo.1〜7はいずれも、上下金敷のスラブ長手中央側における端部位置のずれ量が金敷接触長さに対して十分に小さいために、生じる幅反り量は小さかった。
これに対し、本発明を逸脱した条件で幅方向圧下を行ったNo.8〜13は、上下金敷のスラブ長手中央側における端部位置のずれ量が大きいため、上下非対称の変形が生じた結果、幅反りが大きくなっている。
As shown in the table, No. 1 was subjected to width direction rolling under the conditions according to the present invention. In all of Nos. 1 to 7, the amount of displacement of the end portion of the upper and lower anvils at the longitudinal center side of the slab was sufficiently small with respect to the anvil contact length, so that the amount of width warp produced was small.
On the other hand, No. 1 in which the width direction reduction was performed under conditions deviating from the present invention. In Nos. 8 to 13, since the shift amount of the end position on the slab longitudinal center side of the upper and lower anvils is large, as a result of the asymmetrical deformation in the vertical direction, the width warpage is large.
1 上金敷
2 下金敷
3 スラブ
1 Upper anvil 2 Lower anvil 3 Slab
Claims (6)
上記の幅方向の圧下を鋼材の長手方向の端部から行うものとし、その際、鋼材長手中央側における上下金敷の端部位置のずれ量をΔL、上下金敷のうち鋼材との接触長さが短い方の接触長さをBとするとき、これらの比ΔL/Bを0.20以下の条件で幅圧下を行い、
一方、厚み方向圧下を行うに際しては、請求項1〜3のいずれかに記載の減厚処理を適用する
ことを特徴とする鋼材の鍛造方法。 For a steel material, using a pair of flat anvils with different lengths of upper and lower anvils, in a forging method for steel materials consisting of continuously reducing in the width direction and then in the thickness direction,
The above-mentioned reduction in the width direction is performed from the end in the longitudinal direction of the steel material. At that time, the amount of shift of the end position of the upper and lower anvils at the longitudinal center side of the steel material is ΔL, and the contact length with the steel material of the upper and lower anvils is When the shorter contact length is B, the ratio ΔL / B is width-reduced under the condition of 0.20 or less,
On the other hand, when performing thickness direction reduction, the forging method of the steel materials characterized by applying the thickness reduction process in any one of Claims 1-3.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014204055 | 2014-10-02 | ||
JP2014204055 | 2014-10-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016074034A JP2016074034A (en) | 2016-05-12 |
JP6156459B2 true JP6156459B2 (en) | 2017-07-05 |
Family
ID=55949407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015161232A Active JP6156459B2 (en) | 2014-10-02 | 2015-08-18 | Method for forging steel material and method for producing steel material using the forging method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6156459B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6439637B2 (en) * | 2015-09-10 | 2018-12-19 | Jfeスチール株式会社 | Steel forging method |
JP6879323B2 (en) * | 2018-03-22 | 2021-06-02 | Jfeスチール株式会社 | Manufacturing method of thick steel sheet with excellent fatigue characteristics |
JP7156220B2 (en) * | 2019-09-13 | 2022-10-19 | Jfeスチール株式会社 | Heavy steel plate with excellent toughness, its manufacturing method, and steel slab used as raw material for thick steel plate |
CN111014528B (en) * | 2020-01-02 | 2022-02-01 | 上海电气上重铸锻有限公司 | Forging forming method of large plate part |
CN117380882B (en) * | 2023-12-04 | 2024-03-19 | 山西瑞德机械制造股份有限公司 | Forging process for large-diameter tube plate |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5819373B2 (en) * | 1978-04-21 | 1983-04-18 | 新日本製鐵株式会社 | Forging method for metal materials |
JPS62259631A (en) * | 1986-04-30 | 1987-11-12 | Kobe Steel Ltd | Deciding method for optimum anvil block width ratio in forge drawing |
JPH03281027A (en) * | 1990-03-29 | 1991-12-11 | Topy Ind Ltd | Method for forging steel billet |
JP2854215B2 (en) * | 1993-03-30 | 1999-02-03 | 株式会社日本製鋼所 | Hot forging method for metal materials |
JP3333619B2 (en) * | 1994-02-24 | 2002-10-15 | 川崎製鉄株式会社 | Manufacturing method of extra thick steel plate |
JP3528504B2 (en) * | 1997-03-27 | 2004-05-17 | Jfeスチール株式会社 | Manufacturing method of extra thick steel plate |
JP2001071082A (en) * | 1999-09-08 | 2001-03-21 | Sanyo Special Steel Co Ltd | Stretch-forging method improving center characteristic in forged product |
JP4543980B2 (en) * | 2005-03-22 | 2010-09-15 | Jfeスチール株式会社 | Manufacturing method of extra-thick steel plate with excellent internal properties |
JP5374390B2 (en) * | 2010-01-07 | 2013-12-25 | 株式会社神戸製鋼所 | Forging method to improve internal defects in forgings |
-
2015
- 2015-08-18 JP JP2015161232A patent/JP6156459B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016074034A (en) | 2016-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6156459B2 (en) | Method for forging steel material and method for producing steel material using the forging method | |
JP6137080B2 (en) | Slab forging method | |
JP6439637B2 (en) | Steel forging method | |
JP6156321B2 (en) | Hot forging method of slab | |
JP4543980B2 (en) | Manufacturing method of extra-thick steel plate with excellent internal properties | |
JP6156320B2 (en) | Steel forging method | |
JP4843401B2 (en) | Forging method and anvil used for the forging method | |
JP6156455B2 (en) | Slab forging method | |
JP3333619B2 (en) | Manufacturing method of extra thick steel plate | |
JP5724749B2 (en) | Manufacturing method of H-section steel | |
JPH10263614A (en) | Production of extra thick steel plate | |
JP5949629B2 (en) | Manufacturing method of extra-thick austenitic stainless steel plate with excellent internal properties and extra-thick austenitic stainless steel plate with excellent internal properties | |
JP5994712B2 (en) | Manufacturing method of ultra-thick martensitic stainless steel plate with excellent internal properties | |
JP2009006361A (en) | Hot-rolling method | |
JP6589755B2 (en) | Intermediate universal rolling method for section steel with flange | |
CN112605166A (en) | Strip steel straightening method and device | |
KR101433432B1 (en) | Roll design method for formming chamfer, apparatus and method for manufacturing steel plate using the same | |
JP3952954B2 (en) | Method of ingot rolling of continuous cast slab | |
JP5935707B2 (en) | Rolling method and rolling equipment for unequal side angle steel | |
JP6070615B2 (en) | Manufacturing method of extra heavy steel sheet | |
JP7556368B2 (en) | Manufacturing method of hat-shaped steel sheet pile | |
JP7420131B2 (en) | Manufacturing method of blooming rolled material | |
US20190084019A1 (en) | Method for producing h-shaped steel | |
JP5842732B2 (en) | Billet manufacturing method | |
US20200206802A1 (en) | Method for producing h-shaped steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160525 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170413 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170509 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170522 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6156459 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |