[go: up one dir, main page]

JP5143437B2 - リチウムイオン二次電池用負極活物質の製造方法、負極活物質及び負極 - Google Patents

リチウムイオン二次電池用負極活物質の製造方法、負極活物質及び負極 Download PDF

Info

Publication number
JP5143437B2
JP5143437B2 JP2007019738A JP2007019738A JP5143437B2 JP 5143437 B2 JP5143437 B2 JP 5143437B2 JP 2007019738 A JP2007019738 A JP 2007019738A JP 2007019738 A JP2007019738 A JP 2007019738A JP 5143437 B2 JP5143437 B2 JP 5143437B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
silicon
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007019738A
Other languages
English (en)
Other versions
JP2008186732A (ja
Inventor
隆伸 河井
健一 本川
隼人 松本
慎哉 安藤
修平 滝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP2007019738A priority Critical patent/JP5143437B2/ja
Publication of JP2008186732A publication Critical patent/JP2008186732A/ja
Application granted granted Critical
Publication of JP5143437B2 publication Critical patent/JP5143437B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム二次電池用負極活物質及びそれを使用した負極に関し、黒鉛基材に珪素・珪素化合物・珪素合金の微粉末、あるいは、珪素・珪素化合物・珪素合金の微粉末とカーボンブラックの混合物等を複合化することにより得られる高容量でサイクル特性に優れたリチウム二次電池用の負極活物質、それを使用した負極及びその製造法に関する。
リチウム二次電池はハイパワー、高容量の二次電池として携帯電話、パソコン、PDA等の可搬型機器類に多く使用され、今後もその需要が更に高くなると予想されている。
可搬型機器類の小型化、軽量化、高性能化への流れを受けて、リチウム二次電池も小型・軽量化あるいは高容量化の要請が強くなっている。
この要請に応えるため、リチウム二次電池の各種のパーツや材料の高性能化も活発に試みられ、中でも電池の性能を左右するものとして、負極活物質の開発は、重要度を増している。
現在、負極活物質としては、カーボン(黒鉛)系が主流であり、放電容量が350〜360mAh/g程度と黒鉛の理論容量の372mAh/gに近い値のものまで実用化されているが、黒鉛の理論容量を超えることは不可能である。一方金属珪素は理論容量が4200mAh/gと桁違いに大きいものの、充放電に伴う膨張収縮により負極材が劣化し電池のサイクル寿命が短い問題があった。
そこで放電容量を高めながらサイクル特性も改善する目的で、珪素と黒鉛粉末を混合したものや、炭素粉末や黒鉛粉末表面に珪素粉末を混合し、ピッチをコーテングした負極活物質が提案されている。
例えば、特許文献1(特許第3268770号公報)では炭素材と珪素粉末を混合して熱処理したものが提案されているが、10サイクルしか評価しておらず、実用には不十分である。
また、特許文献2(特許第3282546号公報)では、珪素粉末に代えてFeSi2、NiSi2 、MoSi2 、WSi2 、Mg2Si等の珪素金属間化合物粉末を負極として使用することが提案され、サイクル特性が良好であることが開示されている。
集電体である銅箔の上に直接珪素や珪素とコバルト等の金属を複合メッキした電極材料等も盛んに研究されているが、リチウムの収蔵・放出に伴う体積変化を吸収するのが困難なため、サイクル特性の点で満足のいくものではない。
特許文献3(特開2002−270170号)には、珪素やその他の金属、もしくはそれらの合金を含有する負極活物質が開示されているが、初回充放電効率が80%以下であり高性能とはいえないものである。
特許第3268770号公報 特許第3282546号公報 特開2002−270170号公報 特開2006−228640号公報
現在の主流である黒鉛質材を超える高容量の負極活物質の開発が検討されているが、高容量であるとともにサイクル特性や電池効率に優れ、実用化できる負極活物質の開発は未だなされていない。
本発明者らは、この問題を解決すべく 黒鉛に珪素・珪素化合物・珪素合金の微粉末を添加して高容量とした負極活物質について、特にサイクル特性の改善について研究をした。そして、サイクルの進行に伴い、珪素表面が活性化して電解液と反応することに起因する放電容量の低下を抑制することについて研究を重ね、また、リチウムイオンの収蔵・放出に伴う珪素微粉の体積変化を吸収するための有効な方法を研究した。
その結果、珪素系粉末を最適度な粒径に微粉化して黒鉛基材に埋設させた負極活物質とすることが電解液との反応を抑制すること、また、鎖状高分子等の空隙形成剤を珪素系微粉末に被覆して焼成によって、この空隙形成剤を消失乃至、一部の残渣を残して消失させることにより珪素系微粉末の周囲に空隙を形成することが体積変化の吸収に有効であるとの知見を得て特許文献4(特開2006−228640)の発明を完成した。
これは、黒鉛質粉末、黒鉛前駆体、珪素系微粉末、およびポリビニルアルコ−ル等の鎖状高分子材料からなる空隙形成剤を混合して焼成したものであり、放電容量が500mAh/g以上でサイクル特性は50サイクルを超えても放電容量が490mAh/g程度のリチウム二次電池負極活物質が得られたのである。
しかしながら特許文献4に開示された負極活物質は、負極活物質粒子の表面が、結晶性の低い炭素で被覆されているため、単独では電極の電気伝導度が低く、実際の使用に当たっては、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維、鱗片状天然黒鉛、人造黒鉛粉末等の導電補助材を1種以上混合して欠点を補う必要があった。
導電補助材にもリチウムイオンの収蔵・放出に関する容量があるが、最大でも天然黒鉛の360〜370mAh/g程度でしかなく、導電性の向上と容量の向上の両方を達成することができない。
一般に導電補助材の混合量は負極活物質100重量部に対し、5〜30重量部、サイクル特性を特に重視する場合は、人造黒鉛粉末(一般の黒鉛系負極活物質)を100重量部以上とする場合もあり、導電補助材を多量に混合することによってその分だけ容量を低下させてしまっていた。
そこで、珪素・珪素化合物・珪素合金を複合させることによって得られた高容量を維持しつつ、電極としてリチウムイオンの収蔵・放出に伴う体積変化に対しても導電性のネットワークを維持し、更にサイクル特性の向上を達成するために、負極活物質自体の導電性を高めることが重要であると認識するに至った。
上記のような状況に鑑み、黒鉛を超える高容量であって、サイクル特性、電池効率に優れたリチウム二次電池負極活物質を提供するものであり、珪素・珪素化合物・珪素合金を複合させることによって高容量化した黒鉛系の負極活物質の導電性を高めるのが本発明の課題である。
黒鉛粉末と珪素・珪素化合物・珪素合金の1種以上の微粉末、焼成時にほぼ消滅する空隙形成剤、及びカーボンブラックを混合し、この混合物を炭素前駆体で被覆して焼成することを複数回おこなうものであり、最外層被覆に使用する炭素前駆体を900〜1100℃で焼成することを特徴するリチウムイオン二次電池用負極活物質の製造方法である。
また、最外層の被覆層となる炭素前駆体に焼成後に表面に微小突起となるカーボンブラックを混合して900〜1100℃で焼成することを特徴するリチウムイオン二次電池用負極活物質の製造方法である。
製造されたリチウムイオン二次電池用負極活物質は、負極活物質の導電性向上を図るため、珪素・珪素化合物・珪素合金微粉末とこれを固定・被覆する低結晶性炭素の界面、及び/あるいは低結晶性炭素自体の導電性の向上、更には負極活物質粒子表面に導電性を有する微小突起を付することによって負極活物質粒子表面の導電性を向上させ、電極としてリチウムイオンの収蔵・放出に伴う体積変化に対しても導電性のネットワークを維持し、更にサイクル特性を向上させるものである。
本発明の製造法は次の通りである。
まず、黒鉛質粉末、炭素前駆体、珪素・珪素化合物・珪素合金、あるいは、これとカーボンブラック及び空隙形成剤の混合物を混合した後、焼成して得た母材に炭素前駆体、あるいは炭素前駆体とカーボンブラックの混合物を被覆して最終的に900℃〜1100℃で焼成して得る。
あるいは、鱗状乃至鱗片状天然黒鉛、珪素・珪素化合物・珪素合金、あるいはこれとカーボンブラック、必要であればバインダーとしての炭素前駆体、または空隙形成剤を予め混合後、球形に賦形した造粒体に炭素前駆体あるいは炭素前駆体とカーボンブラックの混合物を含浸・被覆して最終的に900℃〜1100℃で焼成して得る。
以下、詳細に記述する。
まず、基材である黒鉛粉末は、コークスまたは生コークスの黒鉛化品、コークス(フィラー)とピッチ(バインダー)を混捏・成形・焼成・黒鉛化して得られる黒鉛ブロックを粉砕した人造黒鉛粉末、メソフェーズピッチ粉末の黒鉛化品やこれを成形・焼成・黒鉛化して得られる黒鉛ブロックを粉砕した人造黒鉛粉末、あるいは、市販の黒鉛ブロックを粉末化したものである。
市販品の例では、新日化テクノカーボン株式会社製IGS-603、IGS-644、IGS-743、IGS-744、IGS-844、IGS-895、IGS-652、EGS-743、EGS-763、GS-203、GS-203R、GF-130等が挙げられる。更には鱗状や鱗片状天然黒鉛およびこれら天然黒鉛の造粒品や球状化品などが使用可能で、これら二種以上を任意の割合で混合した混合物を用いてもよい。
黒鉛粉末の平均粒子径は、市販の黒鉛負極材と同程度であれば問題なく、5〜50μm程度が適当である。
粒径が50μm以上では、この粒子を造粒後に得られる粒子径がその粒度分布上、負極電極シートの厚さを超える80μm以上の粒子を多く含むことになり好ましくない。なお鱗状乃至鱗片状天然黒鉛、珪素・珪素化合物・珪素合金の微粉末、あるいはこれとカーボンブラック、必要であればバインダーとしての炭素前駆体、または、空隙形成剤を予め混合後球形に賦形した造粒体を経由する場合は、この造粒体の平均粒子径が、市販の黒鉛負極材と同程度の5〜50μm程度であれば問題ない。
炭素前駆体は、次のようなピッチや樹脂を使用する。
ピッチでは石油系、石炭系の非晶質系(イソフェーズピッチ)、晶質系(メソフェーズピッチ)のものいずれも使用可能である。ピッチの融点は360℃以下であることが好ましく、これ以上のものでは、混合やコーテングの過程で不都合が生じやすい。
樹脂の場合、フェノール樹脂、フラン樹脂等を使用する。これらの樹脂は、酸素含有量が20%以下であることが好ましい。焼成熱処理後に過剰な酸素を含有していると、得られる負極活物質の放電容量や電池効率を低下させるので好ましくない。また得率を稼ぐために残炭率の高い樹脂を選定する方が望ましい。
これらの炭素前駆体の使用量は、基材である黒鉛粉末の比表面積や吸油量により若干異なるが、概ね黒鉛粉末100重量部に対して5〜30重量部程度が適当で、黒鉛粉末の粉末特性により調整する必要がある。
5重量部以下では少量で効果が得られず、30重量部を超えると充放電効率を減少させてしまうため好ましくない。
高容量化のための添加材には金属珪素、一酸化珪素等の珪素化合物、あるいは、珪素合金の1種以上を用いることができる。珪素合金は珪素と合金を形成可能なものであればいずれも使用することができるし、配合する種類も、割合も任意でかまわない。目指す珪素合金のリチウムイオンとの合金化による膨張のコントロールやその安定性、あるいは入手性、コスト、合金化更には微粉調製にかかわるコスト等総合的に考慮して選択するのが好ましい。
これらの微粉末は、基材の黒鉛粉末に埋設させるため、あるいは、基材の黒鉛粉末と混合造粒するため、及びリチウムイオンの収蔵・放出に伴う体積変化による破壊を防ぐため微粒子であることが必要で、最大粒径が、1μm以下であることが好ましい。1μm以上のものが存在するとサイクル特性に悪影響を及ぼしやすい。
珪素・珪素化合物・珪素合金の微粉末の使用量は、黒鉛粉末100重量部に対して1〜20重量部が好ましい。1重量部以下では放電容量増加の効果が乏しく、20重量部を超えるとサイクル特性を劣化させるので好ましくない。
また珪素・珪素化合物・珪素合金の微粉末は、前記の粒度を満足するものであれば、その結晶状態を問わない。
珪素・珪素化合物・珪素合金の微粉末は、所望の粒度品を得るため、出発原料のサイズにもよるが、通常はボールミル、振動ミル、パルベライザー、ジェットミル等の乾式粉砕機を用いてなるべく細かくしておき、次いでビーズミルによる湿式粉砕により最終的に粒度を合わせることによって調製する。また湿式粉砕時にカーボンブラックと混合粉砕し、このまま使用することも可能である。
湿式粉砕する場合、用いる分散媒は、珪素・珪素化合物・珪素合金と反応性が無いか非常に小さいものを適宜選択するのが望ましい。更に必要があれば分散媒に濡らすため、微量の分散剤(界面活性剤)を添加してもかまわない。分散剤も、珪素・珪素化合物・珪素合金の粉末と反応性が無いか非常に小さいものを適宜選択するのが望ましい。
更に、空隙形成剤として鎖状高分子材料等を添加することもできる。この鎖状高分子材料は、焼成後に残炭として残らない材料で、焼成によって殆どが消失することによって空隙を形成するものである。この空隙が金属珪素微粉末の体積膨張を吸収することにより、電極の破壊を防止し、サイクル特性の向上に優れた効果を発揮する。
鎖状高分子材料等として用いるものは、例えばポリカルボシラン、ポリビニルアルコール、ポリエチレングリコール、ポリアクリル酸、メチルセルロース、カルボキシメチルセルロース等が適当である。
カーボンブラックは、負極活物質内部の導電性を高め、負極活物質表面に固定化されている珪素・珪素化合物・珪素合金表面の導電性を高めるのに用いられる。更には主に負極活物質と有機質の結着剤からなる電極内の導電性向上と維持、及び集電体である銅箔との接触をより強固にするために用いられる。ここで用いるカーボンブラックは、従来補助導電材として広く認知されているアセチレンブラックやケッチェンブラックでもかまわないし、それ以外のファーネスブラックやこれら以外の製法によるカーボンブラックを用いてもかまわない。また負極活物質内部の導電性向上用と負極活物質表面に固定化するカーボンブラックの種類・銘柄は同一でも別々でもかまわないし、二種以上の混合物でもかまわない。更には、予めカーボンブラックを黒鉛化してカーボンブラックの導電性を高めてから用いてもかまわない。
このように用いるカーボンブラックはどのような種類、形態、製法、特性でもかまわないが、それぞれの比表面積、DBP吸油量等の特性を考慮して、カーボンブラック添加量や炭素前駆体の使用量等を調節する必要がある。
本発明の負極活物質の製造方法について詳細に述べる。
まず、黒鉛粉末と所望の粒度に調製された珪素・珪素化合物・珪素合金の微粉末、あるいはこれとカーボンブラック、あるいは珪素・珪素化合物・珪素合金の微粉末とカーボンブラックを湿式混合粉砕して得た混合物を混合する。混合の方法は特に限定しないが、例えばこれらの材料に珪素・珪素化合物・珪素合金等の湿式粉砕時に用いた分散媒を過剰に加え、攪拌更には超音波分散等の手段により均質化した後、エバポレーター等を用いて分散媒を蒸発除去・乾燥させる。または、過剰の分散媒を加えることなく、そのまま高速撹拌機中で加温しながら分散媒を蒸発させながら混合する方法もある。空隙形成剤を加える場合は、この段階で加えてもよいし、湿式粉砕時に添加してもよい。
次にこの処理物にピッチ等の炭素前駆体あるいはカーボンブラックを加え加熱ニーダー等で加熱混合する。この後は窒素、自己雰囲気等の非酸化性雰囲気または還元性雰囲気中で900〜1100℃で焼成を行い、更に解砕・篩通しする。
ピッチ等の炭素前駆体を加えての加熱混合処理は、複数回行う。複数回の混合処理において、その最終焼成を900〜1100℃で行えば良く途中回での焼成はこれより低くてもかまわない。
または、鱗状乃至鱗片状の天然黒鉛粉末と湿式粉砕された微粉末等を分散媒を含んだまま前述の方法によって均一混合を行い、更にバインダーとしてピッチ等炭素前駆体、あるいはこれにカーボンブラックを添加して機械的に概略球形に造粒する。
黒鉛粉末に予め微粉砕した珪素系微粉末及びカーボンブラックを均一に分散させ、これを造粒することで、粉体内部に珪素系微粉末及びカーボンブラックを分散させた造粒物ができあがる(図7参照)。
造粒するための装置は、例えばハイブリタイザー(株式会社奈良機械製作所)やメカノフージョン(ホソカワミクロン株式会社)、クリプトロン(株式会社アーステクニカ製)のような一般に粉末の造粒機能乃至球形化機能を有する装置が適宜選択できる。 以後は、加熱ニーダー等に移し、前述の方法で加熱混合し、次いで焼成、解砕、篩い通しを行う。
上記の製造方法で得られた負極活物質は、以下の特徴を有する。
負極活性物質の主体となるコア部分は黒鉛であり、炭素前駆体を焼成して炭化した炭素層がコアを覆っており、珪素、珪素化合物、または、珪素合金の微粉末やカーボンブラックが炭素に埋設した構造になる。
更に、製造工程の最後において、炭素前駆体としてのバインダーピッチとカーボンブラックとを加熱混合した混捏物で黒鉛粒子を被覆して焼成すると、表層に微小突起が形成される。この微小突起はカーボンブラックが炭素で被覆されたものである。
珪素・珪素化合物・珪素合金の微粉末は負極活物質一粒子の中に、1〜20%程度含有されており、これらは粒子表面に露出しておらず、埋設された状態で存在する。
また、負極活物質内部には、空隙形成剤が焼成熱処理によって消失することにより形成された空隙が存在する。この空隙の存在が、充放電に伴う珪素系微粉末の膨張収縮を吸収するための一つの手段となる。
本発明による負極活物質は、リチウムイオン電池の容量を調整するため、また、形成された電極の充填性調節のため、あるいは形成された電極の膨張を抑制するため、任意の割合で天然黒鉛、人造黒鉛、更には低結晶炭素の粉末を単独あるいは混合して加える。
また、本発明による負極活物質は電極にしたときの結晶配向が揃ってしまうことを防ぐために粉体のアスペクト比は1.0〜2.0であることが好ましい。
本発明による負極活物質は、有機系結着材と混合し、加圧成形もしくは溶剤を用いてペースト化し、銅箔上に塗布、乾燥、プレスしてリチウム二次電池用負極とする。
上記有機結着材にはポリフッ化ビニリデン(PVdF)、スチレンブタジエンゴム、ポリアクリル酸、ポリエチレン、ポリプロピレン、ポリアクリロニトリル等が使用することができ、充放電時の膨れを抑制するため、及び充放電のサイクルによる容量劣化を防ぐため、機械的強度の高い結着材を選択することが好ましい。
小型電池では一般的に集電体を除いた電極厚さが30μm〜100μm、電極密度が1.4g/cm3〜1.8/cm3において使用される。
本発明のリチウム二次電池負極活物質によると、微粉化された珪素・珪素化合物・珪素合金が負極活物質の中に埋設された構成とすることにより、珪素・珪素化合物・珪素合金の微粉末と電解液との反応に起因するサイクル特性の劣化を有効に抑制することができる。
また、活物質内部に形成された空隙が、リチウムのドープ・アンドープに伴う体積膨張を吸収し、電極の破壊防止に優れた効果を発揮する。
活物質各所に添加・固定されたカーボンブラックは、それぞれ活物質内部、活物質同士の導電性を高める働きをになう。
これらの作用、効果により従来の黒鉛負極活物質を超える高容量であるとともに、サイクル特性、電池効率にも優れた負極活物質を提供できるものである。
以下、本発明を実施例及び比較例により説明する。なお本発明は、この実施例に限定されるものではない。
平均粒子径(D50)が12μmの球状天然黒鉛100重量部と平均粒子径(D50)0.2μm、最大粒径(Dtop)を<1μmに粉砕した金属珪素13.5重量部及び空隙形成剤としてポリビニルアルコール1.0重量部を高速撹拌混合機にて混合する。この混合物100重量部に対してバインダーピッチ18重量部を加熱ニーダーで加熱混合し、これを窒素雰囲気下にて1000℃で焼成する。更に、この焼成物100重量部に対してバインダーピッチ10重量部を加熱ニーダーで加熱混合しながらアセチレンブラック(AB)10重量部を添加し、これを窒素雰囲気下にて1000℃で焼成し、この焼成物を解砕・目開き38μmの篩を通し目的物を得た。
平均粒子径(D50)=16.82μm、最大粒子径(Dtop)=54.64μm、BET法による比表面積はSSA=2.50m2/g、アスペクト比は1.2であった。
この負極活物質の構造のモデルを図1に、SEM写真を図2に示す。
コアが黒鉛粒子(1)であり、粒子全体の形状は概略球形である。粒子の表面は炭素前駆体のピッチを焼成した炭素の層(2)が2層形成され、表面にはカーボンブラック(3)が突起となって存在している。金属珪素(4)は、黒鉛粒子(1)の表面に散在しており、粒子(1)の表面を覆う炭素層(2)の内層に存在している。そして、コアである黒鉛粒子(1)には比較的大きな空隙(5)が、また、炭素層の内層には比較的小さな空隙(5)がほぼ均一に形成されている。
この負極活物質100重量部に対しPVdF5重量部を混合してN−メチル−2−ピロリドン(NMP)を分散媒にしたスラリーを調製し、銅箔上にドクターブレードを用いて塗布し、140℃で乾燥し、ロールプレスを掛けた後φ12mmに打ち抜き電極とした。プレス後の電極厚は41μmであり、電極密度は1.60g/cm3であった。これに対極としてLi金属を用い、セパレーターを介し対向させ電極群とした後1M LiPF6/EC:MEC(1:2)の電解液を加えてコインセルを形成し充放電試験に供した。
0.5mA/cm3で定電流充電し、電位が10mVとなったときに定電圧充電を電流値が10μAとなるまで充電した。充電後0.5mA/cm3で定電流放電したときの初回放電容量は536mAh/gであり、初回放電効率は86.1%であった。
平均粒子径(D50)が12μmの球状天然黒鉛100重量部と平均粒子径(D50)0.2μm、最大粒径(Dtop)を<1μmに粉砕した金属珪素とアセチレンブラック(AB)の混合物(Si/AB=100/5)14.2重量部、及び空隙形成剤としてポリアクリル酸1.0重量部を高速撹拌混合機にて混合する。この混合物100重量部に対してバインダーピッチ18重量部を加熱ニーダーで加熱混合し、これを窒素雰囲気下にて1000℃で焼成する。更にこの焼成物100重量部に対してバインダーピッチ15重量部を加熱ニーダーで加熱混合しながらアセチレンブラック(AB)10重量部を添加し、これを窒素雰囲気下にて1000℃で焼成し、焼成物を解砕・目開き38μmの篩を通し目的物を得た。
平均粒子径(D50)=14.5μm、最大粒子径(Dtop)=46.1μm、BET法による比表面積はSSA=3.18m2/g、アスペクト比は1.2であった。
この負極活物質の構造モデルを図3に、SEM写真を図4に示す。
コアが黒鉛粒子(1)であり、粒子の形状は概略球形である。黒鉛粒子の表面は炭素前駆体のピッチを焼成した炭素の層(2)が2層形成され、表面にはカーボンブラック(3)が突起となって存在している。また、カーボンブラック(3)は炭素層(2)の内層に認められた。金属珪素(4)は、黒鉛粒子(1)の表面を覆う炭素の内層(2)に存在している。そして、コアである黒鉛粒子(1)には比較的大きな空隙(5)が、また、炭素層の内層(2)には比較的小さな空隙がほぼ均一に形成されていた。
粒子表面はカーボンブラックによる突起が形成されている。
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は37μmであり、電極密度は1.60g/cm3であった。対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。作製したコインセルでの初回放電容量は575mAh/gであり、初回放電効率は88.5%であった。
平均粒子径(D50)が10μmに粉砕されたコークスとバインダーピッチとを加熱混合後成型、焼成、黒鉛化、粉砕して得られる平均粒子径(D50)が15μmの人造黒鉛100重量部と平均粒子径(D50)0.2μm、最大粒径(Dtop)<1μmに粉砕した金属珪素とアセチレンブラック(AB)の混合物(Si/AB=100/5)14.2重量部及び空隙剤としてポリアクリル酸1.0重量部を高速撹拌混合機にて混合する。この混合物100重量部に対してバインダーピッチ18重量部を加熱ニーダーで加熱混合しながらアセチレンブラック(AB)5重量部を添加し、これを窒素雰囲気下にて1000℃で焼成する。更にこの焼成物100重量部に対してバインダーピッチ15重量部を加熱ニーダーで加熱混合しながらアセチレンブラック(AB)10重量部を添加し、これを窒素雰囲気下にて1000℃で焼成し、焼成物を解砕・目開き38μmの篩を通し目的物を得た。
平均粒子径(D50)=18.3μ、最大粒子径(Dtop)=54.6μm、BET法による比表面積はSSA=4.19m2/g、アスペクト比は1.4であった。
この負極活物質の構造モデルを図5に、SEM写真を図6に示す。
コアが表面に窪みを有する黒鉛粒子(1)であり、粒子の形状は概略球形である。黒鉛粒子(1)の表面は炭素前駆体のピッチを焼成した炭素の層(2)が2層形成され、表層にカーボンブラック(4)が突起となって存在している。カーボンブラックは表層の下の層にも認められた。金属珪素(4)は、黒鉛粒子(1)の表面及び一部が黒鉛粒子(1)の窪みに存在している。そして、コアである黒鉛粒子(1)には比較的大きな空隙(5)が、また、炭素層の内層(2)には比較的小さな空隙が形成されていた。また、珪素微粒子(4)の一部が黒鉛粒子(1)の表面の窪みにも入り込んでいる。
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は41μmであり、電極密度は1.61g/cm3であった。対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。作製したコインセルでの初回放電容量は555mAh/gであり、初回放電効率は84.3%であった。
実施例3で用いた人造黒鉛100重量部と平均粒子径(D50)0.2μm、最大粒径(Dtop)<1μmに粉砕した金属珪素とアセチレンブラック(AB)の混合物(Si/AB=100/5)14.2重量部及び空隙剤としてポリアクリル酸1.0重量部を高速撹拌混合機にて混合する。この混合物100重量部に対してバインダーピッチ18重量部を加熱ニーダーで加熱混合し、これを窒素雰囲気下にて1000℃で焼成する。更に、この焼成物100重量部に対してバインダーピッチ15重量部を加熱ニーダーで加熱混合し、これを窒素雰囲気下にて1000℃で焼成し、焼成物を解砕・目開き38μmの篩を通し目的物を得た。
平均粒子径(D50)=20.2μ、最大粒子径(Dtop)=54.6μm、BET法による比表面積はSSA=2.26m2/g、アスペクト比は1.4であった。
この負極活物質の構造モデルを図7に、SEM写真を図8に示す。
コアが表面に窪みを有する黒鉛粒子(1)であり、粒子の形状は概略球形である。黒鉛粒子(1)の表面は炭素前駆体のピッチを焼成した炭素の層(2)が2層形成されている。カーボンブラック(3)は、炭素層の下の層に認められた。金属珪素(4)は、黒鉛粒子(1)の表面及び一部が黒鉛粒子(1)の窪みに存在している。そして、コアである黒鉛粒子(1)には比較的大きな空隙(5)が、また、炭素層の内層(2)には比較的小さな空隙が形成されていた。
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は44μmであり、電極密度は1.61g/cm3であった。対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。作製したコインセルでの初回放電容量は548mAh/gであり、初回放電効率は87.5%であった。
平均粒子径(D50)が16μmの鱗状黒鉛100重量部と平均粒子径(D50)0.2μm、最大粒径(Dtop)を<1μmに粉砕した金属珪素15重量部、アセチレンブラック(AB)5重量部及び空隙形成剤としてポリアクリル酸1.0重量部を高速撹拌混合機にて均一混合し、これを株式会社奈良機械製作所製ハイブリタイゼーションを用いて造粒、球形化を行った。更に、この造粒物100重量部に対してバインダーピッチ15重量部を加熱ニーダーで加熱混合、これを窒素雰囲気下にて1000℃で焼成し、この焼成物を解砕・目開き38μmの篩を通し目的物を得た。
平均粒子径(D50)=5.0μ、最大粒子径(Dtop)=31.1μm、BET法による比表面積はSSA=2.41m2/gであった。
この負極活物質粒子の構造モデルを図9に、SEM写真を図10に示す。
粒子は、ほぼ球状であり、鱗状黒鉛(1)が球体の殻となっており、アセチレンブラックを焼成した炭素(3)、金属珪素微粒子(4)、及び空隙(5)は殻の内部に存在している。粒子の表面は、炭素前駆体のピッチを焼成した炭素の層(2)が形成されている。
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は40μmであり、電極密度は1.59g/cm3であった。対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。作製したコインセルでの初回放電容量は553mAh/gであり、初回放電効率は89.2%であった。
実施例5の負極活物質100重量部に対してバインダーピッチ15重量部を加熱ニーダーで加熱混合しながらアセチレンブラック(AB)10重量部を混合し、これを窒素雰囲気下にて1000℃で焼成し、この焼成物を解砕・目開き38μmの篩を通し目的物を得た。
平均粒子径(D50)=5.4μ、最大粒子径(Dtop)=31.1μm、BET法による比表面積はSSA=4.17m2/gであった。
この負極活物質粒子の構造モデルを図11に示す。
実施例5の粒子の外側に炭素前駆体のピッチを焼成した炭素の層(2)が形成されており、表面にはカーボンブラック(3)が点在し、表面突起を形成している。金属珪素微粒子(4)は粒子内部に存在し、その周辺には空隙(5)が形成されている。
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は40μmであり、電極密度は1.59g/cm3であった。対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。作製したコインセルでの初回放電容量は541mAh/gであり、初回放電効率は86.5%であった。
実施例3の負極材75重量部に対して平均粒径が16μmの人造黒鉛25重量部を混合した。
平均粒子径(D50)=16.4μ、最大粒子径(Dtop)=64.5μm、BET法による比表面積はSSA=6.44m2/g、アスペクト比は1.2であった。
この混合物に結着材としてPVdFを外割5%を加え、混合し電極を作製し、プレス後の電極厚は40μmであり、電極密度は1.59g/cm3であった。対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。作製したコインセルでの初回放電容量は502mAh/gであり、初回放電効率は84.8%であった。
金属珪素の代わりに一酸化珪素を用いたこと以外は実施例3と同様に行った。
平均粒子径(D50)=17.9μ、最大粒子径(Dtop)=54.6μm、BET法による比表面積はSSA3.98m2/g、アスペクト比は1.4であった。
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は41μmであり、電極密度は1.61g/cm3であった。対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。作製したコインセルでの初回放電容量は548mAh/gであり、初回放電効率は86.5%であった。
金属珪素の代わりにチタン−珪素合金(TiSi2)を用いたこと以外は実施例3と同様に行った。
平均粒子径(D50)=18.2μ、最大粒子径(Dtop)=54.6μm、BET法による比表面積はSSA4.17m2/g、アスペクト比は1.4であった。
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は41μmであり、電極密度は1.61g/cm3であった。対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。作製したコインセルでの初回放電容量は545mAh/gであり、初回放電効率は87.5%であった。
比較例1
キノリン不溶(QI)成分が10%の軟化点110℃の石炭系ピッチ(光学的等方性)を窒素ガスバブリング下(2l/min・kg)500℃で熱処理し、偏光顕微鏡下での観察による光学的異方性が30%の炭素前駆体を得た。これを粉砕・整粒し、平均粒子系16μmとした後、焼成、黒鉛化し黒鉛粉末を得た。この黒鉛粉末100重量部と平均粒子径(D50)0.2μm、最大粒径(Dtop)<1μmに粉砕した金属珪素13重量部を高速撹拌混合機にて混合する。この混合物100重量部に対してバインダーピッチ18重量部を加熱ニーダーで加熱混合し、これを窒素雰囲気下にて1000℃で焼成する。更にこの焼成物100重量部に対してバインダーピッチ10重量部を加熱ニーダーで加熱混合し、これを窒素雰囲気下にて1000℃で焼成し、その後解砕・目開き38μmの篩を通し目的物を得た。
平均粒子径(D50)=21.0μm、最大粒子径(Dtop)=64.79μm、BET法による比表面積はSSA=4.01m2/g、アスペクト比は1.8であった。
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は34μmであり、電極密度は1.60g/cm3であった。対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。作製したコインセルでの初回放電容量は519mAh/gであり、初回放電効率は85.7%であった。
実施例1〜9及び比較例1のサイクル特性試験結果を図12に示す。本発明の黒鉛粒子を使用したリチウム電池はサイクル特性が優れており、向上したことがわかる。
また、図13及び図14に実施例4(図7のモデル)の黒鉛粒子を樹脂に埋め込み、通常の研磨剤により研磨したのち、更にイオンミリング法によって処理したもののSEM写真を示す。図13の粒子断面写真から、粒子表層近くの金属珪素周辺に空隙が存在していることが認められた。図14の粒子断面写真からは、粒子内部にも空隙の存在が確認されており、金属珪素の粒子表層近くだけでなく、空隙が粒子内部にも形成されていることがわかる。
なお、本発明の実施例、比較例における各数値の測定法、測定装置は次の通りである。
本発明の負極活物質の比表面積は、窒素ガスの吸脱着により測定し、測定装置、米国Maicromeritics社製の自動比表面積/細孔分布測定装置ASAP−2405Nを使用した。
比表面積は、吸着等温線から得られた吸着ガス量を、単分子層として評価して表面積を計算するBETの多点法によって求めた
P/V(P0-P)=(1/VmC)+{(C-1)/VmC(P/P0)}……………………………(1)
S=kVm…………………………………………………………………(2)
0:飽和蒸気圧
P:吸着平衡圧
V:吸着平衡圧Pにおける吸着量
Vm:単分子層吸着量
C:吸着熱などに関するパラメーター
S:比表面積
k:窒素単分子占有面積 0.162nm2
粒子径の測定は、株式会社セイシン企業製レーザー回折・散乱式粒度分布測定器のLMS-30システムを用いて、水を分散媒として微量の界面活性剤を分散剤にして、超音波分散をさせた状態で測定した。
実施例1の黒鉛粒子のモデル図。 実施例1の黒鉛粒子のSEM写真。 実施例2の黒鉛粒子のモデル図。 実施例2の黒鉛粒子のSEM写真。 実施例3の黒鉛粒子のモデル図。 実施例3の黒鉛粒子のSEM写真。 実施例4の黒鉛粒子のモデル図。 実施例4の黒鉛粒子のSEM写真。 実施例5の黒鉛粒子のモデル図。 実施例5の黒鉛粒子のSEM写真。 実施例6の黒鉛粒子のモデル図。 サイクル特性試験の比較グラフ。 粒子断面写真(金属珪素周辺の空隙の様子) 粒子断面写真(黒鉛母材内部に存在する空隙及び金属珪素の様子)
符号の説明
1 黒鉛
2 炭素前駆体を焼成してなる炭素
3 カーボンブラック
4 珪素、珪素化合物、または珪素合金
5 空隙

Claims (10)

  1. 黒鉛粉末と珪素・珪素化合物・珪素合金の1種以上の微粉末、及び焼成時にほぼ消滅する空隙形成剤、及びカーボンブラックを混合し、この混合物に炭素前駆体を加えて炭素前駆体で被覆して焼成することを複数回おこなうものであり、最外層の被覆となる炭素前駆体の焼成温度が900〜1100℃であることを特徴とするリチウムイオン二次電池用負極活物質の製造方法。
  2. 請求項1において、最外層の被覆となる炭素前駆体には、焼成後に表面に微小突起となるカーボンブラックを加えて被覆層とすることを特徴とするリチウムイオン二次電池用負極活物質の製造方法。
  3. 請求項1または2において、黒鉛粉末が鱗状乃至鱗片状黒鉛であり、この黒鉛粉末と珪素・珪素化合物・珪素合金の1種以上の微粉末、及び焼成時にほぼ消滅する空隙形成剤及びカーボンブラックを加えた混合物を球形に造粒することを特徴とするリチウムイオン二次電池用負極活物質の製造方法。
  4. 請求項1〜3のいずれかにおいて、最外層の被覆となる炭素前駆体が石炭・石油系の非晶質ピッチあるいは晶質ピッチであることを特徴とするリチウムイオン二次電池用負極活物質の製造方法。
  5. 請求項1〜4のいずれかにおいて、珪素または珪素化合物もしくは珪素合金の平均粒子径が0.5μm以下で、かつ最大粒子径が1μm以下であることを特徴とするリチウムイオン二次電池用負極活物質の製造方法。
  6. 請求項1〜5のいずれかにおいて、焼成によってほぼ消滅する空隙形成剤がポリビニルアルコール、ポリエチレングリコール、ポリカルボシラン、ポリアクリル酸、セルロース系高分子等から選ばれたものであり、焼成得率が20%以下であることを特徴とするリチウムイオン二次電池用負極活物質の製造方法。
  7. 請求項1〜6のいずれかにおいて、焼成によってほぼ消滅する空隙形成剤を予め金属珪素微粉末に被覆させて用いることを特徴とするリチウムイオン二次電池用負極活物質の製造方法。
  8. 請求項1〜7のいずれかの方法によって製造されたリチウムイオン二次電池用負極活物質。
  9. 請求項8のリチウムイオン二次電池用負極活物質に導電性の調節、電極密度の調節、充放電容量の調節を目的として天然黒鉛、人造黒鉛、更には低結晶炭素の粉末を単独あるいは混合したものを加えたことを特徴とするリチウムイオン二次電池用負極活物質。
  10. 請求項8または請求項9のリチウムイオン二次電池用負極活物質を有機バインダーと混合し、銅箔上に塗布、乾燥、プレスして得られる銅箔をのぞいた電極厚が30〜100μm及び電極密度が1.4〜1.8g/cm3であることを特徴とするリチウムイオン二次電池用負極。
JP2007019738A 2007-01-30 2007-01-30 リチウムイオン二次電池用負極活物質の製造方法、負極活物質及び負極 Active JP5143437B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007019738A JP5143437B2 (ja) 2007-01-30 2007-01-30 リチウムイオン二次電池用負極活物質の製造方法、負極活物質及び負極

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007019738A JP5143437B2 (ja) 2007-01-30 2007-01-30 リチウムイオン二次電池用負極活物質の製造方法、負極活物質及び負極

Publications (2)

Publication Number Publication Date
JP2008186732A JP2008186732A (ja) 2008-08-14
JP5143437B2 true JP5143437B2 (ja) 2013-02-13

Family

ID=39729623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007019738A Active JP5143437B2 (ja) 2007-01-30 2007-01-30 リチウムイオン二次電池用負極活物質の製造方法、負極活物質及び負極

Country Status (1)

Country Link
JP (1) JP5143437B2 (ja)

Families Citing this family (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2395059B (en) 2002-11-05 2005-03-16 Imp College Innovations Ltd Structured silicon anode
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
GB0601318D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd Method of etching a silicon-based material
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
GB0713895D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Production
GB0713898D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
GB0713896D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Method
KR101002539B1 (ko) * 2008-04-29 2010-12-17 삼성에스디아이 주식회사 리튬이차전지용 음극활물질 및 이를 포함하는 리튬이차전지
KR20110053958A (ko) 2008-09-03 2011-05-24 스미토모 오사카 세멘토 가부시키가이샤 전극 재료의 제조 방법, 전극 재료, 전극 및 전지
GB2464158B (en) 2008-10-10 2011-04-20 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB2464157B (en) 2008-10-10 2010-09-01 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material
KR101057162B1 (ko) * 2008-12-01 2011-08-16 삼성에스디아이 주식회사 음극활물질, 이를 구비하는 음극 및 리튬이차전지
EP2369659B1 (en) * 2008-12-19 2014-12-17 NEC Energy Devices, Ltd. Negative electrode for nonaqueous electrolyte solution secondary cell and nonaqueous electrolyte solution secondary cell using the same, and method for producing negative electrode for nonaqueous electrolyte solution secondary cell
US8940192B2 (en) 2008-12-26 2015-01-27 Sekisui Chemical Co., Ltd. Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery
KR101090598B1 (ko) * 2009-03-16 2011-12-08 주식회사 엘지화학 이차전지용 전극바인더 및 이를 사용한 이차전지
JP5495887B2 (ja) * 2009-04-28 2014-05-21 株式会社デンソー 非水電解液電池用負極及び非水電解液電池
KR101093705B1 (ko) 2009-04-29 2011-12-19 삼성에스디아이 주식회사 리튬 이차 전지
GB2470056B (en) 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
GB2495951B (en) 2011-10-26 2014-07-16 Nexeon Ltd A composition for a secondary battery cell
GB2470190B (en) 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
US10490817B2 (en) 2009-05-19 2019-11-26 Oned Material Llc Nanostructured materials for battery applications
JP5369031B2 (ja) * 2009-08-11 2013-12-18 積水化学工業株式会社 炭素材料、電極材料及びリチウムイオン二次電池負極材料
JP2011048992A (ja) * 2009-08-26 2011-03-10 Sekisui Chem Co Ltd 炭素材料、電極材料及びリチウムイオン二次電池負極材料
JP2011071063A (ja) * 2009-09-28 2011-04-07 Kobe Univ 炭素−半金属酸化物複合材料及びその製造方法、ならびに、これを用いたリチウムイオン電池用負極
CN102630355A (zh) * 2009-11-03 2012-08-08 安维亚系统公司 用于锂离子电池的高容量阳极材料
JP5512355B2 (ja) * 2010-03-31 2014-06-04 三洋電機株式会社 非水電解質二次電池用負極活物質及びこれを用いてなる非水電解質二次電池ならびにこれらの製造方法
GB201005979D0 (en) 2010-04-09 2010-05-26 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB201009519D0 (en) 2010-06-07 2010-07-21 Nexeon Ltd An additive for lithium ion rechargeable battery cells
JP5494343B2 (ja) * 2010-08-12 2014-05-14 日立化成株式会社 リチウム二次電池用負極材、リチウムイオン二次電池用負極、およびリチウムイオン二次電池
JP5494344B2 (ja) * 2010-08-12 2014-05-14 日立化成株式会社 リチウム二次電池用負極材、リチウムイオン二次電池用負極、およびリチウムイオン二次電池
GB201014706D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material
GB201014707D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Electroactive material
KR101126202B1 (ko) * 2010-11-04 2012-03-22 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
JP5885919B2 (ja) * 2010-12-10 2016-03-16 日立化成株式会社 リチウムイオン二次電池用負極、およびリチウムイオン二次電池
JP5881943B2 (ja) * 2010-12-10 2016-03-09 日立化成株式会社 リチウム二次電池
JP5799500B2 (ja) * 2010-12-10 2015-10-28 日立化成株式会社 リチウムイオン二次電池用負極、およびリチウムイオン二次電池
WO2012086940A2 (ko) * 2010-12-21 2012-06-28 주식회사 엘지화학 음극 활물질 및 이를 이용한 이차전지
JP5821857B2 (ja) * 2011-02-02 2015-11-24 トヨタ自動車株式会社 複合活物質、複合活物質の製造方法および電池
WO2012111918A2 (ko) * 2011-02-15 2012-08-23 주식회사 엘지화학 음극 활물질의 제조방법
KR101182433B1 (ko) * 2011-05-11 2012-09-12 삼성에스디아이 주식회사 음극 활물질, 그의 제조방법 및 이를 포함하는 리튬 전지
GB2492167C (en) 2011-06-24 2018-12-05 Nexeon Ltd Structured particles
JP2013073920A (ja) * 2011-09-29 2013-04-22 Sumitomo Bakelite Co Ltd 組成物、リチウムイオン二次電池負極材用炭素複合材、リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP5639017B2 (ja) * 2011-07-29 2014-12-10 住友ベークライト株式会社 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP5516529B2 (ja) * 2011-07-29 2014-06-11 住友ベークライト株式会社 リチウムイオン二次電池用炭素材の製造方法、リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、及びリチウムイオン二次電池。
EP2573845B1 (de) * 2011-09-26 2018-10-31 VARTA Micro Innovation GmbH Strukturstabiles Aktivmaterial für Batterieelektroden
WO2013099278A1 (ja) * 2011-12-28 2013-07-04 パナソニック株式会社 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池
WO2013114095A1 (en) 2012-01-30 2013-08-08 Nexeon Limited Composition of si/c electro active material
GB2499984B (en) * 2012-02-28 2014-08-06 Nexeon Ltd Composite particles comprising a removable filler
WO2013141104A1 (ja) * 2012-03-22 2013-09-26 中央電気工業株式会社 ケイ素黒鉛複合粒子およびその製造方法
JP5921672B2 (ja) * 2012-03-26 2016-05-24 株式会社東芝 非水電解質二次電池用負極活物質、非水電解質二次電池及び電池パック
GB2502625B (en) 2012-06-06 2015-07-29 Nexeon Ltd Method of forming silicon
US20130344391A1 (en) * 2012-06-18 2013-12-26 Sila Nanotechnologies Inc. Multi-shell structures and fabrication methods for battery active materials with expansion properties
JP5993337B2 (ja) * 2012-07-03 2016-09-14 Jfeケミカル株式会社 リチウムイオン二次電池用負極材料およびその製造方法ならびにこれを用いたリチウムイオン二次電池用負極ならびにリチウムイオン二次電池
KR102146718B1 (ko) 2012-08-23 2020-08-21 미쯔비시 케미컬 주식회사 비수계 전해액 이차 전지용 탄소재, 비수계 전해액 이차 전지용 부극, 비수계 전해액 이차 전지 및 비수계 전해액 이차 전지용 탄소재의 제조 방법
US10374221B2 (en) 2012-08-24 2019-08-06 Sila Nanotechnologies, Inc. Scaffolding matrix with internal nanoparticles
WO2014046144A1 (ja) 2012-09-19 2014-03-27 三菱化学株式会社 非水系二次電池負極用複合黒鉛粒子、非水系二次電池用負極及び非水系二次電池
GB2507535B (en) 2012-11-02 2015-07-15 Nexeon Ltd Multilayer electrode
JP2014154236A (ja) * 2013-02-05 2014-08-25 Seiko Epson Corp 電極複合体の製造方法
JP5827977B2 (ja) * 2013-07-30 2015-12-02 住友ベークライト株式会社 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
US10109848B2 (en) 2013-08-05 2018-10-23 Showa Denko K.K. Negative electrode material for lithium ion batteries and use thereof
US10693135B2 (en) 2013-08-05 2020-06-23 Showa Denko K.K. Method for producing composite, and negative electrode material for lithium ion battery
JP6508870B2 (ja) * 2013-08-14 2019-05-08 東ソー株式会社 リチウム二次電池用複合活物質およびその製造方法
JP2015060641A (ja) * 2013-09-17 2015-03-30 中央電気工業株式会社 ケイ素酸化物黒鉛複合粒子およびその製造方法
JP2015060640A (ja) * 2013-09-17 2015-03-30 中央電気工業株式会社 合金黒鉛複合粒子およびその製造方法
JP6422208B2 (ja) * 2013-09-27 2018-11-14 三菱ケミカル株式会社 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池
JP2015079621A (ja) * 2013-10-16 2015-04-23 三菱化学株式会社 非水系二次電池負極用複合黒鉛粒子、非水系二次電池用負極及び非水系二次電池
CN103560247B (zh) * 2013-11-08 2017-02-01 深圳市贝特瑞新能源材料股份有限公司 一种车载与储能用锂离子电池负极材料及其制备方法
KR20160090338A (ko) 2013-11-27 2016-07-29 미쓰비시 가가꾸 가부시키가이샤 비수계 2 차 전지 부극용 탄소재, 비수계 2 차 전지용 부극 및 비수계 2 차 전지
JP6476814B2 (ja) * 2013-12-18 2019-03-06 三菱ケミカル株式会社 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池
KR102211528B1 (ko) * 2014-01-09 2021-02-02 삼성에스디아이 주식회사 리튬 이차 전지용 음극, 및 이를 포함하는 리튬 이차 전지
KR102164001B1 (ko) * 2014-01-09 2020-10-12 삼성에스디아이 주식회사 리튬 이차 전지
JP6301142B2 (ja) * 2014-01-31 2018-03-28 信越化学工業株式会社 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びに非水電解質二次電池
DE102014202156A1 (de) * 2014-02-06 2015-08-06 Wacker Chemie Ag Si/G/C-Komposite für Lithium-Ionen-Batterien
WO2015129265A1 (ja) * 2014-02-25 2015-09-03 新日鐵住金株式会社 負極活物質材料、負極及び電池
CN107074994B (zh) 2014-03-14 2021-12-14 14集团技术公司 无溶剂进行溶胶-凝胶聚合并由其产生可调节的碳结构的新方法
CN106133962B (zh) 2014-03-26 2020-06-30 三菱化学株式会社 非水系二次电池负极用复合石墨粒子、非水系二次电池负极用活性物质及非水系二次电池
KR101567203B1 (ko) 2014-04-09 2015-11-09 (주)오렌지파워 이차 전지용 음극 활물질 및 이의 방법
WO2015162848A1 (ja) * 2014-04-21 2015-10-29 Jfeケミカル株式会社 リチウムイオン二次電池用負極材料およびその製造方法、リチウムイオン二次電池負極ならびにリチウムイオン二次電池
KR101604352B1 (ko) 2014-04-22 2016-03-18 (주)오렌지파워 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR20160008041A (ko) * 2014-07-11 2016-01-21 오씨아이 주식회사 이차전지용 음극활물질 및 이의 제조방법
JP6020533B2 (ja) * 2014-10-29 2016-11-02 日立化成株式会社 リチウムイオン二次電池
GB2533161C (en) 2014-12-12 2019-07-24 Nexeon Ltd Electrodes for metal-ion batteries
JP2018041529A (ja) * 2015-01-29 2018-03-15 三洋電機株式会社 非水電解質二次電池の放電制御装置及び方法
JP2015165510A (ja) * 2015-05-18 2015-09-17 日立化成株式会社 リチウムイオン二次電池用負極、およびリチウムイオン二次電池
JP6748120B2 (ja) * 2015-06-15 2020-08-26 ユニスト(ウルサン ナショナル インスティテュート オブ サイエンス アンド テクノロジー) リチウム二次電池用負極活物質、その製造方法、及びそれを含むリチウム二次電池
JP6975435B2 (ja) * 2015-11-06 2021-12-01 国立大学法人 新潟大学 非水電解質二次電池負極の製造方法
US10756337B2 (en) * 2015-11-30 2020-08-25 Nec Corporation Lithium ion secondary battery
JP6678446B2 (ja) * 2015-12-21 2020-04-08 株式会社東芝 電池用活物質、電池用電極、非水電解質電池、電池パック及びこれを用いた車
CN107546375B (zh) 2016-06-27 2022-08-12 松下知识产权经营株式会社 非水电解质二次电池用负极材料及其制造方法
CN107546365B (zh) 2016-06-27 2022-04-29 松下知识产权经营株式会社 非水电解质二次电池用负极材料及其制造方法
US20190363348A1 (en) * 2016-09-09 2019-11-28 Showa Denko K.K. Negative electrode material for lithium ion secondary cell
CN109923707B (zh) * 2016-10-19 2022-05-03 太克万株式会社 碳硅复合材料、负极、二次电池、碳硅复合材料制造方法
US20180316002A1 (en) 2017-04-27 2018-11-01 Tec One Co., Ltd. Carbon-silicon composite material, negative electrode, and secondary battery
JP6283800B1 (ja) * 2017-07-05 2018-02-28 テックワン株式会社 炭素−珪素複合材、負極、二次電池、炭素−珪素複合材製造方法
GB201803983D0 (en) 2017-09-13 2018-04-25 Unifrax I Llc Materials
KR102278996B1 (ko) * 2017-10-27 2021-07-20 주식회사 엘지에너지솔루션 실리콘-탄소 복합체 및 이를 포함하는 리튬 이차전지
JP6413007B2 (ja) * 2017-12-04 2018-10-24 信越化学工業株式会社 非水電解質二次電池用負極材の製造方法
WO2019131519A1 (ja) 2017-12-27 2019-07-04 東ソー株式会社 リチウム二次電池用複合活物質およびその製造方法
CN110581260A (zh) * 2018-06-07 2019-12-17 山东欧铂新材料有限公司 一种锂离子电池硅复合负极材料及其制备方法、锂离子电池
CN108682829B (zh) * 2018-06-11 2020-10-23 清华大学深圳研究生院 一种氮掺杂碳包覆硅复合石墨材料的制备方法
US11028242B2 (en) * 2019-06-03 2021-06-08 Enevate Corporation Modified silicon particles for silicon-carbon composite electrodes
CN111834612A (zh) * 2019-04-23 2020-10-27 四川佰思格新能源有限公司 一种硬炭-硅碳复合材料及其制备方法与锂离子电池
WO2020235748A1 (ko) * 2019-05-17 2020-11-26 주식회사 엘아이비에너지 리튬 이차전지용 실리콘-흑연 복합 전극 활물질, 이를 포함하는 전극 및 리튬 이차전지, 이러한 실리콘-흑연 복합 전극 활물질의 제조방법
KR20210050348A (ko) * 2019-10-28 2021-05-07 주식회사 엘지화학 음극 활물질의 제조 방법, 음극 활물질, 이를 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
CN113875051B (zh) 2020-04-30 2023-12-19 宁德时代新能源科技股份有限公司 二次电池、其制备方法及含有该二次电池的装置
CN113875049A (zh) * 2020-04-30 2021-12-31 宁德时代新能源科技股份有限公司 二次电池、其制备方法和含有该二次电池的装置
CN111755681A (zh) * 2020-07-06 2020-10-09 马鞍山科达普锐能源科技有限公司 一种锂离子电池用硅碳负极材料及其制备方法
JP7603443B2 (ja) 2020-12-25 2024-12-20 エルジー エナジー ソリューション リミテッド 二次電池用の負極、負極用スラリー、及び、負極の製造方法
JP7551532B2 (ja) 2021-02-22 2024-09-17 東海カーボン株式会社 リチウムイオン二次電池用負極材及びリチウムイオン二次電池用負極材の製造方法
WO2023053842A1 (ja) * 2021-09-30 2023-04-06 パナソニックIpマネジメント株式会社 二次電池用負極及び二次電池
WO2023100548A1 (ja) * 2021-12-03 2023-06-08 Dic株式会社 負極活物質、二次電池および負極活物質の製造方法
JP2024519441A (ja) * 2022-04-21 2024-05-14 貝特瑞新材料集団股▲ふん▼有限公司 負極材料、その調製方法およびリチウムイオン電池
CN118511325A (zh) * 2022-08-16 2024-08-16 宁德时代新能源科技股份有限公司 负极活性材料、制法、二次电池和用电装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3897709B2 (ja) * 2002-02-07 2007-03-28 日立マクセル株式会社 電極材料およびその製造方法、並びに非水二次電池用負極および非水二次電池
JP4040381B2 (ja) * 2002-07-30 2008-01-30 Jfeケミカル株式会社 複合黒鉛質粒子およびその製造方法ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP4686974B2 (ja) * 2002-12-17 2011-05-25 三菱化学株式会社 非水系電解液二次電池用負極およびそれを用いた非水系電解液二次電池
JP4623940B2 (ja) * 2003-06-02 2011-02-02 日本電気株式会社 負極材料及びそれを用いた二次電池
JP3957692B2 (ja) * 2004-02-27 2007-08-15 Jfeケミカル株式会社 リチウムイオン二次電池負極材料用複合黒鉛粒子、負極およびリチウムイオン二次電池
JP5158460B2 (ja) * 2005-02-21 2013-03-06 日本カーボン株式会社 リチウムイオン二次電池用シリコン添加黒鉛負極材および製造法

Also Published As

Publication number Publication date
JP2008186732A (ja) 2008-08-14

Similar Documents

Publication Publication Date Title
JP5143437B2 (ja) リチウムイオン二次電池用負極活物質の製造方法、負極活物質及び負極
TWI536646B (zh) 鋰離子二次電池用負極材料及其製造方法、鋰離子二次電池用負極及鋰離子二次電池
KR101342601B1 (ko) 음극 활물질, 그 제조방법 및 이를 포함하는 리튬 전지
JP6334195B2 (ja) リチウム二次電池用複合活物質およびその製造方法
JP2022506881A (ja) 金属イオン電池用電気活性材料
JP5627250B2 (ja) リチウムイオン電池
JP5494344B2 (ja) リチウム二次電池用負極材、リチウムイオン二次電池用負極、およびリチウムイオン二次電池
JP6508870B2 (ja) リチウム二次電池用複合活物質およびその製造方法
JP7480284B2 (ja) 球状化カーボン系負極活物質、その製造方法、それを含む負極、及びリチウム二次電池
JP6511726B2 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2018179813A1 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7452599B2 (ja) リチウム二次電池用複合活物質
CN102576874A (zh) 锂离子二次电池负极用碳粒子、锂离子二次电池用负极以及锂离子二次电池
CA2889306A1 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6759583B2 (ja) リチウム二次電池用複合活物質およびその製造方法、リチウム二次電池
WO2016125819A1 (ja) リチウム二次電池用複合活物質およびその製造方法
JP2018170246A (ja) リチウム二次電池用複合活物質およびその製造方法
JP2015185443A (ja) 非水系二次電池用炭素材、及び、非水系二次電池
KR102176590B1 (ko) 리튬 이차전지용 음극 활물질의 제조방법 및 리튬 이차전지
JP2017134937A (ja) リチウム二次電池用複合活物質およびその製造方法
JP2011060467A (ja) リチウムイオン二次電池用負極材料およびその製造方法
JP2017183113A (ja) リチウムイオン二次電池用複合活物質およびその製造方法
WO2020141607A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2018170247A (ja) リチウム二次電池用複合活物質およびその製造方法
KR101942654B1 (ko) 금속/카본 결정 입자 복합체, 이의 제조방법 및 이를 함유하는 에너지 저장소자

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5143437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250