JP5943156B1 - 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 - Google Patents
高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 Download PDFInfo
- Publication number
- JP5943156B1 JP5943156B1 JP2015559360A JP2015559360A JP5943156B1 JP 5943156 B1 JP5943156 B1 JP 5943156B1 JP 2015559360 A JP2015559360 A JP 2015559360A JP 2015559360 A JP2015559360 A JP 2015559360A JP 5943156 B1 JP5943156 B1 JP 5943156B1
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- mass
- strength
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 169
- 239000010959 steel Substances 0.000 title claims abstract description 169
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims description 7
- 239000008397 galvanized steel Substances 0.000 title claims description 7
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 101
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 91
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 78
- 230000000717 retained effect Effects 0.000 claims abstract description 72
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 238000000137 annealing Methods 0.000 claims description 49
- 238000001816 cooling Methods 0.000 claims description 49
- 238000011282 treatment Methods 0.000 claims description 44
- 238000005096 rolling process Methods 0.000 claims description 37
- 238000005246 galvanizing Methods 0.000 claims description 19
- 238000003303 reheating Methods 0.000 claims description 19
- 230000009466 transformation Effects 0.000 claims description 17
- 238000005554 pickling Methods 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- 230000009467 reduction Effects 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 238000004804 winding Methods 0.000 claims description 6
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 2
- 239000013078 crystal Substances 0.000 abstract description 19
- 238000010438 heat treatment Methods 0.000 description 27
- 238000000034 method Methods 0.000 description 25
- 229910001563 bainite Inorganic materials 0.000 description 21
- 230000000694 effects Effects 0.000 description 19
- 238000005098 hot rolling Methods 0.000 description 16
- 239000000463 material Substances 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 238000005097 cold rolling Methods 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- 238000005275 alloying Methods 0.000 description 8
- 229910001562 pearlite Inorganic materials 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 8
- 238000005728 strengthening Methods 0.000 description 8
- 238000007747 plating Methods 0.000 description 7
- 229910052750 molybdenum Inorganic materials 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 239000010960 cold rolled steel Substances 0.000 description 5
- 238000009661 fatigue test Methods 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000005204 segregation Methods 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910001567 cementite Inorganic materials 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229910001568 polygonal ferrite Inorganic materials 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 229910001035 Soft ferrite Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000005501 phase interface Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- -1 tempered martensite Chemical class 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/56—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
- C21D1/60—Aqueous agents
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
加えて、最近では、980MPa級、1180MPa級のTSを有する極めて強度の高い高強度鋼板の適用も検討されている。
本発明は、上記知見に基づいてなされたものである。
1.質量%で、C:0.08%以上0.35%以下、Si:0.50%以上2.50%以下、Mn:1.50%以上3.00%以下、P:0.001%以上0.100%以下、S:0.0001%以上0.0200%以下およびN:0.0005%以上0.0100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成と、
面積率で、フェライトが20%以上50%以下、ベイニティックフェライトが5%以上25%以下、マルテンサイトが1%以上10%以下、焼戻しマルテンサイトが5%以上15%以下であって、体積率で、残留オーステナイトが10%以上であり、
上記残留オーステナイトの平均結晶粒径が2μm以下であって、
上記残留オーステナイト中の平均Mn量(質量%)が鋼中のMn量(質量%)の1.2倍以上であり、
上記残留オーステナイトの平均自由行程が1.2μm以下であって、
上記焼戻しマルテンサイトの平均自由行程が1.2μm以下である鋼組織と、
を有することを特徴とする高強度鋼板。
仕上げ圧延出側温度を800℃以上1000℃以下として前記鋼スラブを熱間圧延して鋼板とし、
平均巻き取り温度を450℃以上700℃以下として前記鋼板を巻き取り、
前記鋼板に酸洗処理を施し、
その後、任意に、前記鋼板を450℃以上Ac1変態点以下の温度で900s以上36000s以下の間保持し、
その後、前記鋼板を圧下率:30%以上で冷間圧延し、
その後、前記鋼板を820℃以上950℃以下の温度に加熱する1回目の焼鈍処理を行い、
次いで、前記鋼板を、500℃までの平均冷却速度が15℃/s以上の条件で、Ms点以下の第1冷却停止温度まで冷却し、
その後、前記鋼板を740℃以上840℃以下の温度に再加熱する2回目の焼鈍処理を行い、
その後、1℃/s以上15℃/s以下の冷却速度で、150℃以上350℃以下の冷却停止温度まで冷却し、
次いで、350℃超550℃以下の再加熱温度まで再加熱し、該再加熱温度で前記鋼板を10s以上の間保持して、
前記1または2に記載の高強度鋼板を製造することを特徴とする高強度鋼板の製造方法。
本発明は、スラブを所定温度に加熱したのち、このスラブを熱間圧延して熱延板を得る。次いで、必要に応じて、熱延後に熱延板に熱処理を施して熱延板を軟質化させる。その後、冷間圧延後のオーステナイト単相域での1回目焼鈍処理後に冷速制御を行うことで、フェライト変態およびパーライト変態を抑制し、2回目焼鈍前の組織を、マルテンサイト単相組織、ベイナイト単相組織、またはマルテンサイトとベイナイトとを主体とする組織とする。そして、最終的には微細な残留オーステナイトとベイニティックフェライトを適正量、鋼組織に含ませる。
さらに、本発明は、2回目焼鈍および冷却過程に生成されるフェライトを積極活用し、残留オーステナイトを微細分散させたのち、2回目焼鈍後の冷却停止温度を低下させ、再加熱処理を施すことで、焼戻しマルテンサイトを含む鋼組織とする。かかる組織とすることによって、780MPa以上のTSを有しつつ、延性のみならず疲労特性に優れ、さらに、伸びフランジ性や、表面性状、通板性に優れる高強度鋼板を得ることができる。
C:0.08質量%以上0.35質量%以下
Cは、鋼を強化するにあたり重要な元素であって、高い固溶強化能を有する。マルテンサイトによる組織強化を利用する場合などは、マルテンサイトの面積率や硬度を調整するために不可欠な元素である。
ここに、C量が0.08質量%未満では、必要なマルテンサイトの面積率が得られずに、マルテンサイトが硬質化しないため、鋼板の十分な強度が得られない。一方、C量が0.35質量%を超えると、鋼板の脆化や遅れ破壊の懸念が生じる。
従って、C量は0.08質量%以上0.35質量%以下、好ましくは0.12質量%以上0.30質量%以下、より好ましくは0.17質量%以上0.26質量%以下の範囲とする。
Siは、残留オーステナイトが分解して炭化物の生成を抑制するのに有効な元素である。さらに、Siは、フェライト中で高い固溶強化能を有するとともに、フェライトからオーステナイトに固溶Cを排出させてフェライトを清浄化し、鋼板の延性を向上させる性質を有する。また、フェライトに固溶したSiは、加工硬化能を向上させて、フェライト自身の延性を高める効果がある。こうした効果を得るには、Si量を0.50質量%以上含有する必要がある。
一方、Si量が2.50質量%を超えると、異常組織が発達し、鋼板の延性と材質安定性が低下する。従って、Si量は0.50質量%以上2.50質量%以下、好ましくは0.80質量%以上2.00質量%以下、より好ましくは1.20質量%以上1.80質量%以下とする。
Mnは、鋼板の強度確保のために有効である。また、焼入れ性を向上させて複合組織化を容易にする。同時に、Mnは、冷却過程でのパーライトやベイナイトの生成を抑制する作用があり、オーステナイトからマルテンサイトへの変態を容易にする。こうした効果を得るには、Mn量を1.50質量%以上にする必要がある。
一方、Mn量が3.00質量%を超えると、板厚方向のMn偏析が顕著となって、材質安定性の低下を招く。従って、Mn量は1.50質量%以上3.00質量%以下、好ましくは1.50質量%以上2.50質量%未満、より好ましくは1.80質量%以上2.40質量%以下とする。
Pは、固溶強化の作用を有し、所望の強度に応じて添加できる元素である。また、フェライト変態を促進するために複合組織化にも有効な元素である。こうした効果を得るためには、P量を0.001質量%以上にする必要がある。
一方、P量が0.100質量%を超えると、溶接性の劣化を招くとともに、亜鉛めっきを合金化処理する場合には、合金化速度を低下させて亜鉛めっきの品質を損なう。従って、P量は0.001質量%以上0.100質量%以下、好ましくは0.005質量%以上0.050質量%以下とする。
Sは、粒界に偏析して熱間加工時に鋼を脆化させるとともに、硫化物として存在して局部変形能を低下させる。そのため、鋼中含有量は0.0200質量%以下とする必要がある。
一方、生産技術上の制約からは、S量を0.0001質量%以上にする必要がある。従って、S量は0.0001質量%以上0.0200質量%以下、好ましくは0.0001質量%以上0.0050質量%以下とする。
Nは、鋼の耐時効性を劣化させる元素である。特に、N量が0.0100質量%を超えると、耐時効性の劣化が顕著となるため、その量は少ないほど好ましい。
一方、生産技術上の制約から、N量は0.0005質量%以上にする必要がある。従って、N量は0.0005質量%以上0.0100質量%以下、好ましくは0.0005質量%以上0.0070質量%以下とする。
Alは、フェライトを生成させ、強度と延性のバランスを向上させるのに有効な元素である。こうした効果を得るには、Al量を0.01質量%以上にする必要がある。一方、Al量が1.00質量%を超えると、表面性状の劣化を招く。従って、Al量は0.01質量%以上1.00質量%以下が好ましく、より好ましくは0.03質量%以上0.50質量%以下である。
ここで、前述の析出物安定化の効果は、Taの含有量を0.0010質量%以上とすることで得られる一方で、Taを過剰に添加しても、析出物安定化効果が飽和する上に、合金コストが増加する。従って、Taを添加する場合、その含有量は、0.0010質量%以上0.1000質量%以下の範囲内とする。
従って、Ca、MgおよびREMを添加する場合、その含有量はそれぞれ0.0003質量%以上0.0050質量%以下とする。
フェライトの面積率:20%以上50%以下
本発明において、極めて重要な制御因子である。本発明の高強度鋼板は、延性に富む軟質なフェライト中に、主として延性を担う残留オーステナイトと強度を担うマルテンサイトとを分散させた複合組織からなる。また、十分な延性および強度と延性のバランスの確保するため、2回目の焼鈍および冷却過程に生成するフェライトの面積率を20%以上にする必要がある。一方、鋼板の強度確保のため、フェライトの面積率を50%以下にする必要がある。
ベイニティックフェライトは、フェライトと残留オーステナイトに隣接して生成する。そして、前記フェライトと前記残留オーステナイトとの硬度差を緩和して、疲労亀裂の発生や亀裂伝播を抑制する効果があるため、良好な疲労特性を確保することができる。そして、その効果を得るためには、ベイニティックフェライトの面積率を5%以上にする必要がある。一方、鋼板の強度確保のため、ベイニティックフェライトの面積率を25%以下にする必要がある。
本発明では、鋼板の強度確保のため、マルテンサイトの面積率を1%以上にする必要がある。一方、鋼板の良好な延性と穴広げ性(伸びフランジ性)を確保するためには、マルテンサイトの面積率を10%以下にする必要がある。より良好な延性および伸びフランジ性を確保するため、マルテンサイトの面積率は8%以下であることが好ましい。なお、本発明でのマルテンサイトの面積率には、焼戻しマルテンサイトの面積率は含まないものとする。
なお、「マルテンサイトの面積率」は、以下の方法で求める。まず、鋼板のL断面を研磨後、3vol.%ナイタールで腐食し、板厚1/4位置(鋼板表面から深さ方向で板厚の1/4に相当する位置)を、SEMを用いて2000倍の倍率で10視野観察する。ついで、得られた組織画像を用いて、前記Image−Proを用いて白色を呈しているマルテンサイトおよび残留オーステナイトの合計面積率を10視野分算出する。そして、それらの値の平均値から、残留オーステナイトの面積率を引くことによって、「マルテンサイトの面積率」を求めることができる。また、上記の組織画像において、マルテンサイトおよび残留オーステナイトは白色の組織を呈している。ここで、残留オーステナイトの面積率の値には、以下に示す残留オーステナイトの体積率の値を用いる。
良好な穴広げ性(伸びフランジ性)を確保するため、本発明において、焼戻しマルテンサイトの面積率は5%以上にする必要がある。より良好な穴広げ性(伸びフランジ性)を確保するため、焼戻しマルテンサイトの面積率は8%以上であることが好ましい。一方、鋼板の強度確保するために、焼戻しマルテンサイトの面積率を15%以下にする必要がある。
ここで、残留オーステナイトの面積率の値には、下記に示す残留オーステナイトの体積率の値を用いる。また、焼戻しマルテンサイトは、マルテンサイト内にセメンタイトもしくは残留オーステナイトを含むかどうかで識別可能である。なお、焼戻しマルテンサイトの面積率は、鋼板のL断面を研磨後、3vol.%ナイタールで腐食し、板厚1/4位置について、SEMを用いて2000倍の倍率で10視野観察する。ついで、得られた組織画像を用いて、前記Image−Proを用いて10視野分算出し、それら算出した値を平均して求めることができる。
本発明では、良好な延性および強度と延性のバランスを確保するため、残留オーステナイトの体積率を10%以上にする必要がある。より良好な延性および強度と延性のバランスを確保するために、残留オーステナイトの体積率は12%以上であることが好ましい。
また、残留オーステナイトの体積率は、鋼板を板厚方向の1/4面まで研磨し、この板厚1/4面の回折X線強度により求める。入射X線にはMoKα線を使用し、残留オーステナイトの{111}、{200}、{220}、{311}面のピークの積分強度の、フェライトの{110}、{200}、{211}面のピークの積分強度に対する、12通り全ての組み合わせの強度比を求め、これらの平均値を残留オーステナイトの体積率とする。
残留オーステナイトの結晶粒の微細化は、鋼板の延性および材質安定性の向上に寄与する。そのため、良好な延性および材質安定性を確保するためには、残留オーステナイトの平均結晶粒径を2μm以下にする必要がある。より良好な延性および材質安定性を確保するためには、残留オーステナイトの平均結晶粒径を1.5μm以下とすることが好ましい。
なお、本発明では、「残留オーステナイトの平均結晶粒径」は以下の方法で求める。まず、TEM(透過型電子顕微鏡)を用い、15000倍の倍率で20視野観察して組織画像を得る。前記Image−Proを用いて20視野の組織画像中の各々の残留オーステナイト結晶粒の面積を求め、円相当直径を算出し、それらの値を平均して「残留オーステナイトの平均結晶粒径」を求める。ここで、上記視野観察は、板厚1/4の部分が板厚中心となるように、表裏から研削を行い、0.3mm厚とし、次いで、表裏から電解研磨を行い、穴を開け、この穴周辺の板厚が薄い部分について、板面方向からTEMを用いて観察したものである。
本発明において、極めて重要な制御因子である。
というのは、残留オーステナイト中の平均Mn量(質量%)を鋼中のMn量(質量%)の1.2倍以上とし、さらに、2回目の焼鈍前組織を、マルテンサイト単相組織、ベイナイト単相組織、またはマルテンサイトとベイナイトが混在した組織とすることで、2回目焼鈍の昇温過程では、まずMnが濃化した炭化物が析出する。そして、この炭化物が逆変態によるオーステナイトの核となり、最終的に微細な残留オーステナイトが均一分散した組織が得られ、材質安定性が向上するからである。
なお、FE-EPMA(電界放出型電子プローブマイクロアナライザ)で分析することにより、各相の平均Mn量(質量%)を算出した。
また、残留オーステナイト中の平均Mn量(質量%)は、鋼中のMn量(質量%)の1.2倍以上であれば、特に上限の制限はないが、2.5倍程度が好ましい。
本発明において、極めて重要な要件である。本発明では、残留オーステナイトを微細分散させることによって、疲労亀裂の発生や亀裂伝播を抑制することが可能であるが、良好な疲労特性等を確保するためには、残留オーステナイトの平均自由行程(LRA)を1.2μm以下にする必要がある。
また、残留オーステナイトの平均自由行程の下限に特に制限はないが、0.1μm程度が好ましい。
なお、残留オーステナイトの平均自由行程(LRA)は、下式〔数1〕により算出する。
本発明において、極めて重要な要件である。焼戻しマルテンサイトを微細分散させることにより、疲労亀裂の発生や亀裂伝播を抑制することが可能だからである。そのためには、焼戻しマルテンサイトの平均自由行程を1.2μm以下にする必要がある。
また、焼戻しマルテンサイトの平均自由行程の下限に特に制限はないが、0.1μm程度が好ましい。
なお、焼戻しマルテンサイトの平均自由行程(LTM)は、下式〔数2〕により算出する。
dTM:焼戻しマルテンサイトの平均結晶粒径(μm)
f:焼戻しマルテンサイトの面積率(%)÷100
焼戻しマルテンサイトの平均結晶粒径は、鋼板のL断面を研磨後、3vol.%ナイタールで腐食し、板厚1/4位置について、SEMを用いて2000倍の倍率で10視野観察する。次いで、得られた組織画像を用いて、前記Image−Proを用いて各々の焼戻しマルテンサイト結晶粒の面積を求め、円相当直径を算出し、それら算出した値を平均して求めることができる。
本発明の高強度鋼板は、上述した所定の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度を800℃以上1000℃以下として熱間圧延して鋼板とする。
次いで、平均巻き取り温度を450℃以上700℃以下として鋼板を巻き取り、鋼板に酸洗処理を施し、その後、任意に、鋼板を450℃以上Ac1変態点以下の温度で900s以上36000s以下の間保持する。その後、鋼板を圧下率:30%以上で冷間圧延し、820℃以上950℃以下の温度に加熱する1回目の焼鈍処理を行う。
次いで、前記鋼板を、500℃までの平均冷却速度を15℃/s以上の条件で、Ms点以下の第1冷却停止温度まで冷却し、引き続き740℃以上840℃以下の温度で2回目の焼鈍処理を行う。
さらに、本発明では、鋼板を、1℃/s以上15℃/s以下の冷却速度で、150℃以上350℃以下の第2冷却停止温度まで冷却し、次いで、350℃超550℃以下の再加熱温度まで再加熱し、該再加熱温度で10s以上保持する。
また、本発明の高強度亜鉛めっき鋼板は、上述した高強度鋼板に、公知公用の亜鉛めっき処理を施すことにより製造することができる。
鋼スラブの加熱段階で存在している析出物は、最終的に得られる鋼板内では粗大な析出物として存在し、強度に寄与しないため、鋳造時に析出したTi、Nb系析出物を再溶解させる必要がある。
ここに、鋼スラブの加熱温度が1100℃未満では、炭化物の十分な溶解が困難であって、圧延荷重の増大による熱間圧延時のトラブル発生の危険が増大するなどの問題が生じる。また、スラブ表層の気泡、偏析などの欠陥をスケールオフし、鋼板表面の亀裂、凹凸を減少し、平滑な鋼板表面を達成する必要性もある。従って、本発明の鋼スラブの加熱温度は1100℃以上にする必要がある。一方、鋼スラブの加熱温度が1300℃超では、酸化量の増加に伴いスケールロスが増大してしまう。そのため、鋼スラブの加熱温度は1300℃以下にする必要がある。従って、スラブの加熱温度は1100℃以上1300℃以下とする。好ましくは、1150℃以上1250℃以下である。
加熱後の鋼スラブは、粗圧延および仕上げ圧延により熱間圧延され熱延鋼板となる。このとき、仕上げ圧延出側温度が1000℃を超えると、酸化物(スケール)の生成量が急激に増大し、地鉄と酸化物の界面が荒れ、酸洗、冷間圧延後の表面品質が劣化する傾向にある。また、酸洗後に熱延スケールの取れ残りなどが一部に存在すると、延性や伸びフランジ性に悪影響を及ぼす。さらに、結晶粒径が過度に粗大となって、加工時にプレス品表面荒れを生じる場合がある。
一方、仕上げ圧延出側温度が800℃未満では圧延荷重が増大し、圧延負荷が大きくなることや、オーステナイトが未再結晶状態での圧下率が高くなって、異常な集合組織が発達し、最終製品における面内異方性が顕著となる。その結果、材質の均一性や材質安定性が損なわれるだけでなく、延性そのものも低下する。
従って、熱間圧延の仕上げ圧延出側温度を800℃以上1000℃以下の範囲にする必要がある。好ましくは820℃以上950℃以下の範囲とする。
熱間圧延後の鋼板の平均巻き取り温度が700℃を超えると、熱延板組織のフェライトの結晶粒径が大きくなり、最終焼鈍板の所望の強度確保が困難となる。一方、熱間圧延後の平均巻き取り温度が450℃未満では、熱延板強度が上昇し、冷間圧延における圧延負荷が増大し、生産性が低下する。また、平均巻き取り温度が450℃未満では、熱延板の組織にマルテンサイトが生成する。かかるマルテンサイトを主体とする硬質な熱延板に冷間圧延を施すと、マルテンサイトの旧オーステナイト粒界に沿った微小な内部割れ(脆性割れ)が生じやすく、最終焼鈍板の延性が低下する。従って、熱間圧延後の平均巻き取り温度を450℃以上700℃以下にする必要がある。好ましくは450℃以上650℃以下とする。
なお、熱延時に粗圧延板同士を接合して連続的に仕上げ圧延を行っても良い。また、粗圧延板を一旦巻き取っても構わない。また、熱間圧延時の圧延荷重を低減するために仕上げ圧延の一部または全部を潤滑圧延としてもよい。潤滑圧延を行うことは、鋼板形状の均一化、材質の均一化の観点からも有効である。なお、潤滑圧延時の摩擦係数は、0.10以上0.25以下の範囲とすることが好ましい。
熱処理温度が450℃未満または熱処理保持時間が900s未満の場合は、熱延後の焼戻しが不十分で、フェライト、ベイナイトおよびマルテンサイトが混在した不均一な組織となる。そして、かかる熱延板組織の影響の下では、鋼板組織の均一微細化が不十分となる。その結果、最終焼鈍板の組織において、粗大なマルテンサイトの割合が増加し、不均一な組織となって、最終焼鈍板の穴広げ性(伸びフランジ性)および材質安定性が低下する場合がある。
一方、熱処理保持時間が36000s超の場合は、生産性に悪影響を及ぼす場合がある。また、熱処理温度がAc1変態点超の場合は、フェライトとマルテンサイトまたはパーライトの不均一かつ硬質化した粗大な2相組織となって、冷間圧延前に不均一な組織となり、最終焼鈍板の粗大なマルテンサイトの割合が増加して、やはり最終焼鈍板の穴広げ性(伸びフランジ性)および材質安定性が低下する場合がある。
従って、熱延板酸洗処理後の熱処理温度は450℃以上Ac1変態点以下とし、保持時間は900s以上36000s以下とする必要がある。
圧下率が30%に満たない場合には、引き続く焼鈍時において、オーステナイトへの逆変態の核となる粒界や転位の単位体積あたりの総数が減少し、上述した最終のミクロ組織を得ることが困難になる。そして、ミクロ組織に不均一が生じると、鋼板の延性は低下する。
したがって、冷間圧延時の圧下率は30%以上にする必要がある。好ましくは、40%以上とする。なお、圧延パスの回数、各パス毎の圧下率については、とくに限定されることなく本発明の効果を得ることができる。また、上記圧下率の上限に特に限定はないが、工業上、実用的な80%程度である。
1回目の焼鈍温度が820℃未満の場合、この熱処理はフェライトとオーステナイトの2相域での熱処理になるため、最終組織にフェライトとオーステナイトの2相域で生成したフェライト(ポリゴナルフェライト)を多く含むことになる。その結果、微細な残留オーステナイトが所望量生成されずに、良好な強度と延性のバランスの確保が困難となる。一方、1回目の焼鈍温度が950℃を超えた場合、焼鈍中のオーステナイトの結晶粒が粗大化して、最終的に微細な残留オーステナイトが生成されずに、やはり良好な強度と延性のバランスの確保が困難となり、生産性が低下する。
なお、1回目の焼鈍処理の保持時間は、特に限定はしないが10s以上1000s以下の範囲が好ましい。
1回目の焼鈍処理後の500℃までの平均冷却速度が15℃/s未満では、冷却中にフェライトおよびパーライトが生成されるため、2回目の焼鈍前組織において、マルテンサイト単相組織、ベイナイト単相組織、またはマルテンサイトとベイナイトが混在した組織が得られない。その結果、最終的に微細な残留オーステナイトが所望量生成されないため、良好な強度と延性のバランスの確保が困難となる。また、鋼板の材質安定性が損なわれることにもなる。なお、上記平均冷却速度の上限に特に限定は無いが、工業的に可能なのは、80℃/s程度までである。
1回目の焼鈍処理は、最終的に、Ms点以下の第1冷却停止温度まで冷却する。
2回目の焼鈍処理前の組織を、マルテンサイト単相組織、ベイナイト単相組織、またはマルテンサイトとベイナイトとを主体とした組織とするためである。それにより、2回目の焼鈍後の冷却および保持過程において、600℃以下で生成する粒界形状が歪な、ポリゴナルでないフェライトおよびベイニティックフェライトが多く生成される。その結果、微細な残留オーステナイトの適正量の確保が可能となり、良好な延性の確保が可能になる。
2回目の焼鈍温度が740℃未満の場合は、焼鈍中に十分なオーステナイトの体積率を確保できず、最終的に所望のマルテンサイトの面積率と残留オーステナイトの体積率が確保されない。そのため、強度確保と、良好な強度と延性のバランスの確保とが困難となる。一方、2回目の焼鈍温度が840℃を超えた場合は、オーステナイト単相の温度域になるため、最終的に微細な残留オーステナイトが所望量生成されない。その結果、やはり良好な強度と延性のバランスの確保が困難となる。また、フェライトとオーステナイトの2相域での熱処理とは異なるため、拡散によるMn分配が殆ど生じない。その結果、残留オーステナイト中の平均Mn量(質量%)は、鋼中のMn量(質量%)の1.2倍以上にならず、所望の安定な残留オーステナイトの体積率の確保が困難となる。なお、2回目の焼鈍処理の保持時間は、特に限定はしないが、10s以上1000s以下が好ましい。
2回目の焼鈍処理後の150℃以上350℃以下の第2冷却停止温度までの平均冷却速度が1℃/s未満では、冷却中に多量のフェライトが生成し、ベイナイトおよびマルテンサイトの確保が困難となって、鋼板の強度確保が困難となる。一方で、第2冷却停止温度までの平均冷却速度が15℃/sを超えると、冷却中に生成するフェライトを十分に確保できず、鋼板の延性および強度と延性のバランスおよび疲労特性が低下する。なお、この場合の冷却は、炉冷やガス冷却が好ましい。
また、冷却停止温度が350℃を超える場合、マルテンサイト変態開始点(Ms点)より高い温度域のため、焼戻しマルテンサイトが生成されず、硬質なフレッシュマルテンサイトが残存するために、穴広げ性(伸びフランジ性)が低下する。一方、冷却停止温度が150℃未満の場合、多量のオーステナイトがマルテンサイトに変態し、最終的に所望の残留オーステナイトの体積率が確保されず、良好な延性および強度と延性のバランスの確保が困難となる。
本発明では、150℃以上350℃以下の冷却停止温度まで冷却したのち、350℃超550℃以下の再加熱温度まで再加熱する。
上記再加熱温度が350℃以下では、所望の焼戻しマルテンサイトの面積率が得られず、良好な穴広げ性(伸びフランジ性)の確保が困難となる。一方、550℃を超えても、オーステナイトがフェライトとセメンタイトに分解したり、パーライトに変態したりしてしまい、最終的に所望の残留オーステナイト量を得られず、良好な延性の確保が困難となる。従って、再加熱温度は350℃超550℃以下とする。
上記再加熱温度での保持時間が10s未満では、オーステナイトへのC濃化が進行する時間が不十分となって、最終的に所望の残留オーステナイトの体積率の確保が困難となる。よって、上記再加熱温度での保持時間は10s以上とする。一方、600sを超えて滞留した場合、残留オーステナイトの体積率は増加せず、延性の顕著な向上は確認されず飽和傾向となるため、600s以下が好ましい。
なお、上記保持後の冷却はとくに規定する必要がなく、任意の方法により所望の温度に冷却してよい。また、上記所望の温度は、室温程度が望ましい。
溶融亜鉛めっき処理を施すときは、前記焼鈍処理を施した鋼板を、440℃以上500℃以下の亜鉛めっき浴中に浸漬して溶融亜鉛めっき処理を施した後、ガスワイピング等によって、めっき付着量を調整する。溶融亜鉛めっきはAl量が0.10質量%以上0.22質量%以下である亜鉛めっき浴を用いることが好ましい。また、亜鉛めっきの合金化処理を施すときは、溶融亜鉛めっき処理後に、470℃以上600℃以下の温度域で亜鉛めっきの合金化処理を施す。600℃を超える温度で合金化処理を行うと、未変態オーステナイトがパーライトへ変態し、所望の残留オーステナイトの体積率を確保できず、延性が低下する場合がある。したがって、亜鉛めっきの合金化処理を行うときは、470℃以上600℃以下の温度域で亜鉛めっきの合金化処理を施すことが好ましい。また、電気亜鉛めっき処理を施してもよい。
次いで、表2に示した条件で冷間圧延した後、表2に示した条件で2回の焼鈍処理を施し、高強度冷延鋼板(CR)を得た。
さらに、一部の高強度冷延鋼板(CR)に亜鉛めっき処理を施し、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)、電気亜鉛めっき鋼板(EG)などを得た。溶融亜鉛めっき浴はGIでは、Al:0.19質量%含有亜鉛浴を使用し、GAでは、Al:0.14質量%含有亜鉛浴を使用し、浴温は465℃とした。めっき付着量は片面あたり45g/m2(両面めっき)とし、GAは、めっき層中のFe濃度を9質量%以上12質量%以下とした。
なお、Ac1変態点(℃)は、以下の式を用いて求めた。
Ac1変態点(℃)=751−16×(%C)+11×(%Si)−28×(%Mn)−5.5×(%Cu)+13×(%Cr)
但し、(%X)は、元素Xの鋼中含有量(質量%)を示す。
なお、Ms点(℃)は、以下の式を用いて求めた。
Ms点(℃)=550−361×(%C)×0.01×[2回目焼鈍処理の焼鈍直後のA分率(%)]−69×[残留オーステナイト中Mn量(%)]−20×(%Cr)−10×(%Cu)+30×(%Al)
但し、(%X)は、元素Xの鋼中含有量(質量%)を示す。
ここで云う2回目焼鈍処理の焼鈍直後のA分率(%)は、2回目の焼鈍処理(740℃以上840℃以下)の焼鈍直後に水焼入れ(室温までの平均冷却速度:800℃/s以上)を行い、その組織のマルテンサイトの面積率を2回目焼鈍処理の焼鈍直後のA分率とした。また、マルテンサイトの面積率は前述した手法により求めることができる。
なお、上記式中の残留オーステナイト中Mn量(%)は、最終の高強度鋼板についての残留オーステナイト中の平均Mn量(質量%)である。
引張試験は、引張試験片の長手が鋼板の圧延方向と垂直(C方向)になるようにサンプルを採取したJIS5号試験片を用いて、JIS Z 2241(2011年)に準拠して行い、TS(引張強度)、EL(全伸び)を測定した。なお、本発明では、TS:780MPa級ではEL≧34%、TS:980MPa級ではEL≧27%、TS:1180MPa級ではEL≧23%、そしてTS×EL≧27000MPa・%の場合を良好と判断した。
限界穴広げ率λ(%)={(Df−D0)/D0}×100
ただし、Dfは亀裂発生時の穴径(mm)、D0は初期穴径(mm)である。なお、本発明では、TS780MPa級では、λ≧40%、TS980MPa級では、λ≧30%、TS1180MPa級では、λ≧20%の場合を良好と判定した。
以上の評価結果を表3に示す。
Claims (4)
- 質量%で、C:0.08%以上0.35%以下、Si:0.50%以上2.50%以下、Mn:1.50%以上3.00%以下、P:0.001%以上0.100%以下、S:0.0001%以上0.0200%以下およびN:0.0005%以上0.0100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成と、
面積率で、フェライトが20%以上50%以下、ベイニティックフェライトが5%以上25%以下、マルテンサイトが1%以上10%以下、焼戻しマルテンサイトが5%以上15%以下であって、体積率で、残留オーステナイトが10%以上であり、
上記残留オーステナイトの平均結晶粒径が2μm以下であって、
上記残留オーステナイト中の平均Mn量(質量%)が鋼中のMn量(質量%)の1.2倍以上であり、
上記残留オーステナイトの平均自由行程が1.2μm以下であって、
上記焼戻しマルテンサイトの平均自由行程が1.2μm以下である鋼組織と、
TS:780MPa以上の引張強度と、TS:780MPa級ではEL≧34%、TS:980MPa級ではEL≧27%、TS:1180MPa級ではEL≧23%の延性と、TS780MPa級ではλ≧40%、TS980MPa級ではλ≧30%、TS1180MPa級ではλ≧20%の伸びフランジ性と、疲労限強度≧400MPa、及び耐久比≧0.40の疲労特性と、
を有することを特徴とする高強度鋼板。 - 前記成分組成がさらに、質量%で、Al:0.01%以上1.00%以下、Ti:0.005%以上0.100%以下、Nb:0.005%以上0.100%以下、B:0.0001%以上0.0050%以下、Cr:0.05%以上1.00%以下、Cu:0.05%以上1.00%以下、Sb:0.0020%以上0.2000%以下、Sn:0.0020%以上0.2000%以下、Ta:0.0010%以上0.1000%以下、Ca:0.0003%以上0.0050%以下、Mg:0.0003%以上0.0050%以下およびREM:0.0003%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を含有することを特徴とする請求項1に記載の高強度鋼板。
- 請求項1または2に記載の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、
仕上げ圧延出側温度を800℃以上1000℃以下として前記鋼スラブを熱間圧延して鋼板とし、
平均巻き取り温度を450℃以上700℃以下として前記鋼板を巻き取り、
前記鋼板に酸洗処理を施し、
その後、任意に、前記鋼板を450℃以上Ac1変態点以下の温度で900s以上36000s以下の間保持し、
その後、前記鋼板を圧下率:30%以上で冷間圧延し、
その後、前記鋼板を820℃以上950℃以下の温度に加熱する1回目の焼鈍処理を行い、
次いで、前記鋼板を、500℃までの平均冷却速度が15℃/s以上の条件で、Ms点以下の第1冷却停止温度まで冷却し、
その後、前記鋼板を740℃以上840℃以下の温度に再加熱する2回目の焼鈍処理を行い、
その後、1℃/s以上15℃/s以下の冷却速度で、150℃以上350℃以下の冷却停止温度まで冷却し、
次いで、350℃超550℃以下の再加熱温度まで再加熱し、該再加熱温度で前記鋼板を10s以上の間保持して、
請求項1または2に記載の高強度鋼板を製造することを特徴とする高強度鋼板の製造方法。 - 請求項1または2に記載の高強度鋼板に、亜鉛めっき処理を施すことを特徴とする高強度亜鉛めっき鋼板の製造方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014161685 | 2014-08-07 | ||
JP2014161685 | 2014-08-07 | ||
PCT/JP2015/003949 WO2016021198A1 (ja) | 2014-08-07 | 2015-08-05 | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5943156B1 true JP5943156B1 (ja) | 2016-06-29 |
JPWO2016021198A1 JPWO2016021198A1 (ja) | 2017-04-27 |
Family
ID=55263489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015559360A Active JP5943156B1 (ja) | 2014-08-07 | 2015-08-05 | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10662495B2 (ja) |
EP (1) | EP3178955B1 (ja) |
JP (1) | JP5943156B1 (ja) |
CN (1) | CN106574342B (ja) |
MX (1) | MX2017001529A (ja) |
WO (1) | WO2016021198A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016180138A (ja) * | 2015-03-23 | 2016-10-13 | 株式会社神戸製鋼所 | 加工性に優れた高強度鋼板 |
KR20190109447A (ko) * | 2017-02-15 | 2019-09-25 | 제이에프이 스틸 가부시키가이샤 | 고강도 강판 및 그의 제조 방법 |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016021198A1 (ja) | 2014-08-07 | 2016-02-11 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 |
JP5983896B2 (ja) * | 2014-08-07 | 2016-09-06 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 |
EP3178956A4 (en) | 2014-08-07 | 2017-06-28 | JFE Steel Corporation | High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet |
JP5943157B1 (ja) | 2014-08-07 | 2016-06-29 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 |
US11993823B2 (en) | 2016-05-10 | 2024-05-28 | United States Steel Corporation | High strength annealed steel products and annealing processes for making the same |
US11560606B2 (en) * | 2016-05-10 | 2023-01-24 | United States Steel Corporation | Methods of producing continuously cast hot rolled high strength steel sheet products |
CA3026506A1 (en) * | 2016-05-10 | 2017-11-16 | United States Steel Corporation | High strength steel products and annealing processes for making the same |
EP3508601B1 (en) * | 2016-08-31 | 2020-03-18 | JFE Steel Corporation | High-strength steel plate and production method thereof |
JP6315044B2 (ja) | 2016-08-31 | 2018-04-25 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP6699711B2 (ja) * | 2017-11-28 | 2020-05-27 | Jfeスチール株式会社 | 高強度鋼帯の製造方法 |
MX2020005485A (es) * | 2017-11-29 | 2020-08-27 | Jfe Steel Corp | Lamina de acero laminada en frio de alta resistencia y metodo para la fabricacion de la misma. |
WO2019131188A1 (ja) * | 2017-12-26 | 2019-07-04 | Jfeスチール株式会社 | 高強度冷延鋼板及びその製造方法 |
CN108535295B (zh) * | 2018-03-26 | 2019-10-25 | 钢铁研究总院 | 一种利用ebsd测量钢中位错密度的方法 |
KR102728874B1 (ko) | 2018-03-30 | 2024-11-11 | 제이에프이 스틸 가부시키가이샤 | 고강도 강판 및 그 제조 방법 |
US11643700B2 (en) | 2018-03-30 | 2023-05-09 | Jfe Steel Corporation | High-strength steel sheet and production method thereof |
MX2020010210A (es) * | 2018-03-30 | 2020-11-09 | Jfe Steel Corp | Lamina de acero de alta resistencia y metodo para fabricar la misma. |
WO2019187031A1 (ja) | 2018-03-30 | 2019-10-03 | 日本製鉄株式会社 | 優れた延性と穴広げ性を有する高強度鋼板 |
CN112313351B (zh) * | 2018-10-17 | 2022-10-28 | 日本制铁株式会社 | 钢板及钢板的制造方法 |
US12163202B2 (en) | 2019-03-12 | 2024-12-10 | Jfe Steel Corporation | Hot press member, production method for steel sheet for hot press, and production method for hot press member |
EP4018005A1 (en) * | 2019-08-19 | 2022-06-29 | United States Steel Corporation | High strength steel products and annealing processes for making the same |
WO2021079754A1 (ja) * | 2019-10-23 | 2021-04-29 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
US20230021370A1 (en) * | 2020-04-03 | 2023-01-26 | Nippon Steel Corporation | Steel sheet and method for producing same |
CN113802051A (zh) | 2020-06-11 | 2021-12-17 | 宝山钢铁股份有限公司 | 一种塑性优异的超高强度钢及其制造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011038120A (ja) * | 2009-08-06 | 2011-02-24 | Nippon Steel Corp | 延性、溶接性及び表面性状に優れた高強度鋼板及びその製造方法 |
JP2011168878A (ja) * | 2010-01-22 | 2011-09-01 | Jfe Steel Corp | 疲労特性と穴拡げ性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2012153957A (ja) * | 2011-01-27 | 2012-08-16 | Jfe Steel Corp | 延性に優れる高強度冷延鋼板およびその製造方法 |
JP2012180570A (ja) * | 2011-03-02 | 2012-09-20 | Kobe Steel Ltd | 室温および温間での深絞り性に優れた高強度鋼板およびその温間加工方法 |
JP2013237917A (ja) * | 2012-05-17 | 2013-11-28 | Jfe Steel Corp | 加工性に優れる高降伏比高強度冷延鋼板およびその製造方法 |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3231204B2 (ja) | 1995-01-04 | 2001-11-19 | 株式会社神戸製鋼所 | 疲労特性にすぐれる複合組織鋼板及びその製造方法 |
CA2387322C (en) | 2001-06-06 | 2008-09-30 | Kawasaki Steel Corporation | High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same |
JP4119758B2 (ja) | 2003-01-16 | 2008-07-16 | 株式会社神戸製鋼所 | 加工性および形状凍結性に優れた高強度鋼板、並びにその製法 |
JP4924052B2 (ja) | 2007-01-19 | 2012-04-25 | Jfeスチール株式会社 | 高降伏比高張力冷延鋼板ならびにその製造方法 |
JP5206244B2 (ja) | 2008-09-02 | 2013-06-12 | 新日鐵住金株式会社 | 冷延鋼板 |
JP5418047B2 (ja) | 2008-09-10 | 2014-02-19 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP5270274B2 (ja) | 2008-09-12 | 2013-08-21 | 株式会社神戸製鋼所 | 伸びおよび伸びフランジ性に優れた高強度冷延鋼板 |
JP5493986B2 (ja) | 2009-04-27 | 2014-05-14 | Jfeスチール株式会社 | 加工性に優れた高強度鋼板および高強度溶融亜鉛めっき鋼板並びにそれらの製造方法 |
JP4924730B2 (ja) | 2009-04-28 | 2012-04-25 | Jfeスチール株式会社 | 加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP5504737B2 (ja) | 2009-08-04 | 2014-05-28 | Jfeスチール株式会社 | 鋼帯内における材質のバラツキが小さい成形性に優れた高強度溶融亜鉛めっき鋼帯およびその製造方法 |
JP5521444B2 (ja) | 2009-09-01 | 2014-06-11 | Jfeスチール株式会社 | 加工性に優れた高強度冷延鋼板およびその製造方法 |
JP5377232B2 (ja) | 2009-11-02 | 2013-12-25 | 三菱電機株式会社 | 超音波式センサモジュール取付装置及び取付方法 |
JP4902026B2 (ja) | 2010-01-29 | 2012-03-21 | 新日本製鐵株式会社 | 鋼板及び鋼板製造方法 |
JP5589893B2 (ja) | 2010-02-26 | 2014-09-17 | 新日鐵住金株式会社 | 伸びと穴拡げに優れた高強度薄鋼板およびその製造方法 |
US20130133792A1 (en) * | 2010-08-12 | 2013-05-30 | Jfe Steel Corporation | High-strength cold rolled sheet having excellent formability and crashworthiness and method for manufacturing the same |
EP2617849B1 (en) * | 2010-09-16 | 2017-01-18 | Nippon Steel & Sumitomo Metal Corporation | High-strength cold-rolled steel sheet with excellent ductility and stretch flangeability, high-strength galvanized steel sheet, and method for producing both |
JP5679885B2 (ja) | 2010-11-12 | 2015-03-04 | 三菱電機株式会社 | レーダ装置 |
JP5825119B2 (ja) | 2011-04-25 | 2015-12-02 | Jfeスチール株式会社 | 加工性と材質安定性に優れた高強度鋼板およびその製造方法 |
JP5862052B2 (ja) | 2011-05-12 | 2016-02-16 | Jfeスチール株式会社 | 伸びおよび伸びフランジ性に優れる高強度冷延鋼板ならびにその製造方法 |
CN103703156B (zh) * | 2011-07-29 | 2016-02-10 | 新日铁住金株式会社 | 成形性优良的高强度钢板、高强度镀锌钢板及它们的制造方法 |
EP2738276B1 (en) * | 2011-07-29 | 2019-04-24 | Nippon Steel & Sumitomo Metal Corporation | High-strength galvanized steel sheet and high-strength steel sheet having superior moldability, and method for producing each |
CN103703157B (zh) * | 2011-07-29 | 2015-12-02 | 新日铁住金株式会社 | 形状保持性优异的高强度钢板、高强度镀锌钢板及它们的制造方法 |
RU2566695C1 (ru) | 2011-09-30 | 2015-10-27 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Высокопрочный гальванизированный погружением стальной лист, высокопрочный подвергнутый легированию гальванизированный погружением стальной лист с превосходной характеристикой механической резки и способ их изготовления |
PL2762582T3 (pl) | 2011-09-30 | 2019-08-30 | Nippon Steel & Sumitomo Metal Corporation | Blacha stalowa cienka o dużej wytrzymałości cynkowana z przeżarzaniem o dużej hartowności przy obróbce termicznej, stopowa blacha stalowa cienka cynkowana z przeżarzaniem o dużej wytrzymałości oraz sposób ich wytwarzania |
EP2765212B1 (en) | 2011-10-04 | 2017-05-17 | JFE Steel Corporation | High-strength steel sheet and method for manufacturing same |
JP5348268B2 (ja) | 2012-03-07 | 2013-11-20 | Jfeスチール株式会社 | 成形性に優れる高強度冷延鋼板およびその製造方法 |
JP6290168B2 (ja) * | 2012-03-30 | 2018-03-07 | フォエスタルピネ スタール ゲゼルシャフト ミット ベシュレンクテル ハフツングVoestalpine Stahl Gmbh | 高強度冷間圧延鋼板およびそのような鋼板を作製する方法 |
JP5860354B2 (ja) | 2012-07-12 | 2016-02-16 | 株式会社神戸製鋼所 | 降伏強度と成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
WO2016021198A1 (ja) | 2014-08-07 | 2016-02-11 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 |
-
2015
- 2015-08-05 WO PCT/JP2015/003949 patent/WO2016021198A1/ja active Application Filing
- 2015-08-05 CN CN201580042277.3A patent/CN106574342B/zh active Active
- 2015-08-05 EP EP15829521.2A patent/EP3178955B1/en active Active
- 2015-08-05 US US15/326,116 patent/US10662495B2/en active Active
- 2015-08-05 MX MX2017001529A patent/MX2017001529A/es unknown
- 2015-08-05 JP JP2015559360A patent/JP5943156B1/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011038120A (ja) * | 2009-08-06 | 2011-02-24 | Nippon Steel Corp | 延性、溶接性及び表面性状に優れた高強度鋼板及びその製造方法 |
JP2011168878A (ja) * | 2010-01-22 | 2011-09-01 | Jfe Steel Corp | 疲労特性と穴拡げ性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2012153957A (ja) * | 2011-01-27 | 2012-08-16 | Jfe Steel Corp | 延性に優れる高強度冷延鋼板およびその製造方法 |
JP2012180570A (ja) * | 2011-03-02 | 2012-09-20 | Kobe Steel Ltd | 室温および温間での深絞り性に優れた高強度鋼板およびその温間加工方法 |
JP2013237917A (ja) * | 2012-05-17 | 2013-11-28 | Jfe Steel Corp | 加工性に優れる高降伏比高強度冷延鋼板およびその製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016180138A (ja) * | 2015-03-23 | 2016-10-13 | 株式会社神戸製鋼所 | 加工性に優れた高強度鋼板 |
KR20190109447A (ko) * | 2017-02-15 | 2019-09-25 | 제이에프이 스틸 가부시키가이샤 | 고강도 강판 및 그의 제조 방법 |
KR102225217B1 (ko) | 2017-02-15 | 2021-03-08 | 제이에프이 스틸 가부시키가이샤 | 고강도 강판 및 그의 제조 방법 |
US11408058B2 (en) | 2017-02-15 | 2022-08-09 | Jfe Steel Corporation | High-strength steel sheet and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
US20170218472A1 (en) | 2017-08-03 |
CN106574342A (zh) | 2017-04-19 |
JPWO2016021198A1 (ja) | 2017-04-27 |
EP3178955B1 (en) | 2020-07-15 |
EP3178955A1 (en) | 2017-06-14 |
WO2016021198A1 (ja) | 2016-02-11 |
MX2017001529A (es) | 2017-05-11 |
CN106574342B (zh) | 2018-10-12 |
US10662495B2 (en) | 2020-05-26 |
EP3178955A4 (en) | 2018-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5943156B1 (ja) | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 | |
JP5943157B1 (ja) | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 | |
JP5983895B2 (ja) | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 | |
JP5983896B2 (ja) | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 | |
JP5967319B2 (ja) | 高強度鋼板およびその製造方法 | |
JP5967320B2 (ja) | 高強度鋼板およびその製造方法 | |
JP6179677B2 (ja) | 高強度鋼板およびその製造方法 | |
JP6179676B2 (ja) | 高強度鋼板およびその製造方法 | |
JP6179675B2 (ja) | 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法 | |
KR102239637B1 (ko) | 고강도 강판의 제조 방법 | |
JP6179674B2 (ja) | 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法 | |
JP6372633B1 (ja) | 高強度鋼板およびその製造方法 | |
JP6315160B1 (ja) | 高強度鋼板およびその製造方法 | |
JP2018131648A (ja) | 高強度鋼板およびその製造方法 | |
JP6372632B1 (ja) | 高強度鋼板およびその製造方法 | |
JP6210184B1 (ja) | 鋼板、めっき鋼板、およびそれらの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160405 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160426 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160509 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5943156 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |