[go: up one dir, main page]

JP2854215B2 - Hot forging method for metal materials - Google Patents

Hot forging method for metal materials

Info

Publication number
JP2854215B2
JP2854215B2 JP9525993A JP9525993A JP2854215B2 JP 2854215 B2 JP2854215 B2 JP 2854215B2 JP 9525993 A JP9525993 A JP 9525993A JP 9525993 A JP9525993 A JP 9525993A JP 2854215 B2 JP2854215 B2 JP 2854215B2
Authority
JP
Japan
Prior art keywords
anvil
forging
width
length
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9525993A
Other languages
Japanese (ja)
Other versions
JPH06277783A (en
Inventor
信市 小野
克之 南
悦夫 村井
忠雄 岩館
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SEIKOSHO KK
Original Assignee
NIPPON SEIKOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SEIKOSHO KK filed Critical NIPPON SEIKOSHO KK
Priority to JP9525993A priority Critical patent/JP2854215B2/en
Publication of JPH06277783A publication Critical patent/JPH06277783A/en
Application granted granted Critical
Publication of JP2854215B2 publication Critical patent/JP2854215B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、大型鋼塊などの金属
材料を熱間で自由鍛造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for hot forging a metal material such as a large ingot.

【0002】[0002]

【従来の技術】金属材料の熱間自由鍛造では、平坦な上
下金敷間に材料を配置し、上下金敷で材料を部分的に鍛
伸させることにより鍛造を行なう。この鍛造の目的は、
材料に大きな圧力を加えることにより、凝固時に材料内
部に生成された欠陥を消滅させる、いわゆる鍛錬効果に
よって組織を改善することにある。
2. Description of the Related Art In hot free forging of a metal material, forging is performed by arranging a material between flat upper and lower anvils and partially elongating the material with the upper and lower anvils. The purpose of this forging is
An object of the present invention is to improve a structure by applying a large pressure to a material to eliminate defects generated inside the material during solidification, that is, a so-called forging effect.

【0003】ところで、大型の材料では、製造工程にお
ける凝固の際に、中心部に微小な空隙が多数生成される
ので、これを確実に消滅させるためには、より効果的な
鍛錬を行なう必要がある。特に近年、材料に求められる
機械的性質はより厳しくなる傾向にあり、中心部の欠陥
を消滅させるためには材料の中心部にまで十分なひずみ
や圧縮応力を付加することが必要である。これに対して
は、広い幅の金敷を用い、大きな鍛造比で鍛造すること
が一般的に考えられる解決方法である。
[0003] In the case of a large-sized material, a large number of minute voids are generated at the center portion during solidification in the manufacturing process. Therefore, it is necessary to perform more effective forging to surely eliminate the voids. is there. In particular, in recent years, the mechanical properties required of materials have tended to become more severe, and in order to eliminate defects at the center, it is necessary to apply sufficient strain and compressive stress to the center of the material. To solve this, it is a generally conceivable solution to forge at a large forging ratio using a wide anvil.

【0004】[0004]

【発明が解決しようとする課題】しかし、比較的小型の
材料では、上記した解決方法で対応することもできる
が、大型の材料では鍛造荷重が増大し、必要とされるプ
レス容量が非常に増大してしまうという問題があり、さ
らに大型の材料ではプレス容量の制約から広幅の金敷を
使用できないという問題がある。また、広幅の金敷を用
いると、所要荷重が増大して一度の圧下で金属材料に大
きな加工を与えることは困難であり、再加熱、鍛錬を何
度も繰り返して行う必要があり、作業効率が低下すると
ともに、上記繰り返しによって金属材料の品質が低下す
るという問題も発生する。
However, in the case of relatively small materials, the above solution can be used, but in the case of large materials, the forging load increases, and the required press capacity is greatly increased. In addition, there is a problem that a large-sized anvil cannot be used for a large-sized material due to a limitation of a press capacity. In addition, if a wide anvil is used, the required load increases and it is difficult to apply a large amount of processing to the metal material under a single pressure, and it is necessary to repeatedly perform reheating and forging, thereby increasing work efficiency. In addition to the reduction, there is also a problem that the quality of the metal material is reduced by the above-described repetition.

【0005】なお従来、鍛錬効果を向上させるために、
上金敷の幅方向寸法を規定する方法が提案されている
(特公昭37−13761号、特公昭58−19373
号)。しかし、これらの方法でも鍛錬効果は十分ではな
く、大きなプレス容量を必要とするため、設備的な制約
が大きいという問題がある。この発明は上記課題を解決
することを基本的な目的とし、欠陥が残存しやすい大型
鋼塊の中心部に十分な圧下力を加えて、鍛錬効果によっ
て欠陥を効率的に消滅させることができる金属材料の熱
間鍛錬方法に関するものである。
[0005] Conventionally, in order to improve the training effect,
A method of defining the width dimension of the upper anvil has been proposed (Japanese Patent Publication No. 37-13761, Japanese Patent Publication No. 58-19373).
issue). However, even with these methods, the forging effect is not sufficient, and a large press capacity is required. The object of the present invention is to solve the above-described problems, and to apply a sufficient rolling force to a central portion of a large ingot in which defects are likely to remain, so that the metal can efficiently eliminate defects by a forging effect. The present invention relates to a method for hot forging materials.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本願発明の金属材料の熱間鍛造方法のうち第1の発
明は、予備加熱した金属材料の表面層側を冷却させると
ともに、材料幅の0.4〜0.7倍の幅を有し、かつ材
料高さの0.3〜0.5倍の軸方向長さを有するすくな
くとも1つの金敷を用いた上下金敷間で金属材料の鍛錬
を行なうことを特徴とする。
Means for Solving the Problems In order to solve the above-mentioned problems, a first invention of the hot forging method for a metal material of the present invention is to cool the surface layer side of the preheated metal material and to reduce the material width. Forging of metallic material between upper and lower anvils using at least one anvil having a width of 0.4 to 0.7 times as large and an axial length of 0.3 to 0.5 times the material height Is performed.

【0007】第2の発明は、予備加熱した金属材料の表
面層側を冷却させるとともに、材料幅の0.4〜0.7
倍の幅を有し、かつ材料高さの0.3〜0.5倍の軸方
向長さを有する上金敷と、材料幅の1〜1.5倍の幅を
有し、かつ材料長さの1〜1.5倍の軸方向長さを有す
る下金敷とで金属材料の鍛錬を行なうことを特徴とす
る。
The second invention cools the surface layer side of the preheated metal material and has a material width of 0.4 to 0.7.
An upper anvil having a width twice as long and having an axial length of 0.3 to 0.5 times the material height, and a width of 1 to 1.5 times the material width and having a material length It is characterized in that the metal material is forged with a lower anvil having an axial length of 1 to 1.5 times the length of the metal material.

【0008】なお、金属材料の冷却方法は特に限定され
るものではなく、例えば、予備加熱のために加熱炉内に
配置していた材料を加熱炉から出炉した後、直ちに圧下
せず、適当な時間空中放冷することにより表面層を冷却
することができる。また、表面層が所望の状態に冷却さ
れるまで全く圧下を行なわない方法の他に、冷却過程
で、材料にある程度の圧下を加えることも可能である。
[0008] The method of cooling the metal material is not particularly limited. For example, after the material placed in the heating furnace for preheating is removed from the heating furnace, the material is not immediately reduced in pressure. The surface layer can be cooled by allowing it to cool in the air for a time. In addition to the method in which no reduction is performed until the surface layer is cooled to a desired state, it is also possible to apply a certain degree of reduction to the material during the cooling process.

【0009】[0009]

【作用】すなわち、本願発明によれば、金属材料の表面
層の冷却により金属材料の内外方向に温度勾配が生じ、
金属材料の表層部にあたかも変形抵抗の大きい外殻が形
成された如き状態になり、そして内部に変形抵抗の小さ
い高温部が形成される。この金属材料を幅及び軸方向長
さを規定した金敷で圧下することにより、高温部に選択
的にかつ効率よく圧下力を加えることができ、金属材料
の中心部に充分な静水圧応力を発生させることができ
る。その結果、中心部の空隙が効率よく圧着されて消滅
し、大型の金属材料でも小さな荷重で中心部の欠陥を除
くことができ、プレス容量の制約を軽減することができ
る。
According to the present invention, a temperature gradient is generated in and out of the metal material by cooling the surface layer of the metal material.
As a result, an outer shell having high deformation resistance is formed on the surface layer of the metal material, and a high-temperature portion having low deformation resistance is formed inside. By rolling down this metal material with an anvil with specified width and axial length, it is possible to apply the rolling force selectively and efficiently to the high temperature part, and generate sufficient hydrostatic stress at the center of the metal material Can be done. As a result, the void at the center portion is efficiently pressed and disappears, and even a large-sized metal material can remove defects at the center portion with a small load, thereby reducing the restriction on the press capacity.

【0010】次に、本願発明で規定する金敷の範囲限定
理由について説明する。本発明では、前述のように加熱
された金属材料を出炉後直ちに圧下せず、空中放冷など
を利用して金属材料の表層部に冷却層を故意に形成させ
るのが特徴であるが、この場合の所要鍛造荷重は、温度
勾配なしの場合に比較して当然のことながら大きくな
る。一般的に大型鋼塊の自由鍛造ではプレス容量の制約
から所要荷重の増大は回避すべき問題であり、本発明を
実現するためには荷重低減のための対策が必要である。
そこで本発明では、前述のような空中放冷材の鍛伸にお
ける所要荷重の増大を回避するため、以下に金敷幅や金
敷軸方向長さを変化させ、金敷の大きさの適正化による
所要荷重の改善を有限要素法により検討した。
Next, the reason for limiting the range of the anvil specified in the present invention will be described. In the present invention, as described above, the heated metal material is not reduced immediately after being discharged from the furnace, but is characterized by intentionally forming a cooling layer on the surface layer of the metal material using air cooling or the like. The required forging load in the case is naturally larger than in the case without the temperature gradient. In general, in the free forging of large ingots, an increase in the required load is a problem to be avoided due to the limitation of the press capacity, and in order to realize the present invention, measures for reducing the load are necessary.
Therefore, in the present invention, in order to avoid an increase in the required load in forging and elongating the air-cooled material as described above, the required load by changing the width of the anvil and the length of the anvil in the axial direction is adjusted as follows. The improvement of was studied by the finite element method.

【0011】図4に金属材料中心部での静水圧応力にお
よぼす金敷の軸方向長さの影響を空中放冷時間との関係
で示した。金敷の幅は一定で圧下率は10%である。こ
の図をみると、空中放冷時間の増加により静水圧応力は
直線的に増大し、その傾向はいずれの金敷軸方向長さ
(W/H0)でもほぼ同様の値である。特に空中放冷時
間が長くなると、金敷軸方向長さが0.3と小さい場合
のほうが大きい場合を僅かながら上回っており、注目す
べきである。このことは空中放冷して温度勾配を付与し
た金属材料の鍛伸においては、小さな金敷を用いても中
心部で得られる静水圧応力比は大きな金敷の場合と変ら
ないことを意味するものである。金敷が小さければ、材
料との接触面積が減少するから所要鍛造荷重が低減され
ることは自明であり、上記のことより低い鍛造荷重で材
料の中心部に十分な静水圧応力を得るために極めて有益
な傾向である。
FIG. 4 shows the effect of the axial length of the anvil on the hydrostatic stress at the center of the metal material in relation to the air cooling time. The width of the anvil is constant and the rolling reduction is 10%. As shown in this figure, the hydrostatic stress increases linearly with an increase in the air cooling time, and the tendency is almost the same for any length of the anvil axial direction (W / H 0 ). In particular, when the cooling time in the air becomes longer, the case where the length in the axial direction of the metal anvil is as small as 0.3 is slightly larger than the case where it is large, and it should be noted. This means that in the forging of metal materials that have been allowed to cool in the air to give a temperature gradient, the hydrostatic stress ratio obtained at the center even when a small anvil is used is not different from that of a large anvil. is there. It is obvious that if the anvil is small, the required forging load is reduced because the contact area with the material is reduced, and it is extremely necessary to obtain sufficient hydrostatic stress in the center of the material with a lower forging load than the above. A beneficial trend.

【0012】また、図5では、金敷幅を金属材料の幅の
半分に、すなわち金敷幅比L/D0を0.5と小さくし
た場合の金属材料中心部での静水圧応力の挙動について
検討した。空中放冷時間は1時間とし、金敷軸方向長さ
もW/H0の値を0.3と0.7の2種類としている。
この図では圧下率が大きくなると、金敷軸方向長さの中
心部の静水圧応力比への影響が認められるが、金敷幅L
/D0の値の影響はほとんど認められない。すなわち、
本発明のごとく空中放冷して温度勾配をつけた金属材料
の鍛伸では、金敷幅が金属材料幅の半分であっても、中
心部で得られる静水圧応力は金敷が材料の全幅にわたる
場合と同様な値である。また、この図では前述のように
金敷軸方向長さW/H0が0.3と0.7と異なっても
ほぼ同レベルの静水圧応力が得られていることもわか
る。
FIG. 5 shows the behavior of the hydrostatic stress at the center of the metal material when the width of the metal anvil is reduced to half of the width of the metal material, that is, when the ratio L / D 0 of the metal anvil is reduced to 0.5. did. The cooling time in the air is 1 hour, and the length of the anvil in the axial direction is W / H 0 of 0.3 or 0.7.
In this figure, when the rolling reduction is increased, the influence on the hydrostatic stress ratio of the central portion of the length of the anvil axis is recognized, but the anvil width L
The effect of the value of / D 0 is hardly recognized. That is,
In the forging of a metal material that is allowed to cool in the air and has a temperature gradient as in the present invention, even when the width of the anvil is half of the width of the metal material, the hydrostatic stress obtained at the center part is when the anvil covers the entire width of the material. Is the same value as. Further, in this figure, it can be seen that the same level of hydrostatic stress is obtained even when the length W / H 0 in the anvil axis direction is different from 0.3 and 0.7 as described above.

【0013】さらに本願発明の金敷が、温度降下により
変形抵抗の増加が著しい材料の側面部を避けて材料の幅
方向中央部のみを選択的に圧下できることから、鍛造所
要時間を低く抑えることができることもこの解析によっ
て判っている。以上の検討結果から、空中放冷による温
度勾配を付与した金属材料の鍛伸において、より低い鍛
造荷重で中心部の空隙を圧着するために有効な静水圧応
力を得るには、本発明のように金敷幅を材料幅の0.4
〜0.7倍程度とし、さらに金敷軸方向長さを材料高さ
の0.3〜0.5倍程度とするように、幅、長さともに
小さくしたした金敷を用いることが最適であると判断で
きる。
Further, since the anvil of the present invention can selectively reduce only the central portion in the width direction of the material while avoiding the side portions of the material whose deformation resistance is remarkably increased due to the temperature drop, the time required for forging can be reduced. Is also known from this analysis. From the above examination results, in forging and elongation of a metal material given a temperature gradient by air cooling, to obtain an effective hydrostatic stress in order to press the void in the center with a lower forging load, as in the present invention, To 0.4mm of material width
It is best to use an anvil with a reduced width and length so that the length of the anvil in the axial direction is approximately 0.3 to 0.5 times the material height. I can judge.

【0014】上記の条件の金敷を上金敷に採用する場合
に、下金敷に以下の条件を適用することにより、本願発
明の効果が一層向上する。 下金敷幅:材料幅の1〜1.5倍 下金敷軸方向長さ:材料長さの1〜1.5倍 下金敷の条件の限定理由は以下のとおりである。上記の
下金敷を用いた場合、材料との接触面は材料の幅方向お
よび長さ方向の全長にわたるため、圧下時に金敷と材料
との間の摩擦による変形拘束力は幅方向および軸方向と
もに最大となる。これによって僅かな鍛造荷重の増加を
伴うものの、材料の中心部における静水圧応力はさらに
上昇し、本願発明の空隙の圧着効果を一層高めることが
できる。
When the anvil under the above conditions is adopted as the upper anvil, the effects of the present invention are further improved by applying the following conditions to the lower anvil. Lower anvil width: 1 to 1.5 times the material width Lower axial length: 1 to 1.5 times the material length The reasons for limiting the conditions of the lower anvil are as follows. When the above-mentioned underlay is used, since the contact surface with the material extends over the entire length in the width and length directions of the material, the deformation restraining force due to the friction between the anvil and the material during rolling down is the maximum in both the width and axial directions. Becomes As a result, although the forging load is slightly increased, the hydrostatic stress at the center of the material further increases, and the effect of the present invention can be further improved.

【0015】また本発明のごとく温度勾配を付与した材
料の鍛伸では、上下に対称な金敷を用いた場合でも、温
度勾配のない材料の場合に比べて材料の伸びを小さく抑
えることができる。そのため、鍛伸後の据込みが不必要
となり、工程数の減少を図ることが可能である。さら
に、上述の摩擦による変形拘束の増加は、このような材
料の軸方向の伸びの抑制効果を助長する。したがって、
本発明でも上下対称の金敷を用いた場合よりも、上記条
件を満たす下金敷を用いた場合の方が、鍛伸により所定
の材料軸方向長さに達するまで大きな圧下率をとること
ができ、空隙の圧着の達成をより完全なものとできる。
In the forging of a material having a temperature gradient as in the present invention, the elongation of the material can be suppressed to be smaller than that of a material having no temperature gradient, even when a vertically symmetrical anvil is used. Therefore, upsetting after forging becomes unnecessary, and the number of steps can be reduced. Further, the increase in the deformation constraint due to the above-mentioned friction promotes the effect of suppressing the axial elongation of such a material. Therefore,
Even in the present invention, when using the lower anvil that satisfies the above conditions, it is possible to obtain a large rolling reduction until reaching a predetermined length in the material axial direction by forging or drawing, compared with the case of using the vertically symmetric anvil. Achieving the pressure bonding of the gap can be more complete.

【0016】[0016]

【実施例】図3は、従来法と本発明の方法による鍛造に
おいて、素材の軸心部に発生する静水圧応力の大きさを
有限要素法にによる理論解析により比較した結果であ
る。この鍛造には、直径4000mm、長さ4500m
mの3.5%NiCrMoV鋼の円形断面素材1を用意
した。従来法では、素材を加熱炉にて1250℃に均熱
加熱した後、出炉し、直ちに圧下するが、本発明の方法
では、素材を出炉後、空気中にて1時間放冷し、その表
面温度が約800℃になった時に圧下した。なお、図中
のC.T.は、空中放冷時間を示している。従来法で
は、金敷幅比(W/H0)が0.7、金敷長さ比が1.
125と非常に大きな金敷を用いて最終圧下率40%ま
で圧下した。 それに対し、本発明の実施例で用いた金
敷は、図1に示すように、金敷幅比(W/H0)が0.
3で、金敷長さ比が0.5と、従来法に比較して非常に
小さく、金敷2、3の圧下面の面積は、従来法金敷の約
40%以下でしかない。また、この時の円形断面素材1
の最終圧下率は25%である。
FIG. 3 shows the results of a comparison of the magnitude of hydrostatic stress generated at the axial center of a material by a theoretical analysis based on the finite element method in the forging by the conventional method and the method of the present invention. This forging has a diameter of 4000mm and a length of 4500m
A circular section material 1 of 3.5% NiCrMoV steel was prepared. In the conventional method, after the material is uniformly heated to 1250 ° C. in a heating furnace, the material is discharged from the furnace and immediately reduced in pressure. However, in the method of the present invention, after the material is released from the furnace, the material is allowed to cool in air for one hour and its surface is cooled. The pressure was reduced when the temperature reached about 800 ° C. Note that C. in FIG. T. Indicates the air cooling time. In the conventional method, the anvil width ratio (W / H 0 ) is 0.7 and the anvil length ratio is 1.
It was reduced to a final reduction of 40% using a very large anvil 125. On the other hand, the anvil used in the embodiment of the present invention has an anvil width ratio (W / H 0 ) of 0.
3, the anvil length ratio is 0.5, which is much smaller than that of the conventional method. At this time, the circular section material 1
Has a final rolling reduction of 25%.

【0017】図3における横軸の荷重比とは、両者の鍛
造所要荷重を本発明による方法の最終圧下荷重で除して
無次元化した鍛造所要荷重に相当する値である。また、
縦軸の静水圧応力比は、鍛造中に素材の軸心部に発生す
る静水圧応力を同一位置の相当応力で除した無次元量で
あり、この値が高いほど空隙を消滅させる効果が高い。
この図をみると、従来法では、圧下の初期に静水圧応力
比が引張側を示している。この状態では、空隙はむしろ
拡大する傾向を示すことが知られており、望ましくない
応力状態である。一方、本発明による方法では、素材に
温度勾配がついているため、圧下の初期においても従来
のように引張の静水圧応力が生じることはなく、圧下中
はつねに圧縮の静水圧応力が軸心部の空隙の周りに作用
し、その収縮を促進する。
The load ratio on the horizontal axis in FIG. 3 is a value corresponding to the forging required load obtained by dividing the required forging load of both by the final rolling load of the method according to the present invention to make it dimensionless. Also,
The hydrostatic stress ratio on the vertical axis is a dimensionless amount obtained by dividing the hydrostatic stress generated in the axial portion of the material during forging by the equivalent stress at the same position, and the higher this value is, the higher the effect of eliminating voids is .
Referring to this figure, in the conventional method, the hydrostatic stress ratio shows the tensile side at the initial stage of the reduction. In this condition, the voids are known to tend to expand rather, an undesirable stress condition. On the other hand, in the method according to the present invention, since the material has a temperature gradient, the hydrostatic stress of tension does not occur even in the initial stage of the rolling as in the conventional case, and the hydrostatic stress of the compression always increases during the rolling. Acts around the voids of the to promote its shrinkage.

【0018】以上の事実は、小さなプレスを用いて従来
法による円形断面素材の鍛造を繰り返しても、素材軸心
部の空隙はなかなか消滅させることができないが、本発
明による方法では、限られたプレス力でも、鍛造を繰り
返せば、最終的に確実に空隙を消滅できることを物語る
ものであり、本発明の効果の1つをよく現している現象
である。また空隙を十分に消滅させるためには、大きな
静水圧応力比を得なければならないが、そのときに必要
な鍛造荷重を両者で比較すると、本発明による方法の最
終圧下率を基準として、従来法ではその約1.5倍もの
荷重が必要であることがわかる。
[0018] The above facts show that although the forging of a circular cross-section material by a conventional method using a small press is not repeated, the air gap in the material axis cannot be easily eliminated, but the method according to the present invention has a limited effect. It can be said that the void can be surely finally eliminated by repeating the forging even with the pressing force, which is a phenomenon that clearly shows one of the effects of the present invention. In addition, in order to sufficiently eliminate the voids, a large hydrostatic stress ratio must be obtained.When the forging loads required at that time are compared with each other, based on the final draft of the method according to the present invention, the conventional method is used. It is understood that about 1.5 times the load is required.

【0019】さらに、この実施例の解析において、金敷
直下の素材の軸に直角な横断面における断面減少率につ
いて両者を比較すると、従来法では16%(圧下率40
%)、本発明の方法では8.2%(圧下率25%)であ
る。これらを素材の伸び率に換算すると、前者では19
%、後者では8.9%となる。圧下率が異なるため正確
な比較はできないが、本発明による方法では、素材の軸
方向の伸びを従来法に比較して低く抑えることができ
る。このことから、鍛伸と据込みを繰り返す実際の軸材
などの鍛造工程において、鍛伸後の据込みを省略するこ
とができ、製造コストの低減が可能である。また、下金
敷に、図2に示すように材料幅の1〜1.5倍の幅を有
し、かつ材料長さの1〜1.5倍の軸方向長さを有する
大きな金敷4を用いれば、上記の効果はさらに助長され
る。
Further, in the analysis of this embodiment, when comparing the reduction rate of the cross section in the cross section perpendicular to the axis of the material immediately below the anvil, the conventional method shows that the reduction rate is 16% (the reduction rate is 40%).
%) And 8.2% (25% reduction) in the method of the present invention. When these are converted into the growth rate of the material, the former is 19
%, And 8.9% in the latter case. Although accurate comparisons cannot be made due to different reduction ratios, the method of the present invention can suppress the axial elongation of the raw material to be lower than that of the conventional method. For this reason, in a forging process of an actual shaft material or the like in which forging and upsetting are repeated, upsetting after forging can be omitted, and manufacturing costs can be reduced. As the lower anvil, a large anvil 4 having a width of 1 to 1.5 times the material width and an axial length of 1 to 1.5 times the material length is used as shown in FIG. If this is the case, the above effect is further promoted.

【0020】[0020]

【発明の効果】以上説明したように本願発明の金属材料
の熱間鍛錬方法によれば、予備加熱した金属材料の表面
層を冷却させるとともに、材料幅の0.4〜0.7倍の
幅を有し、かつ材料高さの0.3〜0.5倍の軸方向長
さを有するすくなくとも1つの金敷を用い、また所望に
より、前記金敷を上金敷として、下金敷に、材料幅の1
〜1.5倍の幅を有し、かつ材料長さの1〜1.5倍の
軸方向長さを有する金敷を用いるので、大型の金属材料
でも中心部へ効率よく圧下力が加わり、中心部の空隙等
の欠陥を確実に消滅させることができる。またこの方法
によれば所要荷重も小さくてすみ、プレス設備に対する
制約も小さいという効果がある。
As described above, according to the hot forging method of a metal material of the present invention, the surface layer of the preheated metal material is cooled and the width of the material is 0.4 to 0.7 times the width of the material. And at least one anvil having an axial length of 0.3 to 0.5 times the material height, and, if desired, using the anvil as an upper anvil, a lower anvil,
Since the anvil with a width of ~ 1.5 times and an axial length of 1 ~ 1.5 times the material length is used, a large metal material can be efficiently pressed down to the center even if it is large. Defects such as voids in the portion can be reliably eliminated. Further, according to this method, the required load can be reduced, and the effect on the press equipment is also reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、この発明の一実施例を示す正面および
側面図である。
FIG. 1 is a front view and a side view showing an embodiment of the present invention.

【図2】図2は、他の実施例を示す正面および側面図で
ある。
FIG. 2 is a front view and a side view showing another embodiment.

【図3】図3は、素材中心部における荷重比と静水圧応
力比との関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a load ratio and a hydrostatic stress ratio at a material center portion.

【図4】図4は、素材中心部における静水圧応力比への
金敷軸方向長さの影響を示すグラフである。
FIG. 4 is a graph showing the effect of the length of the anvil axis direction on the hydrostatic stress ratio at the center of the material.

【図5】図5は、素材中心部における静水圧応力比への
金敷幅の影響を示すグラフである。
FIG. 5 is a graph showing the influence of the anvil width on the hydrostatic stress ratio at the center of the material.

【符号の説明】[Explanation of symbols]

1 円形断面素材 2 上金敷 3 下金敷 4 下金敷 1 circular section material 2 upper anvil 3 lower anvil 4 lower anvil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩館 忠雄 北海道室蘭市茶津町4番地 株式会社日 本製鋼所内 (58)調査した分野(Int.Cl.6,DB名) B21J 5/00 B21J 1/06──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Tadao Iwadate 4 Chazu-cho, Muroran-shi, Hokkaido Inside Japan Steel Works, Ltd. (58) Field surveyed (Int. Cl. 6 , DB name) B21J 5/00 B21J 1 / 06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 予備加熱した金属材料の表面層を冷却さ
せるとともに、材料幅の0.4〜0.7倍の幅を有し、
かつ材料高さの0.3〜0.5倍の軸方向長さを有する
すくなくとも1つの金敷を用いた上下金敷間で金属材料
の鍛錬を行なうことを特徴とする金属材料の熱間鍛錬方
1. A preheated surface layer of a metal material is cooled, and has a width of 0.4 to 0.7 times the material width.
Forging a metal material between at least one anvil and at least one anvil having an axial length of 0.3 to 0.5 times the material height.
【請求項2】 予備加熱した金属材料の表面層を冷却さ
せるとともに、材料幅の0.4〜0.7倍の幅を有し、
かつ材料高さの0.3〜0.5倍の軸方向長さを有する
上金敷と、材料幅の1〜1.5倍の幅を有し、かつ材料
長さの1〜1.5倍の軸方向長さを有する下金敷とで金
属材料の鍛錬を行なうことを特徴とする金属材料の熱間
鍛錬方法
2. A method for cooling a surface layer of a pre-heated metal material and having a width of 0.4 to 0.7 times the material width,
And an upper anvil having an axial length of 0.3 to 0.5 times the material height, and a width of 1 to 1.5 times the material width, and 1 to 1.5 times the material length Forging a metal material with an underlay having a length in the axial direction, the method comprising the steps of:
JP9525993A 1993-03-30 1993-03-30 Hot forging method for metal materials Expired - Lifetime JP2854215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9525993A JP2854215B2 (en) 1993-03-30 1993-03-30 Hot forging method for metal materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9525993A JP2854215B2 (en) 1993-03-30 1993-03-30 Hot forging method for metal materials

Publications (2)

Publication Number Publication Date
JPH06277783A JPH06277783A (en) 1994-10-04
JP2854215B2 true JP2854215B2 (en) 1999-02-03

Family

ID=14132774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9525993A Expired - Lifetime JP2854215B2 (en) 1993-03-30 1993-03-30 Hot forging method for metal materials

Country Status (1)

Country Link
JP (1) JP2854215B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016030269A (en) * 2014-07-28 2016-03-07 Jfeスチール株式会社 Slab forging method
CN112626419A (en) * 2020-12-17 2021-04-09 太原重工股份有限公司 Manufacturing process of large-scale main shaft single vacuum steel ingot forge piece

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4956518B2 (en) * 2008-10-03 2012-06-20 株式会社神戸製鋼所 Method for forging work material
JP5374390B2 (en) * 2010-01-07 2013-12-25 株式会社神戸製鋼所 Forging method to improve internal defects in forgings
JP6156459B2 (en) * 2014-10-02 2017-07-05 Jfeスチール株式会社 Method for forging steel material and method for producing steel material using the forging method
CN112247041B (en) * 2020-08-25 2023-05-02 山东润金重工科技有限公司 Green rapid forging method for square steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016030269A (en) * 2014-07-28 2016-03-07 Jfeスチール株式会社 Slab forging method
CN112626419A (en) * 2020-12-17 2021-04-09 太原重工股份有限公司 Manufacturing process of large-scale main shaft single vacuum steel ingot forge piece
CN112626419B (en) * 2020-12-17 2022-08-30 太原重工股份有限公司 Manufacturing process of large-scale main shaft single vacuum steel ingot forge piece

Also Published As

Publication number Publication date
JPH06277783A (en) 1994-10-04

Similar Documents

Publication Publication Date Title
JPS6350414B2 (en)
JP2854215B2 (en) Hot forging method for metal materials
CN110144533A (en) A method for regulating the coarse second phase of 2219 aluminum alloy ring
JP2000263103A (en) Production of extra-thick steel plate using continuously cast slab
JP3707799B2 (en) Zirconium alloy tube manufacturing method
JP2000015326A (en) Die for copper hot extrusion and its manufacture
JP3031484B2 (en) Method for producing steel wire rod or steel bar having spheroidized structure
US20230166321A1 (en) Forging method for high-silver aluminum alloy and high-silver aluminum alloy forged part
JP2807151B2 (en) Hot upsetting forging
JPH06292906A (en) Method for manufacturing titanium and titanium alloy rods and wires
JP2781296B2 (en) Manufacturing method of forged steel roll for cold rolling
JPH08332544A (en) Upsetting method for long materials
JP3289132B2 (en) Method of manufacturing billet for bar steel
JP2651761B2 (en) Manufacturing method of carbon steel wire with excellent mechanical descaling for cold heading
JP3754563B2 (en) Hot forging method for mold steel or tool steel
JP3266053B2 (en) Anvil for free forging
JP2562942B2 (en) Hot forging method for large steel
JP4253953B2 (en) Method for producing continuous cast extra heavy steel plate with excellent HIC resistance
JPH02274810A (en) Manufacturing method for high tensile strength non-tempered bolts
JPH0669569B2 (en) Manufacturing method of extra thick steel plate with excellent internal properties
JP2672236B2 (en) Method for producing H-beam with excellent toughness
JPS634907B2 (en)
JPH04254559A (en) Production of extremely fine wire
JPH11244901A (en) Blooming rolling method for improving quality of steel such as ball bearing steel
JPH08117920A (en) Tube upset processing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101120

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111120

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20131120