[go: up one dir, main page]

JP6156321B2 - Hot forging method of slab - Google Patents

Hot forging method of slab Download PDF

Info

Publication number
JP6156321B2
JP6156321B2 JP2014215520A JP2014215520A JP6156321B2 JP 6156321 B2 JP6156321 B2 JP 6156321B2 JP 2014215520 A JP2014215520 A JP 2014215520A JP 2014215520 A JP2014215520 A JP 2014215520A JP 6156321 B2 JP6156321 B2 JP 6156321B2
Authority
JP
Japan
Prior art keywords
slab
reduction
anvil
width direction
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014215520A
Other languages
Japanese (ja)
Other versions
JP2016078108A (en
Inventor
祐介 寺澤
祐介 寺澤
正之 堀江
正之 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014215520A priority Critical patent/JP6156321B2/en
Publication of JP2016078108A publication Critical patent/JP2016078108A/en
Application granted granted Critical
Publication of JP6156321B2 publication Critical patent/JP6156321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Forging (AREA)

Description

本発明は、スラブ鍛造方法に関し、特にスラブの幅/厚み比が大きいスラブを鍛造する場合においても、優れたポロシティ圧着能力を達成しようとするものである。   The present invention relates to a slab forging method, and in particular, when a slab having a large slab width / thickness ratio is forged, an excellent porosity pressing capability is achieved.

一般に、厚鋼板は、連続鋳造で製造したスラブ、あるいは鋳型鋳造したインゴットを分塊圧延したスラブを素材として、これらを熱間で圧下することで製造される。これらの製造方法を比較すると、連続鋳造の方が製造コストおよび製造能率の点で優れるため、主流な製造方法となっている。   In general, a thick steel plate is manufactured by using a slab manufactured by continuous casting or a slab obtained by performing ingot rolling of a mold casting as a raw material, and pressing them hot. When these manufacturing methods are compared, continuous casting is more dominant in terms of manufacturing cost and manufacturing efficiency, and is therefore a mainstream manufacturing method.

しかしながら、いずれのスラブ製造方法においても、鋳造時の最終凝固位置に、溶鋼の凝固時の体積収縮に起因してポロシティとよばれる空隙欠陥が発生する。このポロシティは、特に板厚中心部で発生するため、板厚中心部に応力やひずみが加わり難い圧延による加工では、ポロシティの圧着不良がしばしば問題となる。
そのため、ポロシティを圧着させるための方法として、板厚中心部に加わる応力やひずみの大きい熱間鍛造による内質の改善方法が開発されてきた(例えば特許文献1〜3)。
However, in any slab manufacturing method, void defects called porosity are generated at the final solidification position during casting due to volume shrinkage during solidification of the molten steel. Since this porosity occurs particularly in the center portion of the plate thickness, in the processing by rolling in which stress and strain are not easily applied to the center portion of the plate thickness, poor pressure bonding of the porosity often becomes a problem.
Therefore, as a method for pressure bonding the porosity, a method for improving the internal quality by hot forging with a large stress or strain applied to the center portion of the plate thickness has been developed (for example, Patent Documents 1 to 3).

特開2002−194431号公報JP 2002-194431 A 特開昭54−139860号公報JP-A-54-139860 特開平6−277783号公報JP-A-6-277783

しかしながら、スラブの凝固はスラブ表層から中心部に向かって進むため、連続鋳造スラブの特徴として、スラブの幅端部近傍に、鋳造時のスラブの表面からの凝固、裏面からの凝固、幅端面からの凝固進行の最終凝固位置が一致した凝固3重点が存在する。この凝固3重点は、他の場所よりも粗大なポロシティが多数存在するため、ポロシティ圧着不良が特に問題となる箇所である。   However, since solidification of the slab proceeds from the surface of the slab toward the center, as a feature of the continuous cast slab, solidification from the surface of the slab during casting, solidification from the back surface, There exists a triple point of coagulation in which the final coagulation position of the coagulation progress is consistent. This solidification triple point is a location where porosity compression defects are particularly problematic because there are a lot of coarser porosities than other places.

特許文献1は、上下対称金敷による鍛造方法、特許文献2〜3は、上下対称金敷よりもさらに優れたポロシティ圧着能力を有する上下非対称金敷による鍛造方法であるが、いずれも凝固3重点以外の箇所ではポロシティ圧着能力を確保できても、スラブの幅端部近傍の凝固3重点に存在する粗大ポロシティに対しては圧着能力が不足していた。   Patent Document 1 is a forging method using a vertically symmetric anvil, and Patent Documents 2 to 3 are forging methods using a vertically asymmetric anvil having a porosity crimping capability that is even better than that of a vertically symmetric anvil. Then, even if the porosity crimping capability was secured, the crimping capability was insufficient for the coarse porosity existing at the solidification triple point near the width end of the slab.

本発明は、上記の問題を有利に解決するもので、スラブの幅方向圧下の際に、スラブ幅端部近傍を均等に肥厚化させることにより、スラブ全長にわたってムラなくポロシティを圧着させることができるスラブの鍛造方法を提案することを目的とする。   The present invention advantageously solves the above-described problem, and when the slab is reduced in the width direction, the thickness of the slab width end portion is uniformly thickened to uniformly bond the porosity over the entire length of the slab. The purpose is to propose a slab forging method.

さて、発明者等は、上記問題を解決するために、幅方向圧下時におけるスラブ幅端部近傍の肥厚化に関して鋭意検討を行った結果、以下に述べる知見を得た。
上下の幅が異なる非対称金敷によりスラブの幅方向圧下を行うと、短尺側の金敷の方が面圧が高いため、図1に示すように、主に短尺金敷圧下側のスラブ幅端部近傍に肥厚化が生じる。このような短尺側の金敷による幅方向圧下をスラブ幅端部の両側から行うことにより、スラブの両幅端部近傍を肥厚化させることができる。なお、短尺側での圧下をスラブ幅端部の両側面から行うには、スラブを反転させてやれば良い。
したがって、かような幅方向圧下後、厚み方向の圧下を行うと、肥厚化の分だけ大きな圧下を加えることができるので、凝固3重点に存在する粗大ポロシティの圧着が可能となる。
図1中、符号1は上金敷(短尺側金敷)、2は下金敷(長尺側金敷)、3はスラブであり、4が肥厚化部である。
Now, in order to solve the above-mentioned problems, the inventors have conducted intensive studies on thickening in the vicinity of the end portion of the slab width during the width direction reduction, and as a result, have obtained the following knowledge.
When the slab is rolled down in the width direction using an asymmetrical anvil with different vertical widths, the surface pressure of the anvil is shorter on the short side, so as shown in FIG. Thickening occurs. By performing the width direction reduction by such an anvil on the short side from both sides of the slab width end portion, the vicinity of both width end portions of the slab can be thickened. In order to perform the reduction on the short side from both side surfaces of the slab width end, the slab may be reversed.
Therefore, if the reduction in the thickness direction is performed after such a reduction in the width direction, a large reduction corresponding to the thickening can be applied, so that it is possible to press the coarse porosity present in the solidification triple point.
In FIG. 1, reference numeral 1 is an upper anvil (short-side anvil), 2 is a lower anvil (long-side anvil), 3 is a slab, and 4 is a thickening portion.

ところで、幅方向圧下時の肥厚化については、図2に示すように、金敷接触領域の端部で最大となり、金敷接触領域の中心部では最小となることが明らかとなった。
通常、金敷の幅はスラブの長さに対して短いため、スラブ全長にわたって幅方向圧下を行う場合は数回に分けて幅方向圧下を行う必要があることから、局所的に、金敷接触領域の中心部で圧下された箇所すなわち肥厚化量の小さい箇所が存在することになる。
By the way, as shown in FIG. 2, it became clear that the thickening at the time of the width direction reduction becomes maximum at the end of the anvil contact region and minimum at the center of the anvil contact region.
Normally, the width of the anvil is short relative to the length of the slab, so when performing the widthwise reduction over the entire length of the slab, it is necessary to perform the widthwise reduction in several times. There will be a place where the center is crushed, that is, a place where the amount of thickening is small.

そこで、発明者らは、上記の問題を解決して、肥厚化によるポロシティ圧着効果をスラブ全長にわたってムラなく確保すべく検討を重ねた結果、短尺側と長尺側の金敷の配置が同じ条件でスラブの幅方向圧下を少なくとも2回に分けて行い、1回目と2回目とで圧下位相をずらす方法に想い到った。
すなわち、発明者の検討によれば、図3に示すように、短尺側金敷の圧下位置を基準として、1回目のスラブ送り代境界と2回目の圧下時の金敷接触長さ(B)の中心とのずれ(ΔL)がΔL≦0.20Bの関係を満たすように幅方向圧下を行えば、良好なポロシティ圧着能力を確保できることが見出されたのである。このΔLは、全幅方向圧下パスの内の最大値を用いる。
Therefore, the inventors have solved the above-mentioned problem, and as a result of repeated studies to ensure the porosity crimping effect due to thickening over the entire length of the slab, the arrangement of the anvil on the short side and the long side is the same condition. The inventors came up with a method in which the reduction in the width direction of the slab was divided at least twice and the reduction phase was shifted between the first time and the second time.
That is, according to the inventor's investigation, as shown in FIG. 3, the center of the anvil contact length (B) at the first slab feed allowance boundary and the second reduction is based on the reduction position of the short side anvil. It has been found that good porosity crimping capability can be ensured if the width reduction is performed so that the deviation (ΔL) from the above satisfies the relationship ΔL ≦ 0.20B. As this ΔL, the maximum value in the full-width direction reduction path is used.

上記のような条件で幅方向のスラブ圧下を行うことにより、短尺金敷圧下側のスラブ幅端部近傍が均等に肥厚化して、ポロシティ圧着能力を向上させることができる。
従って、スラブの幅方向両端部近傍に対して同様な肥厚化を生じさせるには、幅方向のスラブ圧下を、1段目と2段目との間にスラブの反転を行う2段階で、かつ各段階において少なくとも2回の圧下を行うものとし、各段階における幅方向のスラブ圧下の際、短尺側の金敷での圧下位置が、最初のスラブ圧下時におけるスラブ送り代境界と次回の圧下時における金敷接触長さ(B)の中心とのずれ(ΔL)がΔL≦0.20Bを満足するように、圧下位相をずらしてやれば良い。
By performing the slab reduction in the width direction under the above conditions, the vicinity of the slab width end portion on the short anvil reduction side can be uniformly thickened, and the porosity crimping ability can be improved.
Therefore, in order to cause the same thickening in the vicinity of both ends in the width direction of the slab, the slab pressure in the width direction is divided into two stages in which the slab is reversed between the first stage and the second stage, and At each stage, at least two reductions are performed, and when the slab is reduced in the width direction at each stage, the reduction position at the short side of the anvil is the boundary between the slab feed allowance at the first slab reduction and the next reduction. The rolling phase may be shifted so that the deviation (ΔL) from the center of the anvil contact length (B) satisfies ΔL ≦ 0.20B.

また、幅方向圧下時の肥厚化は幅方向圧下量に伴って増加するので、凝固3重点の粗大ポロシティ圧着能力を確保するためには、位相をずらした幅方向圧下のそれぞれの圧下率を4%以上とする必要があることも判明した。
なお、短尺側と長尺側の金敷の配置が同じ条件下での幅方向圧下の回数は、2回に限定されず、互いの圧下位相を適正にずらすのであればそれ以上の回数であっても良いことも確認された。
In addition, since the thickening at the time of the width direction reduction increases with the amount of the width direction reduction, in order to secure the coarse porosity crimping ability of the solidification triple point, the respective reduction ratios of the width direction reductions shifted from each other by 4 are set. It has also been found that it is necessary to make it at least%.
In addition, the number of times of the width direction rolling under the same arrangement of the anvil on the short side and the long side is not limited to two times, and if the mutual rolling phase is appropriately shifted, it is more than that number. It was also confirmed that it was good.

さらに、上記したようなスラブ幅方向圧下後の厚み方向の圧下においては、総圧下率を10%以上とすることが良好なポロシティ圧着能力を確保する上で必要であることも併せて見出された。
本発明は、上記の知見を基に、さらに検討を加えた末に開発されたものである。
Furthermore, in the reduction in the thickness direction after the reduction in the slab width direction as described above, it has also been found that the total reduction ratio is required to ensure good porosity crimping ability to be 10% or more. It was.
The present invention was developed after further studies based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.連続鋳造により製造したスラブに対し、上下非対称の金敷を用いて、連続的に幅方向ついで厚み方向に圧下を加えることからなるスラブ鍛造方法において、
上記幅方向のスラブ圧下を、1段目と2段目との間にスラブの反転を行う2段階で、かつ各段階において少なくとも2回の圧下を行うものとし、各段階における幅方向のスラブ圧下の際、短尺側の金敷での圧下位置が、最初のスラブ圧下時におけるスラブ送り代境界と次回の圧下時における金敷接触長さ(B)の中心とのずれ(ΔL)がΔL≦0.20Bを満足するように、圧下位相をずらして行うと共に、
上記幅方向のスラブ圧下におけるそれぞれの圧下率を4%以上とし、かつ
上記厚み方向のスラブ圧下における総圧下率を10%以上とする
ことを特徴とするスラブ鍛造方法。
That is, the gist configuration of the present invention is as follows.
1. In a slab forging method consisting of continuously rolling down in the width direction and then in the thickness direction, using an asymmetrical anvil on the slab produced by continuous casting,
The slab pressure reduction in the width direction is performed in two stages in which the slab is reversed between the first stage and the second stage, and at least twice in each stage, and the slab pressure reduction in the width direction in each stage. In this case, the reduction position of the anvil on the short side is such that the deviation (ΔL) between the slab feed allowance boundary at the first slab reduction and the center of the anvil contact length (B) at the next reduction is ΔL ≦ 0.20B. In order to satisfy
Each slab forging method characterized by making each rolling reduction in the width direction slab pressure 4% or more and making the total rolling reduction in the thickness direction slab pressure 10% or more.

2.前記スラブの幅/厚み比が2.0以上であることを特徴とする前記1に記載のスラブ鍛造方法。 2. 2. The slab forging method according to 1 above, wherein a width / thickness ratio of the slab is 2.0 or more.

本発明によれば、仕上げ板厚が100mmを超えるような極厚鋼板の製造に際しても、スラブ全面にわたって良好なポロシティ圧着能力を確保でき、内質特性に優れた極厚鋼板を安定して得ることができ、産業上極めて有用である。   According to the present invention, even when producing a very thick steel plate having a finished plate thickness exceeding 100 mm, it is possible to secure a good porosity crimping ability over the entire surface of the slab and to stably obtain a very thick steel plate having excellent internal properties. It is extremely useful in industry.

上下非対称の金敷を用いてスラブの幅方向圧下を行った際に短尺金敷圧下側のスラブ幅端部近傍に肥厚化部が生じた状態を示した図である。It is the figure which showed the state in which the thickening part produced in the slab width end part vicinity of the short anvil pressure reduction side, when performing the width direction reduction of a slab using an up-down asymmetrical anvil. スラブ幅端部近傍に生じる肥厚化部が金敷接触領域の端部で最大となり、金敷接触領域の中心部では最小となる状態を示した図である。It is the figure which showed the state where the thickening part produced in the slab width edge part vicinity becomes the maximum in the edge part of an anvil contact area, and becomes the minimum in the center part of an anvil contact area. 1回目のスラブ送り代境界と2回目の圧下時の金敷接触長さ(B)の中心とのずれ(ΔL)を説明した図である。It is a figure explaining the shift | offset | difference ((DELTA) L) with the center of the anvil contact length (B) at the time of the 2nd reduction of a slab feed allowance.

以下、本発明における各構成要件の限定理由について説明する。
・1段目と2段目の間でスラブを反転させる
上下非対称の金敷を用いて、スラブの幅方向圧下を行う場合、スラブ幅端部近傍に肥厚化が生じるのは短尺金敷圧下側のみなので、スラブの両幅端部近傍を肥厚化させるには、スラブの幅方向圧下を、1段目と2段目の2段階で行い、この間にスラブを反転させる必要がある。
Hereinafter, the reason for limitation of each component in the present invention will be described.
・ Inverting the slab between the first and second stages When using an asymmetrical anvil to reduce the width of the slab in the width direction, thickening occurs near the end of the slab width only on the short anvil downside. In order to thicken the vicinity of both width end portions of the slab, it is necessary to perform slab width reduction in two stages, the first stage and the second stage, and to reverse the slab during this period.

・最初のスラブ幅方向圧下時おける短尺側のスラブ送り代境界と、次回のスラブ幅方向圧下時における金敷接触長さ(B)の中心とのずれ(ΔL)について、ΔL≦0.20Bの関係を満足させる
上下非対称金敷を用いた幅方向圧下では、短尺側金敷の面圧が大きくなるため、スラブ幅方向圧下時の肥厚化は主に短尺側で起こる。このため、圧下基準は短尺側とする。
そして、ΔLが0.20Bよりも大きくなると、依然として金敷接触領域中心部に肥厚化量が小さい箇所が生じ、その影響により、部分的にポロシティ圧着能力が不足する領域が発生する。そのためΔL≦0.20Bとした。好ましくはΔL≦0.15Bである。
The relationship of ΔL ≦ 0.20B regarding the deviation (ΔL) between the short slab feed allowance boundary at the time of the first slab width direction reduction and the center of the anvil contact length (B) at the next slab width direction reduction. In the width direction reduction using an up-down asymmetrical anvil, the surface pressure of the short side anvil increases, so thickening during the slab width direction reduction mainly occurs on the short side. For this reason, the reduction standard is the short side.
When ΔL becomes larger than 0.20B, a portion where the thickening amount is still small is generated at the center portion of the anvil contact region, and due to the influence, a region where the porosity crimping capability is partially insufficient is generated. Therefore, ΔL ≦ 0.20B. Preferably ΔL ≦ 0.15B.

・位相をずらした幅方向圧下におけるそれぞれの圧下率が4%以上
幅方向圧下量が4%に満たないと、幅端部近傍の肥厚量を十分に大きくすることができず、凝固3重点のポロシティ圧着能力が不足する場合がある。そのため、位相をずらした幅方向圧下のそれぞれの圧下率は4%以上とする。
-Each rolling reduction ratio in the width direction with the phase shifted is 4% or more If the width direction rolling amount is less than 4%, the thickening amount in the vicinity of the width end cannot be increased sufficiently, and the solidification triple point Porosity crimping ability may be insufficient. Therefore, each rolling reduction in the width direction with the phase shifted is set to 4% or more.

・スラブの厚み方向圧下における総圧下率が10%以上
スラブの幅方向圧下後の厚み方向圧下における総圧下率が10%未満では、十分なポロシティ圧着能力を発揮することが難しい。そのため、厚み方向圧下の総圧下率は10%以上とする。なお、この総圧下率は、幅方向圧下後の肥厚化量を考慮していないスラブ初期厚みを基準とした圧下率である。
-The total reduction ratio in the thickness direction reduction of the slab is 10% or more. If the total reduction ratio in the thickness direction reduction after the reduction in the width direction of the slab is less than 10%, it is difficult to exhibit sufficient porosity pressing capability. Therefore, the total reduction ratio in the thickness direction is 10% or more. This total rolling reduction is a rolling reduction based on the initial slab thickness that does not take into account the amount of thickening after rolling in the width direction.

・スラブの反転を挟む1段目と2段目のスラブの幅方向圧下において、それぞれ少なくとも2回の圧下を行う
図1に示したように、短尺側と長尺側の金敷の配置が等しい条件でスラブの幅方向圧下を行った場合に肥厚化が生じるのは、短尺金敷側のスラブ幅端部近傍のみであり、これでは肥厚化が生じた側のスラブ幅端部しかポロシティを圧着することができない。
この点、スラブの両幅端部近傍を肥厚化するには、次のようにすれば良い。
すなわち、上記のようにしてスラブの幅方向圧下を少なくとも2回行ったのち、スラブを反転させ、ついで同様に、短尺側の金敷での圧下位置がΔL≦0.20Bを満足するように圧下位相をずらした条件でさらに少なくとも2回の幅方向圧下を行うのである。
・ At least two reductions in the width direction of the first and second slabs across the inversion of the slab, respectively, as shown in FIG. When the slab is rolled down in the width direction, thickening occurs only in the vicinity of the end of the slab width on the short anvil side. I can't.
In this respect, in order to thicken the vicinity of both width end portions of the slab, the following may be performed.
That is, after the slab is reduced in the width direction at least twice as described above, the slab is reversed, and similarly, the reduction phase is set so that the reduction position on the anvil on the short side satisfies ΔL ≦ 0.20B. Further, the width direction reduction is further performed at least twice under the condition of shifting.

上述したように、2回の幅方向圧下を行ったのち、スラブを反転させ、ついで同様にして2回の幅方向圧下を行うことにより、スラブの両幅端部近傍を肥厚化することができ、したがってその後に厚み方向圧下を行うことによって、スラブの全面にわたるポロシティの圧着が可能になるのである。
なお、本発明に従う幅方向圧下は、上述したような2回圧下−スラブ反転−2回圧下に限るものではなく、互いの圧下位相が適正に調整されていればそれぞれ3回以上の圧下とすることができ、さらに必要であればこのような一連の操作を繰り返し施しても良い。
As described above, after performing the widthwise reduction twice, the slab is reversed, and then the widthwise reduction is performed twice in the same manner, so that the vicinity of both width ends of the slab can be thickened. Therefore, the subsequent pressure reduction in the thickness direction enables the pressure bonding of the porosity over the entire surface of the slab.
In addition, the width direction reduction according to the present invention is not limited to the above-described two-time reduction-slab reversal-two-time reduction. If the respective reduction phases are appropriately adjusted, the reduction is performed three times or more. In addition, if necessary, such a series of operations may be repeated.

そして、本発明は、従来、十分なポロシティ圧着能力を得ることが難しいとされた幅/厚み比が2.0以上のスラブに適用して特に好適である。   The present invention is particularly suitable when applied to a slab having a width / thickness ratio of 2.0 or more, for which it has been difficult to obtain sufficient porosity pressing capability.

なお、本発明は、圧下されるスラブの化学組成の影響を受けないため、どのような化学組成のスラブにも適用可能である。
また、スラブの反転は、スラブの長手方向端部を挟んでいるマニピュレータを利用することで、容易に行うことができる。
Since the present invention is not affected by the chemical composition of the slab to be pressed, it can be applied to a slab having any chemical composition.
The slab can be easily reversed by using a manipulator that sandwiches the longitudinal end of the slab.

連続鋳造で製造した一般構造用400MPa級鋼、一般構造用490MPa級鋼および調質780MPa級鋼について、それぞれ厚み310mm、幅2400mm、長さ3000〜4300mmの鋳片を準備した。これらを、加熱炉で1200〜1250℃に加熱後、6000トン鍛造プレス機にて、スラブの幅方向圧下を行ったのち、厚み方向圧下を行う、という熱間鍛造を行った。   Cast pieces having a thickness of 310 mm, a width of 2400 mm, and a length of 3000 to 4300 mm were prepared for the general structural 400 MPa class steel, the general structural 490 MPa class steel, and the tempered 780 MPa class steel manufactured by continuous casting. After heating these to 1200-1250 degreeC with a heating furnace, after performing the width direction reduction of a slab with a 6000-ton forging press, the hot forging of performing thickness direction reduction was performed.

表1に、熱間鍛造における圧下条件と、鍛造後のスラブの内質特性を超音波探傷試験により調査した結果を示す。超音波探傷試験およびその合否判定は、JIS G 0801に準じて行い、合格した場合を○、不合格の場合を×で示した。なお、金敷は上下非対称形状のものを用いた。位相をずらした幅方向圧下の各圧下率は、位相をずらして短尺側金敷で圧下を行った全てのパスの内の最小の値である。   Table 1 shows the results of an investigation of the rolling conditions in hot forging and the internal properties of the slab after forging by an ultrasonic flaw detection test. The ultrasonic flaw detection test and the pass / fail judgment were performed according to JIS G 0801, and the case of passing was indicated by ◯ and the case of failure was indicated by ×. The anvil used was an asymmetrical shape. Each reduction ratio in the width direction with the phase shifted is the minimum value of all the paths that have been shifted with the short side anvil with the phase shifted.

Figure 0006156321
Figure 0006156321

No.1,2,3,5,8,12,13,14,17の発明例はいずれも、スラブの幅方向圧下時における肥厚化効果と、その後の厚み方向圧下効果により、優れたポロシティ圧着能力を有していた。
これに対し、No.7,11の比較例は、スラブの幅方向圧下時における位相ずらしが不適切であったため、金敷接触領域中心部の肥厚化量の小さい箇所でポロシティが残存した。
また、No.10,18の比較例は、スラブ幅方向の圧下率が不足したため、十分な肥厚化量が得られず、ポロシティ圧着能力が不足した。
No.4,15の比較例は、スラブ厚み方向の総圧下率が不足したため、ポロシティ圧着能力が不足した。
さらに、No.6,9,16の比較例は、短尺側金敷で位相ずらし幅方向圧下を行ったのが幅片側端のみであったため、もう一方の幅端部で肥厚化効果が得られず、ポロシティが残存した。
No. The invention examples 1, 2, 3, 5, 8, 12, 13, 14, and 17 all have excellent porosity crimping ability due to the thickening effect during the slab width reduction and the subsequent thickness reduction effect. Had.
In contrast, no. In Comparative Examples 7 and 11, the phase shift at the time of the slab reduction in the width direction was inappropriate, and therefore porosity remained at a location where the thickening amount was small at the center of the anvil contact area.
No. In Comparative Examples 10 and 18, since the rolling reduction in the slab width direction was insufficient, a sufficient amount of thickening could not be obtained, and the porosity pressing capability was insufficient.
No. In Comparative Examples 4 and 15, the total pressure reduction rate in the slab thickness direction was insufficient, so that the porosity crimping capability was insufficient.
Furthermore, no. In the comparative examples of 6, 9 and 16, only the width one side end was shifted in the width direction by shifting the phase with the short side anvil, so that the thickening effect was not obtained at the other width end portion, and the porosity remained. did.

1 上金敷
2 下金敷
3 スラブ
4 肥厚化部
1 Upper anvil 2 Lower anvil 3 Slab 4 Thickening part

Claims (2)

連続鋳造により製造したスラブに対し、上下非対称の金敷を用いて、連続的に幅方向ついで厚み方向に圧下を加えることからなるスラブの熱間鍛造方法において、
上記幅方向のスラブ圧下を、1段目と2段目との間にスラブの反転を行う2段階で、かつ各段階において少なくとも2回の圧下を行うものとし、各段階における幅方向のスラブ圧下の際、短尺側の金敷としてその幅が400〜1200mmの金敷を、また長尺側の金敷としてその幅が800〜1500mmの金敷を用い、該短尺側の金敷での圧下位置が、最初のスラブ圧下時におけるスラブ送り代境界と次回の圧下時における金敷接触長さ(B)の中心とのずれ(ΔL)がΔL≦0.20Bを満足するように、圧下位相をずらして行うと共に、
上記幅方向のスラブ圧下におけるそれぞれの圧下率を4%以上とし、かつ
上記厚み方向のスラブ圧下における総圧下率を10%以上とする
ことを特徴とするスラブの熱間鍛造方法。
In the hot forging method of a slab consisting of continuously rolling down in the width direction and then in the thickness direction, using an asymmetrical anvil for a slab produced by continuous casting,
The slab pressure reduction in the width direction is performed in two stages in which the slab is reversed between the first stage and the second stage, and at least twice in each stage, and the slab pressure reduction in the width direction in each stage. when the anvil its width is 400~1200mm as anvil of the short side, also using the anvil width of 800~1500mm as anvil long side, pressing position in anvil of the short side, the first slab While shifting the rolling phase so that the deviation (ΔL) between the slab feed allowance boundary at the time of rolling down and the center of the anvil contact length (B) at the next rolling down satisfies ΔL ≦ 0.20B,
A method for hot forging a slab , characterized in that each rolling reduction under the slab pressure in the width direction is 4% or more, and the total rolling reduction under the slab pressure in the thickness direction is 10% or more.
前記スラブの幅/厚み比が2.0以上であることを特徴とする請求項1に記載のスラブの熱間鍛造方法。 The slab hot forging method according to claim 1, wherein a width / thickness ratio of the slab is 2.0 or more.
JP2014215520A 2014-10-22 2014-10-22 Hot forging method of slab Active JP6156321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014215520A JP6156321B2 (en) 2014-10-22 2014-10-22 Hot forging method of slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014215520A JP6156321B2 (en) 2014-10-22 2014-10-22 Hot forging method of slab

Publications (2)

Publication Number Publication Date
JP2016078108A JP2016078108A (en) 2016-05-16
JP6156321B2 true JP6156321B2 (en) 2017-07-05

Family

ID=55957116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014215520A Active JP6156321B2 (en) 2014-10-22 2014-10-22 Hot forging method of slab

Country Status (1)

Country Link
JP (1) JP6156321B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023089951A1 (en) 2021-11-19 2023-05-25 Jfeスチール株式会社 Thick steel sheet and manufacturing method therefor
WO2023089950A1 (en) 2021-11-19 2023-05-25 Jfeスチール株式会社 Thick steel sheet and manufacturing method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102086366B1 (en) 2018-09-11 2020-03-09 두산중공업 주식회사 Forging Method With Adjustable Width And Length For Thick Slab
KR102110525B1 (en) 2020-03-02 2020-05-13 두산중공업 주식회사 Forging Method With Adjustable Width And Length For Thick Slab

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819373B2 (en) * 1978-04-21 1983-04-18 新日本製鐵株式会社 Forging method for metal materials
AT407230B (en) * 1996-02-20 2001-01-25 Gfm Gmbh METHOD FOR PRODUCING METAL ROD MATERIAL
JP3528504B2 (en) * 1997-03-27 2004-05-17 Jfeスチール株式会社 Manufacturing method of extra thick steel plate
JP2002194431A (en) * 2000-12-26 2002-07-10 Kawasaki Steel Corp Method for producing continuous casting-made extra- thick steel plate
JP2002210502A (en) * 2001-01-19 2002-07-30 Kawasaki Steel Corp Manufacturing method for extremely thick steel
JP2003311303A (en) * 2002-04-26 2003-11-05 Jfe Steel Kk Method for manufacturing hot rolled steel plate
JP2006068766A (en) * 2004-09-01 2006-03-16 Daido Steel Co Ltd Rolling method for billet
JP4543980B2 (en) * 2005-03-22 2010-09-15 Jfeスチール株式会社 Manufacturing method of extra-thick steel plate with excellent internal properties
JP5949629B2 (en) * 2013-03-28 2016-07-13 Jfeスチール株式会社 Manufacturing method of extra-thick austenitic stainless steel plate with excellent internal properties and extra-thick austenitic stainless steel plate with excellent internal properties

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023089951A1 (en) 2021-11-19 2023-05-25 Jfeスチール株式会社 Thick steel sheet and manufacturing method therefor
WO2023089950A1 (en) 2021-11-19 2023-05-25 Jfeスチール株式会社 Thick steel sheet and manufacturing method therefor

Also Published As

Publication number Publication date
JP2016078108A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP6156321B2 (en) Hot forging method of slab
KR101892838B1 (en) Continuous casting method for slab
WO2014030701A1 (en) Method for continuous casting of steel, and method for manufacturing bar steel
JP6156459B2 (en) Method for forging steel material and method for producing steel material using the forging method
WO2007058157A1 (en) Hot-rolled t-bar for hull reinforcing member and process for producing hot-rolled t-bar
JP2016030269A (en) Slab forging method
JP4543980B2 (en) Manufacturing method of extra-thick steel plate with excellent internal properties
JP6156455B2 (en) Slab forging method
JP6439637B2 (en) Steel forging method
EP3695913A1 (en) Method for manufacturing hat-shaped steel piling
JP5724749B2 (en) Manufacturing method of H-section steel
JP5810651B2 (en) Billet continuous casting method
JP5822638B2 (en) Method for preventing generation of surface defects on the pressed surface of continuous cast pieces
JP6156320B2 (en) Steel forging method
CN111867751B (en) Method for continuously casting steel and roll for continuous casting
JPH10263614A (en) Production of extra thick steel plate
JP5949629B2 (en) Manufacturing method of extra-thick austenitic stainless steel plate with excellent internal properties and extra-thick austenitic stainless steel plate with excellent internal properties
JP5994712B2 (en) Manufacturing method of ultra-thick martensitic stainless steel plate with excellent internal properties
JP6589755B2 (en) Intermediate universal rolling method for section steel with flange
JP6199218B2 (en) Manufacturing method of slab for thick plate
JP7172346B2 (en) Reduction method for continuous casting
JP2006068766A (en) Rolling method for billet
JP4954933B2 (en) Method for producing non-oriented electrical steel sheet with less seam defects
JP2000140906A (en) Manufacture of ultra-heavy steel plate at extremely large reduction ratio
JP4274344B2 (en) Split rolling method for producing constant strain steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R150 Certificate of patent or registration of utility model

Ref document number: 6156321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250