[go: up one dir, main page]

JP4989034B2 - 半導体微粒子ペースト及びその製造方法、並びに光電変換素子 - Google Patents

半導体微粒子ペースト及びその製造方法、並びに光電変換素子 Download PDF

Info

Publication number
JP4989034B2
JP4989034B2 JP2005092236A JP2005092236A JP4989034B2 JP 4989034 B2 JP4989034 B2 JP 4989034B2 JP 2005092236 A JP2005092236 A JP 2005092236A JP 2005092236 A JP2005092236 A JP 2005092236A JP 4989034 B2 JP4989034 B2 JP 4989034B2
Authority
JP
Japan
Prior art keywords
semiconductor fine
fine particle
semiconductor
photoelectric conversion
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005092236A
Other languages
English (en)
Other versions
JP2006278023A (ja
Inventor
隆史 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005092236A priority Critical patent/JP4989034B2/ja
Publication of JP2006278023A publication Critical patent/JP2006278023A/ja
Application granted granted Critical
Publication of JP4989034B2 publication Critical patent/JP4989034B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、半導体微粒子ペースト及びその製造方法、並びにその半導体微粒子ペーストを用いた光電変換素子に関する。
近年、化石燃料に頼らない電池として、太陽エネルギーを利用した光電変換素子、いわゆる太陽電池に対する関心は高い。その中でも、グレッツェルらによって提唱された色素増感太陽電池(「グレッツェル・セル」とも言う。)は、増感色素が光を吸収することによって生じる励起電子が、半導体に注入されることによって光電変換される太陽電池であり、従来の太陽電池に比べて高いエネルギー変換効率を示す(例えば、非特許文献1参照。)。
グレッツェル・セルの製造は、一般に、電極に接して増感色素を担持した半導体層を形成した後、電極と対電極とを封止材を介して積層し、半導体層と対電極との間に電解質を充填したものである。また、従来、半導体層の製造は、まず、図2に示すように、半導体微粒子を溶媒中に分散させて、半導体微粒子の凝集をほぐした半導体微粒子スラリーを形成した後、粘度を調整して半導体微粒子ペーストを形成し、次に、この半導体微粒子ペーストを基板上に塗布して焼成している(例えば、特許文献1参照。)。
一方、グレッツェル・セルのエネルギー変換効率をさらに向上させるためには、半導体層に入射した光をできるだけ多く光電変換に寄与させることが望ましい。そのためには、光が半導体層の受光面で反射する反射損失と、光が半導体層を透過する透光損失とを抑えること、言い換えれば、半導体層の反射率と透過率とを抑えることが重要である。そこで、半導体層の受光面側を光散乱性の低い半導体層に、半導体層の電解質層側を光散乱性の高い半導体層にした構造が知られている(例えば、特許文献2参照。)。
また、半導体層の光散乱性には、半導体微粒子スラリーにおける半導体微粒子の凝集の状態が大きく関係している。すなわち、半導体微粒子の凝集のよくほぐれた高分散の半導体微粒子スラリーは、光散乱性の低い半導体層になり、凝集のあまりほぐれていない低分散の半導体微粒子スラリーは、光散乱性の高い半導体層になることが知られている。これは、凝集のほぐれていない、つまり粒子径の大きな半導体微粒子が、光錯乱点として作用するためと考えられる。
なお、半導体微粒子の凝集の状態は、例えばレーザー散乱法による平均1次粒子径及び平均2次粒子径から評価でき、半導体層の光散乱性は、例えばヘイズ率から評価できる。
グレッツェル(Gratzel),外1名,「ネイチャー(Nature)」,(英国),1991年10月24日,第353巻,p.737−740 特開2000−36330号公報 特開平10−255863号公報
しかしながら、従来の方法で、所望の粒子径の半導体微粒子を分散させた半導体微粒子スラリー、特に、粒子径が小さい高分散な半導体微粒子スラリーを得ることは、半導体微粒子を溶媒に分散させる工程で半導体微粒子の凝集を十分ほぐすことができない等の理由から難しく、高分散の半導体微粒子ペーストの製造は困難であった。
本発明は、上記課題を解決するために、特定の粒子径の半導体微粒子を分散させた半導体微粒子ペースト、特に高分散の半導体微粒子ペースト及びその製造方法、並びに光電変換素子を提供するものである。
本発明の半導体微粒子ペーストの製造方法は、光電変換素子の半導体層の形成に用いる半導体微粒子ペーストの製造方法であって、(a)半導体微粒子を溶媒に分散させる工程と、(b)前記工程(a)において得られた半導体微粒子スラリーを遠心分離し、平均2次粒子径が、5nm以上500nm以下の半導体微粒子を含む半導体微粒子スラリーを採取する工程と、(c)前記工程(b)において得られた半導体微粒子スラリーを用いて、半導体微粒子ペーストを形成する工程とを含むことを特徴とする。
また、本発明の半導体微粒子ペーストは、光電変換素子の半導体層の形成に用いる半導体微粒子ペーストであって、(a)半導体微粒子を溶媒に分散させる工程と、(b)前記工程(a)において得られた半導体微粒子スラリーを遠心分離し、平均2次粒子径が、5nm以上500nm以下の半導体微粒子を含む半導体微粒子スラリーを採取する工程と、(c)前記工程(b)において得られた半導体微粒子スラリーを用いて、半導体微粒子ペーストを形成する工程とを含む方法で製造され、平均1次粒子径が5nm以上50nm以下の半導体微粒子を含むことを特徴とする。
さらに、本発明の光電変換素子は、電極と、前記電極の一方の主面に接して配置された半導体層と、前記半導体層に対向して配置された対電極と、前記電極と前記対電極との間に配置された電解質層とを備えた光電変換素子であって、前記半導体層は、上記本発明の半導体微粒子ペーストと、増感色素とを含むことを特徴とする。
本発明の半導体微粒子ペーストの製造方法によれば、特定の粒子径の半導体微粒子を分散させた、特に高分散の半導体微粒子ペーストを製造することができる。
また、本発明の半導体微粒子ペーストによれば、高分散な半導体微粒子を含み、光散乱性の低い半導体層を形成できる。
また、本発明の光電変換素子によれば、光散乱性の低い半導体層を備え、エネルギー変換効率の良好な光電変換素子を提供することができる。
本発明の光電変換素子の半導体層の形成に用いる半導体微粒子ペーストの製造方法の一例は、半導体微粒子を溶媒に分散させる工程(a)と、工程(a)において得られた半導体微粒子スラリーを遠心分離し、特定の粒子径の半導体微粒子を含む半導体微粒子スラリーを採取する工程(b)と、工程(b)において得られた半導体微粒子スラリーを用いて、半導体微粒子ペーストを形成する工程(c)とを含むものである。この製造方法を用いることにより、特定の粒子径の半導体微粒子を分散させた半導体微粒子ペーストを得ることができる。
また、上記工程(b)の遠心分離は、遠心加速度が100×g以上13000×g以下で行われることが好ましい。特に、遠心加速度が800×g以上7000×g以下であることがより好ましく、1000×g以上4000×g以下であることがより一層好ましい。遠心加速度を上記範囲内にすることにより、半導体微粒子を粒子径の大きさによってより明確に分級することができ、粒子径のより揃った半導体微粒子を含む半導体微粒子スラリーを採取できる。また、採取されなかった半導体微粒子スラリー、特に低分散の半導体微粒子スラリーも、目的に応じて使用することができるので、材料を有効に利用することができる。
なお、上記遠心加速度とは、下記式に定義された値である。
(数1)
G=(2πN/60)2r/980=1.13379×10-6π2rN2
但し、Gは遠心加速度(×g)、rは半径(cm)、Nは毎分回転数(rpm)である。
上記工程(b)において得られた半導体微粒子スラリーに含まれる半導体微粒子の平均2次粒子径は、5nm以上500nm以下が好ましく、特に5nm以上200nm以下がより好ましい。これにより、より高分散な半導体微粒子ペーストを得ることができる。また、上記工程(b)において得られた半導体微粒子スラリーに含まれる半導体微粒子の平均2次粒子径は、500nmより大きくすることもできる。これにより、より低分散な半導体微粒子ペーストを得ることができる。
上記工程(c)は、前記半導体微粒子スラリーの粘度調整を少なくとも含む工程とすることができる。
上記半導体微粒子ペーストに含まれる半導体微粒子の平均1次粒子径は、5nm以上50nm以下が好ましく、特に5nm以上30nm以下がより好ましい。これにより、より高分散な半導体微粒子ペーストを得ることができる。
一方、本発明の光電変換素子の半導体層の形成に用いる半導体微粒子ペーストの一例は、半導体微粒子を溶媒に分散させる工程(a)と、工程(a)において得られた半導体微粒子スラリーを遠心分離し、特定の粒子径の半導体微粒子を含む半導体微粒子スラリーを採取する工程(b)と、工程(b)において得られた半導体微粒子スラリーを用いて、半導体微粒子ペーストを形成する工程(c)とを含む方法で製造され、平均1次粒子径が5nm以上50nm以下の半導体微粒子を含む。このような構成にすることにより、粒子径のばらつきの少ない半導体微粒子を含む、高分散な半導体微粒子ペーストを得ることができ、光散乱性の低い光電変換素子の半導体層を形成できる。
また、上記半導体微粒子ペーストに含まれる半導体微粒子の平均2次粒子径は、5nm以上500nm以下であることがより好ましい。より高分散な半導体微粒子ペーストを得ることによって、光散乱性のより低い光電変換素子の半導体層を形成できる。
さらに、本発明の光電変換素子の一例は、電極と、電極の一方の主面に接して配置された半導体層と、半導体層に対向して配置された対電極と、電極と対電極との間に配置された電解質層とを備え、この半導体層は、上述した半導体微粒子ペーストと、増感色素とを含む。このような構成にすることにより、光散乱性の低い半導体層を備え、エネルギー変換効率の良好な光電変換素子となる。
また、上記半導体層のヘイズ率は、10%以下が好ましく、特に8%以下がより好ましい。これにより、より光散乱性の低い半導体層となる。
なお、上記ヘイズ率とは、JIS K7105で規定された値である。
以下、本発明の実施の形態を図面に基づき説明する。
<半導体微粒子ペーストの実施の形態>
図1は、本発明における光電変換素子の半導体層に用いる半導体微粒子ペーストの製造工程の一例を示す概要図である。
図1において、最初に、半導体微粒子を溶媒に分散させる(工程(a))。例えば、高速回転せん断型装置、ミル分散装置、高圧噴射型装置、超音波装置等を用いて、半導体微粒子と溶媒とに、外部より機械的力を加え、半導体微粒子を分散させればよい。このとき、分散剤等を必要に応じて添加してもよい。
上記半導体微粒子は、光電変換素子の半導体層に一般的に用いられる半導体材料であれば、特に限定されない。例えば、Cd、Zn、In、Pb、Mo、W、Sb、Bi、Cu、Hg、Ti、Ag、Mn、Fe、V、Sn、Zr、Sr、Ga、Si、Cr等の金属の酸化物、SrTiO3、CaTiO3等のペロブスカイト、CdS、ZnS、In23、PbS、Mo2S、WS2、Sb23、Bi23、ZnCdS2、Cu2S等の硫化物、CdSe、In2Se3、WSe2、HgSe、PbSe、CdTe等の金属カルコゲナイド、その他GaAs、Si、Se、Cd32、Zn32、InP、AgBr、PbI2、HgI2、BiI3等を用いることができる。また、上記半導体材料から選ばれる少なくとも1種以上を含む複合体、例えば、CdS/TiO2、CdS/AgI、Ag2S/AgI、CdS/ZnO、CdS/HgS、CdS/PbS、ZnO/ZnS、ZnO/ZnSe、CdS/HgS、ZnS/CdSe、ZnSe/CdSe、CdS/ZnS、TiO2/Cd32、CdS/HgS/CdS等を用いることもできる。特に、TiO2、ZnO、SnO2を用いれば、光電変換効率が特に高いのでより好ましい。
上記溶媒は、上記半導体微粒子を分散させることができれば特に限定されず、例えば、水、エタノール、イソプロピルアルコール、イオン性液体等を用いることができる。このイオン性液体は、少なくとも室温において、イオン結晶が融解している液体である。
次に、上記工程(a)において得られた半導体微粒子スラリーを遠心分離し、特定の粒子径の半導体微粒子を含む半導体微粒子スラリーを採取する(工程(b))。
上記遠心分離は、半導体微粒子を分級できるように一般的な方法を用いて行えばよい。このとき遠心加速度は、使用する半導体微粒子や溶媒によって適宜選択すればよい。
上記半導体粒子スラリーの採取は、遠心分離して分級させた半導体微粒子スラリーから、特定の粒子径の半導体微粒子を含む半導体微粒子スラリーを選択して行う。例えば、分級させた半導体微粒子スラリーの上層部分(上澄み部)を採取して、粒子径の小さな半導体微粒子を含む半導体微粒子スラリーを得ることもできるし、下層部分(沈澱部)を採取して、粒子径の大きな半導体微粒子を含む半導体微粒子スラリーを得ることもできる。
最後に、工程(b)において得られた半導体微粒子スラリーの粘度を調整して、半導体微粒子ペーストを形成する(工程(c))。例えば、エチルセルロースやエチレングリコール等の増粘効果の高い有機材料を添加したり、ターピネオール等の粘度の高い溶媒に置換したりして、上記半導体微粒子スラリーを、半導体層に用いる半導体微粒子ペーストに必要な粘度に調整すればよい。
上記工程を有する製造方法により、特定の粒子径の半導体微粒子を分散させた半導体微粒子ペーストを得ることができる。
上記工程(b)の遠心分離において、遠心加速度は、100×g以上13000×g以下であることが好ましい。特に、800×g以上7000×g以下であることがより好ましく、1000×g以上4000×g以下であることがより一層好ましい。遠心加速度を上記範囲内にすることにより、半導体微粒子を粒子径の大きさによってより明確に分級することができ、粒子径のより揃った半導体微粒子を分散させた半導体微粒子ペースト、特により高分散の半導体微粒子ペーストを得ることができる。また、採取されなかった半導体微粒子スラリー、特に低分散の半導体微粒子スラリーも、目的に応じて半導体微粒子ペーストとして用いることができるので、半導体等の材料を有効利用することができる。
上記工程(b)において得られた半導体微粒子スラリーに含まれる半導体微粒子の平均2次粒子径は、5nm以上500nm以下が好ましく、特に5nm以上200nm以下がより好ましい。また、上記工程(b)において得られた半導体微粒子スラリーに含まれる半導体微粒子の平均2次粒子径は、500nmより大きくすることもできる。
上述した製造方法により得られた半導体微粒子ペーストは、このペーストに含まれる半導体微粒子の平均1次粒子径が5nm以上50nm以下であることが好ましい。このような構成にすることにより、粒子径のばらつきの少ない半導体微粒子を含む、高分散な半導体微粒子ペーストになり、光散乱性の低い半導体層を形成できる。さらに、上記半導体微粒子の平均2次粒子径は、5nm以上500nm以下であればより一層好ましい。粒子径の揃った半導体微粒子を含む、より高分散な半導体微粒子ペーストにすることによって、光散乱性のより低い半導体層を形成できる。
<光電変換素子の実施の形態>
本発明の光電変換素子の一例は、電極と、この電極の一方の主面に接して配置された半導体層と、この半導体層に対向して配置された対電極と、電極と対電極との間に配置された電解質層とを備える。上記半導体層は、上記半導体微粒子ペーストの実施の形態で説明した半導体微粒子ペーストが固定され、かつ、増感色素が担持されて形成されている。
図3は、本発明の光電変換素子の一例を示す部分断面図である。図3において、光電変換素子1は、増感色素を担持した半導体層5が付着された電極4と、半導体層5に対向して配置された対電極6と、電解質層7とが、封止材8を介して積層されている。また、電極4は基板2の表面に付着されて形成されており、対電極6は基板3の表面に付着されて形成されている。
本実施形態は、半導体層5が上記半導体微粒子ペーストを用いて形成されていれば、その他の各部材の材質は特に限定されない。また、本実施形態に使用する各部材の大きさは特に限定されない。
半導体層5は、上記半導体微粒子ペーストを少なくとも用いて形成されている。また、この半導体層5は、従来知られた方法で作製できる。例えば、基板2の表面に形成された電極4の上に、上記半導体微粒子ペーストを、ドクターブレードやバーコータ等を使う塗布方法、スプレー法、ディップコーティング法、スクリーン印刷法及びスピンコート法等から選ばれる方法を用いて塗布し、その後、加圧又は加熱することにより作製できる。上記塗布と加圧又は加熱とを繰り返すことにより、特定の厚さの半導体層5を作製できる。この加圧には、平板を用いたプレス、ロールプレス、カレンダ等を用いることができる。この加熱には、ホットプレート、マッフル炉及びコンベア炉を用いた加熱、赤外線加熱、マイクロ波加熱等を用いることができる。
半導体層5の厚さは、0.1μm以上100μm以下であることが好ましい。特に、半導体層5の厚さが1μm以上50μm以下であることがより好ましく、5μm以上30μm以下であることがより一層好ましい。半導体層5の厚さを制御することにより、ラフネスファクター(基板面積に対する多孔質内部の実面積の割合のこと。)を決定することができる。ラフネスファクターは20以上であることがより好ましく、150以上であることがより一層好ましい。ラフネスファクターが20以上であれば増感色素の担持量が十分となり、光電変換特性を改善できる。ラフネスファクターの上限値は、一般的には5000程度である。半導体層5が厚ければ、ラフネスファクターは大きく、半導体の表面積が広がるので、増感色素の担持量の増加が期待できる。しかし、半導体層5が厚すぎると、半導体層5の光透過率並びに抵抗損失に影響する。また、ポロシティーが高ければ、半導体層5が厚くなくてもラフネスファクターを大きくすることができる。しかし、ポロシティーが高すぎると、上記半導体微粒子同士の接触面積が減少するので、抵抗損失の影響を考慮しなくてはならない。従って、半導体層のポロシティーは50%以上が好ましく、その上限値は一般的には約80%程度である。このポロシティーは、液体窒素温度下で窒素ガス又はクリプトンガスの吸着−脱離等温曲線の測定結果から算出することができる。
また、半導体層5は、高分散の半導体微粒子ペーストを用いた光散乱性の低い半導体層を、受光面側(電極4側)に配置し、低分散の半導体微粒子ペーストを用いた光散乱性の高い半導体層を、電解質層7側に配置した少なくとも2層構造であることがより好ましい。例えば、この高分散の半導体微粒子ペーストには、前述の工程(b)において分級させた半導体微粒子スラリーの上層部分を採取した半導体微粒子スラリーから形成された半導体微粒子ペーストを用い、低分散の半導体微粒子には、その下層部分を採取した半導体微粒子スラリーから形成された半導体微粒子ペーストを用いればよい。特に、高分散の半導体微粒子ペーストは、このペーストに含まれる半導体微粒子の平均1次粒子径が5nm以上50nm以下であることが好ましく、平均2次粒子径が5nm以上500nm以下であることがより一層好ましい。
半導体層5に担持された増感色素は、光電変換素子に一般的に用いられる色素であれば特に限定されず、無機色素であっても有機色素であってもよい。無機色素としては、例えば、RuL2(H2O)2タイプのルテニウム−シス−ジアクア−ビピリジル錯体、又はルテニウム−トリス(RuL3)、ルテニウム−ビス(RuL2)、オスニウム−トリス(OsL3)及びオスニウム−ビス(OsL2)等のタイプの遷移金属錯体、又は亜鉛−テトラ(4−カルボキシフェニル)ポルフィリン、鉄−ヘキサシアニド錯体、フタロシアニン等の色素を用いることができる。但し、上記化学式中のLは、4,4’−ジカルボキシル−2,2’−ビピリジンを示す。有機色素としては、例えば、9−フェニルキサンテン系色素、クマリン系色素、アクリジン系色素、トリフェニルメタン系色素、テトラフェニルメタン系色素、キノン系色素、アゾ系色素、インジゴ系色素、シアニン系色素、メロシアニン系色素、キサンテン系色素等を用いることができる。特に、ルテニウム−ビス(RuL2)誘導体を用いれば、光吸収能力が高く、かつ、化学的に安定なので、より好ましい。
半導体層5への上記増感色素の担持量は、1×10-8mol/cm2以上1×10-6mol/cm2以下が好ましく、特に1.0×10-8mol/cm2以上9.0×10-7mol/cm2以下がより好ましい。担持量がこの範囲内であれば、十分な光電変換効率が得られ、かつ、無駄な増感色素が無くなるため経済的である。
半導体層5への増感色素の担持方法は、例えば、上記増感色素を溶かした溶液に、半導体層5を付着させた基板2を浸漬させる方法を用いることができる。このとき、溶液を加熱還流させたり、超音波を印加させながら浸漬させる方法が有効である。上記溶液の溶媒は、増感色素を溶解できれば特に限定されず、例えば、水、アルコール、トルエン、ジメチルホルムアミド等を使用できる。
基板2及び基板3は、透明なガラス、プラスチック等を用いることができる。特に、プラスチックは可撓性を有するので、柔軟性を必要とする用途に適する。
対電極6は、光電変換素子1の正極として機能し、その材質としては電解質の還元体に電子を与える触媒作用を有する白金やグラファイト、カーボンナノチューブ、ポリピロールやポリアニリン、ポリ(3,4−エチレンジオキシチオフェン)(PEDOT)等の導電性高分子等が好ましい。また、対電極6と基板3との間に、対電極6とは異なる材料からなる導電性のある膜を設けてもよい。
電解質層7の電解質は、酸化体と還元体からなる一対の酸化還元系構成物質が溶媒中に含まれていれば、その種類に特に限定されず、酸化体と還元体とが同一電荷を持つ酸化還元系構成物質であればより好ましい。本発明における酸化還元系構成物質とは、酸化還元反応において、可逆的に酸化体及び還元体の形で存在する一対の物質をいう。
上記電解質層7の酸化還元系構成物質は、例えば、塩素化合物−塩素、ヨウ素化合物−ヨウ素、臭素化合物−臭素、タリウムイオン(III)−タリウムイオン(I)、水銀イオン(II)−水銀イオン(I)、ルテニウムイオン(III)−ルテニウムイオン(II)、銅イオン(II)−銅イオン(I)、鉄イオン(III)−鉄イオン(II)、バナジウムイオン(III)−バナジウムイオン(II)、マンガン酸イオン−過マンガン酸イオン、フェリシアン化物−フェロシアン化物、キノン−ヒドロキノン、フマル酸−コハク酸等を用いることができる。特に、ヨウ素化合物−ヨウ素を用いることが好ましく、このヨウ素化合物として、ヨウ化リチウム、ヨウ化カリウム等の金属ヨウ化物、テトラアルキルアンモニウムヨージド、ピリジニウムヨージド等のヨウ化4級アンモニウム塩化合物、ヨウ化ジメチルプロピルイミダゾリウム等のヨウ化ジイミダゾリウム化合物を用いることがより好ましい。
上記電解質層7の溶媒は、上記酸化還元系構成物質を溶解させることができれば、その種類は特に限定されず、イオン伝導性に優れた溶媒であればより好ましい。また、水性溶媒及び有機溶媒のいずれの溶媒も使用できるが、上記酸化還元系構成物質をより安定化するためは有機溶媒を使用することが好ましい。有機溶媒としては、例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート化合物、酢酸メチル、プロピオン酸メチル、γ−ブチロラクトン等のエステル化合物、ジエチルエーテル、1,2−ジメトキシエタン、1,3−ジオキソシラン、テトラヒドロフラン、2−メチル−テトラヒドロフラン等のエーテル化合物、3−メチル−2−オキサゾジリノン、2−メチルピロリドン等の複素環化合物、アセトニトリル、メトキシアセトニトリル、プロピオニトリル、3−メトキシプロピオニトリル等のニトリル化合物、スルフォラン、ジジメチルスルフォキシド、ジメチルホルムアミド等の非プロトン性極性化合物、N,N,N’,N’−テトラメチル尿素、ジジメチルスルフォキシド、ジメチルホルムアミド、ホルムアミド、N−メチルホルムアミド、N−メチルアセトアミド、N−メチルプロピオンアミド等を使用できる。また、揮発性の低いイオン性液体等も使用できる。これらの溶媒はそれぞれ単独で用いることもできるし、2種類以上を混合して用いることもできる。中でも、電解質層に使用する溶媒としては、沸点が100℃以上の溶媒で電解質層を構成することが好ましい。沸点が100℃より低い溶媒を使用した場合、光電変換素子を高温環境下で保存したときに内圧の上昇に伴う封止破壊が生じやすく、これは光電変換効率を著しく低下させる。それに対し、沸点が100℃以上の溶媒で電解質層を構成した場合、封止破壊が起こりにくく、長期安定性に優れた光電変換素子を提供できる。さらに、ニトリル系の溶媒は、粘度が低くイオン伝導性に優れた電解質層を構築できる特徴を持つ。沸点が100℃以上のニトリル系の溶媒としては、3−メトキシプロピオニトリル、スクシノニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、ベンゾニトリル、α−トルニトリル等が挙げられる。特に、3−メトキシプロピオニトリルは高い変換効率が得られ、かつ長期安定性に優れた光電変換素子を提供できる。また、電解質層を構成する溶媒としては、イミダゾリウム塩等の室温溶融塩等も好ましく用いることができる。中でも、1−メチル−3−プロピルイミダゾリウムアイオダイドは粘度が低いため、高い光電変換効率を得られ好ましい。さらに、上記室温溶融塩と上記有機溶媒とを混合して用いることもできる。
封止材8は、透光性を有していれば特に限定されず、例えば、エポキシ樹脂、シリコーン樹脂、ポリオレフィン、ブチルゴム、エチレン−酢酸ビニル共重合体、エチレン・α−オレフィン共重合体、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸エチル共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、低密度ポリエチレン、アクリル系樹脂、シリコーン系樹脂、アイオノマー樹脂のほか、ポリスチレン系、ポリオレフィン系、ポリジエン系、ポリエステル系、ポリウレタン系、フッ素樹脂系、ポリアミド系のエラストマー等を使用することができる。
上記半導体層のヘイズ率は、10%以下が好ましく、特に8%以下であれば、より光散乱性の低い半導体層となるのでより好ましい。
なお、本実施形態の光電変換素子を複数個平面状あるいは曲面状に配置することにより光電変換モジュールとすることもできる。これにより、比較的大きな減光フィルターを提供することができる。
以下、実施例を用いて本発明をより具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
<半導体微粒子ペーストの作製>
(実施例1)
まず、酸化チタン粉末(日本アエロジル社製、平均1次粒子径約21nm)7.5重量部、アセチルアセトン0.5重量部及びエタノール22.5重量部を、遊星ボールミルを用いて、360rpmで2時間分散処理した。次に、半導体微粒子スラリーをエタノールで2倍に希釈し、遠心分離機(コクサン社製、冷却高速遠心機<H−9R>)を用いて、遠心加速度2800×g(5000rpm)で30分間遠心分離した。この遠心分離したスラリーの上澄み部を採取して半導体微粒子スラリー1を得た。次に、上記半導体微粒子スラリー1を、エタノールで希釈し酸化チタン含有率を1wt%に調整した。この採取し希釈したスラリー100重量部にエチルセルロース0.55重量部、テルピネオール3重量部を加え、50℃で12時間攪拌した後、エバポレーターで濃縮し、本実施例の半導体微粒子ペースト1を得た。
また、遠心分離したスラリーの沈澱部を採取して、酸化チタン含有率20wt%となるようにエタノールを加え、遊星ボールミルを用いて、360rpmで30分間分散処理して半導体微粒子スラリー2を得た。次に、半導体微粒子スラリー2を、エタノールで希釈し酸化チタン含有率を10wt%に調整した。この採取し希釈したスラリー10重量部にエチルセルロース0.55重量部、テルピネオール3重量部を加え、50℃で12時間攪拌した後、エバポレーターで濃縮し、本実施例の半導体微粒子ペースト2を得た。
(実施例2)
遠心分離を、遠心加速度99×g(2000rpm)で30分間行ったこと以外は、半導体微粒子スラリー1及び半導体微粒子ペースト1と同様にして、本実施例の半導体微粒子スラリー3及び半導体微粒子ペースト3を得た。
(比較例1)
まず、酸化チタン粉末(日本アエロジル社製、平均1次粒子径約21nm)7.5重量部、アセチルアセトン0.5重量部及びエタノール22.5重量部を、遊星ボールミルを用いて、360rpmで2時間分散処理して、半導体微粒子スラリー4を得た。次に、半導体微粒子スラリー4をエタノールで希釈し酸化チタン含有率を10wt%に調整した。この希釈したスラリー10重量部に、エチルセルロース0.55重量部、テルピネオール3重量部を加え、50℃で12時間攪拌した後、エバポレーターで濃縮し、本比較例の半導体微粒子ペースト4を得た。すなわち、半導体微粒子ペースト4は、半導体微粒子ペースト1〜3に施した遠心分離工程を行わずに作製した半導体微粒子ペーストである。
(比較例2)
まず、酸化チタン粉末(日本アエロジル社製、平均1次粒子径約21nm)3.5重量部及び酸化チタン粉末(触媒化成工業社製、平均1次粒子径約400nm)4重量部、アセチルアセトン0.5重量部及びエタノール22.5重量部を、遊星ボールミルを用いて、360rpmで2時間分散処理して、半導体微粒子スラリー5を得た。次に、半導体微粒子スラリー5をエタノールで希釈し酸化チタン含有率を20wt%に調整した。この希釈したスラリー5重量部に、エチルセルロース0.55重量部、テルピネオール3重量部を加え、50℃で12時間攪拌した後、エバポレーターで濃縮し、本比較例の半導体微粒子ペースト5を得た。すなわち、半導体微粒子ペースト5は、光電変換素子の半導体層の形成に従来用いられてきた半導体微粒子ペーストである。
ところで、半導体微粒子ペーストの分散状態は、それぞれ半導体微粒子の粒径分布を測定することによって、評価することができる。例えば、半導体微粒子の平均1次粒子径及び平均2次粒子径が小さいほど、高分散の半導体微粒子ペーストである。また、半導体微粒子ペーストを用いて形成された半導体層のヘイズ率が小さいほど高分散の半導体微粒子ペーストである。
そこで、上記半導体微粒子ペースト1〜5に含まれる半導体微粒子の平均2次粒子径をレーザー錯乱法で測定し、半導体微粒子ペーストの分散状態を評価した。この測定では、粘度を調節する前の上記半導体微粒子スラリー1〜5をエタノールで40倍に希釈して、日機装社製のレーザー回析・散乱式粒度分析装置“マイクロトラックUPA9340型”を用いて測定した。
なお、本来、粒子径から分散状態を評価するためには、(平均2次粒子径)/(平均1次粒子径)の値を比較する必要がある。しかし、本実施例及び比較例において、半導体微粒子スラリー1〜4の平均1次粒子径はいずれも等しく、半導体微粒子ペースト5の平均1次粒子径は他のペーストより明らかに大きいので、平均2次粒子径のみを比較することによって分散状態を評価した。
さらに、上記半導体微粒子ペースト1〜5を用いて形成された半導体層サンプルのヘイズ率を測定し、半導体微粒子ペーストの分散状態を評価した。このサンプルは、厚さ1mmの導電性ガラス基板(旭硝子社製、表面抵抗15Ω/□)上に、半導体微粒子ペーストを塗布して乾燥させた後、450℃で30分間焼成して、厚さ4μmの半導体層を形成したものであり、日本分光社製の分光光度測定装置“V−570”(商品名)を用いてヘイズ率を測定した。
上記半導体微粒子スラリー1〜5の平均2次粒子径及び上記半導体微粒子ペースト1〜5を用いて形成された半導体層サンプルのヘイズ率を表1に示す。
Figure 0004989034
表1から、本実施例の半導体微粒子ペースト1〜3は、光電変換素子の半導体層に用いられる、従来の半導体微粒子ペースト5と比較して、格段に高分散の半導体微粒子ペーストであることがわかる。さらに、半導体微粒子ペースト1及び3は、半導体微粒子ペースト4と比較して、より高分散の半導体微粒子ペーストであることがわかる。すなわち、本発明の製造方法を用いることによって、粒子径の揃った半導体微粒子を分散させた半導体微粒子ペーストを得られることがわかる。特に、遠心分離した上澄み部を採取して得た半導体微粒子スラリーから形成すると、高分散の半導体微粒子ペーストを得られることがわかる。
<光電変換素子の作製>
(実施例3)
まず、厚さ1mmの導電性ガラス基板(旭硝子社製、表面抵抗15Ω/□)上に、半導体微粒子ペースト1を塗布して乾燥させた後、450℃で30分間焼成して、厚さ8μmの第1の半導体層を作製した。次に、この第1の半導体層上に、半導体微粒子ペースト5を塗布して乾燥させた後、450℃で30分間焼成して、厚さ4μmの第2の半導体層を作製した。この半導体層を備えた基板を、[Ru(4,4’−ジカルボキシル−2,2’−ビピリジン)2−(NCS)2]で表される増感色素を含む溶液中に浸漬し、20℃で24時間静置して、半導体層に上記増感色素を吸着させた。この溶液は、アセトニトリルとtert−ブタノールとを体積比が50:50になるように混合した混合溶媒に、上記増感色素を濃度が3×10-4mol/dm3になるように溶解させた溶液を使用した。
また、一方の主面にPtをスパッタリングした厚さ20nmの透明電極付きガラス基板(旭硝子社製、表面抵抗15Ω/□)上に、H2PtCl6を含む溶液を5×10-6dm3/cm2の割合で塗布した後、450℃で15分間焼成して、対電極を作製した。この溶液は、イソプロピルアルコールに、H2PtCl6を濃度が5×10-3mol/dm3になるように溶解させた溶液を使用した。
増感色素が担持された半導体層を備えた基板と対電極を備えた基板とを、厚さ50μmのデュポン社製の封止材“bynel”(商品名)を用いて、半導体層と対電極とが対向するように貼り合わせた。この貼り合わせは230℃で30秒間行った。次に、対電極に設けた直径1mmの注入口より、減圧注入方式を用いて電解液を注入し、厚さ500μmのカバーガラスを上記“bynel”で固定させて注入口を封止した。上記電解液は、γ−ブチロラクトンに、ヨウ素を濃度0.005mol/dm3、LiIを濃度0.01mol/dm3、tert−ブチルピリジンを濃度0.5mol/dm3、メチルトリプロピルアンモニウムアイオダイドを濃度0.5mol/dm3になるようにそれぞれ溶解させた溶液を用いた。
最後に、封止材の周囲部にセメダイン社製のシリコーン充填材“バスコーク”(商品名)を塗布して、本実施例の光電変換素子を得た。
なお、本実施例で使用した試薬はすべて乾燥したものであり、組み立て作業はドライルーム内で行うことによって、組み立て時に光電変換素子の内部に水分が混入することを極力避けるよう注意した。
(実施例4)
半導体微粒子ペースト1の替わりに半導体微粒子ペースト3を用いたこと以外は、実施例3と同様にして本実施例の光電変換素子を得た。
(実施例5)
半導体微粒子ペースト5の替わりに半導体微粒子ペースト2を用いたこと以外は、実施例3と同様にして本実施例の光電変換素子を得た。すなわち、本実施例の光電変換素子は、実施例1の遠心分離の工程において上澄み部を採取した半導体微粒子ペーストと、沈澱部を採取した半導体微粒子ペーストとを用いて形成されている。
(比較例3)
半導体微粒子ペースト1の替わりに半導体微粒子ペースト4を用いたこと以外は、実施例3と同様にして本比較例の光電変換素子を得た。すなわち、本比較例の光電変換素子は、従来の光電変換素子として実施例3及び4の光電変換素子と比較することができる。
実施例3〜5及び比較例3の光電変換素子に、照度200lxの蛍光灯の光を照射して、開放電圧、短絡電流密度、形状因子、出力を測定した。測定の結果を表2に示す。
Figure 0004989034
以上より、実施例3〜5は比較例3と比べてエネルギー変換効率の良好な光電変換素子であることがわかる。特に、遠心加速度100×g以上で遠心分離した半導体微粒子ペースト1を用いた実施例3の効果は大きい。また、実施例5は、半導体微粒子等の材料を有効に利用しながら、本発明の効果を十分に得られることがわかる。
以上説明したように、本発明の半導体微粒子ペーストの製造方法によれば、特定の粒子径の半導体微粒子を分散させた、特に高分散の半導体微粒子ペーストを製造することができる。
また、本発明の半導体微粒子ペーストによれば、高分散な半導体微粒子を含み、光散乱性の低い半導体層を形成できる。
また、本発明の光電変換素子によれば、光散乱性の低い半導体層を備え、エネルギー変換効率の良好な光電変換素子を提供することができる。
本発明の光電変換素子の半導体層に用いる半導体微粒子ペーストの製造工程の一例を示す概要図である。 従来の半導体微粒子ペーストの製造工程を示す概要図である。 本発明の光電変換素子の一例を示す部分断面図である。
符号の説明
1 光電変換素子
2、3 基板
4 電極
5 半導体層
6 対電極
7 電解質層
8 封止材

Claims (7)

  1. 光電変換素子の半導体層の形成に用いる半導体微粒子ペーストの製造方法であって、
    (a)半導体微粒子を溶媒に分散させる工程と、
    (b)前記工程(a)において得られた半導体微粒子スラリーを遠心分離し、平均2次粒子径が、5nm以上500nm以下の半導体微粒子を含む半導体微粒子スラリーを採取する工程と、
    (c)前記工程(b)において得られた半導体微粒子スラリーを用いて、半導体微粒子ペーストを形成する工程とを含むことを特徴とする半導体微粒子ペーストの製造方法。
  2. 前記工程(b)の遠心分離は、遠心加速度が100×g以上13000×g以下で行われる請求項1に記載の半導体微粒子ペーストの製造方法。
  3. 前記工程(c)は、前記半導体微粒子スラリーの粘度調整を少なくとも含む工程である請求項1に記載の半導体微粒子ペーストの製造方法。
  4. 前記半導体微粒子ペーストに含まれる半導体微粒子の平均1次粒子径は、5nm以上50nm以下である請求項1に記載の半導体微粒子ペーストの製造方法。
  5. 光電変換素子の半導体層の形成に用いる半導体微粒子ペーストであって、
    (a)半導体微粒子を溶媒に分散させる工程と、
    (b)前記工程(a)において得られた半導体微粒子スラリーを遠心分離し、平均2次粒子径が、5nm以上500nm以下の半導体微粒子を含む半導体微粒子スラリーを採取する工程と、
    (c)前記工程(b)において得られた半導体微粒子スラリーを用いて、半導体微粒子ペーストを形成する工程とを含む方法で製造され、
    平均1次粒子径が5nm以上50nm以下の半導体微粒子を含むことを特徴とする半導体微粒子ペースト。
  6. 電極と、前記電極の一方の主面に接して配置された半導体層と、前記半導体層に対向して配置された対電極と、前記電極と前記対電極との間に配置された電解質層とを備えた光電変換素子であって、
    前記半導体層は、請求項に記載された半導体微粒子ペーストと、増感色素とを含むことを特徴とする光電変換素子。
  7. 前記半導体層のヘイズ率は、10%以下である請求項に記載の光電変換素子。
JP2005092236A 2005-03-28 2005-03-28 半導体微粒子ペースト及びその製造方法、並びに光電変換素子 Expired - Fee Related JP4989034B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005092236A JP4989034B2 (ja) 2005-03-28 2005-03-28 半導体微粒子ペースト及びその製造方法、並びに光電変換素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005092236A JP4989034B2 (ja) 2005-03-28 2005-03-28 半導体微粒子ペースト及びその製造方法、並びに光電変換素子

Publications (2)

Publication Number Publication Date
JP2006278023A JP2006278023A (ja) 2006-10-12
JP4989034B2 true JP4989034B2 (ja) 2012-08-01

Family

ID=37212592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005092236A Expired - Fee Related JP4989034B2 (ja) 2005-03-28 2005-03-28 半導体微粒子ペースト及びその製造方法、並びに光電変換素子

Country Status (1)

Country Link
JP (1) JP4989034B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5508730B2 (ja) * 2009-02-02 2014-06-04 日立造船株式会社 透明電極上における光触媒膜の形成方法
JP5465446B2 (ja) * 2009-02-24 2014-04-09 株式会社フジクラ 光電変換素子
JP5743417B2 (ja) * 2010-03-31 2015-07-01 大阪瓦斯株式会社 酸化チタンナノ粒子集合体
JP5861646B2 (ja) * 2010-12-20 2016-02-16 日本電気株式会社 カーボンナノチューブ分散ペーストの製造方法
JP2014508822A (ja) * 2011-01-14 2014-04-10 ソルヴェイ(ソシエテ アノニム) フタロシアニン色素、その製造方法、および、色素増感型太陽電池におけるその使用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3100485B2 (ja) * 1992-12-11 2000-10-16 積水化学工業株式会社 着色ペーストとカラーフィルター
JP2002222968A (ja) * 2001-01-25 2002-08-09 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JP4617014B2 (ja) * 2001-03-21 2011-01-19 富士フイルム株式会社 光電変換素子の製造方法
JP4482343B2 (ja) * 2003-02-07 2010-06-16 日本ペイント株式会社 複合金属コロイド粒子および溶液、ならびにその製造方法
JP2004247105A (ja) * 2003-02-12 2004-09-02 Fuji Photo Film Co Ltd 色素増感光電変換素子及びそれを用いた光電池
JP2004335366A (ja) * 2003-05-09 2004-11-25 Sharp Corp 色素増感太陽電池
EP1858108A4 (en) * 2005-01-27 2012-08-29 Nippon Kayaku Kk MODIFIED TITANIUM OXIDE MICROPARTICLES AND PHOTOELECTRIC TRANSDUCER USING THE SAME
KR100682928B1 (ko) * 2005-02-03 2007-02-15 삼성전자주식회사 양자점 화합물을 포함하는 에너지 변환막 및 양자점 박막

Also Published As

Publication number Publication date
JP2006278023A (ja) 2006-10-12

Similar Documents

Publication Publication Date Title
JP4172239B2 (ja) 光電変換素子
JP5084730B2 (ja) 色素増感太陽電池
US20100326516A1 (en) Photoelectric transfer device
JP5237664B2 (ja) 光電変換素子
US7825330B2 (en) Solar cell
EP2296216A1 (en) Dye-sensitized solar cell, method for manufacturing dye-sensitized solar cell, and dye-sensitized solar cell module
EP2432069A1 (en) Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP4039418B2 (ja) 光電変換素子および光電変換モジュール
EP1521328B1 (en) Solar cell
JP4863662B2 (ja) 色素増感型太陽電池モジュールおよびその製造方法
JP4411955B2 (ja) 光電変換素子モジュール
JP2004363069A (ja) 半導体電極およびその製造方法、ならびにそれを用いた色素増感型太陽電池
JP2008027860A (ja) 光電変換素子
JP4989034B2 (ja) 半導体微粒子ペースト及びその製造方法、並びに光電変換素子
JP2003187883A (ja) 光電変換素子
JP2008010189A (ja) 光電変換素子
JP4635455B2 (ja) 光電変換素子および光電変換モジュール
JP4341197B2 (ja) 光電変換素子及びその製造方法
JP2004119305A (ja) 光電変換素子及びそれを用いた光電変換素子モジュール
JP2003178817A (ja) 光電変換素子及びその製造方法
JP4455868B2 (ja) 色素増感太陽電池
JP4537693B2 (ja) 色素増感太陽電池
JP5181507B2 (ja) 光電変換素子の製造方法
JP2006236788A (ja) 光電変換装置
JP2007073198A (ja) 色素増感型太陽電池

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071211

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees