[go: up one dir, main page]

WO2025063032A1 - Electrostatic chuck member and electrostatic chuck device - Google Patents

Electrostatic chuck member and electrostatic chuck device Download PDF

Info

Publication number
WO2025063032A1
WO2025063032A1 PCT/JP2024/031464 JP2024031464W WO2025063032A1 WO 2025063032 A1 WO2025063032 A1 WO 2025063032A1 JP 2024031464 W JP2024031464 W JP 2024031464W WO 2025063032 A1 WO2025063032 A1 WO 2025063032A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrostatic chuck
dielectric substrate
gas hole
discharge
suppressing member
Prior art date
Application number
PCT/JP2024/031464
Other languages
French (fr)
Japanese (ja)
Inventor
敏祥 乾
勇貴 金原
徹 菅又
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Publication of WO2025063032A1 publication Critical patent/WO2025063032A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to an electrostatic chuck member and an electrostatic chuck device.
  • This application claims priority based on Japanese Patent Application No. 2023-158380, filed on September 22, 2023, the contents of which are incorporated herein by reference.
  • Patent Document 1 describes such an electrostatic chuck device having a configuration in which a sample stage that electrostatically attracts the workpiece has multiple gas holes that supply heat transfer gas between the workpiece and the sample stage to control the temperature of the workpiece.
  • the gas supply through-holes can be the starting point of discharges that can lead to damage to semiconductor wafers.
  • plasma etching devices used in semiconductor manufacturing have become increasingly powerful in order to process deep holes due to the increasing number of semiconductor layers. For this reason, there is a need to suppress the occurrence of abnormal discharges inside the gas holes.
  • One of the objectives of the present invention is to provide an electrostatic chuck device that can suppress abnormal discharge inside the gas hole.
  • An electrostatic chuck member comprising: a plate-shaped dielectric substrate having a mounting surface on which a plate-shaped sample is placed and gas holes penetrating in a thickness direction, an attraction electrode disposed inside the dielectric substrate, a bias electrode disposed inside the dielectric substrate, and a conductive discharge-suppressing member embedded in the dielectric substrate to surround the gas holes, wherein the discharge-suppressing member is provided electrically independent.
  • An electrostatic chuck device comprising: the electrostatic chuck member according to any one of [1] to [5]; and a base supporting the electrostatic chuck member from an opposite side to the mounting surface, wherein the discharge suppressing member is not in contact with the base.
  • an electrostatic chuck device that can suppress abnormal discharge inside the gas hole.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of an electrostatic chuck device according to a first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing an example of a discharge suppressing member provided in the electrostatic chuck device of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view showing an example of a discharge suppressing member provided in the electrostatic chuck device according to the second embodiment.
  • FIG. 4 is a diagram showing an example of equipotential lines near gas holes of an electrostatic chuck device of a comparative example that does not have a discharge suppressing member.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of an electrostatic chuck device according to a first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing an example of a discharge suppressing member provided in the electrostatic chuck device of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view showing an example of a discharge suppressing member provided in the electrostatic chuck device according to the
  • FIG. 5 is a diagram showing an example of equipotential lines in the vicinity of a gas hole (a portion where a pin is located) of an electrostatic chuck device in an example of the first embodiment.
  • FIG. 6 is a diagram showing an example of equipotential lines in another portion (portion between pins) near the gas holes of the electrostatic chuck device in the example of the first embodiment.
  • FIG. 7 is a diagram showing an example of equipotential lines of an electrostatic chuck device according to an example of the second embodiment.
  • FIG. 8 is a schematic cross-sectional view of an electrostatic chuck device according to a modified example of the embodiment.
  • FIG. 1 is a schematic cross-sectional view showing a preferred example of an electrostatic chuck device according to the present embodiment.
  • An electrostatic chuck device 1A shown in FIG. 1 is placed in a vacuum chamber of a plasma processing device with a mounting surface 11a on which a wafer (plate-shaped sample) W is placed facing upward.
  • a Z-axis is shown to explain the reference of the electrostatic chuck device.
  • the Z-axis direction is, for example, a vertical direction.
  • the central axis O of the mounting surface 11a is parallel to the Z-axis. Note that the arrangement of the electrostatic chuck device 1A with respect to the vertical direction is one example, and other arrangements may be used.
  • the electrostatic chuck device 1A includes an electrostatic chuck plate (electrostatic chuck member) 10A that adsorbs and supports a plate-shaped sample such as a wafer W, and a base 20 that supports the electrostatic chuck plate 10A.
  • an electrostatic chuck plate (electrostatic chuck member) 10A that adsorbs and supports a plate-shaped sample such as a wafer W, and a base 20 that supports the electrostatic chuck plate 10A.
  • the base 20 is made of a thick disk-shaped member.
  • the base 20 supports the electrostatic chuck plate 10A from the lower side (opposite the mounting surface 11a).
  • the material constituting the base 20 can be selected as necessary, and metals having excellent thermal conductivity, electrical conductivity, and workability, or composite materials containing these metals, or conductive ceramics, or composite materials of the metals and ceramics (MMC: Metal Matrix Composition) are preferably used.
  • MMC Metal Matrix Composition
  • the metal for example, aluminum, aluminum alloys, copper, copper alloys, stainless steel, etc. are preferably used.
  • the conductive ceramics are preferably composed of a highly thermally conductive material and a conductive material.
  • the volume ratio of the highly thermally conductive material and the conductive material constituting the conductive ceramics can be selected arbitrarily, but is preferably 10:90 to 90:10.
  • the highly thermally conductive material is preferably at least one selected from the group consisting of AlN, SiC, GaN, SiO 2 , Al 2 O 3 , SmAlO 3 , MgO, SiO 2 , Si 3 N 4 , Al(OH) 3 , MgO, Mg(OH) 2 , BN, ZnO, BeO, B 4 C, carbon, aluminum, copper, silver, and gold.
  • the conductive material is preferably at least one selected from the group consisting of SiC, TiO 2 , TiN, TiC, W, WC, Mo, MoC, Mo 2 C, TaC, TaN, NbC, VC, and C.
  • the conductive ceramic may be made of AlN and TiN, may be made of AlN and Mo, or may be made of AlN, TiN and Mo, for example.
  • the base 20 of the present embodiment may be a water-cooled base having a flow path (not shown) therein for circulating a coolant such as water.
  • the upper surface 20t of the base 20 is adhered to the lower surface 11b of the dielectric substrate 11 via an adhesive layer 25.
  • the adhesive layer 25 can be selected arbitrarily, and may be, for example, a heat-resistant resin such as polyimide resin, silicone resin, or epoxy resin, or an insulating sheet- or film-shaped adhesive resin, or a silicone resin containing a highly thermally conductive filler such as aluminum nitride particles or surface-coated aluminum nitride particles, or a metal brazing material.
  • the electrostatic chuck plate 10A includes a dielectric substrate 11, an attraction electrode 30, a bias electrode 40, and a discharge-suppressing member 50A.
  • the attraction electrode 30, the bias electrode 40, and the discharge-suppressing member 50A are each embedded in the dielectric substrate 11.
  • the dielectric substrate 11 is a plate-like member that is circular or approximately circular in plan view.
  • the thickness direction of the dielectric substrate 11 may be simply referred to as the "thickness direction”.
  • the electrostatic chuck device will be described with the side in the thickness direction on which the wafer W is mounted being referred to as the "upper side” and the opposite side being referred to as the "lower side”.
  • the "upper side” and the “lower side” indicate examples of the posture of the electrostatic chuck device when in use, and do not limit the posture of the electrostatic chuck device when in use.
  • the dielectric substrate 11 is preferably made of a composite sintered body that has mechanical strength and is resistant to corrosive gases and their plasma.
  • the dielectric material that constitutes the dielectric substrate 11 ceramics that have mechanical strength and are resistant to corrosive gases and their plasma are preferably used.
  • the ceramics that constitute the dielectric substrate 11 for example, aluminum oxide sintered body, aluminum nitride sintered body, aluminum oxide-silicon carbide composite sintered body, etc. are preferably used.
  • the upper surface of the dielectric substrate 11 is provided with a mounting surface 11a on which the wafer W is placed. That is, the dielectric substrate 11 is provided with the mounting surface 11a on which the wafer W is placed.
  • a plurality of protrusions 12 are formed at predetermined intervals on the upper surface of the dielectric substrate 11.
  • the tip surfaces of the plurality of protrusions 12 form the mounting surface 11a.
  • the dielectric substrate 11 is provided with recesses 13 between adjacent protrusions 12, which are recessed downward from the mounting surface 11a.
  • the bottom surface 13b of the recesses 13 faces upward (towards the wafer W).
  • the dielectric substrate 11 is provided with a gas hole 8.
  • the gas hole 8 penetrates the dielectric substrate 11 in the thickness direction.
  • the gas hole 8 is circular when viewed in the thickness direction.
  • the gas hole 8 is connected to a gas supply device (not shown).
  • the gas hole 8 supplies a cooling gas such as helium (He) to the space between the wafer W placed on the mounting surface 11a and the bottom surface 13b of the recess 13.
  • the supplied cooling gas cools the wafer W placed on the mounting surface 11a.
  • a cooling gas such as helium (He)
  • the chucking electrode 30 and the bias electrode 40 are layered electrodes embedded in the dielectric substrate 11 and are conductive members.
  • the chucking electrode 30 and the bias electrode 40 are conductive. That is, the chucking electrode 30 and the bias electrode 40 are made of a material having a resistivity of 0.5 ⁇ m or less.
  • the chucking electrode 30 and the bias electrode 40 are arranged in this order from the top to the bottom in the dielectric substrate 11. In other words, the chucking electrode 30 is preferably arranged between the bias electrode 40 and the mounting surface 11a.
  • the chucking electrode 30 is located inside the dielectric substrate 11.
  • the chucking electrode 30 extends in a layer along a plane perpendicular to the thickness direction of the dielectric substrate 11.
  • the chucking electrode 30 is preferably provided with a first hole 30a through which the discharge suppressing member 50A passes.
  • the first hole 30a is an area in which the hole-shaped chucking electrode 30 is not formed, and is formed to surround the discharge suppressing member 50A when viewed from the thickness direction.
  • the inner diameter of the first hole 30a is sufficiently larger than the outer diameter of the discharge suppressing member 50A.
  • the inner edge of the first hole 30a is disposed at a distance from the outer peripheral surface of the discharge suppressing member 50A.
  • the chucking electrode 30 is disposed at a predetermined distance below the mounting surface 11a and the bottom surface 13b.
  • the chucking electrode 30 is connected to the DC power source 101 via the first power supply 31 extending downward.
  • the chucking electrode 30 generates an electrostatic chucking force by the DC current supplied from the DC power source 101, and chucking the wafer W to the mounting surface 11a.
  • the chucking electrode 30 is not limited to a monopolar chucking electrode, and may be a bipolar chucking electrode consisting of two electrodes having a semicircular shape in a plan view.
  • the chucking electrode 30 may be provided only in a partial area in the circumferential direction centered on the discharge suppressing member 50A described later, as viewed from the thickness direction.
  • the number and shape of the chucking electrodes 30 are arbitrarily selected.
  • the chucking electrodes 30 may be provided at intervals in the circumferential direction centered on the discharge suppressing member 50A, as viewed from the thickness direction.
  • the bias electrode 40 is disposed below the chucking electrode 30 (opposite the mounting surface 11a) and spaced apart from the chucking electrode 30.
  • the bias electrode 40 extends in a layer shape along a plane perpendicular to the thickness direction of the dielectric substrate 11.
  • the bias electrode 40 is connected to the AC power source 102 via a second power supply 41 that extends downward.
  • the bias electrode 40 is preferably provided with a second hole 40a through which the discharge suppression member 50A passes and a third hole 40h through which the first power supply 31 passes.
  • the second hole 40a is a hole-shaped region in which the bias electrode 30 is not formed, formed to surround the discharge suppression member 50A when viewed from the thickness direction.
  • the inner diameter of the second hole 40a is sufficiently larger than the outer diameter of the discharge suppression member 50A.
  • the inner edge of the second hole 40a is disposed at a distance from the outer peripheral surface of the discharge suppression member 50A. In this embodiment, the inner diameter of the second hole 40a is approximately equal to the inner diameter of the first hole 30a.
  • the third hole 40h is a hole-shaped region in which the bias electrode 30 is not formed, formed to surround the first power supply 31 when viewed from the thickness direction.
  • the inner diameter of the third hole 40h is sufficiently larger than the outer diameter of the first power supply 31.
  • the inner edge of the third hole 40h is spaced apart from the outer circumferential surface of the first power supply part 31.
  • the outer periphery 40b of the bias electrode 40 and the outer periphery 30b of the adsorption electrode 30 are positioned at approximately the same position when viewed from the thickness direction.
  • the bias electrode 40 is positioned so as to cover almost the entire adsorption electrode 30 from below. Note that it is sufficient that at least a portion of the bias electrode 40 overlaps with the adsorption electrode 30 when viewed from the thickness direction. In other words, at least a portion of the bias electrode 40 overlaps with the adsorption electrode 30 when viewed from the thickness direction. Furthermore, the bias electrode 40 in this embodiment entirely overlaps with the adsorption electrode 30 when viewed from the thickness direction.
  • discharge suppressing member 2 is a schematic cross-sectional view showing a discharge suppressing member 50A provided in the electrostatic chuck device 1A of the present embodiment. This figure is a schematic cross-sectional view of the discharge suppressing member 50A surrounding the inside of the gas hole 8, cut in the radial direction. As shown in FIG. 1 and FIG. 2, the discharge suppressing member 50A is embedded in the dielectric substrate 11 so as to surround the gas hole 8. The discharge suppressing member 50A suppresses discharge in the gas hole 8.
  • the discharge suppressing member 50A of this embodiment includes a plurality of pins 51 surrounding the gas hole 8. The plurality of pins 51 are arranged on the same circle at intervals in the circumferential direction centered on the gas hole 8.
  • Each pin 51 extends in the thickness direction of the dielectric substrate 11.
  • the pin 51 is, for example, circular when viewed from the thickness direction.
  • the number, shape, and size of the pins 51 can be selected arbitrarily.
  • the shape of the pin 51 is not limited to a circle when viewed from the thickness direction, and may be, for example, a polygonal shape such as a square, a pentagon, a hexagon, or an octagon.
  • the pin 51 may be, for example, a cylinder or a polygonal column.
  • the number of pins 51 may be, for example, three or more. In this embodiment, six pins 51 are arranged at equal intervals in the circumferential direction.
  • the number of pins may be, for example, 3 to 5, 6 to 8, 9 to 15, or 16 to 25.
  • the distance from the gas hole 8 to the pin 51 can be selected arbitrarily, and may be, for example, equal to or less than the diameter of the gas hole 8, or equal to or more than the diameter. In this embodiment, the shape of the pins 51 and the distance from the gas hole 8 to each pin 51 are all the same.
  • These multiple pins 51 are spaced apart from the inner circumferential surface of the gas hole 8 on the radially outer side of the gas hole 8.
  • the dielectric material that forms the dielectric substrate 11 is interposed between the multiple pins 51 that make up the discharge suppression member 50A and the inner circumferential surface of the gas hole 8.
  • each pin 51 is positioned a predetermined distance below the mounting surface 11a and bottom surface 13b.
  • the other end 51t of each pin 51 is positioned a predetermined distance above the lower surface 11b of the dielectric substrate 11. In other words, each pin 51 is not in contact with the metal base 20.
  • the ends of the pins 51 are located inside the dielectric substrate 11 and are not exposed to the outside.
  • the discharge suppression member 50A which has multiple pins 51, is provided electrically independent.
  • the multiple pins 51 embedded in the dielectric substrate 11 are not electrically connected to other conductors, such as the chucking electrode 30 or the bias electrode 40.
  • the discharge suppression member 50A may be in direct contact only with the dielectric material that forms the dielectric substrate 11.
  • the chucking electrode 30, the bias electrode 40, and the discharge suppressing member 50A are formed of a conductive material.
  • the conductive material used for the discharge suppressing member 50A can be selected arbitrarily, and is preferably at least one selected from the group consisting of molybdenum carbide (Mo 2 C), molybdenum (Mo), tungsten carbide (WC), tungsten (W), tantalum carbide (TaC), tantalum (Ta), silicon carbide (SiC), carbon black, carbon nanotubes, and carbon nanofibers.
  • the conductive material used for the chucking electrode 30, the bias electrode 40, and the discharge suppressing member 50A may further be configured by adding at least one of aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), yttrium (III) oxide (Y 2 O 3 ), yttrium aluminum garnet (YAG), SmAlO 3 , etc., in order to control the resistivity.
  • Al 2 O 3 aluminum oxide
  • AlN aluminum nitride
  • Si 3 N 4 silicon nitride
  • Y 2 O 3 yttrium oxide
  • YAG yttrium aluminum garnet
  • SmAlO 3 etc.
  • These chucking electrodes 30, bias electrodes 40, and discharge suppressing members 50A may be formed in advance into a predetermined shape, or may be formed by 3D printing or the like.
  • the chucking electrodes 30, bias electrodes 40, and discharge suppressing members 50A may be arranged so that they are embedded in the dielectric substrate 11 in sequence as the dielectric substrate 11 is laminated and formed in multiple steps.
  • the chucking electrode 30 and the bias electrode 40 are disposed inside the dielectric substrate 11, and therefore a potential difference occurs in each part of the dielectric substrate 11 due to the voltage applied to these electrodes 30, 40.
  • the electrostatic chuck plate 10A of this embodiment includes a conductive discharge suppression member 50A arranged to surround the gas hole 8 of the dielectric substrate 11. With this configuration, since the gas hole 8 is surrounded by the conductive discharge suppression member 50A, it is possible to prevent the influence of the electric field of the chucking electrode 30 and the bias electrode 40 from extending to the gas hole 8. As a result, a large potential difference is unlikely to occur in the gas hole 8, and discharge of the cooling gas in the gas hole 8 can be suppressed.
  • the discharge suppressing member 50A of this embodiment is embedded in the dielectric substrate 11 so as to surround the gas hole 8, and suppresses discharge within the gas hole 8.
  • the discharge suppressing member 50A can prevent the electric field generated by the chucking electrode 30 and the bias electrode 40 from extending to the radially inner side of the discharge suppressing member 50A.
  • the discharge suppression member 50A has a plurality of pins 51 arranged at intervals in the circumferential direction around the central axis of the gas hole 8. This simple configuration makes it possible to suppress abnormal discharge inside the gas hole 8.
  • the discharge suppression member 50A is provided at a distance from the inner peripheral surface of the gas hole 8 to the radially outer side of the gas hole 8.
  • the dielectric material forming the dielectric substrate 11 is interposed between the inner peripheral surface of the gas hole 8 and the discharge suppression member 50A, and the electric field generated by the chucking electrode 30 and the bias electrode 40 can be more effectively prevented from extending to the radially inner side of the discharge suppression member 50A.
  • [Second embodiment] 3 is a cross-sectional schematic diagram showing a discharge suppressing member provided in the electrostatic chuck device of the second embodiment.
  • the electrostatic chuck device 1B of the present embodiment is different from the electrostatic chuck device 1A in the configuration of the discharge suppressing member 50B, but the other configuration is common to the electrostatic chuck device 1A. Therefore, the following mainly describes the discharge suppressing member 50B, and the description of the configuration common to the electrostatic chuck device 1A will be omitted.
  • the electrostatic chuck device 1B shown in FIG. 6 includes an electrostatic chuck plate 10B and a base 20.
  • the electrostatic chuck plate 10B includes a dielectric substrate 11, an adsorption electrode 30, a bias electrode 40, and a discharge suppression member 50B.
  • the discharge suppressing member 50B is embedded in the dielectric substrate 11 so as to surround the gas hole 8.
  • the discharge suppressing member 50B suppresses discharge in the gas hole 8.
  • the discharge suppressing member 50B of this embodiment is formed as a cylindrical member that extends continuously in the circumferential direction centered on the gas hole 8 when viewed from the thickness direction and also continues in the thickness direction.
  • the discharge suppressing member 50B of this embodiment has a circular (donut-shaped) cross-sectional shape when viewed from the thickness direction, and is cylindrical overall.
  • the cross-sectional shape of the discharge suppressing member 50B when viewed from the thickness direction is not limited to a circle, and may be a polygonal shape such as a square, hexagon, or octagon.
  • the discharge suppressing member 50B is provided radially outside the gas hole 8 and spaced apart from the inner circumferential surface of the gas hole 8.
  • a dielectric material forming the dielectric substrate 11 is interposed between the discharge suppressing member 50B and the inner circumferential surface of the gas hole 8.
  • One end 50s of the discharge suppressing member 50B is disposed a predetermined distance below the mounting surface 11a and the bottom surface 13b.
  • the other end 50t of the discharge suppressing member 50B is disposed a predetermined distance above the lower surface 11b of the dielectric substrate 11. In other words, the discharge suppressing member 50B is not in contact with the metal base 20.
  • the discharge suppression member 50B is provided electrically independent. In other words, the discharge suppression member 50B embedded in the dielectric substrate 11 is not electrically connected to other conductors, such as the chucking electrode 30 and the bias electrode 40. In this embodiment, the discharge suppression member 50B is located inside the dielectric substrate 11 and is not exposed to the outside.
  • the discharge suppressing member 50B of this embodiment is embedded in the dielectric substrate 11 so as to surround the gas hole 8, and suppresses discharge within the gas hole 8.
  • the discharge suppressing member 50B can prevent the electric field generated by the chucking electrode 30 and the bias electrode 40 from extending to the radial inside of the discharge suppressing member 50B.
  • the discharge suppression member 50B is formed into a cylindrical shape that extends in the circumferential direction around the central axis of the gas hole 8 and is continuous in the thickness direction.
  • the wafer W mounted on the mounting surface 11a emits secondary electrons from the underside of the wafer W when the etching gas collides with the upper surface.
  • the frequency of occurrence of such secondary electron emission phenomena has increased in recent years with the increase in power of etching.
  • the cooling gas in the gas hole 8 may be ionized, causing discharge in the gas hole 8.
  • the inventors have focused on the fact that discharge due to ionization of the cooling gas is likely to occur when the potential difference in the thickness direction in the gas hole 8 between the underside of the wafer W and the upper surface of the base 20 is large.
  • the inventors have attempted to reduce the potential difference in the gas hole 8, and have come up with the configurations of each embodiment and its modified examples.
  • FIG. 4 shows a simulation result of an electrostatic chuck device 1P as a comparative example that does not have a discharge suppressing member 50A.
  • Figs. 5 and 6 show a simulation result of an electrostatic chuck device 1A of the first embodiment.
  • FIG. 5 and 6 has a discharge suppressing member 50A, unlike the electrostatic chuck device 1P of the comparative example shown in Fig. 4.
  • Fig. 7 shows a simulation result of an electrostatic chuck device 1B of an example of the second embodiment.
  • the electrostatic chuck device 1B has a discharge suppressing member 50B, unlike the electrostatic chuck device 1P of the comparative example shown in Fig. 4.
  • 4 to 7 are schematic diagrams showing the results of simulations of equipotential lines of the electric field generated by the attraction electrode 30 and the bias electrode 40. In FIG.
  • (Modification of the embodiment) 8 is a cross-sectional view of an electrostatic chuck device according to a modification of the second embodiment.
  • the electrostatic chuck device 1C according to this modification is different from the electrostatic chuck device 1B according to the second embodiment described above only in the configuration of the discharge suppressing member. Note that the same components as those in the second embodiment described above are denoted by the same reference numerals, and the description thereof will be omitted.
  • the electrostatic chuck device 1C in this modified example includes an electrostatic chuck plate 10C and a base 20, similar to the above-described embodiment.
  • the electrostatic chuck plate 10C also includes a dielectric substrate 11, an adsorption electrode 30, a bias electrode 40, and a discharge suppression member 50C.
  • the discharge suppression member 50C of this modified example includes a shield layer 55.
  • the shield layer 55 is disposed inside the dielectric substrate 11 below the chucking electrode 30 and bias electrode 40 (opposite the mounting surface 11a) and spaced apart from these electrodes.
  • the shield layer 55 extends in layers along a plane perpendicular to the thickness direction of the dielectric substrate 11.
  • the shield layer 55 is in contact with the outer peripheral surface of the cylindrical discharge suppression member 50C and is electrically connected to the discharge suppression member 50C.
  • the shield layer 55 extends radially outward from the outer peripheral surface of the discharge suppression member 50C.
  • the shield layer 55 is formed in a flange shape extending in a ring shape in the circumferential direction.
  • the radial width of the shield layer 55 may be constant.
  • the shield layer 55 may be provided only in a part of the circumferential direction.
  • the shield layer 55 may be provided in a plurality of parts spaced apart in the circumferential direction. In this case, the plurality of shield layers 55 extend radially from the outer peripheral surface of the discharge suppression member 50C.
  • the plurality of shield layers 55 may be of any number or shape, and may be, for example, square, approximately square, fan-shaped, or other shapes when viewed from the thickness direction. In this embodiment, the outer edge 55s located on the radially outer side of the shield layer 55 overlaps the bias electrode 40 in its entirety when viewed from the thickness direction.
  • the discharge suppression member 50C and the shield layer 55 may be formed from the same material. The discharge suppression member 50C and the shield layer 55 may be in direct contact only with the dielectric material that forms the dielectric substrate 11.
  • the electrostatic chuck plate 10C of this modified example is disposed inside the dielectric substrate 11 on the opposite side (lower side) of the mounting surface 11a with respect to the chucking electrode 30 and the bias electrode 40, and includes a conductive shield layer 55 extending radially outward from the outer circumferential surface of the discharge suppressing member 50C centered on the discharge suppressing member 50C.
  • This allows an electric field to be formed avoiding the shield layer 55, making it difficult for a potential difference to become large below the discharge suppressing member 50C.
  • Electrostatic chuck device (comparative example) 8 Gas holes 10A to 10C Electrostatic chuck plate (electrostatic chuck member) 11 Dielectric substrate 11a Mounting surface 11b Lower surface 12 Protrusion 13 Recess 13b Bottom surface 20 Base 20t Upper surface 25 Adhesive layer 30 Adsorption electrode 30a First hole 30b Outer periphery 31 First power supply 40 Bias electrode 40a Second hole 40b Outer periphery 40h Third hole 41 Second power supply 50A to 50C Discharge suppressing member 50s One end 50t Other end 51 Pin 51s One end 51t Other end 55 Shield layer 101 DC power source 102 AC power source O Central axis W Wafer (plate-shaped sample) Z Z axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Jigs For Machine Tools (AREA)

Abstract

This electrostatic chuck member comprises: a plate-like dielectric substrate provided with a placement surface on which a plate-like sample is placed and a gas hole which penetrates in a thickness direction; an adsorption electrode disposed to the inside of the dielectric substrate; a bias electrode disposed to the inside of the dielectric substrate; and a conductive discharge suppression member embedded in the dielectric substrate so as to surround the gas hole. The discharge suppression member is provided so as to be electrically independent.

Description

静電チャック部材および静電チャック装置Electrostatic chuck member and electrostatic chuck device

 本発明は、静電チャック部材および静電チャック装置に関する。
 本願は、2023年9月22日に出願された日本国特願2023-158380号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an electrostatic chuck member and an electrostatic chuck device.
This application claims priority based on Japanese Patent Application No. 2023-158380, filed on September 22, 2023, the contents of which are incorporated herein by reference.

 半導体ウエハ等の基板を支持する静電チャック装置が知られる。例えば、特許文献1には、このような静電チャック装置として、被処理体を静電吸着する試料台内に、被処理体と試料台との間に被処理体の温度を制御するための伝熱ガスを供給する複数のガス孔を有する構成が記載される。 Electrostatic chuck devices that support substrates such as semiconductor wafers are known. For example, Patent Document 1 describes such an electrostatic chuck device having a configuration in which a sample stage that electrostatically attracts the workpiece has multiple gas holes that supply heat transfer gas between the workpiece and the sample stage to control the temperature of the workpiece.

特開2010-182763号公報JP 2010-182763 A

 上記のような静電チャック装置においては、ガス供給用の貫通孔は、半導体ウエハの損傷に繋がる放電の起点となる場合がある。近年、半導体製造用プラズマエッチング装置では、半導体の多積層化に伴う深孔加工のためのハイパワー化が進んでいる。そのため、ガス孔内部での異状放電の発生を抑制することが求められている。 In electrostatic chuck devices such as those described above, the gas supply through-holes can be the starting point of discharges that can lead to damage to semiconductor wafers. In recent years, plasma etching devices used in semiconductor manufacturing have become increasingly powerful in order to process deep holes due to the increasing number of semiconductor layers. For this reason, there is a need to suppress the occurrence of abnormal discharges inside the gas holes.

 本発明は、ガス孔内部における異常放電を抑制可能な静電チャック装置を提供することを目的の一つとする。 One of the objectives of the present invention is to provide an electrostatic chuck device that can suppress abnormal discharge inside the gas hole.

 本発明は、下記[1]~[6]の発明を包含する。
 以下の発明は必要に応じて2つ以上組み合わせることも好ましい。
[1] 板状試料が載置される載置面および厚さ方向に貫通するガス孔が設けられている板状の誘電体基板と、前記誘電体基板の内部に配置される吸着電極と、前記誘電体基板の内部に配置されるバイアス電極と、前記ガス孔を取り囲むように前記誘電体基板に埋設される導電性の放電抑制部材と、を備え、前記放電抑制部材は、電気的に独立して設けられている、静電チャック部材。
[2] 前記放電抑制部材は、前記ガス孔の中心軸まわりの周方向に間隔をあけて配置され、各々が前記厚さ方向に連続する複数のピンを含む、[1]に記載の静電チャック部材。
[3] 前記放電抑制部材は、前記ガス孔の中心軸まわりの周方向に延び、前記厚さ方向に連続する筒状に形成されている、[1]に記載の静電チャック部材。
[4] 前記放電抑制部材は、前記ガス孔の径方向外側に、前記ガス孔の内周面から離間して設けられている、[1]~[3]の何れか一項に記載の静電チャック部材。
[5] 前記誘電体基板の内部において前記吸着電極および前記バイアス電極に対して前記載置面側とは反対側に配置され、前記放電抑制部材の外周面から前記放電抑制部材を中心とする径方向の外側に延びる導電性のシールド層をさらに備える、[1]~[4]の何れか一項に記載の静電チャック部材。
[6] [1]~[5]の何れか一項に記載の静電チャック部材と、前記静電チャック部材を前記載置面の反対側から支持する基台と、を備え、前記放電抑制部材は、前記基台に非接触である、静電チャック装置。
The present invention includes the following inventions [1] to [6].
It is also preferable to combine two or more of the following inventions as necessary.
[1] An electrostatic chuck member comprising: a plate-shaped dielectric substrate having a mounting surface on which a plate-shaped sample is placed and gas holes penetrating in a thickness direction, an attraction electrode disposed inside the dielectric substrate, a bias electrode disposed inside the dielectric substrate, and a conductive discharge-suppressing member embedded in the dielectric substrate to surround the gas holes, wherein the discharge-suppressing member is provided electrically independent.
[2] The electrostatic chuck member according to [1], wherein the discharge suppressing member includes a plurality of pins that are spaced apart in a circumferential direction around a central axis of the gas hole and each of the pins is continuous in the thickness direction.
[3] The electrostatic chuck member according to [1], wherein the discharge suppressing member is formed in a cylindrical shape extending in a circumferential direction about a central axis of the gas hole and continuing in the thickness direction.
[4] The electrostatic chuck member according to any one of [1] to [3], wherein the discharge suppressing member is provided radially outward of the gas hole and spaced apart from an inner circumferential surface of the gas hole.
[5] The electrostatic chuck member according to any one of [1] to [4], further comprising a conductive shield layer disposed inside the dielectric substrate on a side opposite to the mounting surface side with respect to the attraction electrode and the bias electrode, and extending radially outward from an outer circumferential surface of the discharge-suppressing member centered on the discharge-suppressing member.
[6] An electrostatic chuck device comprising: the electrostatic chuck member according to any one of [1] to [5]; and a base supporting the electrostatic chuck member from an opposite side to the mounting surface, wherein the discharge suppressing member is not in contact with the base.

 本発明の1つの態様によれば、ガス孔内部における異常放電を抑制可能な静電チャック装置が提供される。 According to one aspect of the present invention, an electrostatic chuck device is provided that can suppress abnormal discharge inside the gas hole.

図1は、第1実施形態の静電チャック装置の例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view illustrating an example of an electrostatic chuck device according to a first embodiment. 図2は、第1実施形態の静電チャック装置に設けられた放電抑制部材の例を示す断面模式図である。FIG. 2 is a schematic cross-sectional view showing an example of a discharge suppressing member provided in the electrostatic chuck device of the first embodiment. 図3は、第2実施形態の静電チャック装置に設けられた放電抑制部材の例を示す断面模式図である。FIG. 3 is a schematic cross-sectional view showing an example of a discharge suppressing member provided in the electrostatic chuck device according to the second embodiment. 図4は、放電抑制部材を有していない比較例の静電チャック装置のガス孔付近の等電位線の例を示す図である。FIG. 4 is a diagram showing an example of equipotential lines near gas holes of an electrostatic chuck device of a comparative example that does not have a discharge suppressing member. 図5は、第1実施形態の実施例の静電チャック装置のガス孔付近(ピンがある部分)の等電位線の例を示す図である。FIG. 5 is a diagram showing an example of equipotential lines in the vicinity of a gas hole (a portion where a pin is located) of an electrostatic chuck device in an example of the first embodiment. 図6は、第1実施形態の実施例の静電チャック装置のガス孔付近の他の部分(ピンの間の部分)における等電位線の例を示す図である。FIG. 6 is a diagram showing an example of equipotential lines in another portion (portion between pins) near the gas holes of the electrostatic chuck device in the example of the first embodiment. 図7は、第2実施形態の実施例の静電チャック装置の等電位線の例を示す図である。FIG. 7 is a diagram showing an example of equipotential lines of an electrostatic chuck device according to an example of the second embodiment. 図8は、実施形態の変形例の静電チャック装置の概略断面図である。FIG. 8 is a schematic cross-sectional view of an electrostatic chuck device according to a modified example of the embodiment.

 以下、本発明の静電チャック装置の各実施形態の好ましい例について、図面を参照して説明する。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせて表示する場合がある。
 なお以下の説明は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。例えば、特に制限のない限り、材料、量、種類、数、サイズ、形、位置、組み合わせ、比率等の条件等を、必要に応じて変更、追加および省略してもよい。
Hereinafter, preferred examples of each embodiment of the electrostatic chuck device of the present invention will be described with reference to the drawings. In all of the following drawings, the dimensions and ratios of each component may be appropriately changed in order to make the drawings easier to understand.
The following description is given in detail to allow the gist of the invention to be better understood, and does not limit the present invention unless otherwise specified. For example, unless otherwise specified, conditions such as materials, amounts, types, numbers, sizes, shapes, positions, combinations, and ratios may be changed, added, or omitted as necessary.

[第1実施形態]
(静電チャック装置全体)
 図1は、本実施形態の静電チャック装置の好ましい例を示す概略断面図である。
 図1に示す静電チャック装置1Aは、ウエハ(板状試料)Wが載置される載置面11aを上側に向けた状態でプラズマ処理装置の真空容器内に配置される。
 なお、各図には、静電チャック装置の基準を説明するためにZ軸を示す。Z軸方向は、例えば、鉛直方向である。載置面11aの中心軸Oは、Z軸に平行である。なお、鉛直方向に対する静電チャック装置1Aの配置形態は一例であり、他の配置形態であってもよい。
[First embodiment]
(Overall electrostatic chuck device)
FIG. 1 is a schematic cross-sectional view showing a preferred example of an electrostatic chuck device according to the present embodiment.
An electrostatic chuck device 1A shown in FIG. 1 is placed in a vacuum chamber of a plasma processing device with a mounting surface 11a on which a wafer (plate-shaped sample) W is placed facing upward.
In each drawing, a Z-axis is shown to explain the reference of the electrostatic chuck device. The Z-axis direction is, for example, a vertical direction. The central axis O of the mounting surface 11a is parallel to the Z-axis. Note that the arrangement of the electrostatic chuck device 1A with respect to the vertical direction is one example, and other arrangements may be used.

 静電チャック装置1Aは、ウエハW等の板状試料を吸着支持する静電チャックプレート(静電チャック部材)10Aと、静電チャックプレート10Aを支持する基台20と、を備える。 The electrostatic chuck device 1A includes an electrostatic chuck plate (electrostatic chuck member) 10A that adsorbs and supports a plate-shaped sample such as a wafer W, and a base 20 that supports the electrostatic chuck plate 10A.

(基台)
 基台20は、厚さのある円板状の部材からなる。基台20は、静電チャックプレート10Aを下側(載置面11aの反対側)から支持する。基台20を構成する材料は必要に応じて選択でき、熱伝導性、導電性、加工性に優れた金属、またはこれらの金属を含む複合材、または導電性セラミックス、または前記金属とセラミックスの複合材料(MMC:Metal Matrix Composition)が好ましく使用される。前記金属としては、例えば、アルミニウム、アルミニウム合金、銅、銅合金、ステンレス鋼等が好適に用いられる。前記導電性セラミックスは、高熱伝導性材料と導電性材料から構成されることが好ましい。
 前記導電性セラミックスを構成する高熱伝導性材料と導電性材料の体積比率は任意に選択できるが、10:90~90:10であることが好ましい。高熱伝導性材料としては、AlN、SiC、GaN、SiO、Al、SmAlO、MgO、SiO、Si、Al(OH)、MgO、Mg(OH)、BN、ZnO、BeO、BC、炭素、アルミニウム、銅、銀、及び金からなる群から選ばれる少なくとも1種であることが好ましい。前記導電性材料としては、SiC、TiO、TiN、TiC、W、WC、Mo、MoC、MoC、TaC、TaN、NbC、VC及びCからなる群から選ばれる少なくとも1種であることが好ましい。導電性セラミックスは、例えば、AlNとTiNから構成されてもよく、AlNとMoから構成されてもよく、AlNとTiNとMoから構成されてもよい。
 本実施形態の基台20は、内部に水等の冷媒を循環させる流路(図示無し)を有する水冷ベースであってもよい。
(Foundation)
The base 20 is made of a thick disk-shaped member. The base 20 supports the electrostatic chuck plate 10A from the lower side (opposite the mounting surface 11a). The material constituting the base 20 can be selected as necessary, and metals having excellent thermal conductivity, electrical conductivity, and workability, or composite materials containing these metals, or conductive ceramics, or composite materials of the metals and ceramics (MMC: Metal Matrix Composition) are preferably used. As the metal, for example, aluminum, aluminum alloys, copper, copper alloys, stainless steel, etc. are preferably used. The conductive ceramics are preferably composed of a highly thermally conductive material and a conductive material.
The volume ratio of the highly thermally conductive material and the conductive material constituting the conductive ceramics can be selected arbitrarily, but is preferably 10:90 to 90:10. The highly thermally conductive material is preferably at least one selected from the group consisting of AlN, SiC, GaN, SiO 2 , Al 2 O 3 , SmAlO 3 , MgO, SiO 2 , Si 3 N 4 , Al(OH) 3 , MgO, Mg(OH) 2 , BN, ZnO, BeO, B 4 C, carbon, aluminum, copper, silver, and gold. The conductive material is preferably at least one selected from the group consisting of SiC, TiO 2 , TiN, TiC, W, WC, Mo, MoC, Mo 2 C, TaC, TaN, NbC, VC, and C. The conductive ceramic may be made of AlN and TiN, may be made of AlN and Mo, or may be made of AlN, TiN and Mo, for example.
The base 20 of the present embodiment may be a water-cooled base having a flow path (not shown) therein for circulating a coolant such as water.

 基台20の上面20tは、誘電体基板11の下面11bに、接着層25を介して接着されている。接着層25は任意に選択でき、例えば、ポリイミド樹脂、シリコン樹脂、エポキシ樹脂等の耐熱性樹脂、あるいは、絶縁性を有するシート状またはフィルム状の接着性樹脂であってもよく、窒化アルミニウム粒子や表面被覆窒化アルミニウム粒子等の高熱伝導性フィラーを含むシリコーン樹脂であってもよく、金属ろう材であってもよい。 The upper surface 20t of the base 20 is adhered to the lower surface 11b of the dielectric substrate 11 via an adhesive layer 25. The adhesive layer 25 can be selected arbitrarily, and may be, for example, a heat-resistant resin such as polyimide resin, silicone resin, or epoxy resin, or an insulating sheet- or film-shaped adhesive resin, or a silicone resin containing a highly thermally conductive filler such as aluminum nitride particles or surface-coated aluminum nitride particles, or a metal brazing material.

(静電チャックプレート)
 静電チャックプレート10Aは、誘電体基板11と、吸着電極30と、バイアス電極40と、放電抑制部材50Aと、を有する。吸着電極30、バイアス電極40、および放電抑制部材50Aは、それぞれ誘電体基板11に埋め込まれている。
(Electrostatic chuck plate)
The electrostatic chuck plate 10A includes a dielectric substrate 11, an attraction electrode 30, a bias electrode 40, and a discharge-suppressing member 50A. The attraction electrode 30, the bias electrode 40, and the discharge-suppressing member 50A are each embedded in the dielectric substrate 11.

(誘電体基板)
 誘電体基板11は、平面視円形又は略円形の板状部材である。本明細書において、誘電体基板11の厚さ方向を単に「厚さ方向」と呼ぶ場合がある。また、本明細書において、厚さ方向のうち、ウエハWが搭載される側を「上側」とし、その反対側を「下側」として、静電チャック装置を説明する。本明細書においける「上側」および「下側」は、静電チャック装置の使用時の姿勢の一例を示すものであり、静電チャック装置の使用時の姿勢を限定するものではない。
(Dielectric Substrate)
The dielectric substrate 11 is a plate-like member that is circular or approximately circular in plan view. In this specification, the thickness direction of the dielectric substrate 11 may be simply referred to as the "thickness direction". In this specification, the electrostatic chuck device will be described with the side in the thickness direction on which the wafer W is mounted being referred to as the "upper side" and the opposite side being referred to as the "lower side". In this specification, the "upper side" and the "lower side" indicate examples of the posture of the electrostatic chuck device when in use, and do not limit the posture of the electrostatic chuck device when in use.

 誘電体基板11は、機械的な強度を有し、かつ腐食性ガスおよびそのプラズマに対する耐久性を有する複合焼結体からなることが好ましい。誘電体基板11を構成する誘電体材料としては、機械的な強度を有し、しかも腐食性ガスおよびそのプラズマに対する耐久性を有するセラミックスが好適に用いられる。誘電体基板11を構成するセラミックスとしては、例えば、酸化アルミニウム焼結体、窒化アルミニウム焼結体、酸化アルミニウム-炭化ケイ素複合焼結体などが好適に用いられる。 The dielectric substrate 11 is preferably made of a composite sintered body that has mechanical strength and is resistant to corrosive gases and their plasma. As the dielectric material that constitutes the dielectric substrate 11, ceramics that have mechanical strength and are resistant to corrosive gases and their plasma are preferably used. As the ceramics that constitute the dielectric substrate 11, for example, aluminum oxide sintered body, aluminum nitride sintered body, aluminum oxide-silicon carbide composite sintered body, etc. are preferably used.

 誘電体基板11の上面には、ウエハWが載置される載置面11aが構成される。すなわち、誘電体基板11には、ウエハWが載置される載置面11aが設けられる。本実施形態において、誘電体基板11の上面には、複数の突起部12が所定の間隔で形成されている。複数の突起部12の先端面が、載置面11aを形成する。誘電体基板11には、隣り合う複数の突起部12の間に、載置面11aに対して下側に窪む凹部13が形成される。凹部13の底面13bは、上側(ウエハW側)を向く。 The upper surface of the dielectric substrate 11 is provided with a mounting surface 11a on which the wafer W is placed. That is, the dielectric substrate 11 is provided with the mounting surface 11a on which the wafer W is placed. In this embodiment, a plurality of protrusions 12 are formed at predetermined intervals on the upper surface of the dielectric substrate 11. The tip surfaces of the plurality of protrusions 12 form the mounting surface 11a. The dielectric substrate 11 is provided with recesses 13 between adjacent protrusions 12, which are recessed downward from the mounting surface 11a. The bottom surface 13b of the recesses 13 faces upward (towards the wafer W).

 誘電体基板11には、ガス孔8が設けられる。ガス孔8は、誘電体基板11を厚さ方向に貫通する。ガス孔8は、厚さ方向から見て円形である。ガス孔8は、図示を省略するガス供給装置に繋がる。ガス孔8は、載置面11aに載置されるウエハWと凹部13の底面13bとの間の空間に、ヘリウム(He)などの冷却ガスを供給する。供給される冷却ガスは、載置面11aに載置されるウエハWを冷却する。本実施形態では、静電チャック装置1Aの中央部に1つのガス孔8のみが形成される場合について説明するが、ガス孔8は、静電チャック装置1Aに複数設けられていてもよい。 The dielectric substrate 11 is provided with a gas hole 8. The gas hole 8 penetrates the dielectric substrate 11 in the thickness direction. The gas hole 8 is circular when viewed in the thickness direction. The gas hole 8 is connected to a gas supply device (not shown). The gas hole 8 supplies a cooling gas such as helium (He) to the space between the wafer W placed on the mounting surface 11a and the bottom surface 13b of the recess 13. The supplied cooling gas cools the wafer W placed on the mounting surface 11a. In this embodiment, a case will be described in which only one gas hole 8 is formed in the center of the electrostatic chuck device 1A, but multiple gas holes 8 may be provided in the electrostatic chuck device 1A.

(吸着電極、およびバイアス電極)
 吸着電極30、およびバイアス電極40は、誘電体基板11に埋設される層状の電極であり、導電性部材である。吸着電極30、およびバイアス電極40は、導電性を有する。すなわち、吸着電極30、およびバイアス電極40は、抵抗率が0.5Ωm以下の材料からなる。吸着電極30、およびバイアス電極40は、誘電体基板11内で、上側から下側に向かって、この順で配置されている。言い換えると、バイアス電極40と載置面11aの間には、吸着電極30が好ましく配置されている。
(Adsorption electrode and bias electrode)
The chucking electrode 30 and the bias electrode 40 are layered electrodes embedded in the dielectric substrate 11 and are conductive members. The chucking electrode 30 and the bias electrode 40 are conductive. That is, the chucking electrode 30 and the bias electrode 40 are made of a material having a resistivity of 0.5 Ωm or less. The chucking electrode 30 and the bias electrode 40 are arranged in this order from the top to the bottom in the dielectric substrate 11. In other words, the chucking electrode 30 is preferably arranged between the bias electrode 40 and the mounting surface 11a.

 吸着電極30は、誘電体基板11の内部に位置する。吸着電極30は、誘電体基板11の厚さ方向と直交する平面に沿って層状に延びる。吸着電極30には、放電抑制部材50Aが通される第1孔部30aが好ましく設けられる。第1孔部30aは、厚さ方向から見て放電抑制部材50Aを囲むように形成された、孔形状の吸着電極30が形成されていない領域である。第1孔部30aの内径は、放電抑制部材50Aの外径に対し十分に大きい。第1孔部30aの内縁は、放電抑制部材50Aの外周面と間隔をあけて配置される。 The chucking electrode 30 is located inside the dielectric substrate 11. The chucking electrode 30 extends in a layer along a plane perpendicular to the thickness direction of the dielectric substrate 11. The chucking electrode 30 is preferably provided with a first hole 30a through which the discharge suppressing member 50A passes. The first hole 30a is an area in which the hole-shaped chucking electrode 30 is not formed, and is formed to surround the discharge suppressing member 50A when viewed from the thickness direction. The inner diameter of the first hole 30a is sufficiently larger than the outer diameter of the discharge suppressing member 50A. The inner edge of the first hole 30a is disposed at a distance from the outer peripheral surface of the discharge suppressing member 50A.

 吸着電極30は、載置面11a、および底面13bに対して、所定寸法下側に配置される。吸着電極30は、下方に向けて延びる第1給電部31を介して、直流電源101に接続される。吸着電極30は、直流電源101から供給される直流電流により静電吸着力を発し、ウエハWを載置面11aに吸着させる。なお、吸着電極30は、単極型の吸着電極に限られず、平面視で半円状の2つの電極からなる双極型の吸着電極であってもよい。また、吸着電極30は、厚さ方向から見て、後述の放電抑制部材50Aを中心とした周方向の一部の領域にのみ設けられていてもよい。吸着電極30の数や形状は任意に選択される。また、吸着電極30は、厚さ方向から見て、放電抑制部材50Aを中心とした周方向に間隔をあけて複数設けられていてもよい。 The chucking electrode 30 is disposed at a predetermined distance below the mounting surface 11a and the bottom surface 13b. The chucking electrode 30 is connected to the DC power source 101 via the first power supply 31 extending downward. The chucking electrode 30 generates an electrostatic chucking force by the DC current supplied from the DC power source 101, and chucking the wafer W to the mounting surface 11a. The chucking electrode 30 is not limited to a monopolar chucking electrode, and may be a bipolar chucking electrode consisting of two electrodes having a semicircular shape in a plan view. The chucking electrode 30 may be provided only in a partial area in the circumferential direction centered on the discharge suppressing member 50A described later, as viewed from the thickness direction. The number and shape of the chucking electrodes 30 are arbitrarily selected. The chucking electrodes 30 may be provided at intervals in the circumferential direction centered on the discharge suppressing member 50A, as viewed from the thickness direction.

 バイアス電極40は、吸着電極30に対して下側(載置面11a側と反対側)に、吸着電極30から間隔をあけて配置される。バイアス電極40は、誘電体基板11の厚さ方向と直交する平面に沿って層状に延びる。バイアス電極40は、下方に向けて延びる第2給電部41を介して、交流電源102に接続される。 The bias electrode 40 is disposed below the chucking electrode 30 (opposite the mounting surface 11a) and spaced apart from the chucking electrode 30. The bias electrode 40 extends in a layer shape along a plane perpendicular to the thickness direction of the dielectric substrate 11. The bias electrode 40 is connected to the AC power source 102 via a second power supply 41 that extends downward.

 バイアス電極40には、放電抑制部材50Aが通される第2孔部40aと、第1給電部31が通される第3孔部40hと、が好ましく設けられる。第2孔部40aは、厚さ方向から見て放電抑制部材50Aを囲むように形成された、バイアス電極30が形成されていない孔形状の領域である。第2孔部40aの内径は、放電抑制部材50Aの外径と比較して、十分に大きい。第2孔部40aの内縁は、放電抑制部材50Aの外周面と間隔をあけて配置される。本実施形態において、第2孔部40aの内径は、第1孔部30aの内径とほぼ等しい。同様に、第3孔部40hは、厚さ方向から見て第1給電部31を囲むように形成された、バイアス電極30が形成されていない孔形状の領域である。第3孔部40hの内径は、第1給電部31の外径に対し十分に大きい。第3孔部40hの内縁は、第1給電部31の外周面と間隔をあけて配置される。 The bias electrode 40 is preferably provided with a second hole 40a through which the discharge suppression member 50A passes and a third hole 40h through which the first power supply 31 passes. The second hole 40a is a hole-shaped region in which the bias electrode 30 is not formed, formed to surround the discharge suppression member 50A when viewed from the thickness direction. The inner diameter of the second hole 40a is sufficiently larger than the outer diameter of the discharge suppression member 50A. The inner edge of the second hole 40a is disposed at a distance from the outer peripheral surface of the discharge suppression member 50A. In this embodiment, the inner diameter of the second hole 40a is approximately equal to the inner diameter of the first hole 30a. Similarly, the third hole 40h is a hole-shaped region in which the bias electrode 30 is not formed, formed to surround the first power supply 31 when viewed from the thickness direction. The inner diameter of the third hole 40h is sufficiently larger than the outer diameter of the first power supply 31. The inner edge of the third hole 40h is spaced apart from the outer circumferential surface of the first power supply part 31.

 本実施形態において、バイアス電極40の外周縁40bと吸着電極30の外周縁30bとは、厚さ方向から見て略同じ位置に配置される。これにより、本実施形態において、バイアス電極40は、吸着電極30のほぼ全体を、下方から覆うように、配置されている。なお、バイアス電極40は、厚さ方向から見て少なくとも一部が、吸着電極30に重なっていればよい。すなわち、バイアス電極40は、厚さ方向から見て少なくとも一部が吸着電極30に重なっている。また、本実施形態のバイアス電極40は、厚さ方向から見て、全体が吸着電極30に重なる。 In this embodiment, the outer periphery 40b of the bias electrode 40 and the outer periphery 30b of the adsorption electrode 30 are positioned at approximately the same position when viewed from the thickness direction. As a result, in this embodiment, the bias electrode 40 is positioned so as to cover almost the entire adsorption electrode 30 from below. Note that it is sufficient that at least a portion of the bias electrode 40 overlaps with the adsorption electrode 30 when viewed from the thickness direction. In other words, at least a portion of the bias electrode 40 overlaps with the adsorption electrode 30 when viewed from the thickness direction. Furthermore, the bias electrode 40 in this embodiment entirely overlaps with the adsorption electrode 30 when viewed from the thickness direction.

(放電抑制部材)
 図2は、本実施形態の静電チャック装置1Aに設けられた放電抑制部材50Aを示す断面模式図である。本図はガス孔8内を囲む放電抑制部材50Aを径方向に切断した模式図である。
 図1、図2に示すように、放電抑制部材50Aは、ガス孔8を取り囲むように誘電体基板11に埋設されている。放電抑制部材50Aは、ガス孔8内における放電を抑える。本実施形態の放電抑制部材50Aは、ガス孔8を囲む、複数本のピン51を備えている。複数本のピン51は、ガス孔8を中心とした周方向に互いに間隔をあけて、同じ円上に配置されている。各ピン51は、誘電体基板11の厚さ方向に延びている。ピン51は、厚さ方向から見て、例えば円形である。ピン51の数や形状や大きさは任意に選択できる。ピン51の形は、厚さ方向から見て、円形に限らず、例えば、四角形や五角形や六角形や八角形等の多角形状等であってもよい。ピン51は例えば円柱や多角柱であってよい。また、ピン51の本数は、例えば3本以上であればよい。本実施形態では、6本のピン51が周方向に等間隔に配置されている。ピンの数は、例えば3~5本や、6~8本や、9~15本や、16~25本であってもよい。ガス孔8からピン51までの距離は任意に選択でき、例えば、ガス孔8の直径以下であってもよいし、直径以上であってもよい。本実施形態においてピン51の形状及びガス孔8から各ピン51までの距離は全て同じである。
(Discharge suppressing member)
2 is a schematic cross-sectional view showing a discharge suppressing member 50A provided in the electrostatic chuck device 1A of the present embodiment. This figure is a schematic cross-sectional view of the discharge suppressing member 50A surrounding the inside of the gas hole 8, cut in the radial direction.
As shown in FIG. 1 and FIG. 2, the discharge suppressing member 50A is embedded in the dielectric substrate 11 so as to surround the gas hole 8. The discharge suppressing member 50A suppresses discharge in the gas hole 8. The discharge suppressing member 50A of this embodiment includes a plurality of pins 51 surrounding the gas hole 8. The plurality of pins 51 are arranged on the same circle at intervals in the circumferential direction centered on the gas hole 8. Each pin 51 extends in the thickness direction of the dielectric substrate 11. The pin 51 is, for example, circular when viewed from the thickness direction. The number, shape, and size of the pins 51 can be selected arbitrarily. The shape of the pin 51 is not limited to a circle when viewed from the thickness direction, and may be, for example, a polygonal shape such as a square, a pentagon, a hexagon, or an octagon. The pin 51 may be, for example, a cylinder or a polygonal column. The number of pins 51 may be, for example, three or more. In this embodiment, six pins 51 are arranged at equal intervals in the circumferential direction. The number of pins may be, for example, 3 to 5, 6 to 8, 9 to 15, or 16 to 25. The distance from the gas hole 8 to the pin 51 can be selected arbitrarily, and may be, for example, equal to or less than the diameter of the gas hole 8, or equal to or more than the diameter. In this embodiment, the shape of the pins 51 and the distance from the gas hole 8 to each pin 51 are all the same.

 これら複数本のピン51は、ガス孔8の内周面に対して、ガス孔8の径方向の外側に離間して設けられている。換言すると、放電抑制部材50Aを構成する複数本のピン51と、ガス孔8の内周面との間には、誘電体基板11を形成する誘電体材料が介在している。 These multiple pins 51 are spaced apart from the inner circumferential surface of the gas hole 8 on the radially outer side of the gas hole 8. In other words, the dielectric material that forms the dielectric substrate 11 is interposed between the multiple pins 51 that make up the discharge suppression member 50A and the inner circumferential surface of the gas hole 8.

 また、図1に示すように、各ピン51の一方の端部51sは、載置面11a、および底面13bに対して、所定寸法下側に配置される。各ピン51の他方の端部51tは、誘電体基板11の下面11bに対して、所定寸法上側に配置される。つまり、各ピン51は、金属製の基台20に非接触とされている。ピン51の端部は、誘電体基板11の内部に位置し、外部に露出していない。 Also, as shown in FIG. 1, one end 51s of each pin 51 is positioned a predetermined distance below the mounting surface 11a and bottom surface 13b. The other end 51t of each pin 51 is positioned a predetermined distance above the lower surface 11b of the dielectric substrate 11. In other words, each pin 51 is not in contact with the metal base 20. The ends of the pins 51 are located inside the dielectric substrate 11 and are not exposed to the outside.

 複数のピン51を備える放電抑制部材50Aは、電気的に独立して設けられている。つまり、誘電体基板11に埋設された複数のピン51は、他の導電体、例えば、吸着電極30や、バイアス電極40に対して電気的に接続されていない。例えば、放電抑制部材50Aは、誘電体基板11を形成する誘電体材料のみに直接接触していてもよい。 The discharge suppression member 50A, which has multiple pins 51, is provided electrically independent. In other words, the multiple pins 51 embedded in the dielectric substrate 11 are not electrically connected to other conductors, such as the chucking electrode 30 or the bias electrode 40. For example, the discharge suppression member 50A may be in direct contact only with the dielectric material that forms the dielectric substrate 11.

 吸着電極30、バイアス電極40、および放電抑制部材50Aは、導電性材料により形成されている。放電抑制部材50Aに用いられる導電性材料は任意に選択でき、炭化モリブデン(MoC)、モリブデン(Mo)、炭化タングステン(WC)、タングステン(W)、炭化タンタル(TaC)、タンタル(Ta)、炭化ケイ素(SiC)、カーボンブラック、カーボンナノチューブおよびカーボンナノファイバーからなる群から選択される少なくとも1種であることが好ましい。吸着電極30、バイアス電極40、および放電抑制部材50Aに用いられる導電性材料は、さらに、抵抗率を制御するために、酸化アルミニウム(Al)、窒化アルミニウム(AlN)、窒化ケイ素(Si)、酸化イットリウム(III)(Y)、イットリウム・アルミニウム・ガーネット(YAG)およびSmAlO等から少なくとも1種を加えて構成してもよい。 The chucking electrode 30, the bias electrode 40, and the discharge suppressing member 50A are formed of a conductive material. The conductive material used for the discharge suppressing member 50A can be selected arbitrarily, and is preferably at least one selected from the group consisting of molybdenum carbide (Mo 2 C), molybdenum (Mo), tungsten carbide (WC), tungsten (W), tantalum carbide (TaC), tantalum (Ta), silicon carbide (SiC), carbon black, carbon nanotubes, and carbon nanofibers. The conductive material used for the chucking electrode 30, the bias electrode 40, and the discharge suppressing member 50A may further be configured by adding at least one of aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), yttrium (III) oxide (Y 2 O 3 ), yttrium aluminum garnet (YAG), SmAlO 3 , etc., in order to control the resistivity.

 このような吸着電極30、バイアス電極40、及び放電抑制部材50Aは、予め所定の形状に形成したものを用いてもよいし、3次元プリント等により形成してもよい。吸着電極30、バイアス電極40、及び放電抑制部材50Aは、誘電体基板11を複数回に分けて積層し形成しながら、誘電体基板11内にこれらが順次埋設されるように配置してもよい。 These chucking electrodes 30, bias electrodes 40, and discharge suppressing members 50A may be formed in advance into a predetermined shape, or may be formed by 3D printing or the like. The chucking electrodes 30, bias electrodes 40, and discharge suppressing members 50A may be arranged so that they are embedded in the dielectric substrate 11 in sequence as the dielectric substrate 11 is laminated and formed in multiple steps.

 本実施形態の静電チャックプレート10Aでは、誘電体基板11の内部に吸着電極30およびバイアス電極40が配置されるため、誘電体基板11内の各部には、これらの電極30、40に付与される電圧に起因して電位差が生ずる。本実施形態の静電チャックプレート10Aは、誘電体基板11のガス孔8を取り囲むように設けられた導電性の放電抑制部材50Aを備える。この構成によれば、ガス孔8が導電性の放電抑制部材50Aに取り囲まれるため、吸着電極30およびバイアス電極40の電界による影響が、ガス孔8内に及ぶのを抑えることができる。これにより、ガス孔8内での大きな電位差が生じにくくなり、ガス孔8での冷却ガスの放電を抑制することができる。 In the electrostatic chuck plate 10A of this embodiment, the chucking electrode 30 and the bias electrode 40 are disposed inside the dielectric substrate 11, and therefore a potential difference occurs in each part of the dielectric substrate 11 due to the voltage applied to these electrodes 30, 40. The electrostatic chuck plate 10A of this embodiment includes a conductive discharge suppression member 50A arranged to surround the gas hole 8 of the dielectric substrate 11. With this configuration, since the gas hole 8 is surrounded by the conductive discharge suppression member 50A, it is possible to prevent the influence of the electric field of the chucking electrode 30 and the bias electrode 40 from extending to the gas hole 8. As a result, a large potential difference is unlikely to occur in the gas hole 8, and discharge of the cooling gas in the gas hole 8 can be suppressed.

 本実施形態の放電抑制部材50Aは、ガス孔8を取り囲むように誘電体基板11に埋設され、ガス孔8内における放電を抑える。この構成によれば、吸着電極30およびバイアス電極40による電界が、放電抑制部材50Aの径方向内側に及ぶのを、放電抑制部材50Aによって抑制できる。結果的に、放電抑制部材50Aの径方向内側のガス孔8で、電位差が大きくなることを効果的に抑制できる。したがって、ガス孔8の内部における異常放電を抑制可能である。 The discharge suppressing member 50A of this embodiment is embedded in the dielectric substrate 11 so as to surround the gas hole 8, and suppresses discharge within the gas hole 8. With this configuration, the discharge suppressing member 50A can prevent the electric field generated by the chucking electrode 30 and the bias electrode 40 from extending to the radially inner side of the discharge suppressing member 50A. As a result, it is possible to effectively prevent the potential difference from increasing in the gas hole 8 on the radially inner side of the discharge suppressing member 50A. Therefore, it is possible to suppress abnormal discharge inside the gas hole 8.

 本実施形態の静電チャックプレート10Aにおいて放電抑制部材50Aは、ガス孔8の中心軸まわりの周方向に間隔をあけて配置された複数のピン51を備えている。この構成によれば、簡易な構成で、ガス孔8の内部における異常放電を抑制可能である。 In the electrostatic chuck plate 10A of this embodiment, the discharge suppression member 50A has a plurality of pins 51 arranged at intervals in the circumferential direction around the central axis of the gas hole 8. This simple configuration makes it possible to suppress abnormal discharge inside the gas hole 8.

 本実施形態の静電チャックプレート10Aにおいて、放電抑制部材50Aは、ガス孔8の内周面に対してガス孔8の径方向外側に離間して設けられている。この構成によれば、ガス孔8の内周面と、放電抑制部材50Aとの間に、誘電体基板11を形成する誘電体材料が介在することとなり、吸着電極30およびバイアス電極40による電界が放電抑制部材50Aの径方向内側に及ぶことを、より効果的に抑制できる。 In the electrostatic chuck plate 10A of this embodiment, the discharge suppression member 50A is provided at a distance from the inner peripheral surface of the gas hole 8 to the radially outer side of the gas hole 8. With this configuration, the dielectric material forming the dielectric substrate 11 is interposed between the inner peripheral surface of the gas hole 8 and the discharge suppression member 50A, and the electric field generated by the chucking electrode 30 and the bias electrode 40 can be more effectively prevented from extending to the radially inner side of the discharge suppression member 50A.

[第2実施形態]
 図3は、第2実施形態の静電チャック装置に設けられた放電抑制部材を示す断面模式図である。本実施形態の静電チャック装置1Bでは、上記静電チャック装置1Aと比較して放電抑制部材50Bの構成が異なり、他の構成は静電チャック装置1Aと共通する。そのため、主として放電抑制部材50Bの説明を行い、静電チャック装置1Aと共通する構成については説明を省略する。
[Second embodiment]
3 is a cross-sectional schematic diagram showing a discharge suppressing member provided in the electrostatic chuck device of the second embodiment. The electrostatic chuck device 1B of the present embodiment is different from the electrostatic chuck device 1A in the configuration of the discharge suppressing member 50B, but the other configuration is common to the electrostatic chuck device 1A. Therefore, the following mainly describes the discharge suppressing member 50B, and the description of the configuration common to the electrostatic chuck device 1A will be omitted.

 図1に示すように、6に示す静電チャック装置1Bは、静電チャックプレート10Bと、基台20と、を備える。静電チャックプレート10Bは、誘電体基板11と、吸着電極30と、バイアス電極40と、放電抑制部材50Bと、を有する。 As shown in FIG. 1, the electrostatic chuck device 1B shown in FIG. 6 includes an electrostatic chuck plate 10B and a base 20. The electrostatic chuck plate 10B includes a dielectric substrate 11, an adsorption electrode 30, a bias electrode 40, and a discharge suppression member 50B.

 放電抑制部材50Bは、ガス孔8を取り囲むように誘電体基板11に埋設されている。放電抑制部材50Bは、ガス孔8内における放電を抑える。本実施形態の放電抑制部材50Bは、厚さ方向から見た際にガス孔8を中心とした周方向に連続して延び、かつ厚さ方向に連続する、筒状の部材として形成されている。本実施形態の放電抑制部材50Bは、厚さ方向から見た際の断面形状が円形(ドーナッツ状)で、全体として円筒状をなしている。放電抑制部材50Bを、厚さ方向から見た際の断面形状は、円形に限らず、例えば、四角形や六角形や八角形等の多角形状等であってもよい。 The discharge suppressing member 50B is embedded in the dielectric substrate 11 so as to surround the gas hole 8. The discharge suppressing member 50B suppresses discharge in the gas hole 8. The discharge suppressing member 50B of this embodiment is formed as a cylindrical member that extends continuously in the circumferential direction centered on the gas hole 8 when viewed from the thickness direction and also continues in the thickness direction. The discharge suppressing member 50B of this embodiment has a circular (donut-shaped) cross-sectional shape when viewed from the thickness direction, and is cylindrical overall. The cross-sectional shape of the discharge suppressing member 50B when viewed from the thickness direction is not limited to a circle, and may be a polygonal shape such as a square, hexagon, or octagon.

 放電抑制部材50Bは、ガス孔8の径方向の外側に、ガス孔8の内周面から離間して設けられている。換言すると、放電抑制部材50Bと、ガス孔8の内周面との間には、誘電体基板11を形成する誘電体材料が介在している。
 また、放電抑制部材50Bの一方の端部50sは、載置面11a、および底面13bに対して、所定寸法下側に配置される。放電抑制部材50Bの他方の端部50tは、誘電体基板11の下面11bに対して、所定寸法上側に配置される。つまり、放電抑制部材50Bは、金属製の基台20に非接触とされている。
The discharge suppressing member 50B is provided radially outside the gas hole 8 and spaced apart from the inner circumferential surface of the gas hole 8. In other words, a dielectric material forming the dielectric substrate 11 is interposed between the discharge suppressing member 50B and the inner circumferential surface of the gas hole 8.
One end 50s of the discharge suppressing member 50B is disposed a predetermined distance below the mounting surface 11a and the bottom surface 13b. The other end 50t of the discharge suppressing member 50B is disposed a predetermined distance above the lower surface 11b of the dielectric substrate 11. In other words, the discharge suppressing member 50B is not in contact with the metal base 20.

 放電抑制部材50Bは、電気的に独立して設けられている。つまり、誘電体基板11に埋設された放電抑制部材50Bは、他の導電体、例えば、吸着電極30、バイアス電極40に対して電気的に接続されていない。本実施形態では、放電抑制部材50Bは誘電体基板11の内部に位置し、外部に露出していない。 The discharge suppression member 50B is provided electrically independent. In other words, the discharge suppression member 50B embedded in the dielectric substrate 11 is not electrically connected to other conductors, such as the chucking electrode 30 and the bias electrode 40. In this embodiment, the discharge suppression member 50B is located inside the dielectric substrate 11 and is not exposed to the outside.

 本実施形態の放電抑制部材50Bは、ガス孔8を取り囲むように誘電体基板11に埋設され、ガス孔8内における放電を抑える。この構成によれば、吸着電極30およびバイアス電極40による電界が放電抑制部材50Bの径方向内側に及ぶのを、放電抑制部材50Bにより抑制できる。結果的に、放電抑制部材50Bの径方向内側のガス孔8で、電位差が大きくなることを効果的に抑制できる。したがって、ガス孔8の内部における異常放電を抑制可能である。 The discharge suppressing member 50B of this embodiment is embedded in the dielectric substrate 11 so as to surround the gas hole 8, and suppresses discharge within the gas hole 8. With this configuration, the discharge suppressing member 50B can prevent the electric field generated by the chucking electrode 30 and the bias electrode 40 from extending to the radial inside of the discharge suppressing member 50B. As a result, it is possible to effectively prevent the potential difference from increasing in the gas hole 8 on the radial inside of the discharge suppressing member 50B. Therefore, it is possible to suppress abnormal discharge inside the gas hole 8.

 本実施形態の静電チャックプレート10Bにおいて、放電抑制部材50Bは、ガス孔8の中心軸まわりの周方向に延び、厚さ方向に連続する筒状に形成されている。この構成によれば、放電抑制部材50Bの周方向の全域において、吸着電極30およびバイアス電極40による電界が放電抑制部材50Bの径方向内側に及ぶのを抑制できる。結果的にガス孔8での冷却ガスの放電を有効に抑制することができる。 In the electrostatic chuck plate 10B of this embodiment, the discharge suppression member 50B is formed into a cylindrical shape that extends in the circumferential direction around the central axis of the gas hole 8 and is continuous in the thickness direction. With this configuration, it is possible to prevent the electric field generated by the chucking electrode 30 and the bias electrode 40 from extending to the radially inner side of the discharge suppression member 50B over the entire circumferential area of the discharge suppression member 50B. As a result, it is possible to effectively suppress the discharge of the cooling gas at the gas hole 8.

 一般的に、載置面11aに搭載されるウエハWは、上面にエッチングガスが衝突することでウエハWの下面側から二次電子を放出することが知られている。また、このような二次電子の放出現象の発生頻度は、近年のエッチングのハイパワー化に伴って高まっている。ウエハWの下面側に放出される二次電子がガス孔8の内部に侵入すると、ガス孔8内で冷却ガスが電離してガス孔8内で放電を引き起こす場合がある。本発明者らは、冷却ガスの電離に伴う放電は、ウエハWの下面から基台20の上面までの間の、ガス孔8内の厚さ方向の電位差が大きい場合に、発生しやすい点に着目した。本発明者らは、ガス孔8内の電位差を低減させることを試みて、各実施形態およびその変形例に係る構成を想到するに至ったものである。 It is generally known that the wafer W mounted on the mounting surface 11a emits secondary electrons from the underside of the wafer W when the etching gas collides with the upper surface. The frequency of occurrence of such secondary electron emission phenomena has increased in recent years with the increase in power of etching. When secondary electrons emitted to the underside of the wafer W enter the inside of the gas hole 8, the cooling gas in the gas hole 8 may be ionized, causing discharge in the gas hole 8. The inventors have focused on the fact that discharge due to ionization of the cooling gas is likely to occur when the potential difference in the thickness direction in the gas hole 8 between the underside of the wafer W and the upper surface of the base 20 is large. The inventors have attempted to reduce the potential difference in the gas hole 8, and have come up with the configurations of each embodiment and its modified examples.

(実施例:シミュレーション)
 放電抑制部材を有する静電チャック装置の優位性を証明するためのシミュレーションを行った。図4~図7では、上記第1実施形態の静電チャック装置1A、第2実施形態の静電チャック装置1Bの優位性を示すシミュレーション結果が得られた。なおシミュレーションでは比較をしやすくするために装置の構成を簡略化している。
 図4は、放電抑制部材50Aを有していない比較例としての静電チャック装置1Pのシミュレーション結果を示す。図5、図6は、第一実施形態の静電チャック装置1Aのシミュレーション結果を示す。図5、図6に示される静電チャック装置1Aは、図4に示される比較例の静電チャック装置1Pと比較して、放電抑制部材50Aを有している。図7は、第二実施形態の実施例の静電チャック装置1Bのシミュレーション結果を示す。図4に示される比較例の静電チャック装置1Pと比較して、放電抑制部材50Bを有している。
 図4~図7には、吸着電極30およびバイアス電極40に起因して生じる電界の等電位線のシミュレーション結果を模式的に示す。
(Example: Simulation)
A simulation was performed to prove the superiority of an electrostatic chuck device having a discharge suppressing member. Simulation results showing the superiority of the electrostatic chuck device 1A of the first embodiment and the electrostatic chuck device 1B of the second embodiment were obtained in Fig. 4 to Fig. 7. Note that the configuration of the device was simplified in the simulation to facilitate comparison.
Fig. 4 shows a simulation result of an electrostatic chuck device 1P as a comparative example that does not have a discharge suppressing member 50A. Figs. 5 and 6 show a simulation result of an electrostatic chuck device 1A of the first embodiment. The electrostatic chuck device 1A shown in Figs. 5 and 6 has a discharge suppressing member 50A, unlike the electrostatic chuck device 1P of the comparative example shown in Fig. 4. Fig. 7 shows a simulation result of an electrostatic chuck device 1B of an example of the second embodiment. The electrostatic chuck device 1B has a discharge suppressing member 50B, unlike the electrostatic chuck device 1P of the comparative example shown in Fig. 4.
4 to 7 are schematic diagrams showing the results of simulations of equipotential lines of the electric field generated by the attraction electrode 30 and the bias electrode 40. In FIG.

 図4に示す比較例の静電チャック装置1Pでは、ウエハWの下側で、ガス孔8が設けられている部分の周囲に等電位線が集中して上下に並んで配置されており、ウエハWの下側で電位差が大きくなっていることが確認できる。
 一方で、図5、図6に示す静電チャック装置1Aのシミュレーション結果では、バイアス電極40の端部から出た等電位線の大部分は、ピン51が設けられている部分(図5参照)、周方向で隣り合うピン51同士の間の部分(図6参照)のいずれにおいても、放電抑制部材50Aが設けられている領域の径方向外側の位置で、静電チャックプレート10Aの上端部まで延びている。図7に示す実施例の静電チャック装置1Bのシミュレーション結果では、バイアス電極40の端部から出た等電位線の大部分は、放電抑制部材50Bが設けられている領域の径方向外側の位置で、静電チャックプレート10Bの上端部まで延びている。実施例としての静電チャック装置1A、1Bのシミュレーション結果におけるウエハWの下側に配置される等電位線の数は、比較例としての静電チャック装置1Pのシミュレーション結果におけるウエハWの下側に配置される等電位線よりも、少なくなっている。このことから、実施例の静電チャック装置1A、1Bでは、ウエハWの下側での電位差が小さくなっていることが確認できる。
In the comparative electrostatic chuck device 1P shown in Figure 4, equipotential lines are concentrated and arranged in a vertical line around the area below the wafer W where the gas holes 8 are provided, and it can be confirmed that the potential difference is large below the wafer W.
On the other hand, in the simulation results of the electrostatic chuck device 1A shown in Fig. 5 and Fig. 6, most of the equipotential lines extending from the end of the bias electrode 40 extend to the upper end of the electrostatic chuck plate 10A at a position radially outside the region where the discharge suppressing member 50A is provided, both in the portion where the pin 51 is provided (see Fig. 5) and in the portion between the pins 51 adjacent in the circumferential direction (see Fig. 6). In the simulation results of the electrostatic chuck device 1B of the embodiment shown in Fig. 7, most of the equipotential lines extending from the end of the bias electrode 40 extend to the upper end of the electrostatic chuck plate 10B at a position radially outside the region where the discharge suppressing member 50B is provided. The number of equipotential lines arranged on the lower side of the wafer W in the simulation results of the electrostatic chuck devices 1A and 1B as the embodiment is smaller than the number of equipotential lines arranged on the lower side of the wafer W in the simulation results of the electrostatic chuck device 1P as the comparative example. From this, it can be confirmed that the potential difference on the lower side of the wafer W is smaller in the electrostatic chuck devices 1A and 1B of the embodiment.

 (実施形態の変形例)
 図8は、第2実施形態の変形例の静電チャック装置の断面図である。本変形例の静電チャック装置1Cは、上述の第2実施形態の静電チャック装置1Bと比較して、放電抑制部材の構成のみが異なる。なお、上述の第2実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
(Modification of the embodiment)
8 is a cross-sectional view of an electrostatic chuck device according to a modification of the second embodiment. The electrostatic chuck device 1C according to this modification is different from the electrostatic chuck device 1B according to the second embodiment described above only in the configuration of the discharge suppressing member. Note that the same components as those in the second embodiment described above are denoted by the same reference numerals, and the description thereof will be omitted.

 図8に示すように、本変形例における静電チャック装置1Cは、上述の実施形態と同様に、静電チャックプレート10Cと、基台20と、を備える。また、静電チャックプレート10Cは、誘電体基板11と、吸着電極30と、バイアス電極40と、放電抑制部材50Cと、を有する。 As shown in FIG. 8, the electrostatic chuck device 1C in this modified example includes an electrostatic chuck plate 10C and a base 20, similar to the above-described embodiment. The electrostatic chuck plate 10C also includes a dielectric substrate 11, an adsorption electrode 30, a bias electrode 40, and a discharge suppression member 50C.

 本変形例の放電抑制部材50Cは、シールド層55を備える。シールド層55は、誘電体基板11の内部において、吸着電極30、およびバイアス電極40に対して下側(載置面11a側とは反対側)に、これら電極から間隔をあけて配置される。シールド層55は、誘電体基板11の厚さ方向と直交する平面に沿って層状に延びる。 The discharge suppression member 50C of this modified example includes a shield layer 55. The shield layer 55 is disposed inside the dielectric substrate 11 below the chucking electrode 30 and bias electrode 40 (opposite the mounting surface 11a) and spaced apart from these electrodes. The shield layer 55 extends in layers along a plane perpendicular to the thickness direction of the dielectric substrate 11.

 シールド層55は、筒状の放電抑制部材50Cの外周面と接触しており、放電抑制部材50Cと電気的に接続される。シールド層55は、放電抑制部材50Cの外周面から径方向の外側に延びる。本実施形態のシールド層55は、周方向に環状に延びる鍔状に形成される。シールド層55の径方向の幅は一定であってもよい。なお、シールド層55は、周方向の一部にのみ設けるようにしてもよい。例えば、シールド層55は、周方向に間隔をあけて複数設けてもよい。この場合、複数のシールド層55は、放電抑制部材50Cの外周面から放射状に延びる。複数のシールド層55は任意に選択される数や形であってもよく、例えば、厚さ方向からみて、それぞれが四角や略四角や扇状やその他の形状であってもよい。本実施形態において、シールド層55の径方向外側に位置する外縁55sは、厚さ方向から見て、全体がバイアス電極40に重なる。放電抑制部材50Cとシールド層55は同じ材料から形成されてよい。放電抑制部材50Cとシールド層55は、誘電体基板11を形成する誘電体材料のみに直接接触していてもよい。 The shield layer 55 is in contact with the outer peripheral surface of the cylindrical discharge suppression member 50C and is electrically connected to the discharge suppression member 50C. The shield layer 55 extends radially outward from the outer peripheral surface of the discharge suppression member 50C. In this embodiment, the shield layer 55 is formed in a flange shape extending in a ring shape in the circumferential direction. The radial width of the shield layer 55 may be constant. The shield layer 55 may be provided only in a part of the circumferential direction. For example, the shield layer 55 may be provided in a plurality of parts spaced apart in the circumferential direction. In this case, the plurality of shield layers 55 extend radially from the outer peripheral surface of the discharge suppression member 50C. The plurality of shield layers 55 may be of any number or shape, and may be, for example, square, approximately square, fan-shaped, or other shapes when viewed from the thickness direction. In this embodiment, the outer edge 55s located on the radially outer side of the shield layer 55 overlaps the bias electrode 40 in its entirety when viewed from the thickness direction. The discharge suppression member 50C and the shield layer 55 may be formed from the same material. The discharge suppression member 50C and the shield layer 55 may be in direct contact only with the dielectric material that forms the dielectric substrate 11.

 本変形例の静電チャックプレート10Cは、誘電体基板11の内部において、吸着電極30およびバイアス電極40に対して載置面11a側とは反対側(下側)に配置され、かつ、放電抑制部材50Cの外周面から放電抑制部材50Cを中心とする径方向の外側に延びる、導電性のシールド層55を備える。これにより、電界が、シールド層55を避けて形成され、放電抑制部材50Cの下側で電位差が大きくなり難くなる。結果的に、放電抑制部材50Cの下側のガス孔8内で大きな電位差が生ずることを抑制することができ、ガス孔8での冷却ガスの放電を抑制することができる。 The electrostatic chuck plate 10C of this modified example is disposed inside the dielectric substrate 11 on the opposite side (lower side) of the mounting surface 11a with respect to the chucking electrode 30 and the bias electrode 40, and includes a conductive shield layer 55 extending radially outward from the outer circumferential surface of the discharge suppressing member 50C centered on the discharge suppressing member 50C. This allows an electric field to be formed avoiding the shield layer 55, making it difficult for a potential difference to become large below the discharge suppressing member 50C. As a result, it is possible to prevent a large potential difference from occurring within the gas hole 8 below the discharge suppressing member 50C, and it is possible to suppress discharge of the cooling gas at the gas hole 8.

 以上に、本発明の実施形態およびその変形例を説明したが、実施形態および変形例における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 The above describes the embodiments of the present invention and their variations, but each configuration and their combinations in the embodiments and variations are merely examples, and additions, omissions, substitutions and other modifications of configurations are possible without departing from the spirit of the present invention. Furthermore, the present invention is not limited to the embodiments.

1A~1C…静電チャック装置
1P 静電チャック装置(比較例)
8 ガス孔
10A~10C 静電チャックプレート(静電チャック部材)
11 誘電体基板
11a 載置面
11b 下面
12 突起部
13 凹部
13b 底面
20 基台
20t 上面
25 接着層
30 吸着電極
30a 第1孔部
30b 外周縁
31 第1給電部
40 バイアス電極
40a 第2孔部
40b 外周縁
40h 第3孔部
41 第2給電部
50A~50C 放電抑制部材
50s 一方の端部
50t 他方の端部
51 ピン
51s 一方の端部
51t 他方の端部
55 シールド層
101 直流電源
102 交流電源
O 中心軸
W ウエハ(板状試料)
Z Z軸
1A to 1C...Electrostatic chuck device 1P Electrostatic chuck device (comparative example)
8 Gas holes 10A to 10C Electrostatic chuck plate (electrostatic chuck member)
11 Dielectric substrate 11a Mounting surface 11b Lower surface 12 Protrusion 13 Recess 13b Bottom surface 20 Base 20t Upper surface 25 Adhesive layer 30 Adsorption electrode 30a First hole 30b Outer periphery 31 First power supply 40 Bias electrode 40a Second hole 40b Outer periphery 40h Third hole 41 Second power supply 50A to 50C Discharge suppressing member 50s One end 50t Other end 51 Pin 51s One end 51t Other end 55 Shield layer 101 DC power source 102 AC power source O Central axis W Wafer (plate-shaped sample)
Z Z axis

Claims (6)

 板状試料が載置される載置面および厚さ方向に貫通するガス孔が設けられている板状の誘電体基板と、
 前記誘電体基板の内部に配置される吸着電極と、
 前記誘電体基板の内部に配置されるバイアス電極と、
 前記ガス孔を取り囲むように前記誘電体基板に埋設される導電性の放電抑制部材と、を備え、
 前記放電抑制部材は、電気的に独立して設けられている、
静電チャック部材。
a plate-shaped dielectric substrate having a mounting surface on which a plate-shaped sample is placed and a gas hole penetrating in a thickness direction;
an adsorption electrode disposed inside the dielectric substrate;
A bias electrode disposed inside the dielectric substrate;
a conductive discharge suppressing member embedded in the dielectric substrate so as to surround the gas hole,
The discharge suppressing member is provided electrically independent.
Electrostatic chuck member.
 前記放電抑制部材は、
 前記ガス孔の中心軸まわりの周方向に間隔をあけて配置され、各々が前記厚さ方向に連続する複数のピンを含む、
請求項1に記載の静電チャック部材。
The discharge suppressing member is
a plurality of pins spaced apart in a circumferential direction about a central axis of the gas hole, each pin being continuous in the thickness direction;
The electrostatic chuck member according to claim 1 .
 前記放電抑制部材は、
 前記ガス孔の中心軸まわりの周方向に延び、かつ前記厚さ方向に連続する筒状に形成されている、
請求項1に記載の静電チャック部材。
The discharge suppressing member is
The gas hole is formed in a cylindrical shape extending in a circumferential direction around a central axis of the gas hole and continuing in the thickness direction.
The electrostatic chuck member according to claim 1 .
 前記放電抑制部材は、前記ガス孔の径方向外側に、前記ガス孔の内周面から離間して設けられている、
請求項1に記載の静電チャック部材。
The discharge suppressing member is provided radially outward of the gas hole and spaced apart from an inner circumferential surface of the gas hole.
The electrostatic chuck member according to claim 1 .
 前記誘電体基板の内部において前記吸着電極および前記バイアス電極に対して前記載置面側とは反対側に配置され、前記放電抑制部材の外周面から前記放電抑制部材を中心とする径方向の外側に延びる導電性のシールド層、をさらに備える、
請求項1に記載の静電チャック部材。
a conductive shield layer disposed inside the dielectric substrate on a side opposite to the mounting surface side with respect to the chucking electrode and the bias electrode, the conductive shield layer extending from an outer circumferential surface of the discharge suppressing member to an outer side in a radial direction centered on the discharge suppressing member,
The electrostatic chuck member according to claim 1 .
 請求項1~5の何れか一項に記載の静電チャック部材と、
 前記静電チャック部材を前記載置面の反対側から支持する基台と、を備え、
 前記放電抑制部材は、前記基台に非接触である、
静電チャック装置。
An electrostatic chuck member according to any one of claims 1 to 5,
a base supporting the electrostatic chuck member from an opposite side to the mounting surface,
The discharge suppressing member is not in contact with the base.
Electrostatic chuck device.
PCT/JP2024/031464 2023-09-22 2024-09-02 Electrostatic chuck member and electrostatic chuck device WO2025063032A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023158380A JP2025049890A (en) 2023-09-22 2023-09-22 Electrostatic chuck member and electrostatic chuck device
JP2023-158380 2023-09-22

Publications (1)

Publication Number Publication Date
WO2025063032A1 true WO2025063032A1 (en) 2025-03-27

Family

ID=95072773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/031464 WO2025063032A1 (en) 2023-09-22 2024-09-02 Electrostatic chuck member and electrostatic chuck device

Country Status (3)

Country Link
JP (1) JP2025049890A (en)
TW (1) TW202516682A (en)
WO (1) WO2025063032A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003501829A (en) * 1999-06-09 2003-01-14 アプライド マテリアルズ インコーポレイテッド Improved substrate support for plasma processing
JP2014522103A (en) * 2011-07-19 2014-08-28 ラム リサーチ コーポレーション Electrostatic chuck with plasma-assisted dechuck on wafer backside
JP2016072348A (en) * 2014-09-29 2016-05-09 京セラ株式会社 Sample holder
JP2018093173A (en) * 2016-12-05 2018-06-14 東京エレクトロン株式会社 Plasma processing device
JP2019140155A (en) * 2018-02-06 2019-08-22 株式会社日立ハイテクノロジーズ Plasma processing apparatus
JP2020205379A (en) * 2019-06-18 2020-12-24 東京エレクトロン株式会社 Mounting table and plasma processing equipment
WO2023095707A1 (en) * 2021-11-26 2023-06-01 東京エレクトロン株式会社 Electrostatic chuck and plasma processing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003501829A (en) * 1999-06-09 2003-01-14 アプライド マテリアルズ インコーポレイテッド Improved substrate support for plasma processing
JP2014522103A (en) * 2011-07-19 2014-08-28 ラム リサーチ コーポレーション Electrostatic chuck with plasma-assisted dechuck on wafer backside
JP2016072348A (en) * 2014-09-29 2016-05-09 京セラ株式会社 Sample holder
JP2018093173A (en) * 2016-12-05 2018-06-14 東京エレクトロン株式会社 Plasma processing device
JP2019140155A (en) * 2018-02-06 2019-08-22 株式会社日立ハイテクノロジーズ Plasma processing apparatus
JP2020205379A (en) * 2019-06-18 2020-12-24 東京エレクトロン株式会社 Mounting table and plasma processing equipment
WO2023095707A1 (en) * 2021-11-26 2023-06-01 東京エレクトロン株式会社 Electrostatic chuck and plasma processing device

Also Published As

Publication number Publication date
JP2025049890A (en) 2025-04-04
TW202516682A (en) 2025-04-16

Similar Documents

Publication Publication Date Title
US12205843B2 (en) Ground electrode formed in an electrostatic chuck for a plasma processing chamber
TWI806270B (en) Electrostatic chuck
US7678197B2 (en) Susceptor device
JPWO2017069238A1 (en) Electrostatic chuck device
US20250014933A1 (en) Electrostatic chuck device
WO2025063032A1 (en) Electrostatic chuck member and electrostatic chuck device
JP2025000292A (en) Electrostatic chuck member and electrostatic chuck device
US20220190749A1 (en) Electrostatic chuck and substrate fixing device
JP7697548B1 (en) Electrostatic Chuck
JP7709480B2 (en) Electrostatic Chuck
KR102666586B1 (en) Ceramic Susceptor
JP7675124B2 (en) Electrostatic Chuck
JP7494972B1 (en) Electrostatic Chuck
JP7494973B1 (en) Electrostatic Chuck
JP7670191B1 (en) Electrostatic Chuck
EP4589646A1 (en) Attractive-adhesion substrate
JP7639953B1 (en) Electrostatic Chuck
TWI882197B (en) Electrostatic chuck and substrate fixing device
US20250242457A1 (en) Electrostatic chuck
US20250069865A1 (en) Member for semiconductor manufacturing apparatus
KR20240145386A (en) Electrostatic chuck
JP2025112084A (en) holding device
JP2025084481A (en) Electrostatic Chuck
JP2024175417A (en) Electrostatic Chuck
JP2025006069A (en) Electrostatic Chuck Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24868111

Country of ref document: EP

Kind code of ref document: A1