JP5331519B2 - Electrostatic chuck - Google Patents
Electrostatic chuck Download PDFInfo
- Publication number
- JP5331519B2 JP5331519B2 JP2009052670A JP2009052670A JP5331519B2 JP 5331519 B2 JP5331519 B2 JP 5331519B2 JP 2009052670 A JP2009052670 A JP 2009052670A JP 2009052670 A JP2009052670 A JP 2009052670A JP 5331519 B2 JP5331519 B2 JP 5331519B2
- Authority
- JP
- Japan
- Prior art keywords
- electrostatic chuck
- main
- gas supply
- supply hole
- cooling device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
Description
本発明は静電チャックに関する。 The present invention relates to an electrostatic chuck.
静電チャックは、半導体デバイス製造の種々のプロセスにおいて、ワークを固定する載置台として主に用いられている。ここで「ワーク」としては主にウェハやレチクルが該当する。 The electrostatic chuck is mainly used as a mounting table for fixing a workpiece in various processes of manufacturing a semiconductor device. Here, the “work” mainly corresponds to a wafer or a reticle.
静電チャックは、ウェハの固定の他にも、プロセスに伴い発生する熱をウェハから効率的に除去し、ウェハの温度を一定に維持するという目的で使用されることがある。例えば、ウェハの冷却効果を高めるために、静電チャックは冷却装置上に配置されている。また静電チャックに吸着したウェハから熱を奪う目的で、ウェハの裏面にヘリウム(He)等のバックサイドガスを流すために、静電チャックにはバックサイドガスが流れるための細孔が設けられている(例えば、特許文献1参照)。 In addition to fixing the wafer, the electrostatic chuck may be used for the purpose of efficiently removing heat generated by the process from the wafer and keeping the temperature of the wafer constant. For example, in order to enhance the cooling effect of the wafer, the electrostatic chuck is disposed on the cooling device. In order to remove heat from the wafer adsorbed on the electrostatic chuck, a backside gas such as helium (He) is allowed to flow on the back surface of the wafer, and the electrostatic chuck is provided with pores for the backside gas to flow. (For example, refer to Patent Document 1).
静電チャックにウェハを載置してプラズマエッチングプロセス等で処理する場合、プラズマの不均一性に起因して、エッチングレートがウェハ面上で異なったものとなる傾向がある。かかる問題を解決する手段として、プラズマ密度の高密度化が求められていた。 When a wafer is placed on an electrostatic chuck and processed by a plasma etching process or the like, the etching rate tends to be different on the wafer surface due to plasma non-uniformity. As a means for solving such a problem, increasing the plasma density has been demanded.
プラズマ密度の高密度化により、ウェハへの入熱が増加するため、静電チャックの厚みを減らし、金属製の冷却装置とウェハ載置面の距離を小さくし、より冷却効率を上げる必要が出てきた。この場合、バックサイドガスを流すための細孔付近にアーキングが発生する場合があり、アーキングが発生すると、パーティクルの発生や処理されるウェハの損傷、静電チャックの破損等が生じる問題が顕在化してきた。 As the plasma density increases, the heat input to the wafer increases, so it is necessary to reduce the thickness of the electrostatic chuck, reduce the distance between the metal cooling device and the wafer mounting surface, and increase the cooling efficiency. I came. In this case, arcing may occur in the vicinity of the pores for flowing the backside gas. When arcing occurs, problems such as generation of particles, damage to the processed wafer, breakage of the electrostatic chuck, etc. become obvious. I have done it.
本発明はプラズマ密度の高密度化に伴うアーキングの発生を防止できる静電チャックを提供することを目的とする。 An object of the present invention is to provide an electrostatic chuck capable of preventing the occurrence of arcing accompanying the increase in plasma density.
本発明の第1の態様は、冷却装置と、冷却装置上に配置され、ワーク載置面を有する静電チャック本体を備える半導体製造装置に用いられる静電チャックであって、
(イ)冷却装置を貫通して、冷却装置の一方の主面から他方の主面表面に至るように伸びるガス供給孔、ガス供給孔の開口部にガス供給孔よりも大径の主座繰り部が設けられ、(ロ)主座繰り部に、中央にガス供給孔と連通するガス流路を設けた絶縁部材からなるアーキング防止部材が埋め込まれ、(ハ)ワーク載置面には、ガス流路を介してガス供給孔と連通する細孔が設けられている静電チャックを要旨とする。
A first aspect of the present invention is an electrostatic chuck used in a semiconductor manufacturing apparatus including a cooling device and an electrostatic chuck main body disposed on the cooling device and having a workpiece placement surface,
(A) A gas supply hole extending from one main surface of the cooling device to the surface of the other main surface through the cooling device, and a main countersink having a larger diameter than the gas supply hole at the opening of the gas supply hole (B) an arcing prevention member made of an insulating member provided with a gas flow path communicating with the gas supply hole in the center is embedded in the main countersink portion; and (c) a gas is placed on the work mounting surface. The gist of the present invention is an electrostatic chuck provided with pores communicating with gas supply holes through a flow path.
本発明の第2の態様は、冷却装置と、冷却装置上に配置され、ワーク載置面を有する静電チャック本体を備える半導体製造装置に用いられる静電チャックであって、
(イ)冷却装置を貫通して、冷却装置の一方の主面から他方の主面表面に至るように伸びるガス供給孔、ガス供給孔の開口部にガス供給孔よりも大径の主座繰り部が設けられ、(ロ)主座繰り部に挿入した際にガス流路となるように、ガスの流れ方向の中心線を含む断面図の周囲で定義される複数の溝が表面に設けられたアーキング防止部材が、主座繰り部に埋め込まれ、(ハ)ワーク載置面には、ガス流路を介してガス供給孔と連通する細孔が設けられている静電チャックを要旨とする。
A second aspect of the present invention is an electrostatic chuck used in a semiconductor manufacturing apparatus including a cooling device and an electrostatic chuck main body disposed on the cooling device and having a workpiece placement surface,
(A) A gas supply hole extending from one main surface of the cooling device to the surface of the other main surface through the cooling device, and a main countersink having a larger diameter than the gas supply hole at the opening of the gas supply hole And (b) a plurality of grooves defined around the cross-sectional view including the center line in the gas flow direction are provided on the surface so as to become a gas flow path when inserted into the main countersink portion. An electrostatic chuck in which the arcing prevention member is embedded in the main countersink part and (c) the work placing surface is provided with a pore communicating with the gas supply hole via the gas flow path .
本発明の第3の態様は、冷却装置と、冷却装置上に配置され、ワーク載置面を有する静電チャック本体を備える半導体製造装置に用いられる静電チャックであって、
(イ)冷却装置を貫通して、冷却装置の一方の主面から他方の主面表面に至るように伸びるガス供給孔、ガス供給孔の開口部にガス供給孔よりも大径の主座繰り部が設けられ、(ロ)静電チャック本体側主面に、径方向の中心で交わる2つの溝からなる十字状の副座繰り部を備え、主座繰り部に挿入した際にガス流路を形成するように、円筒形状の側面に十字状の副座繰り部のそれぞれの溝の長手方向に直行する平面状の複数の切り欠き部を有するアーキング防止部材が、主座繰り部に埋め込まれ、(ハ)ワーク載置面には、ガス流路を介してガス供給孔と連通する細孔が設けられている静電チャックを要旨とする。
A third aspect of the present invention is an electrostatic chuck used in a semiconductor manufacturing apparatus including a cooling device and an electrostatic chuck main body disposed on the cooling device and having a workpiece placement surface,
(A) A gas supply hole extending from one main surface of the cooling device to the surface of the other main surface through the cooling device, and a main countersink having a larger diameter than the gas supply hole at the opening of the gas supply hole (B) the electrostatic chuck main body side main surface is provided with a cross-shaped counter-sinking part composed of two grooves intersecting at the center in the radial direction, and when inserted into the main countersink part, the gas flow path An arcing prevention member having a plurality of planar cutouts perpendicular to the longitudinal direction of each groove of the cross-shaped counter-sink portion is embedded in the main countersink portion so as to form a cylindrical side surface. (C) The gist of the electrostatic chuck is that the work mounting surface is provided with pores communicating with the gas supply holes via the gas flow path.
本発明によればプラズマ密度の高密度化に伴うアーキングの発生を防止できる静電チャックが提供される。 ADVANTAGE OF THE INVENTION According to this invention, the electrostatic chuck which can prevent generation | occurrence | production of the arcing accompanying the high density of plasma density is provided.
以下に、実施形態を挙げて本発明の説明を行うが、本発明は以下の実施形態に限定されるものではない。図中同一の機能又は類似の機能を有するものについては、同一又は類似の符号を付して説明を省略する。ワークとしてウェハを用いて説明する。 Hereinafter, the present invention will be described with reference to embodiments, but the present invention is not limited to the following embodiments. Components having the same function or similar functions in the figures are given the same or similar reference numerals and description thereof is omitted. A description will be given using a wafer as a workpiece.
(静電チャック)
図1(a)に示す実施形態にかかる静電チャック10は、冷却装置1と、冷却装置1上に配置され、ワーク載置面を有する静電チャック本体2を備える半導体製造装置に用いられる静電チャック10であって、(イ)冷却装置1を貫通して、冷却装置の一方の主面から他方の主面表面に至るように伸びるガス供給孔1a、ガス供給孔1aの開口部にガス供給孔1aよりも大径の主座繰り部1bが設けられ、(ロ)主座繰り部1bに、ガス供給孔と連通するガス流路3aを設けた絶縁部材からなるアーキング防止部材3が埋め込まれ、(ハ)ワーク載置面には、ガス流路3aを介してガス供給孔1aと連通する細孔2a1が設けられている。尚、発明の理解を容易にする目的で図示を省略してあるが、静電チャック本体2と冷却装置1は、静電チャック本体2と冷却装置1の間に配置された接合シートにより接合されている。細孔の数は特に3つに制限されるものではない。
(Electrostatic chuck)
An
アーキング防止部材3は、円筒形状の内側ガス流路に冷却装置1側から静電チャック本体2側に向かい内径が同心円状に拡がる断面テーパ状の内壁3bを備える。アーキング防止部材3の直径は、アーキングを防止する観点からは静電チャック本体2の厚みの2倍以上が好ましく、プラズマの高密度化とワークの冷却効果を図る観点からは静電チャック本体2の厚みの4倍以下が好ましい。アーキング防止部材3の最小内径はガス供給孔1aの内径と同一もしくはそれ以下である。
The
静電チャック本体2のワーク載置面と冷却装置との当接面間の厚みは、ワークの冷却効果を高める観点からは3mm以下が好ましく、さらには1.5mm以下がより好ましい。静電チャック本体2に設けられた複数の細孔2a1,2a2,2a3は、内径150μm以下であることが好ましい。静電チャック本体2の材質は特に制限されないが、熱伝導を良くし、反応性ガスに対する耐蝕性に富むという観点からは、窒化アルミニウム系セラミックス、窒化アルミニウムを含む複合材料、アルミナ系セラミックス、アルミナを含む複合材料、アルミナと窒化アルミニウムとの複合セラミックスが好ましい。また炭化珪素、酸化イットリウム、もしくはこれらの複合材でも構わない。内部電極の材質も特に限定されないため、導電性セラミックスや金属であってよいが、高融点金属が好ましく、モリブデン、タングステン、モリブデンとタングステンとの合金が特に好ましい。
The thickness between the workpiece mounting surface of the electrostatic chuck
アーキング防止部材3の材質としては、絶縁性が確保されるのであれば特に制限されないが、ポリテトラフルオロエチレン(例えばテフロン(登録商標))などの耐熱性フッ素樹脂や、アルミナ等の高融点絶縁性セラミックスが挙げられる。長期使用の観点からはアーキング防止部材の材質としては形状変化の傾向が少なく、冷却の観点から熱伝導率の高いアルミナや窒化アルミニウム等の高融点絶縁性セラミックスを用いることがより好ましい。
The material of the
冷却装置1は、冷却水の流路が内部に形成されており、かかる流路の表面がアルミニウム板で覆われた構成を有する。冷却装置の最大直径は、静電チャック本体2の最大直径と同程度とすることが好ましい。また冷却装置1の厚みは特に制限されないが、例えば、冷却装置1の最大直径を300mm程度とした場合、冷却装置1の厚みを30〜40mm程度とすることが好ましい。冷却装置1の材質は熱伝導性がよいものであれば特に制限されないが、アルミニウムを用いることが好ましい。
The
接合シートとしては特に制限なく種々の物を用いることができるが、例えばアクリル樹脂、シリコーン樹脂、変成ポリイミド樹脂を用いることができる。また接合シートの代わりに接着剤を用いても構わないが、接着剤は流動してはみ出すことを考慮すると、作業性が良好である接着シートを用いるほうが好ましい。 Although various things can be used as a joining sheet without a restriction | limiting in particular, For example, an acrylic resin, a silicone resin, and a modified polyimide resin can be used. In addition, an adhesive may be used instead of the bonding sheet, but it is preferable to use an adhesive sheet with good workability in consideration of the adhesive flowing and protruding.
実施形態にかかる静電チャック10の作用効果について、図7に示す静電チャック110との対比において説明する。
The effect of the
図7に示すように、冷却装置101と静電チャック本体102間の距離が長い場合、ウェハの冷却効率が低く、また高電圧をかけなければプラズマ密度を高めることができず所望のプロセス特性を満たせなかった。
As shown in FIG. 7, when the distance between the cooling
そこで、本発明者らは、プラズマ密度の向上とウェハの冷却効率を高めるために、図1に示すように静電チャック本体2の厚みを薄くすることを着想した。ところが、理由は定かではないが、RF電極を兼ねた冷却装置1とウェハ載置面の距離が短くなったことで、プラズマを発生させたときに、バックサイドガスの供給孔開口部でアーキングやグロー放電が発生したことに起因すると思われるアーク痕がワークに付着するという問題が生じた。アーキングは冷却装置1を損傷させるだけでなく、パーティクルやコンタミの原因となり、載置されるウェハの裏面(載置面)に損傷を生じさせることからアーキングの防止方法が求められた。
Therefore, the present inventors have conceived to reduce the thickness of the
この場合、図7の静電チャックであれば、冷却装置101と静電チャック本体102間の距離が長く、ガス供給孔101a空間が広いため、かかる空間にセラミックス片を配置することでアークの発生を防止することができる。しかし、図1(a)のように冷却装置1とウェハ載置面間の距離が短いと、セラミックス片を配置する空間が確保できないため、新たなアーキングの発生防止方法が求められていた。
In this case, since the distance between the cooling
本発明者らの誠意研究の結果、上述の実施形態により、上記アーク痕にかかる問題を改善したことで、プラズマ密度の向上とウェハの冷却効率を高めることが可能となった。 As a result of sincerity studies conducted by the present inventors, it has become possible to improve the plasma density and increase the cooling efficiency of the wafer by improving the problem relating to the arc mark according to the above-described embodiment.
実施形態によれば、アーキング防止部材3を用いることにより、ガス供給孔1aにアーキングが生じなくなり、より高密度のプラズマを発生することができる。その結果として、例えば、プラズマエッチングの工程ではウェハの処理速度を早くすることができるという作用効果が得られる。
According to the embodiment, by using the
(静電チャックの製造方法)
静電チャック10の製造方法として静電チャック本体2が窒化アルミニウムである場合の製造方法を説明する。
(Electrostatic chuck manufacturing method)
A method for manufacturing the
(イ)まず窒化アルミニウム粉末を所定形状に成形して成形体を形成する。その後、この成形体上に、モリブデンからなる内部電極を配置する。さらにこの上に窒化アルミニウム粉末を充填し再度成形して内部電極を埋設した円盤状の成形体を得る。静電チャック10は静電チャック本体2内に埋設されている静電電極にウェハを吸着させるための直流電圧と、プラズマを発生させるためのRF電力が供給される。
(A) First, an aluminum nitride powder is formed into a predetermined shape to form a formed body. Thereafter, an internal electrode made of molybdenum is disposed on the formed body. Further, the disk is filled with aluminum nitride powder and molded again to obtain a disk-shaped molded body in which internal electrodes are embedded. The
(ロ)次いで、この成形体を窒素雰囲気中で焼結することにより、内部電極を埋設した静電チャック本体2を作製する。内部電極と電気的に導通する端子を接合可能に形成する。ウェハ載置面から冷却装置当接面に至る細孔2a1,2a2,2a3をレーザー加工法やエッチング加工法を用いて設ける。図示を省略するが、静電チャック本体2には細孔2a1,2a2,2a3と同様にして複数の細孔を設けても構わない。
(B) Next, the molded body is sintered in a nitrogen atmosphere to produce the
(ハ)冷却装置1を作製し、そして冷却装置1にバックサイドガスの供給孔1aとなる貫通孔を設ける。供給孔1aの配置間隔や直径は特に制限されないが、例えば冷却装置1の直径を300mmとした場合、外周端から17mm内側の円周上に略等間隔に23個の直径1mmの貫通孔1aを設けることが好ましい。ガス供給孔の開口部となる静電チャック本体2との接合面側表面に、アーキング防止部材3を嵌めこみ可能に主座繰り部1bを設ける。ガス供給孔1aの直径を1mmとした場合の座繰り部の寸法は、直径2.5mm、深さ1.3mmとすることが好ましい。
(C) The
(ニ)次に、図1(a)〜(c)に示すようなアーキング防止部材3を作製する。アーキング防止部材3を冷却装置1の主座繰り部1bにはめ込む。
(D) Next, an
(ホ)その後、静電チャック本体2と冷却装置1を接合シートを介して接合する。
(E) Thereafter, the electrostatic chuck
以上により静電チャック10が製造される。
Thus, the
(実施形態の変形例)
上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。実施形態の変形例としては、以下のような変形例が挙げられる。異なる部分であるアーキング防止部材について中心に説明する。
(Modification of the embodiment)
As mentioned above, although this invention was described by embodiment, it should not be understood that the description and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. The following modifications are mentioned as a modification of embodiment. The arcing prevention member that is a different part will be mainly described.
(変形例1)
図2(a)〜(c)に示すアーキング防止部材13は、静電チャック本体2側の主面にアーキング防止部材13の外径よりも小径の副座繰り部13bが設けられ、副座繰り部13bの底面から冷却装置1側主面につながるガス供給孔1aの内径よりも小径の複数の貫通孔13a1、13a2、13a3を有する絶縁部材を備える。複数の貫通孔の配置と静電チャック本対2の細孔の配置は静電チャック鉛直上面から見て重ならないようにすることが好ましい。貫通孔の数は図では3個であるが、3個以上であってよい。
(Modification 1)
The arcing
変形例1によれば、バックサイドガスの流れる空間を小さくすることでプラズマがガス供給孔1aの中で発生しにくくなる。理由は定かではないが静電チャック本体2と冷却装置1との接合部がアーキング防止部材3でシールされ、静電チャック本体2の孔2a1,2a2,2a3から、冷却装置1までの沿面距離が大きくなるからと思われる。
According to the first modification, it is difficult to generate plasma in the
(変形例2)
図3(a)〜(c)に示すアーキング防止部材23は、静電チャック本体2側の主面にアーキング防止部材23の外径よりも小径の副座繰り部23bが設けられ、主座繰り部1bに挿入した際にガス流路となるようにアーキング防止部材3のガスの流れ方向の中心線を含む断面図の周囲で定義されるアーキング防止部材の表面に複数の溝23a1、23a2が設けられている。図4(a)〜(c)に示すアーキング防止部材33は、図3(b)(c)の溝23a1、23a2の数を増やし、図4(b)(c)に示すように溝33a1、33a2、33a3、33a4とした場合の例である。変形例2によれば、変形例1と同様の理由により、アーキングを防止することができる。
(Modification 2)
The arcing
(変形例3)
図5(a)〜(c)はアーキング防止部材43を示す。図5(c)に示すようにアーキング防止部材43は、静電チャック本体2側主面に、アーキング防止部材43の径方向の中心で交わる2つの溝43b1、43b2からなる十字状の副座繰り部43bを備える。図5(a)に示すように、主座繰り部1bにアーキング防止部材43を挿入した際にガス流路1cを形成するように、図5(b)に示すように円筒形状の側面43a(43a1、43a2、43a3、43a4、)に十字状の副座繰り部43bの溝43b1、43b2の長手方向に直行する平面状の複数の切り欠き部43c1、43c2、43c3、43c4、を有する。アーキング防止部材43の径は、図5(b)に示すように主座繰り部1bの径よりも小さいことが好ましい。バックサイドガスが43a1、43a2、43a3、43a4と主座繰り部1bの内壁の狭い空間を流れることでプラズマがガス供給孔1aの中で発生しにくくなり、アーキングを効果的に防止できるからである。なお、切り欠き部43c1、43c2、43c3、43c4と主座繰り部1bの内壁との間にバックサイドガスが流れる空間が形成されていれば、アーキング防止部材43の径を主座繰り部1bの径と略同一としてもよいが、アーキングを効果的に防止するためには、主座繰り部1bの径よりも小さくすることが好ましい。
(Modification 3)
5A to 5C show the
図5のアーキング防止部材43によれば、実施形態にかかるアーキング防止部材3や、その変形例にかかるアーキング防止部材13,23,33に比して加工が容易であるにも関わらず、アーキング防止部材3や、その変形例にかかるアーキング防止部材13,23,33と同様以上のアーキング防止効果を奏する。加工が困難な部材を用いて、アーキング防止部材を作製する必要がある場合に有利である。側面43aとガス供給孔1aの間にガスが流れることで、アーキングを効果的に防止できるばかりでなく、流れるガスの流量を増やすことができるからである。ガス流量が多い方がバックサイド圧力を変える時により短時間で変えれるのでより有利である。
According to the
このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.
(静電チャックの製造)
(製造例1)
上述の製造方法に準じて以下の条件で製造例1にかかる静電チャックを製造した。
(Manufacture of electrostatic chuck)
(Production Example 1)
An electrostatic chuck according to Production Example 1 was produced under the following conditions in accordance with the production method described above.
(イ)双極の電極を埋設した直径300mm、厚み1.1mmのアルミナ製の静電チャック本体2を作製した。冷却装置1側から、CO2レーザー(波長10.6μm)を照射して7個の直径1mmの細孔2a1,2a2,2a3を設けた。図示は省略されているが、細孔2a1,2a2,2a3の他に4つの細孔を設けた。
(A) An electrostatic chuck
(ロ)冷却装置1の直径を300mm、冷却装置1の厚みを34mmとし、外周から17mmの円周上に23箇所の直径1mmの貫通孔を設けることによりアルミ製の冷却装置1を作製した。
(B) The
(ハ)貫通孔の静電チャック本体2との接合面側にアーキング防止部材3を嵌めこむための直径2.5mm、深さ1.3mmの主座繰り部1bをエンドミルにより設けた。
(C) A
(ニ)図1(a)〜(c)に示す形状を備えるポリテトラフルオロエチレンからなるアーキング防止部材3を作製した。尚、本実施例の欄においてポリテトラフルオロエチレンとして登録商標名「テフロン(登録商標)」を用いた。
(D) An
(ホ)冷却装置1の主座繰り部1bにアーキング防止部材3をはめ込んだ後、アクリル製の接合シートを介して冷却装置1と静電チャック本体2とを接合して静電チャック10を得た。
(E) After the
(製造例2,3,4)
アーキング防止部材3に換えて、図2(a)〜(c)、図3(a)〜(c)、図4(a)〜(c)の形状を備えるポリテトラフルオロエチレンからなるアーキング防止部材13,23,33を用いたことを除き、製造例1と同様にして静電チャック11,12,13を製造した。
(Production Examples 2, 3, and 4)
An arcing prevention member made of polytetrafluoroethylene having the shapes of FIGS. 2 (a) to (c), FIGS. 3 (a) to (c), and FIGS. 4 (a) to (c) instead of the
(製造例5,6,7,8)
アーキング防止部材3に換えて、図1(a)〜(c)、図2(a)〜(c)、図3(a)〜(c)、図4(a)〜(c)の形状を備える99%のアルミナからなるアーキング防止部材13,23,33を用いたことを除き、製造例1と同様にして静電チャック10を製造した。
(Production Examples 5, 6, 7, 8)
In place of the
(製造比較例)
アーキング防止部材を用いなかった点と、冷却装置1の形状を図6(a)(b)に示す冷却装置201としたことを除き、上述の実施形態にかかる製造方法に準じて製造比較例にかかる静電チャック210を製造した。
(Production comparison example)
A manufacturing comparative example according to the manufacturing method according to the above-described embodiment except that the arcing prevention member is not used and the shape of the
(アーキング防止効果評価)
(実施例1〜実施例4、比較例1)
製造例1〜製造例4、製造比較例で製造した図1〜図4、図6に示す静電チャックについて、表1に示す条件でアーキング防止効果を評価した。
(Evaluation of anti-arcing effect)
(Examples 1 to 4 and Comparative Example 1)
The anti-arcing effect was evaluated under the conditions shown in Table 1 for the electrostatic chucks shown in FIGS.
図1〜図4、図6に示す各静電チャックを評価用真空チャンバーに設置した。その後、シリコンからなるウェハを静電チャック10の上に載置し、静電チャックの静電電極に直流電圧を印加して、ウェハを吸着した。吸着印加電圧を+V250/−V250とした。
Each of the electrostatic chucks shown in FIGS. 1 to 4 and 6 was placed in an evaluation vacuum chamber. Thereafter, a wafer made of silicon was placed on the
次にチャンバー内ならびにガス供給ラインを真空引きして0.1Torr(13.3Pa)としたのち、チャンバー内にアルゴン(Ar)とヘリウム(He)の混合ガスを供給し、チャンバー内圧力を1Torr(133Pa)とした。チャンバーの外側から圧力を制御したガス(He)を静電チャックのガス供給孔1aに供給し、ウェハのバックサイドガスとした。バックサイドガス(He)圧は表1に示すように10Torr(1330Pa)とした。ここで、ウエハのバックサイドガスとは、吸着されたウエハと静電チャック表面の間にできる空間のガスのことである。
Next, after evacuating the chamber and the gas supply line to 0.1 Torr (13.3 Pa), a mixed gas of argon (Ar) and helium (He) is supplied into the chamber, and the pressure in the chamber is set to 1 Torr (133 Pa). ). A gas (He) whose pressure was controlled from the outside of the chamber was supplied to the
その後、上下の平行平板電極(即ち、チャンバー内に備えられた上部電極板と、冷却装置1)の間に13.56MHzの高周波電圧を印加し、静電チャック10と上部電極板の間の空間(即ちウェハの上)にプラズマを発生させた。1分後に印加をやめ、30秒放置してから、また1分プラズマを発生させるというサイクルを10サイクル繰り返した。
Thereafter, a high frequency voltage of 13.56 MHz is applied between the upper and lower parallel plate electrodes (ie, the upper electrode plate provided in the chamber and the cooling device 1), and the space between the
その後、静電電圧を接地して、0ボルトとして、ウェハを脱離させたのち、アーキングの有無を目視にて確認した。ウェハ裏面への痕跡があったものを「有」とし、痕跡がなかったものを「無」と評価した。得られた結果をまとめて表1に示す。
(実施例5〜実施例8、比較例2)
表2に示すように、バックサイドガス圧を1Torr(133Pa)とした点を除き、実施例1と同様にしてアーキング防止効果を評価した。得られた結果をまとめて表2に示す。
As shown in Table 2, the anti-arcing effect was evaluated in the same manner as in Example 1 except that the backside gas pressure was 1 Torr (133 Pa). The results obtained are summarized in Table 2.
(実施例9〜実施例13、比較例3)
表3に示すように、アーキング防止部材の材質として99%のアルミナとした点を除き、実施例1と同様にしてアーキング防止効果を評価した。また以下の基準に従いガス流量を測定した。得られた結果をまとめて表3に示す。
(Examples 9 to 13, Comparative Example 3)
As shown in Table 3, the anti-arcing effect was evaluated in the same manner as in Example 1 except that 99% alumina was used as the material for the anti-arcing member. The gas flow rate was measured according to the following criteria. The results obtained are summarized in Table 3.
(ガス流量の測定方法)
マスフローメーターをガス供給元と静電チャックのガス供給孔へつながる配管の途中に設置した。そして、チャンバー内を真空(=ほぼ0Torr(Pa))にして、ウエハーを載せないまま静電チャックに流れるガス流量をマスフローメーターで測定した。表中でバックサイドガス圧が10Torr(1330Pa)とはガス供給元の圧力が10Torr(1330Pa)であることを示し、ウエハーを吸着させたときはバックサイド圧力とガス供給元の圧力が同じになる。ウエハーを吸着させなければ、0Torr(Pa)の真空中にガスが放出され、バックサイド圧力はない。なお、表3中の「SCCM」は、standard cc(cm3)/minの略語であり、1atm(大気圧1,013hPa)下、一定温度(25℃)における単位時間当たりに換算した際の流量を示す。
A mass flow meter was installed in the middle of the piping connected to the gas supply source and the gas supply hole of the electrostatic chuck. Then, the inside of the chamber was evacuated (= approximately 0 Torr (Pa)), and the flow rate of gas flowing through the electrostatic chuck was measured with a mass flow meter without placing the wafer. In the table, the backside gas pressure of 10 Torr (1330 Pa) indicates that the pressure of the gas supply source is 10 Torr (1330 Pa). When the wafer is adsorbed, the backside pressure and the pressure of the gas supply source are the same. . If the wafer is not adsorbed, gas is released in a vacuum of 0 Torr (Pa) and there is no backside pressure. “SCCM” in Table 3 is an abbreviation for standard cc (cm 3 ) / min, and the flow rate when converted per unit time at a constant temperature (25 ° C.) under 1 atm (atmospheric pressure 1,013 hPa). Show.
表3より、実施に耐えうるガス流量を維持しつつ、アーキングを防止できることが分かった。特に実施例9、13においては、比較例と同じガス流量でありながらアーキングを防止すことができた。 From Table 3, it was found that arcing can be prevented while maintaining a gas flow rate that can withstand implementation. In particular, in Examples 9 and 13, arcing could be prevented while maintaining the same gas flow rate as in the comparative example.
(実施例14〜実施例18、比較例4)
表4に示すように、アーキング防止部材の材質として99%のアルミナを用いた点と、バックサイドガス圧を1Torr(133Pa)とした点を除き、実施例1と同様にしてアーキング防止効果を評価した。得られた結果をまとめて表4に示す。
As shown in Table 4, the arcing prevention effect was evaluated in the same manner as in Example 1 except that 99% alumina was used as the material for the arcing prevention member and the backside gas pressure was 1 Torr (133 Pa). did. The obtained results are summarized in Table 4.
表1〜表4に示すように、実施例にかかるアーキング防止部材を有する静電チャックは比較例よりも高いプラズマ出力までアーキングが起きないことが分かった。 As shown in Tables 1 to 4, it was found that the electrostatic chuck having the arcing prevention member according to the example does not cause arcing until the plasma output is higher than that of the comparative example.
表1と表2の対比より、バックサイド(He)ガスの圧力が低いとアーキングがより低いプラズマ出力で発生する傾向があることが分かった。表3と表4の対比からも同様のことがいえた。バックサイドガスの圧力が低い場合でも、実施例1〜16にかかるアーキング防止部材を有する静電チャックは有効に機能していることが分かった。 From the comparison between Table 1 and Table 2, it was found that when the pressure of the backside (He) gas is low, arcing tends to occur at a lower plasma output. The same can be said from the comparison between Table 3 and Table 4. Even when the pressure of the backside gas was low, it was found that the electrostatic chuck having the arcing prevention member according to Examples 1 to 16 functions effectively.
また、アーキングが1度生じた後、同じ静電チャックにプラズマ電圧を印加すると、ポリテトラフルオロエチレンからなるアーキング防止部材を用いた場合は、より低いプラズマ出力でアーキングが発生する傾向があるのに対し、アルミナ製アーキング防止部材を用いた場合は、同じプラズマ出力でアーキングが発生した。この違いはアーキング防止部材の耐熱性により生じたものであると考えられる。すなわち、ポリテトラフルオロエチレンからなるアーキング防止部材はアーキングにより形状変化してしまうのに対し、アルミナはほとんど形状が変化しないためと考えられる。よって、アーキング防止部材の材質としてはアルミナ等の高融点絶縁性セラミックスがより好ましい。 In addition, when a plasma voltage is applied to the same electrostatic chuck after arcing has occurred once, when an arcing prevention member made of polytetrafluoroethylene is used, arcing tends to occur at a lower plasma output. On the other hand, when an alumina arcing prevention member was used, arcing occurred with the same plasma output. This difference is considered to be caused by the heat resistance of the arcing prevention member. That is, it is considered that the arcing preventing member made of polytetrafluoroethylene changes its shape due to arcing, whereas the shape of alumina hardly changes. Therefore, the material of the arcing prevention member is more preferably a high melting point insulating ceramic such as alumina.
1…冷却装置、1a…ガス供給孔、1b…主座繰り部、
3…アーキング防止部材、3a…ガス流路、
2…静電チャック本体、2a1,2a2,2a3…細孔
10,11,12,13…静電チャック
DESCRIPTION OF
3 ... arcing prevention member, 3a ... gas flow path,
2 ... electrostatic chuck body, 2a1, 2a2, 2a3 ... pore 10, 11, 12, 13 ... electrostatic chuck
Claims (9)
前記冷却装置を貫通して、前記冷却装置の一方の主面から他方の主面表面に至るように伸びるガス供給孔、前記ガス供給孔の開口部に前記ガス供給孔よりも大径の主座繰り部が設けられ、
前記主座繰り部に、前記ガス供給孔と連通するガス流路を設けた絶縁部材からなるアーキング防止部材が埋め込まれ、
前記ワーク載置面には、前記ガス流路を介して前記ガス供給孔と連通する細孔が設けられており、
前記アーキング防止部材が、前記ガス流路に前記冷却装置側から前記静電チャック本体側に向かい内径が同心円状に拡がる断面テーパ状の内壁を備えることを特徴とする静電チャック。 An electrostatic chuck used in a semiconductor manufacturing apparatus including a cooling device and an electrostatic chuck body disposed on the cooling device and having a workpiece placement surface,
A gas supply hole extending through one of the main surfaces of the cooling device from the main surface to the other main surface, and a main seat having a larger diameter than the gas supply hole at the opening of the gas supply hole A feeding part is provided,
An arcing prevention member made of an insulating member provided with a gas flow path communicating with the gas supply hole is embedded in the main countersink part,
The work placement surface is provided with a pore communicating with the gas supply hole via the gas flow path ,
The electrostatic chuck according to claim 1, wherein the arcing prevention member includes an inner wall having a tapered cross section whose inner diameter expands concentrically from the cooling device side toward the electrostatic chuck body side in the gas flow path .
前記冷却装置を貫通して、前記冷却装置の一方の主面から他方の主面表面に至るように伸びるガス供給孔、前記ガス供給孔の開口部に前記ガス供給孔よりも大径の主座繰り部が設けられ、
前記主座繰り部に、前記ガス供給孔と連通するガス流路を設けた絶縁部材からなるアーキング防止部材が埋め込まれ、
前記ワーク載置面には、前記ガス流路を介して前記ガス供給孔と連通する細孔が設けられており、
前記アーキング防止部材の前記静電チャック本体側に前記アーキング防止部材の外径よりも小径の副座繰り部が設けられ、前記副座繰り部の底面から前記冷却装置側主面につながる前記ガス供給孔の内径よりも小径の前記ガス流路が複数備えられたことを特徴とする静電チャック。 An electrostatic chuck used in a semiconductor manufacturing apparatus including a cooling device and an electrostatic chuck body disposed on the cooling device and having a workpiece placement surface,
A gas supply hole extending through one of the main surfaces of the cooling device from the main surface to the other main surface, and a main seat having a larger diameter than the gas supply hole at the opening of the gas supply hole A feeding part is provided,
An arcing prevention member made of an insulating member provided with a gas flow path communicating with the gas supply hole is embedded in the main countersink part,
The work placement surface is provided with a pore communicating with the gas supply hole via the gas flow path,
The gas supply connected to the cooling device side main surface from the bottom surface of the counter-sinking part is provided with a sub-sinking part having a smaller diameter than the outer diameter of the arcing-preventing member on the electrostatic chuck main body side of the arcing prevention member the electrostatic chuck than the inner diameter of the hole characterized in that the gas flow path of smaller diameter provided plural.
前記冷却装置を貫通して、前記冷却装置の一方の主面から他方の主面表面に至るように伸びるガス供給孔、前記ガス供給孔の開口部に前記ガス供給孔よりも大径の主座繰り部が設けられ、
前記主座繰り部に挿入した際にガス流路となるように、ガスの流れ方向の中心線を含む断面図の周囲で定義される複数の溝が表面に設けられたアーキング防止部材が、前記主座繰り部に埋め込まれ、
前記ワーク載置面には、前記ガス流路を介して前記ガス供給孔と連通する細孔が設けられていることを特徴とする静電チャック。 An electrostatic chuck used in a semiconductor manufacturing apparatus including a cooling device and an electrostatic chuck body disposed on the cooling device and having a workpiece placement surface,
A gas supply hole extending through one of the main surfaces of the cooling device from the main surface to the other main surface, and a main seat having a larger diameter than the gas supply hole at the opening of the gas supply hole A feeding part is provided,
An arcing prevention member provided with a plurality of grooves defined on the surface of a cross-sectional view including a center line in the gas flow direction so as to be a gas flow path when inserted into the main countersink portion, Embedded in the main countersink,
The electrostatic chuck according to claim 1, wherein the work mounting surface is provided with a pore communicating with the gas supply hole via the gas flow path.
前記冷却装置を貫通して、前記冷却装置の一方の主面から他方の主面表面に至るように伸びるガス供給孔、前記ガス供給孔の開口部に前記ガス供給孔よりも大径の主座繰り部が設けられ、
前記静電チャック本体側主面に、径方向の中心で交わる2つの溝からなる十字状の副座繰り部を備え、前記主座繰り部に挿入した際にガス流路を形成するように、円筒形状の側面に前記十字状の副座繰り部のそれぞれの溝の長手方向に直行する平面状の複数の切り欠き部を有するアーキング防止部材が、前記主座繰り部に埋め込まれ、
前記ワーク載置面には、前記ガス流路を介して前記ガス供給孔と連通する細孔が設けられていることを特徴とする静電チャック。 An electrostatic chuck used in a semiconductor manufacturing apparatus including a cooling device and an electrostatic chuck body disposed on the cooling device and having a workpiece placement surface,
A gas supply hole extending through one of the main surfaces of the cooling device from the main surface to the other main surface, and a main seat having a larger diameter than the gas supply hole at the opening of the gas supply hole A feeding part is provided,
The electrostatic chuck main body side main surface is provided with a cross-shaped counter-sink portion composed of two grooves that intersect at the center in the radial direction, and when inserted into the main counter-sink portion, a gas flow path is formed, An anti-arcing member having a plurality of planar cutouts perpendicular to the longitudinal direction of each groove of the cross-shaped counter-sink portion on a cylindrical side surface is embedded in the main countersink portion,
The electrostatic chuck according to claim 1, wherein the work mounting surface is provided with a pore communicating with the gas supply hole via the gas flow path.
前記冷却装置を貫通して、前記冷却装置の一方の主面から他方の主面表面に至るように伸びるガス供給孔、前記ガス供給孔の開口部に前記ガス供給孔よりも大径の主座繰り部が設けられ、
前記主座繰り部に、前記ガス供給孔と連通するガス流路を設けた絶縁部材からなるアーキング防止部材が埋め込まれ、
前記ワーク載置面には、前記ガス流路を介して前記ガス供給孔と連通する細孔が設けられており、
前記アーキング防止部材の直径が前記静電チャック本体の厚みの2倍以上4倍以下であることを特徴とする静電チャック。 An electrostatic chuck used in a semiconductor manufacturing apparatus including a cooling device and an electrostatic chuck body disposed on the cooling device and having a workpiece placement surface,
A gas supply hole extending through one of the main surfaces of the cooling device from the main surface to the other main surface, and a main seat having a larger diameter than the gas supply hole at the opening of the gas supply hole A feeding part is provided,
An arcing prevention member made of an insulating member provided with a gas flow path communicating with the gas supply hole is embedded in the main countersink part,
The work placement surface is provided with a pore communicating with the gas supply hole via the gas flow path,
The electrostatic chuck you wherein the diameter of the arcing preventing member is not more than 4 times 2 times the thickness of the electrostatic chuck body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/400,830 US8336891B2 (en) | 2008-03-11 | 2009-03-10 | Electrostatic chuck |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3547008P | 2008-03-11 | 2008-03-11 | |
US61/035470 | 2008-03-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009218592A JP2009218592A (en) | 2009-09-24 |
JP5331519B2 true JP5331519B2 (en) | 2013-10-30 |
Family
ID=41104307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009052670A Active JP5331519B2 (en) | 2008-03-11 | 2009-03-05 | Electrostatic chuck |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5331519B2 (en) |
KR (1) | KR101364656B1 (en) |
CN (1) | CN101533798B (en) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5449750B2 (en) * | 2008-11-19 | 2014-03-19 | 株式会社日本セラテック | Electrostatic chuck and manufacturing method thereof |
US8593779B2 (en) * | 2010-01-05 | 2013-11-26 | Nikon Corporation | Hybrid electrostatic chuck |
CN102646584B (en) * | 2011-02-16 | 2014-06-25 | 株式会社东京精密 | Workpiece dividing device and method for dividing workpiece |
JP5956379B2 (en) * | 2012-04-27 | 2016-07-27 | 日本碍子株式会社 | Components for semiconductor manufacturing equipment |
JP5984504B2 (en) * | 2012-05-21 | 2016-09-06 | 新光電気工業株式会社 | Electrostatic chuck and method for manufacturing electrostatic chuck |
JP6509139B2 (en) * | 2016-01-29 | 2019-05-08 | 日本特殊陶業株式会社 | Substrate support apparatus and method of manufacturing the same |
US11227749B2 (en) * | 2016-02-18 | 2022-01-18 | Lam Research Corporation | 3D printed plasma arrestor for an electrostatic chuck |
US9954291B2 (en) * | 2016-06-06 | 2018-04-24 | Te Connectivity Corporation | Electrical device having reduced arc tracking |
US10770270B2 (en) * | 2016-06-07 | 2020-09-08 | Applied Materials, Inc. | High power electrostatic chuck with aperture-reducing plug in a gas hole |
JP6470878B1 (en) * | 2017-06-13 | 2019-02-13 | 日本碍子株式会社 | Components for semiconductor manufacturing equipment |
US11348819B2 (en) * | 2017-12-28 | 2022-05-31 | Sumitomo Osaka Cement Co., Ltd. | Electrostatic chuck device |
JP6504532B1 (en) * | 2018-03-14 | 2019-04-24 | Toto株式会社 | Electrostatic chuck |
WO2020004478A1 (en) * | 2018-06-29 | 2020-01-02 | 北陸成型工業株式会社 | Electrostatic chuck |
CN110767598A (en) * | 2018-07-27 | 2020-02-07 | 北京北方华创微电子装备有限公司 | Chuck device and semiconductor processing equipment |
US11715652B2 (en) * | 2018-09-28 | 2023-08-01 | Ngk Insulators, Ltd. | Member for semiconductor manufacturing apparatus |
KR102188779B1 (en) * | 2018-10-15 | 2020-12-08 | 세메스 주식회사 | Apparatus for surpoting substrate and manufacturing mathod threrof |
JP7002014B2 (en) * | 2018-10-30 | 2022-01-20 | Toto株式会社 | Electrostatic chuck |
JP7324230B2 (en) * | 2018-12-14 | 2023-08-09 | 日本発條株式会社 | plate with channels |
CN111668148B (en) | 2019-03-05 | 2024-09-03 | Toto株式会社 | Electrostatic chuck and handling device |
CN111668150B (en) | 2019-03-05 | 2024-06-28 | Toto株式会社 | Electrostatic chuck and processing apparatus |
JP7441402B2 (en) | 2019-03-05 | 2024-03-01 | Toto株式会社 | Electrostatic chuck and processing equipment |
JP6729735B1 (en) * | 2019-03-05 | 2020-07-22 | Toto株式会社 | Electrostatic chuck |
JP7441403B2 (en) | 2019-03-05 | 2024-03-01 | Toto株式会社 | Electrostatic chuck and processing equipment |
JP7441404B2 (en) | 2019-03-05 | 2024-03-01 | Toto株式会社 | Electrostatic chuck and processing equipment |
JP6873178B2 (en) * | 2019-03-26 | 2021-05-19 | 日本碍子株式会社 | Semiconductor manufacturing equipment members, their manufacturing methods and molding dies |
WO2020217406A1 (en) * | 2019-04-25 | 2020-10-29 | 日本碍子株式会社 | Method for manufacturing three-dimensional fired body |
CN112768331B (en) * | 2019-11-01 | 2023-09-29 | 中微半导体设备(上海)股份有限公司 | Plasma processing device, lower electrode assembly thereof and electrostatic chuck |
KR102286522B1 (en) * | 2019-11-22 | 2021-08-06 | 주식회사 보부하이테크 | Electrostatic chuck |
CN112908919B (en) * | 2019-12-04 | 2024-07-09 | 中微半导体设备(上海)股份有限公司 | Electrostatic chuck device and plasma processing apparatus including the same |
JP7296869B2 (en) * | 2019-12-10 | 2023-06-23 | 新光電気工業株式会社 | Electrostatic chuck, substrate fixing device |
CN113524062A (en) * | 2020-04-16 | 2021-10-22 | 鸿鎷科技有限公司 | Precision ceramic workbench |
CN116134721A (en) * | 2020-08-05 | 2023-05-16 | 株式会社堀场Stec | Electrostatic chuck device, pressure calculation method, and program |
JP7382978B2 (en) | 2021-02-04 | 2023-11-17 | 日本碍子株式会社 | Parts and plugs for semiconductor manufacturing equipment |
WO2022176338A1 (en) * | 2021-02-17 | 2022-08-25 | 株式会社堀場エステック | Gas supply system for electrostatic chuck device, gas supply method, and program for gas supply system |
JP7572128B2 (en) | 2021-05-31 | 2024-10-23 | 東京エレクトロン株式会社 | Plasma Processing Equipment |
JP7343069B1 (en) * | 2023-03-27 | 2023-09-12 | Toto株式会社 | electrostatic chuck |
JP7494973B1 (en) | 2023-03-27 | 2024-06-04 | Toto株式会社 | Electrostatic Chuck |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3165941B2 (en) * | 1993-10-04 | 2001-05-14 | 東京エレクトロン株式会社 | Plasma processing apparatus and method |
US5720818A (en) * | 1996-04-26 | 1998-02-24 | Applied Materials, Inc. | Conduits for flow of heat transfer fluid to the surface of an electrostatic chuck |
JP3965258B2 (en) * | 1999-04-30 | 2007-08-29 | 日本碍子株式会社 | Ceramic gas supply structure for semiconductor manufacturing equipment |
JP4493251B2 (en) * | 2001-12-04 | 2010-06-30 | Toto株式会社 | Electrostatic chuck module and substrate processing apparatus |
JP2003338492A (en) * | 2002-05-21 | 2003-11-28 | Tokyo Electron Ltd | Plasma processing system |
JP2004006505A (en) | 2002-05-31 | 2004-01-08 | Ngk Spark Plug Co Ltd | Electrostatic chuck |
JP4095842B2 (en) * | 2002-06-26 | 2008-06-04 | 日本特殊陶業株式会社 | Electrostatic chuck |
KR100505035B1 (en) * | 2003-11-17 | 2005-07-29 | 삼성전자주식회사 | Electrostatic chuck for supporting a substrate |
JP4413667B2 (en) * | 2004-03-19 | 2010-02-10 | 日本特殊陶業株式会社 | Electrostatic chuck |
-
2009
- 2009-03-05 JP JP2009052670A patent/JP5331519B2/en active Active
- 2009-03-06 KR KR1020090019411A patent/KR101364656B1/en active IP Right Grant
- 2009-03-10 CN CN2009101273429A patent/CN101533798B/en active Active
Also Published As
Publication number | Publication date |
---|---|
KR20090097797A (en) | 2009-09-16 |
JP2009218592A (en) | 2009-09-24 |
KR101364656B1 (en) | 2014-02-19 |
CN101533798B (en) | 2012-04-04 |
CN101533798A (en) | 2009-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5331519B2 (en) | Electrostatic chuck | |
US8336891B2 (en) | Electrostatic chuck | |
JP4413667B2 (en) | Electrostatic chuck | |
JP5633766B2 (en) | Electrostatic chuck | |
JP4942471B2 (en) | Susceptor and wafer processing method using the same | |
JP4034145B2 (en) | Susceptor device | |
JP5250408B2 (en) | Substrate temperature adjustment fixing device | |
JP2019212910A (en) | Substrate support pedestal | |
JP4451098B2 (en) | Susceptor device | |
JP5591627B2 (en) | Ceramic member and manufacturing method thereof | |
JP4943086B2 (en) | Electrostatic chuck apparatus and plasma processing apparatus | |
JP2009087932A (en) | Heating apparatus | |
JP7569343B2 (en) | Semiconductor manufacturing equipment parts | |
JP4458995B2 (en) | Wafer support member | |
JP2007201068A (en) | Electrostatic chuck | |
JP4839123B2 (en) | Rear electron impact heating device | |
US20250014933A1 (en) | Electrostatic chuck device | |
JP7514817B2 (en) | Semiconductor manufacturing equipment parts | |
JP2006186351A (en) | Semiconductor manufacturing equipment | |
JP2005197393A (en) | Electrode-burying member for plasma generator | |
TWI578365B (en) | A method of manufacturing a plasma processing chamber and an electrostatic chuck thereof | |
JP2006128372A (en) | Silicon ring for plasma etcher | |
JP2012039011A (en) | Electrostatic chuck and manufacturing method of the same | |
KR102724772B1 (en) | Wafer placement table | |
WO2025063032A1 (en) | Electrostatic chuck member and electrostatic chuck device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20090629 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20090715 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130716 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130729 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5331519 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |