JP5196024B2 - 内燃機関の排気浄化装置 - Google Patents
内燃機関の排気浄化装置 Download PDFInfo
- Publication number
- JP5196024B2 JP5196024B2 JP2011531286A JP2011531286A JP5196024B2 JP 5196024 B2 JP5196024 B2 JP 5196024B2 JP 2011531286 A JP2011531286 A JP 2011531286A JP 2011531286 A JP2011531286 A JP 2011531286A JP 5196024 B2 JP5196024 B2 JP 5196024B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- exhaust
- exhaust gas
- hydrocarbon
- internal combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9422—Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0814—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/208—Hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/902—Multilayered catalyst
- B01D2255/9022—Two layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/91—NOx-storage component incorporated in the catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/912—HC-storage component incorporated in the catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/012—Diesel engines and lean burn gasoline engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/30—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel reformer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2430/00—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
- F01N2430/06—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2510/00—Surface coverings
- F01N2510/06—Surface coverings for exhaust purification, e.g. catalytic reaction
- F01N2510/068—Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
- F01N2510/0684—Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having more than one coating layer, e.g. multi-layered coatings
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Analytical Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
この内燃機関ではNOX吸蔵触媒からNOXを放出すべきときに供給された炭化水素が酸化触媒においてガス状の炭化水素とされ、ガス状の炭化水素がNOX吸蔵触媒に送り込まれる。その結果、NOX吸蔵触媒から放出されたNOXが良好に還元せしめられることになる。
本発明の目的は、排気浄化触媒の活性化前におけるNOXの処理を考慮しつつ排気浄化触媒の温度が高温になっても高いNOX浄化率を得ることのできる内燃機関の排気浄化装置を提供することにある。
図2Aおよび2Bは触媒の表面部分を図解的に示す図である。
図3は排気浄化触媒における酸化反応を説明するための図である。
図4は排気処理触媒への流入排気ガスの空燃比の変化を示す図である。
図5はNOX浄化率を示す図である。
図6Aおよび6Bは排気浄化触媒における酸化還元反応を説明するための図である。
図7Aおよび7Bは排気浄化触媒における酸化還元反応を説明するための図である。
図8は排気処理触媒への流入排気ガスの空燃比の変化を示す図である。
図9はNOX浄化率を示す図である。
図10は排気処理触媒への流入排気ガスの空燃比の変化を示すタイムチャートである。
図11は排気処理触媒への流入排気ガスの空燃比の変化を示すタイムチャートである。
図12は排気浄化触媒の酸化力と要求最小空燃比Xとの関係を示す図である。
図13は同一のNOX浄化率の得られる、排気ガス中の酸素濃度と炭化水素濃度の振幅ΔHとの関係を示す図である。
図14は炭化水素濃度の振幅ΔHとNOX浄化率との関係を示す図である。
図15は炭化水素濃度の振動周期ΔTとNOX浄化率との関係を示す図である。
図16は炭化水素供給量Wのマップを示す図である。
図17はHC吸着触媒の温度とHC吸着量との関係を示す図である。
図18はHC吸着触媒の触媒担体の表面部分を図解的に示す図である。
図19Aおよび図19BはNOXの吸着および脱離作用を説明するための図である。
図20は炭化水素の供給制御を示す図である。
図21は別の実施例を示す排気処理触媒の基体の表面部分を図解的に示す図である。
図22は更に別の実施例を示す排気処理触媒の基体の表面部分を図解的に示す図である。
図23は更に別の実施例を示す排気処理触媒の基体の表面部分を図解的に示す図である。
図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内に夫々燃料を噴射するための電子制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドを夫々示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口は吸入空気量検出器8を介してエアクリーナ9に連結される。吸気ダクト6内にはステップモータにより駆動されるスロットル弁10が配置され、更に吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置11が配置される。図1に示される実施例では機関冷却水が冷却装置11内に導かれ、機関冷却水によって吸入空気が冷却される。
一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7bの入口に連結される。排気タービン7bの出口は排気管12を介して排気処理触媒13の入口に連結され、排気処理触媒13の出口は排気ガス中に含まれる微粒子を捕集するためのパティキュレートフィルタ14に連結される。排気処理触媒13上流の排気管12内には圧縮着火式内燃機関の燃料として用いられる軽油その他の燃料からなる炭化水素を供給するための炭化水素供給弁15が配置される。図1に示される実施例では炭化水素供給弁15から供給される炭化水素として軽油が用いられている。なお、本発明はリーン空燃比のもとで燃焼の行われる火花点火式内燃機関にも適用することができる。この場合、炭化水素供給弁15からは火花点火式内燃機関の燃料として用いられるガソリンその他の燃料からなる炭化水素が供給される。
一方、排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRと称す)通路16を介して互いに連結され、EGR通路16内には電子制御式EGR制御弁17が配置される。また、EGR通路16周りにはEGR通路16内を流れるEGRガスを冷却するための冷却装置18が配置される。図1に示される実施例では機関冷却水が冷却装置18内に導かれ、機関冷却水によってEGRガスが冷却される。一方、各燃料噴射弁3は燃料供給管19を介してコモンレール20に連結され、このコモンレール20は電子制御式の吐出量可変な燃料ポンプ21を介して燃料タンク22に連結される。燃料タンク22内に貯蔵されている燃料は燃料ポンプ21によってコモンレール20内に供給され、コモンレール20内に供給された燃料は各燃料供給管19を介して燃料噴射弁3に供給される。
電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。排気処理触媒13の下流には排気ガス温を検出するための温度センサ23が取付けられており、パティキュレートフィルタ14にはパティキュレートフィルタ14の前後の差圧を検出するための差圧センサ24が取付けられている。これら温度センサ23、差圧センサ24および吸入空気量検出器8の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁3、スロットル弁10の駆動用ステップモータ、炭化水素供給弁15、EGR制御弁17および燃料ポンプ21に接続される。
図2Aは排気処理触媒13の基体の表面部分を図解的に示している。この基体45は例えばコージライトからなり、この基体45上には上部コート層46と下部コート層47との少くとも二層からなるコート層が形成されている。図2Aで示される実施例では上部コート層46は粉体の集合体からなり、この上部コート層46はNOXを浄化するための排気浄化触媒を形成している。そこでまず初めにこの排気浄化触媒46およびこの排気浄化触媒46による新たなNOX浄化方法について説明することとする。
図2Bは排気浄化触媒46を構成している各粉体の触媒担体の表面部分を図解的に示している。この排気浄化触媒46では図2Bに示されるように例えばアルミナからなる触媒担体50上には貴金属触媒51,52が担持されており、更にこの触媒担体50上にはカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類金属、ランタノイドのような希土類および銀Ag、銅Cu、鉄Fe、イリジウムIrのようなNOXに電子を供与しうる金属から選ばれた少くとも一つを含む塩基性層53が形成されている。排気ガスは触媒担体50上に沿って流れるので貴金属触媒51,52は排気浄化触媒46の排気ガス流通表面上に担持されていると言える。また、塩基性層53の表面は塩基性を呈するので塩基性層53の表面は塩基性の排気ガス流通表面部分54と称される。
一方、図2において貴金属触媒51は白金Ptからなり、貴金属触媒52はロジウムRhからなる。即ち、触媒担体50に担持されている貴金属触媒51,52は白金PtおよびロジウムRhから構成されている。なお、排気浄化触媒46の触媒担体50上には白金PtおよびロジウムRhに加えて更にパラジウムPdを担持させることができるし、或いはロジウムRhに代えてパラジウムPdを担持させることができる。即ち、触媒担体50に担持されている貴金属触媒51,52は白金Ptと、ロジウムRhおよびパラジウムPdの少なくとも一方とにより構成される。
炭化水素供給弁15から排気ガス中に炭化水素が噴射されるとこの炭化水素は排気浄化触媒46において改質される。本発明ではこのとき改質された炭化水素を用いて排気浄化触媒46においてNOXを浄化するようにしている。図3はこのとき排気浄化触媒46において行われる改質作用を図解的に示している。図3に示されるように炭化水素供給弁15から噴射された炭化水素HCは触媒51によって炭素数の少ないラジカル状の炭化水素HCとなる。
なお、燃料噴射弁3から燃焼室2内に燃料、即ち炭化水素を膨張行程の後半或いは排気行程中に噴射してもこの炭化水素は燃焼室2内又は排気浄化触媒46において改質され、排気ガス中に含まれるNOXはこの改質された炭化水素によって排気浄化触媒46で浄化される。従って本発明では炭化水素供給弁15から機関排気通路内に炭化水素を供給する代りに、膨張行程の後半或いは排気行程中に燃焼室2内に炭化水素を供給することもできる。このように本発明では炭化水素を燃焼室2内に供給することもできるが、以下炭化水素を炭化水素供給弁15から機関排気通路内に噴射するようにした場合を例にとって本発明を説明する。
図4は炭化水素供給弁15からの炭化水素の供給タイミングと排気処理触媒13への流入排気ガスの空燃比(A/F)inの変化とを示している。なお、この空燃比(A/F)inの変化は排気処理触媒13に流入する排気ガス中の炭化水素の濃度変化に依存しているので図4に示される空燃比(A/F)inの変化は炭化水素の濃度変化を表しているとも言える。ただし、炭化水素濃度が高くなると空燃比(A/F)inは小さくなるので図4においては空燃比(A/F)inがリッチ側となるほど炭化水素濃度が高くなっている。
図5は、排気処理触媒13に流入する炭化水素の濃度を周期的に変化させることによって図4に示されるように排気処理触媒13への流入排気ガスの空燃比(A/F)inを変化させたときの排気浄化触媒46によるNOX浄化率を排気浄化触媒46の各触媒温度TCに対して示している。本発明者は長い期間に亘ってNOX浄化に関する研究を重ねており、その研究課程において、排気浄化触媒46に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると、図5に示されるように400℃以上の高温領域においても極めて高いNOX浄化率が得られることが判明したのである。
更にこのときには窒素および炭化水素を含む多量の還元性中間体が塩基性層53の表面上に、即ち排気浄化触媒46の塩基性排気ガス流通表面部分54上に保持又は吸着され続けており、この還元性中間体が高NOX浄化率を得る上で中心的役割を果していることが判明したのである。次にこのことについて図6Aおよび6Bを参照しつつ説明する。なお、これら図6Aおよび6Bは排気浄化触媒46の触媒担体50の表面部分を図解的に示しており、これら図6Aおよび6Bには排気処理触媒13に流入する炭化水素の濃度が予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動せしめたときに生ずると推測される反応が示されている。
図6Aは排気処理触媒13に流入する炭化水素の濃度が低いときを示しており、図6Bは炭化水素供給弁15から炭化水素が供給されて排気処理触媒13に流入する炭化水素の濃度が高くなっているときを示している。
さて、図4からわかるように排気処理触媒13に流入する排気ガスの空燃比は一瞬を除いてリーンに維持されているので排気処理触媒13に流入する排気ガスは通常酸素過剰の状態にある。従って排気ガス中に含まれるNOは図6Aに示されるように白金51上において酸化されてNO2となり、次いでこのNO2は白金51から電子を供与されてNO2 −となる。従って白金51上には多量のNO2 −が生成されることになる。このNO2 −は活性が強く、以上このNO2 −を活性NO2 *と称する。
一方、炭化水素供給弁15から炭化水素が供給されると図3に示されるようにこの炭化水素は排気浄化触媒46内において改質され、ラジカルとなる。その結果、図6Bに示されるように活性NO2 *周りの炭化水素濃度が高くなる。ところで活性NO2 *が生成された後、活性NO2 *周りの酸素濃度が高い状態が一定時間以上継続すると活性NO2 *は酸化され、硝酸イオンNO3 −の形で塩基性層53内に吸収される。しかしながらこの一定時間が経過する前に活性NO2 *周りの炭化水素濃度が高くされると図6Bに示されるように活性NO2 *は白金51上においてラジカル状の炭化水素HCと反応し、それにより還元性中間体が生成される。この還元性中間体は塩基性層53の表面上に付着又は吸着される。
なお、このとき最初に生成される還元性中間体はニトロ化合物R−NO2であると考えられる。このニトロ化合物R−NO2は生成されるとニトリル化合物R−CNとなるがこのニトリル化合物R−CNはその状態では瞬時しか存続し得ないのでただちにイソシアネート化合物R−NCOとなる。このイソシアネート化合物R−NCOは加水分解するとアミン化合物R−NH2となる。ただしこの場合、加水分解されるのはイソシアネート化合物R−NCOの一部であると考えられる。従って図6Bに示されるように塩基性層53の表面上に保持又は吸着されている還元性中間体の大部分はイソシアネート化合物R−NCOおよびアミン化合物R−NH2であると考えられる。
一方、図6Bに示されるように生成された還元性中間体の周りを炭化水素HCが取り囲んでいると還元性中間体は炭化水素HCに阻まれてそれ以上反応が進まない。この場合、排気処理触媒13に流入する炭化水素の濃度が低下せしめられ、それによって酸素濃度が高くなると還元性中間体周りの炭化水素は酸化せしめられる。その結果、図6Aに示されるように還元性中間体と活性NO2 *とが反応するようになる。このとき活性NO2 *は還元性中間体R−NCOやR−NH2と反応してN2,CO2,H2Oとなり、斯くしてNOXが浄化されることになる。
このように排気浄化触媒46では、排気処理触媒13に流入する炭化水素の濃度を高くすることにより還元性中間体が生成され、排気処理触媒13に流入する炭化水素の濃度を低くして酸素濃度を高くすることにより活性NO2 *が還元性中間体と反応し、NOXが浄化される。即ち、排気浄化触媒46によりNOXを浄化するには排気処理触媒13に流入する炭化水素の濃度を周期的に変化させる必要がある。
無論、この場合、還元性中間体を生成するのに十分高い濃度まで炭化水素の濃度を高める必要があり、生成された還元性中間体を活性NO2 *と反応させるのに十分低い濃度まで炭化水素の濃度を低下させる必要がある。即ち、排気処理触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅で振動させる必要がある。なお、この場合、生成された還元性中間体が活性NO2 *と反応するまで、十分な量の還元性中間体R−NCOやR−NH2を塩基性層53上に、即ち塩基性排気ガス流通表面部分24上保持しておかなければならず、そのために塩基性の排気ガス流通表面部分24が設けられている。
一方、炭化水素の供給周期を長くすると炭化水素が供給された後、次に炭化水素が供給されるまでの間において酸素濃度が高くなる期間が長くなり、従って活性NO2 *は還元性中間体を生成することなく硝酸塩の形で塩基性層53内に吸収されることになる。これを回避するためには排気処理触媒13に流入する炭化水素の濃度を予め定められた範囲内の周期でもって振動させることが必要となる。
そこで本発明による実施例では、排気ガス中に含まれるNOXと改質された炭化水素とを反応させて窒素および炭化水素を含む還元性中間体R−NCOやR−NH2を生成するために排気浄化触媒46の排気ガス流通表面上には貴金属触媒51,52が担持されており、生成された還元性中間体R−NCOやR−NH2を排気浄化触媒13内に保持しておくために貴金属触媒51,52周りには塩基性の排気ガス流通表面部分54が形成されており、塩基性の排気ガス流通表面部分54上に保持された還元性中間体R−NCOやR−NH2の還元作用によりNOXが還元され、炭化水素濃度の振動周期は還元性中間体R−NCOやR−NH2を生成し続けるのに必要な振動周期とされる。因みに図4に示される例では噴射間隔が3秒とされている。
炭化水素濃度の振動周期、即ち炭化水素HCの供給周期を上述の予め定められた範囲内の周期よりも長くすると塩基性層53の表面上から還元性中間体R−NCOやR−NH2が消滅し、このとき白金Pt53上において生成された活性NO2 *は図7Aに示されるように硝酸イオンNO3 −の形で塩基性層53内に拡散し、硝酸塩となる。即ち、このときには排気ガス中のNOXは硝酸塩の形で塩基性層53内に吸収されることになる。
一方、図7BはこのようにNOXが硝酸塩の形で塩基性層53内に吸収されているときに排気処理触媒13内に流入する排気ガスの空燃比が理論空燃比又はリッチにされた場合を示している。この場合には排気ガス中の酸素濃度が低下するために反応が逆方向(NO3 −→NO2)に進み、斯くして塩基性層53内に吸収されている硝酸塩は順次硝酸イオンNO3 −となって図7Bに示されるようにNO2の形で塩基性層53から放出される。次いで放出されたNO2は排気ガス中に含まれる炭化水素HCおよびCOによって還元される。
図8は塩基性層53のNOX吸収能力が飽和する少し前に排気処理触媒13に流入する排気ガスの空燃比(A/F)inを一時的にリッチにするようにした場合を示している。なお、図8に示す例ではこのリッチ制御の時間間隔は1分以上である。この場合には排気ガスの空燃比(A/F)inがリーンのときに塩基性層53内に吸収されたNOXは、排気ガスの空燃比(A/F)inが一時的にリッチにされたときに塩基性層53から一気に放出されて還元される。従ってこの場合には塩基性層53はNOXを一時的に吸収するための吸収剤の役目を果している。
なお、このとき塩基性層53がNOXを一時的に吸着する場合もあり、従って吸収および吸着の双方を含む用語として吸蔵という用語を用いるとこのとき塩基性層53はNOXを一時的に吸蔵するためのNOX吸蔵剤の役目を果していることになる。即ち、この場合には、機関吸気通路、燃焼室2および排気処理触媒13上流の排気通路内に供給された空気および燃料(炭化水素)の比を排気ガスの空燃比と称すると、排気浄化触媒46は、排気ガスの空燃比がリーンのときにはNOXを吸蔵し、排気ガス中の酸素濃度が低下すると吸蔵したNOXを放出するNOX吸蔵触媒として機能している。
図9は、排気浄化触媒46をこのようにNOX吸蔵触媒として機能させたときのNOX浄化率を示している。なお、図9の横軸は排気浄化触媒46の触媒温度TCを示している。排気浄化触媒46をNOX吸蔵触媒として機能させた場合には図9に示されるように触媒温度TCが300℃から400℃のときには極めて高いNOX浄化率が得られるが触媒温度TCが400℃以上の高温になるとNOX浄化率が低下する。
このように触媒温度TCが400℃以上になるとNOX浄化率が低下するのは、触媒温度TCが400℃以上になると硝酸塩が熱分解してNO2の形で排気浄化触媒46から放出されるからである。即ち、NOXを硝酸塩の形で吸蔵している限り、触媒温度TCが高いときに高いNOX浄化率を得るのは困難である。しかしながら図4から図6A,6Bに示される新たなNOX浄化方法では図6A,6Bからわかるように硝酸塩は生成されず或いは生成されても極く微量であり、斯くして図5に示されるように触媒温度TCが高いときでも高いNOX浄化率が得られることになる。
即ち、図4から図6A,6Bに示されるNOX浄化方法は、貴金属触媒を担持しかつNOXを吸収しうる塩基性層を形成した排気浄化触媒を用いた場合において、ほとんど硝酸塩を形成することなくNOXを浄化するようにした新たなNOX浄化方法であると言うことができる。実際、この新たなNOX浄化方法を用いた場合には排気浄化触媒46をNOX吸蔵触媒として機能させた場合に比べて、塩基性層53から検出される硝酸塩は極く微量である。
次に図10から図15を参照しつつ図4から図6A,6Bに示される新たなNOX浄化方法についてもう少し詳細に説明する。
図10は図4に示される空燃比(A/F)inの変化を拡大して示している。なお、前述したようにこの排気処理触媒13への流入排気ガスの空燃比(A/F)inの変化は同時に排気処理触媒13に流入する炭化水素の濃度変化を示している。なお、図10においてΔHは排気処理触媒13に流入する炭化水素HCの濃度変化の振幅を示しており、ΔTは排気処理触媒13に流入する炭化水素濃度の振動周期を示している。
更に図10において(A/F)bは機関出力を発生するための燃焼ガスの空燃比を示すベース空燃比を表している。言い換えるとこのベース空燃比(A/F)bは炭化水素の供給を停止したときに排気処理触媒13に流入する排気ガスの空燃比を表している。一方、図10においてXは、生成された活性NO2 *が硝酸塩の形で塩基性層53内に吸蔵されることなく還元性中間体の生成のために使用される空燃比(A/F)inの上限を表しており、活性NO2 *と改質された炭化水素とを反応させて還元性中間体を生成させるには空燃比(A/F)inをこの空燃比の上限Xよりも低くすることが必要となる。
別の言い方をすると図10のXは活性NO2 *と改質された炭化水素とを反応させて還元性中間体を生成させるのに必要な炭化水素の濃度の下限を表しており、還元性中間体を生成するためには炭化水素の濃度をこの下限Xよりも高くする必要がある。この場合、還元性中間体が生成されるか否かは活性NO2 *周りの酸素濃度と炭化水素濃度との比率、即ち空燃比(A/F)inで決まり、還元性中間体を生成するのに必要な上述の空燃比の上限Xを以下、要求最小空燃比と称する。
図10に示される例では要求最小空燃比Xがリッチとなっており、従ってこの場合には還元性中間体を生成するために空燃比(A/F)inが瞬時的に要求最小空燃比X以下に、即ちリッチにされる。これに対し、図11に示される例では要求最小空燃比Xがリーンとなっている。この場合には空燃比(A/F)inをリーンに維持しつつ空燃比(A/F)inを周期的に低下させることによって還元性中間体が生成される。
この場合、要求最小空燃比Xがリッチになるかリーンになるかは排気浄化触媒46の酸化力による。この場合、排気浄化触媒46は例えば貴金属51の担持量を増大させれば酸化力が強まり、酸性を強めれば酸化力が強まる。従って排気浄化触媒46の酸化力は貴金属51の担持量や酸性の強さによって変化することになる。
さて、酸化力が強い排気浄化触媒46を用いた場合に図11に示されるように空燃比(A/F)inをリーンに維持しつつ空燃比(A/F)inを周期的に低下させると、空燃比(A/F)inが低下せしめられたときに炭化水素が完全に酸化されてしまい、その結果還元性中間体を生成することができなくなる。これに対し、酸化力が強い排気浄化触媒46を用いた場合に図10に示されるように空燃比(A/F)inを周期的にリッチにさせると空燃比(A/F)inがリッチにされたときに炭化水素は完全に酸化されることなく部分酸化され、即ち炭化水素が改質され、斯くして還元性中間体が生成されることになる。従って酸化力が強い排気浄化触媒46を用いた場合には要求最小空燃比Xはリッチにする必要がある。
一方、酸化力が弱い排気浄化触媒46を用いた場合には図11に示されるように空燃比(A/F)inをリーンに維持しつつ空燃比(A/F)inを周期的に低下させると、炭化水素は完全に酸化されずに部分酸化され、即ち炭化水素が改質され、斯くして還元性中間体が生成される。これに対し、酸化力が弱い排気浄化触媒46を用いた場合に図10に示されるように空燃比(A/F)inを周期的にリッチにさせると多量の炭化水素は酸化されることなく単に排気浄化触媒46から排出されることになり、斯くして無駄に消費される炭化水素量が増大することになる。従って酸化力が弱い排気浄化触媒46を用いた場合には要求最小空燃比Xはリーンにする必要がある。
即ち、要求最小空燃比Xは図12に示されるように排気浄化触媒46の酸化力が強くなるほど低下させる必要があることがわかる。このように要求最小空燃比Xは排気浄化触媒46の酸化力によってリーンになったり、或いはリッチになったりするが、以下要求最小空燃比Xがリッチである場合を例にとって、排気処理触媒13に流入する炭化水素の濃度変化の振幅や排気処理触媒13に流入する炭化水素濃度の振動周期について説明する。
さて、ベース空燃比(A/F)bが大きくなると、即ち炭化水素が供給される前の排気ガス中の酸素濃度が高くなると空燃比(A/F)inを要求最小空燃比X以下とするのに必要な炭化水素の供給量が増大し、それに伴なって還元性中間体の生成に寄与しなかった余剰の炭化水素量も増大する。この場合、NOXを良好に浄化するためには前述したようにこの余剰の炭化水素を酸化させる必要があり、従ってNOXを良好に浄化するためには余剰の炭化水素量が多いほど多量の酸素が必要となる。
この場合、排気ガス中の酸素濃度を高めれば酸素量を増大することができる。従ってNOXを良好に浄化するためには、炭化水素が供給される前の排気ガス中の酸素濃度が高いときには炭化水素供給後の排気ガス中の酸素濃度を高める必要がある。即ち、炭化水素が供給される前の排気ガス中の酸素濃度が高いほど炭化水素濃度の振幅を大きくする必要がある。
図13は同一のNOX浄化率が得られるときの、炭化水素が供給される前の排気ガス中の酸素濃度と炭化水素濃度の振幅ΔHとの関係を示している。図13から同一のNOX浄化率を得るためには炭化水素が供給される前の排気ガス中の酸素濃度が高いほど炭化水素濃度の振幅ΔHを増大させる必要があることがわかる。即ち、同一のNOX浄化率を得るにはベース空燃比(A/F)bが高くなるほど炭化水素濃度の振幅ΔTを増大させることが必要となる。別の言い方をすると、NOXを良好に浄化するためにはベース空燃比(A/F)bが低くなるほど炭化水素濃度の振幅ΔTを減少させることができる。
ところでベース空燃比(A/F)bが最も低くなるのは加速運転時であり、このとき炭化水素濃度の振幅ΔHが200ppm程度あればNOXを良好に浄化することができる。ベース空燃比(A/F)bは通常、加速運転時よりも大きく、従って図14に示されるように炭化水素濃度の振幅ΔHが200ppm以上であれば良好なNOX浄化率を得ることができることになる。
一方、ベース空燃比(A/F)bが最も高いときには炭化水素濃度の振幅ΔHを10000ppm程度にすれば良好なNOX浄化率が得られることがわかっており、炭化水素濃度の振幅ΔHが10000ppmを越えると図4から図6A,6Bに示される新たなNOX浄化方法を良好に行えなくなる危険性がある。従って本発明では炭化水素濃度の振幅の予め定められた範囲が200ppmから10000ppmとされている。
また、炭化水素濃度の振動周期ΔTが長くなると炭化水素が供給された後、次に炭化水素が供給される間、活性NO2 *周りの酸素濃度が高くなる。この場合、炭化水素濃度の振動周期ΔTが5秒程度よりも長くなると活性NO2 *が硝酸塩の形で塩基性層53内に吸収され始め、従って図15に示されるように炭化水素濃度の振動周期ΔTが5秒程度よりも長くなるとNOX浄化率が低下することになる。従って炭化水素濃度の振動周期ΔTは5秒以下とする必要がある。
一方、炭化水素濃度の振動周期ΔTがほぼ0.3秒以下になると供給された炭化水素が排気浄化触媒46の排気ガス流通表面上に堆積し始め、従って図15に示されるように炭化水素濃度の振動周期ΔTがほぼ0.3秒以下になるとNOX浄化率が低下する。そこで本発明では炭化水素濃度の振動周期が0.3秒から5秒の間とされている。
さて、本発明による実施例では炭化水素供給弁15からの炭化水素の噴射量および噴射時期を変化させることによって炭化水素濃度の振幅ΔHおよび振動周期ΔTが機関の運転状態に応じた最適値となるように制御される。この場合、機関の運転状態に応じた最適な炭化水素の濃度変化を得ることのできる炭化水素の噴射量Wは機関の運転状態に応じて変化する。本発明による実施例ではこの炭化水素の噴射量Wは機関の要求トルクTQおよび機関回転数Nの関数として図16に示すようなマップの形で予めROM32内に記憶されている。
さて、排気浄化触媒46は触媒46が活性化しないとこれまで述べてきた新たなNOX浄化方法によるNOX浄化作用を行わない。従って本発明による実施例では排気浄化触媒46が活性化する前は炭化水素供給弁15からの炭化水素の供給は停止されており、排気浄化触媒46が活性化すると炭化水素供給弁15からの炭化水素の供給が開始されて新たなNOX浄化方法によるNOXの浄化作用が行われる。
ところで前述したように炭化水素の供給周期を長くすると排気ガス中のNOXは硝酸塩の形で塩基性層53内に吸蔵される。従って排気浄化触媒46の活性化前におけるように炭化水素供給弁15からの炭化水素の供給が停止されているときにも排気ガス中のNOXは硝酸塩の形で塩基性層53内に吸蔵されることになる。しかしながら排気浄化触媒46が活性化していないときにはNOXの吸蔵作用も活発には行われず、従ってこのとき排気ガス中に含まれる大部分のNOXは排気浄化触媒46に吸蔵されることなく大気中に排出されることになる。
このようにNOXが大気中に排出されるのを阻止する方法として、排気ガス中に含まれるNOXを吸着しうるNOX吸着触媒を排気処理触媒13の上流側又は下流側に配置することが考えられる。このNOX吸着触媒が吸着しうるNOX量はNOX吸着触媒の温度TBに対し一般的に言って図17の実線で示すような特性を有する。即ち、NOX吸着触媒が吸着しうるNOX量はNOX吸着触媒の温度TBが低くなると増大する。またNOX吸着触媒にはNOXを吸着可能な最大温度TB0が存在しており、NOX吸着触媒の温度TBがこの最大温度TB0を越えるとNOX吸着触媒はもはやNOXを吸着しえなくなる。
このようにNOX吸着触媒は触媒温度TBが低いときには多量のNOXを吸着しておくことができる。従ってNOX吸着触媒を排気処理触媒13の上流側に配置しておけば排気浄化触媒46が活性化するまでの間、排気ガス中に含まれるNOXをNOX吸着触媒に吸着することができるように思われる。しかしながらNOX吸着触媒を排気処理触媒13の上流側に配置しておくと排気ガス中に含まれる炭素数の多い高沸点炭化水素がNOX吸着触媒の表面に付着し、即ちHC被毒が生じ、斯くしてNOXを吸着しえなくなってしまう。従ってNOX吸着触媒を排気処理触媒13の上流側に配置することはできないことになる。
一方、NOX吸着触媒では図17からわかるように一般的に言って触媒温度TBが上昇すると吸着しうるNOX量が減少し、従って触媒温度TBが上昇すると吸着しえなくなったNOXがNOX吸着触媒から脱離する。しかしながらNOX吸着触媒を排気処理触媒13の下流側に配置した場合には排気浄化触媒46から脱離したNOXを還元する手段が存在しておらず、従ってこの場合には脱離したNOXが大気中に排出されることになる。従ってNOX吸着触媒は排気処理装置13の下流側に配置することもできない。
そこで本発明では排気処理触媒13の下部コート層47をNOX吸着触媒から形成するようにしている。この下部コート層47も粉体の集合体からなり、図18はこのNOX吸着触媒47を構成している各粉体の触媒担体の表面部分を図解的に示している。図18に示されるようにこのNOX吸着触媒46では例えばアルミナからなる触媒担体55上に銀Ag、銅Cu、鉄Feのような卑金属触媒56が担持されている。なお、図18に示す実施例ではこの卑金属触媒56は銀Agからなる。また、図18からわかるように触媒担体55上には貴金属触媒は担持されていない。
このNOX吸着触媒46も低温時にNOXを吸着する機能を有している。従って排気浄化触媒46が活性化する前には排気ガス中に含まれるNOがNOのまま、或いは触媒56上で酸化されてNO2の形で触媒56上又は触媒担体55上に吸着される。即ち、このとき排気ガス中に含まれる炭化水素HCは図19Aに示されるようにNOX吸着触媒47を覆う上部コート層46、即ち排気浄化触媒46に付着する。即ち、炭化水素HCは上部コート層46により捕獲される。従ってNOX吸着触媒47がHC被毒を受けずらくなり、斯くしてこのとき排気ガス中に含まれるNOはNO又はNO2の形でNOX吸着触媒47内に良好に吸着されることになる。
一方、排気浄化触媒46が活性化する頃になると、好ましくは排気浄化触媒46が活性化した後にNOX吸着触媒47に吸着しているNO又はNO2、即ちNOXがNOX吸着触媒47から脱離する。この脱離したNOXは図19Bに示されるように排気浄化触媒46内に拡散する。このとき排気浄化触媒46には生成された還元性中間体が保持されており、NOX吸着触媒47から脱離したNOXはこれら還元性中間体と反応してN2,CO2およびH2Oとされる。
この場合、NOX吸着触媒47から脱離したNOXはほとんど100%の確率で還元性中間体と出会うので脱離したNOXはほとんど還元される。従ってNOX吸着触媒47から脱離したNOXが大気中に排出される危険性はほとんどない。なお、排気浄化触媒46に捕獲された炭化水素HCは排気浄化触媒47において酸化せしめられるか、或いは還元性中間体の生成に使用される。
このように本発明では、機関排気通路内に排気処理触媒13を配置し、排気処理触媒13の基体45上には上部コート層46と下部コート層47との少くとも二層からなるコート層が形成されており、上部コート層46は排気ガス中に含まれるNOXと改質された炭化水素とを反応させるための排気浄化触媒からなり、この排気浄化触媒46の排気ガス流通表面上には貴金属触媒51,52が担持されていると共に貴金属触媒51,52周りには塩基性の排気ガス流通表面部分54が形成されており、この排気浄化触媒46は、排気処理触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると排気ガス中に含まれるNOXを還元する性質を有すると共に、この炭化水素濃度の振動周期を予め定められた範囲よりも長くすると排気ガス中に含まれるNOXの吸蔵量が増大する性質を有しており、下部コート層47は排気ガス中に含まれるNOXを吸着すると共に温度が上昇すると吸着したNOXを脱離させるNOX吸着触媒からなり、機関運転時に排気処理触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させ、それにより排気ガス中に含まれるNOXおよびNOX吸着触媒47から脱離したNOXを排気浄化触媒46において還元するようにしている。
この場合、本発明では排気処理触媒13に流入する炭化水素の濃度を振動させることによりNOXを還元するNOX還元処理は排気浄化触媒46が活性化した後に開始され、排気浄化触媒46が活性化する前は排気ガス中に含まれるNOXはNOX吸着触媒47に吸着される。
図20は炭化水素供給弁15からの炭化水素の供給を制御するためのルーチンを示している。
図20を参照するとまず初めにステップ60において温度センサ23の出力信号から排気処理触媒13の温度、即ち排気浄化触媒46の温度TCが推定される。次いでステップ61では排気浄化触媒46の温度TCが図5に示される予め定められた活性化温度TC0を越えたか否かが判別される。TC≦TC0のとき、即ち排気浄化触媒46が活性化していないときには処理サイクルを完了する。このときには炭化水素供給弁15からの炭化水素の供給が停止される。
これに対し、ステップ61においてTC>TC0であると判別されたとき、即ち排気浄化触媒46が活性化したときにはステップ62に進んで図16に示すマップから炭化水素の噴射量Wが算出される。次いでステップ63では予め定められた時間間隔を隔てて、例えば3秒毎に、算出された噴射量Wでもって炭化水素が炭化水素供給弁15から噴射される。
なお、NOX吸着触媒67から脱離したNOXを良好に還元させるにはNOX吸着触媒67からNOXが脱離したときに排気浄化触媒46が活性化していることが好ましい。即ち、図17に示されるNOX吸着触媒47のNOXを吸着可能な最大温度TB0が排気浄化触媒46の活性化温度TC0よりも高いことが好ましい。従って本発明による実施例ではNOX吸着触媒47の最大温度TB0が排気浄化触媒46の活性化温度TC0よりも高くなるようにNOX吸着触媒47が形成されている。この場合、例えばアルカリ金属、アルカリ土類金属或いはセリアCeO2をNOX吸着触媒47に若干添加することによってNOX吸着触媒46の最大温度TB0を上昇させることができる。
なお、排気浄化触媒46が活性化する前にNOX吸着触媒46内で活発な酸化反応が生じると酸化反応熱によりNOX吸着触媒46が温度上昇し、その結果NOX吸着触媒46から多量のNOXが脱離する危険性がある。そこで本発明による実施例ではNOX吸着触媒46内において活発な酸化反応が生じないように前述した如くNOX吸着触媒46内には貴金属を含有させないようにしている。
図21に排気処理触媒13の別の実施例を示す。この実施例では排気浄化触媒46が活性化していないときにNOX吸着触媒47の温度が上昇しないように上部コート層46と下部コート層47との間に断熱層48が形成されている。即ち、このような断熱層48を設けておくと排気浄化触媒46が活性化に向けて温度上昇したときにNOX吸着触媒47の温度上昇が抑制され、斯くして排気浄化触媒46が活性した後にNOX吸着触媒47からNOXを脱離させることができるようになる。なお、この断熱層46は炭化珪素SiCやアルミナAl2O3から形成することができる。
図22および図23はNOX吸着触媒47がHC被毒を生ずるのを阻止し、それによってNOX吸着触媒47が良好なNOXの吸着作用を行えるようにした実施例を示している。即ち、図22に示される実施例では上部コート層46と下部コート層47との間に例えばゼオライトからなるHCトラップ層49が形成されている。この実施例では上部コート層46から下部コート層47に向かう炭化水素HCはHCトラップ層49内に捕獲され、斯くしてNOX吸蔵触媒47がHC被毒を生ずるのが阻止される。
図23に示される実施例ではHCの捕獲能力を有する例えばゼオライトの粉体が上部コート層46内に混合されている。即ち、この実施例では上部コート層46がHCのトラップ機能を有しており、このHCトラップ機能によってNOX吸着触媒47がHC被毒を生ずるのが阻止させる。なお、図21に示される実施例において上部コート層46および断熱層48の一方又は双方にHCトラップ機能を持たせることもできる。
また、別の実施例として排気処理触媒13上流の機関排気通路内に炭化水素を改質させるための酸化触媒を配置することもできる。
5…排気マニホルド
7…排気ターボチャージャ
12…排気管
13…排気処理触媒
14…パティキュレートフィルタ
15…炭化水素供給弁
45…基体
46…排気浄化触媒
47…NOX吸着触媒
50…触媒担体
51,52…貴金属触媒
53…塩基性層
55…触媒担体
56…卑金属触媒
Claims (10)
- 機関排気通路内に排気処理触媒を配置し、該排気処理触媒の基体上には上部コート層と下部コート層との少くとも二層からなるコート層が形成されており、該上部コート層は排気ガス中に含まれるNOXと改質された炭化水素とを反応させるための排気浄化触媒からなり、該排気浄化触媒の排気ガス流通表面上には貴金属触媒が担持されていると共に該貴金属触媒周りには塩基性の排気ガス流通表面部分が形成されており、該排気浄化触媒は、排気処理触媒に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると排気ガス中に含まれるNOXを還元する性質を有すると共に、該炭化水素濃度の振動周期を該予め定められた範囲よりも長くすると排気ガス中に含まれるNOXの吸蔵量が増大する性質を有しており、該下部コート層は排気ガス中に含まれるNOXを吸着すると共に温度が上昇すると吸着したNOXを脱離させるNOX吸着触媒からなり、機関運転時に排気処理触媒に流入する炭化水素の濃度を上記予め定められた範囲内の振幅および上記予め定められた範囲内の周期でもって振動させ、それにより排気ガス中に含まれるNOXおよびNOX吸着触媒から脱離したNOXを排気浄化触媒において還元するようにした内燃機関の排気浄化装置。
- 上記排気処理触媒に流入する炭化水素の濃度を振動させることによりNOXを還元するNOX還元処理は上記排気浄化触媒が活性化した後に開始され、該排気浄化触媒が活性化する前は排気ガス中に含まれるNOXはNOX吸着触媒に吸着される請求項1に記載の内燃機関の排気浄化装置。
- NOX吸着触媒にはNOXを吸着可能な最大温度が存在しており、該NOX吸着触媒の最大温度が排気浄化触媒の活性化温度よりも高くなるようにNOX吸着触媒が形成されている請求項2に記載の内燃機関の排気浄化装置。
- 上記排気浄化触媒内において排気ガス中に含まれるNOXと改質された炭化水素とが反応して窒素および炭化水素を含む還元性中間体が生成され、上記炭化水素濃度の振動周期は還元性中間体を生成し続けるのに必要な振動周期である請求項1に記載の内燃機関の排気浄化装置。
- 上記炭化水素濃度の振動周期が0.3秒から5秒の間である請求項4に記載の内燃機関の排気浄化装置。
- 上記炭化水素濃度の振幅の予め定められた範囲が200ppmから10000ppmである請求項5に記載の内燃機関の排気浄化装置。
- 上記排気浄化触媒の排気ガス流通表面上にアルカリ金属又はアルカリ土類金属又は希土類又はNOXに電子を供与しうる金属を含む塩基性層が形成されており、該塩基性層の表面が上記塩基性の排気ガス流通表面部分を形成している請求項1に記載の内燃機関の排気浄化装置。
- 上記貴金属触媒は白金Ptと、ロジウムRhおよびパラジウムPdの少くとも一方とにより構成され、上記NOX吸着触媒は貴金属触媒を含有していない請求項1に記載の内燃機関の排気浄化装置。
- 上部コート層と下部コート層との間に断熱層が形成されている請求項1に記載の内燃機関の排気浄化装置。
- 上部コート層と下部コート層との間にHCトラップ層を形成するか又は上部コート層にHCトラップ機能を持たせている請求項1に記載の内燃機関の排気浄化装置。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/063135 WO2012014330A1 (ja) | 2010-07-28 | 2010-07-28 | 内燃機関の排気浄化装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5196024B2 true JP5196024B2 (ja) | 2013-05-15 |
JPWO2012014330A1 JPWO2012014330A1 (ja) | 2013-09-09 |
Family
ID=45529572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011531286A Expired - Fee Related JP5196024B2 (ja) | 2010-07-28 | 2010-07-28 | 内燃機関の排気浄化装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9108153B2 (ja) |
EP (1) | EP2460992B1 (ja) |
JP (1) | JP5196024B2 (ja) |
CN (1) | CN102985647B (ja) |
BR (1) | BRPI1013977B1 (ja) |
ES (1) | ES2707591T3 (ja) |
WO (1) | WO2012014330A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102834595B (zh) * | 2011-04-15 | 2015-08-05 | 丰田自动车株式会社 | 内燃机的排气净化装置 |
WO2014024311A1 (ja) * | 2012-08-10 | 2014-02-13 | トヨタ自動車株式会社 | 火花点火式内燃機関の排気浄化装置 |
US9494097B2 (en) * | 2012-08-28 | 2016-11-15 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of spark ignition type internal combustion engine |
JP6344403B2 (ja) * | 2016-02-10 | 2018-06-20 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11101147A (ja) * | 1997-09-30 | 1999-04-13 | Mazda Motor Corp | エンジンの制御装置 |
JP2004016850A (ja) * | 2002-06-12 | 2004-01-22 | Nissan Motor Co Ltd | 排気ガス浄化用触媒、製造方法及び排気ガス浄化システム |
JP2004290965A (ja) * | 2003-03-07 | 2004-10-21 | Honda Motor Co Ltd | 排ガス浄化システム |
JP2009226349A (ja) * | 2008-03-25 | 2009-10-08 | Toyota Motor Corp | 排ガス浄化用触媒 |
Family Cites Families (124)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4008371A1 (de) | 1989-03-15 | 1990-09-20 | Riken Kk | Abgasreiniger und verfahren zum reinigen von abgasen |
US5052178A (en) | 1989-08-08 | 1991-10-01 | Cummins Engine Company, Inc. | Unitary hybrid exhaust system and method for reducing particulate emmissions from internal combustion engines |
US5057483A (en) | 1990-02-22 | 1991-10-15 | Engelhard Corporation | Catalyst composition containing segregated platinum and rhodium components |
JP2605586B2 (ja) | 1992-07-24 | 1997-04-30 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
US6667018B2 (en) | 1994-07-05 | 2003-12-23 | Ngk Insulators, Ltd. | Catalyst-adsorbent for purification of exhaust gases and method for purification of exhaust gases |
EP0710499A3 (en) | 1994-11-04 | 1997-05-21 | Agency Ind Science Techn | Exhaust gas purifier and method for purifying an exhaust gas |
US6477834B1 (en) | 1997-05-12 | 2002-11-12 | Toyota Jidosha Kabushiki Kaisha | Exhaust emission controlling apparatus of internal combustion engine |
JP3456408B2 (ja) | 1997-05-12 | 2003-10-14 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
GB9713428D0 (en) * | 1997-06-26 | 1997-08-27 | Johnson Matthey Plc | Improvements in emissions control |
FR2778205B1 (fr) | 1998-04-29 | 2000-06-23 | Inst Francais Du Petrole | Procede d'injection controlee d'hydrocarbures dans une ligne d'echappement d'un moteur a combustion interne |
US7707821B1 (en) | 1998-08-24 | 2010-05-04 | Legare Joseph E | Control methods for improved catalytic converter efficiency and diagnosis |
US6718756B1 (en) | 1999-01-21 | 2004-04-13 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Exhaust gas purifier for use in internal combustion engine |
JP2000257419A (ja) | 1999-03-03 | 2000-09-19 | Toyota Motor Corp | 排気浄化方法及び装置 |
US6685897B1 (en) | 2000-01-06 | 2004-02-03 | The Regents Of The University Of California | Highly-basic large-pore zeolite catalysts for NOx reduction at low temperatures |
US6311484B1 (en) | 2000-02-22 | 2001-11-06 | Engelhard Corporation | System for reducing NOx transient emission |
DE10023439A1 (de) | 2000-05-12 | 2001-11-22 | Dmc2 Degussa Metals Catalysts | Verfahren zur Entfernung von Stickoxiden und Rußpartikeln aus dem mageren Abgas eines Verbrennungsmotors und Abgasreinigungssystem hierfür |
JP4889873B2 (ja) | 2000-09-08 | 2012-03-07 | 日産自動車株式会社 | 排気ガス浄化システム、これに用いる排気ガス浄化触媒及び排気浄化方法 |
MXPA03007404A (es) | 2001-02-19 | 2004-08-12 | Toyota Motor Co Ltd | Catalizador generador de hidrogeno y catalizador para purificar gases de escape. |
JP2002364415A (ja) | 2001-06-07 | 2002-12-18 | Mazda Motor Corp | エンジンの排気浄化装置 |
LU90795B1 (en) | 2001-06-27 | 2002-12-30 | Delphi Tech Inc | Nox release index |
US6677272B2 (en) * | 2001-08-15 | 2004-01-13 | Corning Incorporated | Material for NOx trap support |
US7082753B2 (en) | 2001-12-03 | 2006-08-01 | Catalytica Energy Systems, Inc. | System and methods for improved emission control of internal combustion engines using pulsed fuel flow |
CN1610790A (zh) | 2001-12-03 | 2005-04-27 | 能量催化系统公司 | 用于改进的内燃机排放控制的系统和方法 |
US6813882B2 (en) | 2001-12-18 | 2004-11-09 | Ford Global Technologies, Llc | System and method for removing NOx from an emission control device |
US7384612B2 (en) | 2002-02-19 | 2008-06-10 | Kabushiki Kaisha Chemical Auto | Diesel exhaust gas purifying filter |
JP3963130B2 (ja) | 2002-06-27 | 2007-08-22 | トヨタ自動車株式会社 | 触媒劣化判定装置 |
ATE421375T1 (de) | 2002-07-31 | 2009-02-15 | Umicore Ag & Co Kg | Verfahren zur regenerierung eines stickoxid- speicherkatalysators |
JP2004068700A (ja) | 2002-08-06 | 2004-03-04 | Toyota Motor Corp | 排気ガス浄化方法 |
AU2003262001B2 (en) | 2002-09-10 | 2007-10-11 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas clarifying device for internal combustion engine |
US7332135B2 (en) * | 2002-10-22 | 2008-02-19 | Ford Global Technologies, Llc | Catalyst system for the reduction of NOx and NH3 emissions |
WO2004046514A1 (en) | 2002-11-15 | 2004-06-03 | Catalytica Energy Systems, Inc. | Devices and methods for reduction of nox emissions from lean burn engines |
JP4385593B2 (ja) | 2002-12-10 | 2009-12-16 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
DE10300298A1 (de) | 2003-01-02 | 2004-07-15 | Daimlerchrysler Ag | Abgasnachbehandlungseinrichtung und -verfahren |
DE10308287B4 (de) | 2003-02-26 | 2006-11-30 | Umicore Ag & Co. Kg | Verfahren zur Abgasreinigung |
US7043902B2 (en) | 2003-03-07 | 2006-05-16 | Honda Motor Co., Ltd. | Exhaust gas purification system |
US6854264B2 (en) | 2003-03-27 | 2005-02-15 | Ford Global Technologies, Llc | Computer controlled engine adjustment based on an exhaust flow |
JP4288985B2 (ja) | 2003-03-31 | 2009-07-01 | 株式会社デンソー | 内燃機関の排気浄化装置 |
DE10315593B4 (de) | 2003-04-05 | 2005-12-22 | Daimlerchrysler Ag | Abgasnachbehandlungseinrichtung und -verfahren |
US6983589B2 (en) | 2003-05-07 | 2006-01-10 | Ford Global Technologies, Llc | Diesel aftertreatment systems |
JP4158697B2 (ja) | 2003-06-17 | 2008-10-01 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置および排気浄化方法 |
JP2006527815A (ja) | 2003-06-18 | 2006-12-07 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | 還元体添加の制御方法 |
GB0318776D0 (en) | 2003-08-09 | 2003-09-10 | Johnson Matthey Plc | Lean NOx catalyst |
JP4020054B2 (ja) | 2003-09-24 | 2007-12-12 | トヨタ自動車株式会社 | 内燃機関の排気浄化システム |
JP3876874B2 (ja) | 2003-10-28 | 2007-02-07 | トヨタ自動車株式会社 | 触媒再生方法 |
CN100420829C (zh) | 2003-12-01 | 2008-09-24 | 丰田自动车株式会社 | 压缩点火式内燃机的废气净化装置 |
GB0329095D0 (en) | 2003-12-16 | 2004-01-14 | Johnson Matthey Plc | Exhaust system for lean burn IC engine including particulate filter |
US20050135977A1 (en) | 2003-12-19 | 2005-06-23 | Caterpillar Inc. | Multi-part catalyst system for exhaust treatment elements |
JP4321332B2 (ja) | 2004-04-01 | 2009-08-26 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
JP4232690B2 (ja) | 2004-05-24 | 2009-03-04 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置に適用される燃料添加制御方法、及び排気浄化装置 |
JP4338586B2 (ja) | 2004-05-26 | 2009-10-07 | 株式会社日立製作所 | エンジンの排気系診断装置 |
US7137379B2 (en) | 2004-08-20 | 2006-11-21 | Southwest Research Institute | Method for rich pulse control of diesel engines |
JP3852461B2 (ja) | 2004-09-03 | 2006-11-29 | いすゞ自動車株式会社 | 排気ガス浄化方法及び排気ガス浄化システム |
EP1662102B1 (en) | 2004-11-23 | 2007-06-27 | Ford Global Technologies, LLC | Method and apparatus for conversion of NOx |
EP1885473A1 (de) | 2005-06-03 | 2008-02-13 | Emitec Gesellschaft für Emissionstechnologie mbH | Verfahren und vorrichtung zur behandlung von abgasen von verbrennungskraftmaschinen |
US7685813B2 (en) | 2005-06-09 | 2010-03-30 | Eaton Corporation | LNT regeneration strategy over normal truck driving cycle |
US7743602B2 (en) | 2005-06-21 | 2010-06-29 | Exxonmobil Research And Engineering Co. | Reformer assisted lean NOx catalyst aftertreatment system and method |
US7803338B2 (en) | 2005-06-21 | 2010-09-28 | Exonmobil Research And Engineering Company | Method and apparatus for combination catalyst for reduction of NOx in combustion products |
JP4464876B2 (ja) | 2005-07-01 | 2010-05-19 | 日立オートモティブシステムズ株式会社 | エンジンの制御装置 |
JP2007064167A (ja) | 2005-09-02 | 2007-03-15 | Toyota Motor Corp | 内燃機関の排気浄化装置および排気浄化方法 |
FR2890577B1 (fr) | 2005-09-12 | 2009-02-27 | Rhodia Recherches & Tech | Procede de traitement d'un gaz contenant des oxydes d'azote (nox), utilisant comme piege a nox une composition a base d'oxyde de zirconium et d'oxyde de praseodyme |
US7063642B1 (en) | 2005-10-07 | 2006-06-20 | Eaton Corporation | Narrow speed range diesel-powered engine system w/ aftertreatment devices |
JP4548309B2 (ja) | 2005-11-02 | 2010-09-22 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
US7412823B2 (en) | 2005-12-02 | 2008-08-19 | Eaton Corporation | LNT desulfation strategy |
JP4270201B2 (ja) | 2005-12-05 | 2009-05-27 | トヨタ自動車株式会社 | 内燃機関 |
JP5087836B2 (ja) | 2005-12-14 | 2012-12-05 | いすゞ自動車株式会社 | 排気ガス浄化システムの制御方法及び排気ガス浄化システム |
JP2007260618A (ja) | 2006-03-29 | 2007-10-11 | Toyota Motor Corp | 排ガス浄化触媒及び排ガス浄化装置 |
JP2007297918A (ja) | 2006-04-27 | 2007-11-15 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP4613962B2 (ja) | 2006-05-24 | 2011-01-19 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
JP5373255B2 (ja) | 2006-05-29 | 2013-12-18 | 株式会社キャタラー | NOx還元触媒、NOx還元触媒システム、及びNOx還元方法 |
US7562522B2 (en) | 2006-06-06 | 2009-07-21 | Eaton Corporation | Enhanced hybrid de-NOx system |
JP4404073B2 (ja) | 2006-06-30 | 2010-01-27 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
JP4487982B2 (ja) | 2006-07-12 | 2010-06-23 | トヨタ自動車株式会社 | 内燃機関の排気浄化システム |
US7614214B2 (en) | 2006-07-26 | 2009-11-10 | Eaton Corporation | Gasification of soot trapped in a particulate filter under reducing conditions |
US7624570B2 (en) | 2006-07-27 | 2009-12-01 | Eaton Corporation | Optimal fuel profiles |
JP4155320B2 (ja) | 2006-09-06 | 2008-09-24 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
JP4329799B2 (ja) | 2006-09-20 | 2009-09-09 | トヨタ自動車株式会社 | 内燃機関の空燃比制御装置 |
ATE439903T1 (de) | 2006-10-06 | 2009-09-15 | Umicore Ag & Co Kg | Stickoxidspeicherkatalysator mit abgesenkter entschwefelungstemperatur |
JP4733002B2 (ja) | 2006-11-24 | 2011-07-27 | 本田技研工業株式会社 | 内燃機関の排ガス浄化装置 |
EP2224116B1 (en) | 2006-12-22 | 2011-11-23 | Ford Global Technologies, LLC | An internal combustion engine system and a method for determining a condition of an exhaust gas treatment device in a such a system |
JP4221026B2 (ja) | 2006-12-25 | 2009-02-12 | 三菱電機株式会社 | 内燃機関の空燃比制御装置 |
JP4221025B2 (ja) | 2006-12-25 | 2009-02-12 | 三菱電機株式会社 | 内燃機関の空燃比制御装置 |
US20080196398A1 (en) | 2007-02-20 | 2008-08-21 | Eaton Corporation | HC mitigation to reduce NOx spike |
JP4665923B2 (ja) | 2007-03-13 | 2011-04-06 | トヨタ自動車株式会社 | 触媒劣化判定装置 |
JP4710924B2 (ja) | 2007-03-19 | 2011-06-29 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
JP4420048B2 (ja) | 2007-03-20 | 2010-02-24 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
JP2008255858A (ja) | 2007-04-03 | 2008-10-23 | Yanmar Co Ltd | ディーゼルエンジン用黒煙浄化装置 |
JP4702318B2 (ja) | 2007-04-10 | 2011-06-15 | トヨタ自動車株式会社 | 内燃機関の排気浄化システム |
JP4710866B2 (ja) | 2007-04-18 | 2011-06-29 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
US7788910B2 (en) | 2007-05-09 | 2010-09-07 | Ford Global Technologies, Llc | Particulate filter regeneration and NOx catalyst re-activation |
JP4304539B2 (ja) | 2007-05-17 | 2009-07-29 | いすゞ自動車株式会社 | NOx浄化システムの制御方法及びNOx浄化システム |
JP2008303791A (ja) * | 2007-06-07 | 2008-12-18 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP5590640B2 (ja) * | 2007-08-01 | 2014-09-17 | 日産自動車株式会社 | 排気ガス浄化システム |
JP5067614B2 (ja) | 2007-08-21 | 2012-11-07 | 株式会社デンソー | 内燃機関の排気浄化装置 |
JP5037283B2 (ja) | 2007-09-26 | 2012-09-26 | 本田技研工業株式会社 | 内燃機関の排気浄化装置 |
JP2009114879A (ja) | 2007-11-02 | 2009-05-28 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
US8074443B2 (en) | 2007-11-13 | 2011-12-13 | Eaton Corporation | Pre-combustor and large channel combustor system for operation of a fuel reformer at low exhaust temperatures |
JP4428443B2 (ja) | 2007-12-18 | 2010-03-10 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
CN101878353B (zh) | 2007-12-26 | 2012-09-05 | 丰田自动车株式会社 | 内燃机的排气净化装置 |
US8434296B2 (en) | 2008-01-08 | 2013-05-07 | Honda Motor Co., Ltd. | Exhaust emission control device for internal combustion engine |
JP2009209839A (ja) | 2008-03-05 | 2009-09-17 | Denso Corp | 内燃機関の排気浄化装置 |
JP2009221939A (ja) | 2008-03-14 | 2009-10-01 | Denso Corp | 排気浄化システムおよびその排気浄化制御装置 |
JP4527792B2 (ja) | 2008-06-20 | 2010-08-18 | 本田技研工業株式会社 | 排ガス浄化装置の劣化判定装置 |
JP5386121B2 (ja) | 2008-07-25 | 2014-01-15 | エヌ・イーケムキャット株式会社 | 排気ガス浄化触媒装置、並びに排気ガス浄化方法 |
JP5157739B2 (ja) | 2008-08-11 | 2013-03-06 | 日産自動車株式会社 | 排ガス浄化システム及びこれを用いた排ガス浄化方法 |
KR101020819B1 (ko) | 2008-11-28 | 2011-03-09 | 기아자동차주식회사 | 흡장형 NOx 촉매의 후분사용 가변 분사장치와 그 분사방법 |
JP5538237B2 (ja) | 2008-12-03 | 2014-07-02 | 第一稀元素化学工業株式会社 | 排気ガス浄化触媒、それを用いた排気ガス浄化装置、及び排気ガス浄化方法 |
US20100154387A1 (en) | 2008-12-19 | 2010-06-24 | Toyota Jidosha Kabushiki Kaisha | Abnormality detection device for reductant addition valve |
WO2010108083A1 (en) | 2009-03-20 | 2010-09-23 | Basf Catalysts Llc | EMISSIONS TREATMENT SYSTEM WITH LEAN NOx TRAP |
US9662611B2 (en) | 2009-04-03 | 2017-05-30 | Basf Corporation | Emissions treatment system with ammonia-generating and SCR catalysts |
KR101091627B1 (ko) | 2009-08-31 | 2011-12-08 | 기아자동차주식회사 | 배기 시스템 |
US8353155B2 (en) | 2009-08-31 | 2013-01-15 | General Electric Company | Catalyst and method of manufacture |
US20110120100A1 (en) | 2009-11-24 | 2011-05-26 | General Electric Company | Catalyst and method of manufacture |
WO2011092523A1 (en) | 2010-02-01 | 2011-08-04 | Johnson Matthey Plc | NOx ABSORBER CATALYSTS |
US8459010B2 (en) | 2010-02-26 | 2013-06-11 | General Electric Company | System and method for controlling nitrous oxide emissions of an internal combustion engine and regeneration of an exhaust treatment device |
US8572950B2 (en) | 2010-03-15 | 2013-11-05 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine |
US8683784B2 (en) | 2010-03-15 | 2014-04-01 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine |
RU2479730C1 (ru) | 2010-03-15 | 2013-04-20 | Тойота Дзидося Кабусики Кайся | Система очистки выхлопных газов двигателя внутреннего сгорания |
US8695325B2 (en) | 2010-03-15 | 2014-04-15 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine |
JP5131391B2 (ja) | 2010-03-18 | 2013-01-30 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
BRPI1015307B1 (pt) | 2010-03-23 | 2020-04-28 | Toyota Motor Co Ltd | sistema de purificação de escapamento de motor a combustão interna |
ES2590924T3 (es) | 2010-04-01 | 2016-11-24 | Toyota Jidosha Kabushiki Kaisha | Método de purificación de gases de escape para motor de combustión interna |
JP4868097B1 (ja) | 2010-08-30 | 2012-02-01 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
EP2610450B1 (en) | 2010-09-02 | 2016-08-17 | Toyota Jidosha Kabushiki Kaisha | NOx PURIFICATION METHOD OF AN EXHAUST PURIFICATION SYSTEM OF AN INTERNAL COMBUSTION ENGINE |
US8701390B2 (en) | 2010-11-23 | 2014-04-22 | International Engine Intellectual Property Company, Llc | Adaptive control strategy |
-
2010
- 2010-07-28 ES ES10849180T patent/ES2707591T3/es active Active
- 2010-07-28 JP JP2011531286A patent/JP5196024B2/ja not_active Expired - Fee Related
- 2010-07-28 WO PCT/JP2010/063135 patent/WO2012014330A1/ja active Application Filing
- 2010-07-28 BR BRPI1013977-0A patent/BRPI1013977B1/pt active IP Right Grant
- 2010-07-28 CN CN201080019277.9A patent/CN102985647B/zh active Active
- 2010-07-28 US US13/257,789 patent/US9108153B2/en not_active Expired - Fee Related
- 2010-07-28 EP EP10849180.4A patent/EP2460992B1/en not_active Not-in-force
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11101147A (ja) * | 1997-09-30 | 1999-04-13 | Mazda Motor Corp | エンジンの制御装置 |
JP2004016850A (ja) * | 2002-06-12 | 2004-01-22 | Nissan Motor Co Ltd | 排気ガス浄化用触媒、製造方法及び排気ガス浄化システム |
JP2004290965A (ja) * | 2003-03-07 | 2004-10-21 | Honda Motor Co Ltd | 排ガス浄化システム |
JP2009226349A (ja) * | 2008-03-25 | 2009-10-08 | Toyota Motor Corp | 排ガス浄化用触媒 |
Also Published As
Publication number | Publication date |
---|---|
ES2707591T3 (es) | 2019-04-04 |
BRPI1013977B1 (pt) | 2020-08-18 |
JPWO2012014330A1 (ja) | 2013-09-09 |
EP2460992B1 (en) | 2018-12-05 |
CN102985647B (zh) | 2015-06-03 |
US20130121885A1 (en) | 2013-05-16 |
CN102985647A (zh) | 2013-03-20 |
BRPI1013977A2 (pt) | 2016-04-05 |
EP2460992A1 (en) | 2012-06-06 |
WO2012014330A1 (ja) | 2012-02-02 |
US9108153B2 (en) | 2015-08-18 |
EP2460992A4 (en) | 2014-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4868097B1 (ja) | 内燃機関の排気浄化装置 | |
JP5182429B2 (ja) | 内燃機関の排気浄化装置 | |
JP5168412B2 (ja) | 内燃機関の排気浄化装置 | |
JP5196027B2 (ja) | 内燃機関の排気浄化装置 | |
JP5196026B2 (ja) | 内燃機関の排気浄化装置 | |
JP5067511B2 (ja) | 内燃機関の排気浄化装置 | |
JPWO2011114540A1 (ja) | 内燃機関の排気浄化装置 | |
JP5131392B2 (ja) | 内燃機関の排気浄化装置 | |
JP5152416B2 (ja) | 内燃機関の排気浄化装置 | |
JP5182428B2 (ja) | 内燃機関の排気浄化装置 | |
WO2011145228A1 (ja) | 内燃機関の排気浄化装置 | |
JP5136694B2 (ja) | 内燃機関の排気浄化装置 | |
JP5131393B2 (ja) | 内燃機関の排気浄化装置 | |
JP5196024B2 (ja) | 内燃機関の排気浄化装置 | |
JP5177302B2 (ja) | 内燃機関の排気浄化装置 | |
JP5168411B2 (ja) | 内燃機関の排気浄化装置 | |
JP5131389B2 (ja) | 内燃機関の排気浄化装置 | |
JP5168410B2 (ja) | 内燃機関の排気浄化装置 | |
JP5131394B2 (ja) | 内燃機関の排気浄化装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130121 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160215 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5196024 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160215 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |