JP6413007B2 - 非水電解質二次電池用負極材の製造方法 - Google Patents
非水電解質二次電池用負極材の製造方法 Download PDFInfo
- Publication number
- JP6413007B2 JP6413007B2 JP2017232452A JP2017232452A JP6413007B2 JP 6413007 B2 JP6413007 B2 JP 6413007B2 JP 2017232452 A JP2017232452 A JP 2017232452A JP 2017232452 A JP2017232452 A JP 2017232452A JP 6413007 B2 JP6413007 B2 JP 6413007B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- carbon film
- silicon
- layer
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
特に、特許文献4では、酸化珪素をリチウムイオン二次電池負極材として用い、高容量の電極を得ているが、本発明者らが見る限りにおいては、未だ初回充放電時における不可逆容量が大きかったり、サイクル性が実用レベルに達していなかったりし、改良する余地がある。
このようなものであれば、導電性に寄与するsp2構造の存在率が高いため、導電性が高くなり、よりサイクル特性に優れたものとできる。
このような酸化珪素の粒子は、低コストで製造できるため、より低コストの非水電解質二次電池用負極材となる。
このようなものであれば、珪素が完全なアモルファスで渾然一体とした状態ではないので、充放電容量が小さくなる恐れがほとんどなく、珪素の微結晶の粒子径が9nm以下のものであるので、珪素粒子の一部に充放電に寄与しない領域が生じることがほとんどなく、充電容量と放電容量の比を示すクーロン効率の低下を抑制できる。
このようなものであれば、高い充放電容量を維持し、サイクル性に優れた非水電解質二次電池となる。
このように導電性粉末を選別して次工程に送れば、導電性に寄与するsp2構造の存在率が高い導電性粉末を得られ、導電性が高く、よりサイクル特性の優れた非水電解質二次電池用負極材を確実に製造することができる。
このような酸化珪素の粒子は、比較的容易に製造できるためより低コストで非水電解質二次電池用負極材を製造することができる。
このようにすれば、充放電容量が小さくなることを抑制でき、かつクーロン効率が低下することを確実に抑制できる。
このように、それぞれ異なる作用を有する炭素膜を2層被覆された導電性粉末を使用すれば、サイクル特性及び高温保存性が格段に向上した非水電解質二次電池用負極材を確実に製造することができる。
本発明者らは、上記目的を達成するため種々検討を行った結果、珪素の微結晶が珪素系化合物に分散した構造を有する粒子の表面を炭素膜で被覆することにより、著しい電池特性の向上が見られることを確認した。しかし、単なる炭素膜では、要求される高い充放電容量及び良好なサイクル性が得られないことがわかった。そこで、本発明者らはさらなる特性向上を目指し、詳細検討を行った結果、珪素系活物質表面に導電性炭素膜を被覆した導電性粉末として、導電性炭素膜のラマンスペクトルから測定されるdバンドのピーク半値幅が100cm−1以上である導電性粉末を非水電解質二次電池用負極材として用いることで、要求される電池特性レベルに到達し得ることを見出し、本発明を完成するに至ったものである。
本発明は、リチウムイオンを吸蔵及び放出する珪素系活物質の粒子の表面を、ラマンスペクトルから測定されるdバンドのピーク半値幅が100cm−1以上である導電性炭素膜で被覆した導電性粉末を含む非水電解質二次電池用負極材及びその製造方法、並びにその負極材を用いた非水電解質二次電池である。
まず、本発明の非水電解質二次電池用負極材について説明する。
本発明の非水電解質二次電池用負極材に含まれる珪素系活物質とは、珪素(珪素単体)の他、珪素を含有するものであれば良く、例えば酸化珪素とすることができる。これらの珪素系活物質の粒子を用いることにより、それぞれの材料の利点を生かしつつ、本発明による効果を付与することができる。
このような酸化珪素の粒子は製造しやすいため、この酸化珪素の粒子を使用することにより低コストの非水電解質二次電池用負極材となる。
銅を対陰極としたX線回折(Cu−Kα)において、2θ=47.5°付近を中心としたSi(220)に帰属される回折線の広がりをもとに、シェラーの式によって求めた珪素の微結晶の粒子径が1〜9nmであることが好ましく、より好ましくは1〜8nm、更に好ましくは1〜7nmであることが望ましい。
本発明において、珪素系活物質に被覆する導電性炭素膜は、dバンドのピーク半値幅Dhの値が100cm−1以上と大いことを特徴とし、それにより構造均一性が低いものである。
導電性炭素膜の構造を表す指標として、一般にラマンスペクトルで観測されるdバンドのピーク半値幅、gバンドのピーク半値幅、及び強度比が用いられる。dバンドのピークは、sp3構造に起因すると推定され、ラマンシフトが1330〜1350cm−1となる付近に観測される。またgバンドは、sp2混成による環状平面構造に由来すると推定され、ラマンシフトが1580〜1590cm−1となる付近に観測される。dバンドのピーク半値幅(Dh)は、sp3構造の均一性を表す指標と考えることができる。即ちDhの値が小さいほど、sp3カーボンの微細構造の均一性が高く、緻密な構造をとっている。一方で、dバンドのピーク強度Idとgバンドのピーク強度Igのピーク強度比(Id/Ig)も膜質を表す値として用いることができる。炭素原料の熱分解にて生成する導電性炭素膜は、一般的にアモルファスカーボンである。この膜のId/Ig比が小さいほど、sp2構造のカーボン存在比が高いことが示されている(非特許文献1参照)。
Id/Igが1.1以下の場合、導電性に寄与すると推定されるsp2構造の存在率が高く、導電性が高くなり、よりサイクル特性に優れたものとなる。
酸化珪素としては、一般式SiOx(0<x<2)で表される珪素酸化物が挙げられるが、特にSiOx(0.5≦x<1.6)で表される酸化珪素の粒子を採用することができる。
この酸化珪素の粒子は製造しやすいため、この酸化珪素の粒子を使用することにより低コストで非水電解質二次電池用負極材を製造できる。
このようにすれば、充放電容量が小さくなることを抑制でき、かつクーロン効率が低下することを抑制できる。
この被覆工程において、珪素系活物質の粒子の表面に被覆する導電性炭素膜は、特に限定されないが、異なる膜質の炭素膜を2層以上積層することが好ましい。以下、珪素系活物質の粒子の外周面と接している層を第1層の炭素膜、該第1層の炭素膜の外周面と接している層を第2層の炭素膜として、それぞれの層の形成方法を説明する。
まず、第1層の炭素膜の形成方法の一例を説明する。
第1層の炭素膜は、炭素膜内の導電性に優れ、粒子の表面露出をできるだけ少なくするような、平滑で均一な被覆を実現する層とすることが好ましい。
このときの、熱分解反応炉内の圧力は、常圧、又は50Pa以上の減圧下とすることができる。圧力を50Pa以上として、炉内が高真空にならないように調節すれば、炉内の炭素原料成分の存在量が少なくなることがなく、炭素膜の成長速度が遅くなることを防止できる。また、より好ましくは、圧力は100Pa以上が望ましい。
以上のようにして、珪素系活物質の表面に導電性炭素膜を被覆し、導電性粉末を作製する。
この測定工程においては、例えば、上記被覆工程にて作製した導電性粉末の集合から、無作為に所定量の導電性粉末の粒子を抽出し、この抽出した粒子の導電性炭素膜のラマンスペクトルをラマンスペクトル法で測定することができる。導電性炭素膜のラマンスペクトルの測定数値は、例えば堀場製ラマン顕微鏡XploRaを用いて測定することができる。そして、測定したラマンスペクトルにおけるdバンドのピーク半値幅Dh、dバンドのピーク強度Id、gバンドのピーク強度Ig、及びピーク強度比Id/Ig等の数値は解析ソフトLabSpec等を用いて算出することができる。
この選別工程においては、先の測定工程で測定したラマンスペクトルにおけるdバンドのピーク半値幅Dhが100cm−1以上であった導電性粉末の粒子を抽出した導電性粉末の集合のみ選別して次工程に送る。尚、この選別工程は、必ずしも負極材の製造の都度行う必要はなく、一度ラマンスペクトルの測定を行い、dバンドのピーク半値幅が100cm−1以上となる条件を見出して選択すれば、その後は、その選択された条件と同じ条件で負極材を製造することができる。
このように導電性粉末を更に選別して次工程に送れば、導電性に寄与するsp2構造の存在率が高い導電性粉末を得られ、導電性が高く、よりサイクル特性の優れた非水電解質二次電池用負極材を確実に製造することができる。
以上のようにして、本発明の非水電解質二次電池用負極材を製造する。
なお、本発明の非水電解質二次電池用負極材を用いて負極を作製する場合、主活物質として本発明の非水電解質二次電池用負極材を用いた珪素系活物質電極としてもよく、また主活物質として、公知の黒鉛系活物質である天然黒鉛、人造黒鉛を用い、さらに本発明の非水電解質二次電池用負極材を添加した混合系電極としてもよい。
平均粒子径8μmの一般式SiOx(x=0.98)で表される酸化珪素粒子300gを加熱炉に仕込み、炉内を窒素置換した後、850℃まで昇温、保持した。次に、窒素ガスをキャリアガスとして用い、炭素原料としてのトルエンを気化装置にて気化させ、1g/minの流速で流入し、1時間の炭素被覆処理を行うことにより、第1層の炭素膜のみを有する導電性粉末Aを315g得た。導電性粉末Aは、酸化珪素粒子に対する炭素被覆量が4.6質量%、ラマンスペクトル(装置 堀場製ラマン顕微鏡 XploRa、解析ソフトLabSpecを用いて測定)から測定したピーク強度比Id/Igが0.98、dバンドのピーク半値幅Dhが144cm−1であった。またX線回折(Cu−Kα)の回折線の広がりを元に算出した酸化珪素に分散した珪素の結晶子の粒子径は3.2nmであった。導電性粉末Aのラマンスペクトルの測定値を図1に示す。
以下、得られた導電性粉末Aを負極活物質として用い、下記記載の電極作製、コイン型電池作製、及び電池評価、ガス発生評価を行った。結果は表1に記載した。
実施例1で作製した導電性粉末Aを300g再度加熱炉に仕込み、炉内を100Pa以下の減圧にした後、1000℃まで昇温、保持した。次に、炭素原料としてメタンガスを4NL/minで導入し、1時間の炭素被覆処理を行うことにより、第1層の炭素膜の上に第2層の炭素膜を形成して、導電性粉末Bを304g得た。導電性粉末Bは、酸化珪素粒子に対する炭素被覆量が5.8質量%、第1層の炭素膜と第2層の炭素膜を合わせた炭素膜のラマンスペクトルから測定したピーク強度比Id/Igが1.02、dバンドのピーク半値幅Dhは113cm−1であった。またX線回折(Cu−Kα)の回折線の広がりを元に算出した酸化珪素に分散した珪素の結晶子の粒子径は4.4nmであった。
以下、得られた導電性粉末Bを負極活物質として用い、下記記載の電極作製、コイン型電池作製、及び電池評価、ガス発生評価を行った。結果は表1に記載した。
平均粒子径8μmの一般式SiOx(x=0.98)で表される酸化珪素粒子300gを加熱炉に仕込み、炉内を100Pa以下の減圧にした後、1150℃まで昇温、保持した。次に、炭素原料としてメタンガスを4NL/minで導入し、5時間の炭素被覆処理を行うことにより、炭素膜を形成した導電性粉末Cを316g得た。導電性粉末Cは、酸化珪素粒子に対する炭素被覆量が5.1質量%、ラマンスペクトルから測定した、ピーク強度比Id/Igが1.24、dバンドの半値幅Dhが75cm−1であった。またX線回折(Cu−Kα)の回折線の広がりを元に算出した酸化珪素に分散した珪素の結晶子の粒子径は11nmであった。導電性粉末Cのラマンスペクトルを図2に示す。
以下、得られた導電性粉末Cを負極活物質として用い、下記記載の電極作製、コイン型電池作製、及び電池評価、ガス発生評価を行った。結果は表1に記載した。
平均粒子径5μmの一般式SiOx(x=1.02)で表される酸化珪素粒子300gを加熱炉に仕込み、炉内を窒素置換した後、900℃まで昇温、保持した。次に、炭素原料としてのプロパンを3NL/minの流速で流入し、3000Paにて5時間の炭素被覆処理を行い、第1層の炭素膜を形成した。その後、プロパンの導入を停止し、再度100Paの減圧下とした後、1000℃まで昇温し、保持した。次いで、メタンガスを3NL/minの流速で導入し、3000Paにて2時間の炭素被覆処理を行い、第2層の炭素膜を形成することにより導電性粉末Dを318g得た。
導電性粉末Dは、酸化珪素粒子に対する炭素被覆量が5.6質量%、ラマンスペクトルから測定したピーク強度比Id/Igが0.88、dバンドのピーク半値幅Dhは137cm−1であった。またX線回折(Cu−Kα)の回折線の広がりを元に算出した酸化珪素に分散した珪素の結晶子の粒子径は5.5nmであった。
以下、得られた導電性粉末Dを負極活物質として用い、下記記載の電極作製、コイン型電池作製、及び電池評価、ガス発生評価を行った。結果は表1に記載した。
平均粒子径6μmの一般式SiOx(x=1.01)で表される酸化珪素粒子40gに水160gを混合したスラリーに、炭素原料としてスクロース8gを添加、溶解した。このスラリーを噴霧乾燥し、スクロースで被覆された酸化珪素粒子を得た。これを加熱炉内に仕込み、アルゴン雰囲気下、700℃まで昇温した後、10時間保持した。これにより、第1層の炭素膜を形成した。
第1層の炭素膜形成後、冷却することなく加熱炉内を100Pa以下の減圧とした後、1100℃まで昇温、保持した後、メタン、エタン混合ガス(92%、8%:質量%換算)を5NL/minで流入し、2000Paにて2時間の炭素被覆処理を行うことにより、導電性粉末Eを321g得た。
導電性粉末Eは、酸化珪素粒子に対する炭素被覆量が6.6質量%、ラマンスペクトルから測定したピーク強度比Id/Igが0.91、dバンドのピーク半値幅Dhが107cm−1であった。またX線回折(Cu−Kα)の回折線の広がりを元に算出した酸化珪素に分散した珪素の結晶子の粒子径は7.5nmであった。
以下、得られた導電性粉末Eを負極活物質として用い、下記記載の電極作製、コイン型電池作製、及び電池評価、ガス発生評価を行った。結果は表1に記載した。
平均粒子径6μmの一般式SiOx(x=1.01)で表される酸化珪素粒子300gを加熱炉に仕込み、炉内を100Pa以下の減圧にした後、1050℃まで昇温、保持した。次に、炭素原料としてメタン、エタン混合ガス(92%、8%:質量%換算)を5NL/minで導入し、2時間の炭素被覆処理を行うことにより、炭素膜を形成した導電性粉末Fを313g得た。これは、酸化珪素粒子に対する炭素被覆量が4.1質量%、ラマンスペクトルから測定されたピーク強度比Id/Igは1.12、dバンドのピーク半値幅Dhは82cm−1であった。またX線回折(Cu−Kα)の回折線の広がりを元に算出した酸化珪素に分散した珪素の結晶子の粒子径は6.5nmであった。
以下、得られた導電性粉末Fを負極活物質として用い、下記記載の電極作製、コインセル作製、及び電池評価、ガス発生評価を行った。結果は表1に記載した。
平均粒子径8μmの一般式SiOx(x=0.98)で表される酸化珪素粒子300gを加熱炉に仕込み、炉内を100Pa以下の減圧にした後、1200℃まで昇温、保持した。次に、炭素前駆体としてメタンガスを3NL/minで導入し、8時間の炭素被覆処理を行うことにより、炭素膜を形成した粉末Gを325g得た。これは、酸化珪素粒子に対する炭素被覆量が質量8.2%、ラマンスペクトルによるId/Igは1.15、dバンドの半値幅Dhは98cm−1であった。またX線回折(Cu−Kα)の回折線の広がりを元に算出した珪素結晶子の粒子径は12nmであった。
以下、得られた導電性粉末Hを負極活物質として用い、下記記載の電極作製、コイン型電池作製、及び電池評価、ガス発生評価を行った。結果は表1に記載した。
実施例、比較例で得た負極材90質量%とポリイミド(新日本理化製リカコートEN−20)10質量%(固形分換算)を混合し、さらにN−メチルピロリドンを加えてスラリーとした。このスラリーを厚さ11μmの銅箔の片面に塗布し、100℃で30分乾燥後、ローラープレスにより電極を加圧成形し、この電極を300℃で2時間真空乾燥した。その後、面積2cm2となるように円形カットし、負極とした。
さらに、コバルト酸リチウム94質量%とアセチレンブラック3質量%、ポリフッ化ビニリデン3質量%を混合し、さらにN−メチルピロリドンを加えてスラリーとし、このスラリーを厚さ16μmのアルミ箔に塗布した。このアルミ箔に塗布したスラリーを、100℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、この電極を120℃で5時間真空乾燥した後、面積2cm2となるように円形カットし、正極とした。
作製した負極及び正極、LiPF6をエチレンカーボネート:ジエチルカーボネート=1:1(体積比)の混合溶液に1mol/Lの濃度となるよう溶解させた非水電解液、厚さ20μmのポリプロピレン製微多孔質フィルムのセパレータを用いて評価用コイン型リチウムイオン二次電池を作製した。
作製したコイン型リチウムイオン二次電池を一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用いて充放電を行った。まずテストセルの電圧が4.2Vに達するまで0.5CmAの定電流で充電を行い、4.2Vに達した後は、セル電圧を4.2Vに保つように電流を減少させて充電を行い、電流値が0.1CmA相当まで充電を行った。放電は0.5CmA相当の定電流で行い、セル電圧が2.5Vに達した時点で放電を終了し、以上の操作によって初回充放電容量及び初回充放電効率を求めた。
さらに、以上の充放電試験を繰り返し、評価用リチウムイオン二次電池の100サイクル後の充放電試験を行った。評価結果は、初期からの放電維持率が85%以上のものをA、75以上85%未満のものをB、65以上75%未満のものをC、それ以下をDと評価した。
実施例1−4、比較例1−3にて作製した負極活物質粉末1.0gと、1M LiPF6のEC:DEC=1:1電解液1.0gを、露点−50℃以下のドライルーム内にて、ヘッドスペースガスクロマトグラフィー(GC:アジレント製6890N、ヘッドスペース:7697A)の専用バイアルに仕込み、封止した。
このバイアルを60℃にて1週間保管後、ヘッドスペースガスクロマトグラフィーにセットし、打ち込み量1mLにて測定を行った。そして、標準サンプルにて検量線を引き、換算した発生したガスの体積が2.0mL未満のものをA、2.0以上3.5mL未満のものをB、3.5以上5.0mL未満のものをC、5.0mL以上のものをDと評価した。
一方で、比較例1−3では、実施例1−4と比べて、サイクル特性に劣り、ガス発生量も多くなってしまうことが確認された。
このように、本発明で製造された非水電解質二次電池用負極材を使用した非水電解質二次電池であれば、サイクル特性に優れ、かつガス発生量が少ないものになることが確認された。
Claims (3)
- 珪素系活物質の粒子の表面を導電性炭素膜で被覆して導電性粉末とする被覆工程を有する非水電解質二次電池用負極材の製造方法であって、
前記珪素系活物質の粒子を、珪素の微結晶が珪素酸化物に分散した構造を有し、前記珪素の微結晶の結晶子の粒子径が1〜9nmであるものとし、
前記被覆工程において、前記導電性炭素膜は、2層構造を有するものであり、前記珪素系活物質の粒子の外周面と接している層を第1層の炭素膜、該第1層の炭素膜の外周面と接している層を第2層の炭素膜とし、前記第1層の炭素膜は、炭素数が3以上の炭素化合物が70質量%以上含まれている炭素原料から700℃以上900℃以下の温度で形成し、前記第2層の炭素膜と比較して炭素膜内の導電性に優れているものとし、前記第2層の炭素膜は、前記第1層の炭素膜形成後、冷却することなく、炭素数が1〜2の炭素化合物が70質量%以上含まれている炭素原料から前記第1層の炭素膜の形成温度より100℃以上高い温度で形成し、前記第1層の炭素膜と比較して比表面積の大きいものとし、
前記炭素数が3以上の炭素化合物として、プロパン、プロピレン、ブタン、ブタジエン、n−ヘキサン、シクロヘキサン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン、ガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油、グルコース、スクロース、ポリイミド、ポリアミド、又は、ポリスチレンを用い、
前記炭素数が1〜2の炭素化合物として、メタン、エタン、エチレン、又はアセチレンを用い、
前記被覆工程の後に、ラマンスペクトル法を用いて前記導電性粉末における前記導電性炭素膜のラマンスペクトルのdバンドのピーク半値幅を測定する測定工程と、該測定工程にて得られた前記dバンドのピーク半値幅が100cm−1以上である前記導電性粉末を選別して次工程に送る選別工程を有することを特徴とする非水電解質二次電池用負極材の製造方法。 - 前記測定工程において、更に、前記導電性粉末における前記導電性炭素膜のラマンスペクトルのdバンドのピーク強度Idとgバンドのピーク強度Igを測定し、前記選別工程において、ピーク強度比Id/Igが1.1以下である前記導電性粉末を選別して次工程に送ることを特徴とする請求項1に記載の非水電解質二次電池用負極材の製造方法。
- 前記珪素系活物質の粒子を、一般式SiOx(0.5≦x<1.6)で表される酸化珪素の粒子とすることを特徴とする請求項1又は請求項2に記載の非水電解質二次電池用負極材の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017232452A JP6413007B2 (ja) | 2017-12-04 | 2017-12-04 | 非水電解質二次電池用負極材の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017232452A JP6413007B2 (ja) | 2017-12-04 | 2017-12-04 | 非水電解質二次電池用負極材の製造方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014017555A Division JP6301142B2 (ja) | 2014-01-31 | 2014-01-31 | 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びに非水電解質二次電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018032648A JP2018032648A (ja) | 2018-03-01 |
JP6413007B2 true JP6413007B2 (ja) | 2018-10-24 |
Family
ID=61303486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017232452A Active JP6413007B2 (ja) | 2017-12-04 | 2017-12-04 | 非水電解質二次電池用負極材の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6413007B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102171499B1 (ko) | 2019-02-15 | 2020-10-30 | 대주전자재료 주식회사 | 리튬 이차 전지 음극재용 탄소-규소-규소 복합산화물 복합체 및 그 제조 방법 |
CN114080703B (zh) * | 2019-06-28 | 2024-06-28 | 松下新能源株式会社 | 二次电池用负极活性物质、以及二次电池 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070109634A (ko) * | 2006-05-12 | 2007-11-15 | 주식회사 엘지화학 | 고용량 전극활물질 |
JP5143437B2 (ja) * | 2007-01-30 | 2013-02-13 | 日本カーボン株式会社 | リチウムイオン二次電池用負極活物質の製造方法、負極活物質及び負極 |
KR102106151B1 (ko) * | 2010-08-03 | 2020-04-29 | 맥셀 홀딩스 가부시키가이샤 | 비수 이차 전지용 부극 및 비수 이차 전지 |
CN103081188B (zh) * | 2010-08-25 | 2015-09-23 | 株式会社大阪钛技术 | 锂离子二次电池负极材料用粉末、使用该负极材料用粉末的锂离子二次电池负极和电容器负极、及锂离子二次电池和电容器 |
JP6048407B2 (ja) * | 2011-09-13 | 2016-12-21 | 日本電気株式会社 | 負極活物質及びその製造方法 |
JP6078986B2 (ja) * | 2012-05-25 | 2017-02-15 | 日本電気株式会社 | リチウムイオン二次電池用負極活物質、それを用いたリチウムイオン二次電池用負極およびリチウムイオン二次電池 |
-
2017
- 2017-12-04 JP JP2017232452A patent/JP6413007B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018032648A (ja) | 2018-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6301142B2 (ja) | 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びに非水電解質二次電池 | |
JP5245592B2 (ja) | 非水電解質二次電池用負極材、ならびにリチウムイオン二次電池及び電気化学キャパシタ | |
JP5245559B2 (ja) | 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ | |
KR101568334B1 (ko) | 비수전해질 이차전지용 부극재 및 그 제조 방법 그리고 리튬 이온 이차전지 및 전기화학 캐패시터 | |
JP5898572B2 (ja) | 非水電解質二次電池用負極材の製造方法及び非水電解質二次電池の製造方法 | |
JP6859339B2 (ja) | リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用混合負極活物質材料、及びリチウムイオン二次電池用負極活物質の製造方法 | |
JP5949194B2 (ja) | 非水電解質二次電池用負極活物質の製造方法 | |
JP2011076788A (ja) | 非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ | |
JP2017076597A (ja) | 二次電池用負極活物質及びその製造方法 | |
JP6262635B2 (ja) | 非水電解質二次電池用負極材及びその製造方法並びに非水電解質二次電池 | |
EP2768050A1 (en) | Silicon oxide for negative electrode material of nonaqueous electroltye secondary cell, method for producing same, lithium ion secondary cell, and electrochemical capacitor | |
JP2016186912A (ja) | 非水系二次電池用複合炭素材、及び、非水系二次電池 | |
JP5182498B2 (ja) | 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ | |
JP5320890B2 (ja) | 負極材の製造方法 | |
JP5910479B2 (ja) | 非水電解質二次電池用負極活物質、リチウムイオン二次電池及び電気化学キャパシタの製造方法 | |
JP6413007B2 (ja) | 非水電解質二次電池用負極材の製造方法 | |
JP2017168406A (ja) | 非水電解質二次電池負極活物質、負極及び電池の製造方法 | |
JP6046594B2 (ja) | リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法 | |
JP6299248B2 (ja) | リチウムイオン二次電池用負極材及びその製造方法、ならびに負極及びリチウムイオン二次電池 | |
JP2016106358A (ja) | 非水電解質二次電池用負極活物質の製造方法 | |
JP4684581B2 (ja) | リチウムイオン二次電池用負極材、その製造方法、及びリチウムイオン二次電池 | |
JP5798209B2 (ja) | 非水電解質二次電池用負極材及びリチウムイオン二次電池 | |
JP5558312B2 (ja) | 非水電解質二次電池用負極材の製造方法 | |
CN116722140A (zh) | 锂二次电池用负极活性物质及包含该负极活性物质的锂二次电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180913 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180925 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181001 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6413007 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |