JP4523958B2 - X-ray fluorescence analyzer and program used therefor - Google Patents
X-ray fluorescence analyzer and program used therefor Download PDFInfo
- Publication number
- JP4523958B2 JP4523958B2 JP2007244720A JP2007244720A JP4523958B2 JP 4523958 B2 JP4523958 B2 JP 4523958B2 JP 2007244720 A JP2007244720 A JP 2007244720A JP 2007244720 A JP2007244720 A JP 2007244720A JP 4523958 B2 JP4523958 B2 JP 4523958B2
- Authority
- JP
- Japan
- Prior art keywords
- intensity
- calculated
- composition
- measured
- detectable element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004876 x-ray fluorescence Methods 0.000 title claims description 8
- 238000001514 detection method Methods 0.000 claims description 56
- 239000000203 mixture Substances 0.000 claims description 46
- 238000011088 calibration curve Methods 0.000 claims description 16
- 238000005259 measurement Methods 0.000 claims description 14
- 230000035945 sensitivity Effects 0.000 claims description 7
- 238000002441 X-ray diffraction Methods 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims 1
- 239000000523 sample Substances 0.000 description 28
- 238000000034 method Methods 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 3
- 239000012496 blank sample Substances 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 1
Images
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Description
本発明は、FP法で試料の組成や面積密度を分析する蛍光X線分析装置およびそれに用いるプログラムに関する。 The present invention relates to a fluorescent X-ray analyzer that analyzes the composition and area density of a sample by the FP method and a program used therefor.
従来、ファンダメンタルパラメータ法(以下、FP法という)を利用して、試料の組成や面積密度を分析する蛍光X線分析装置がある。FP法では、仮定した組成つまり元素の濃度に基づいて、試料中の各元素から発生する2次X線の理論強度を計算し、その理論強度と検出手段で測定した測定強度(バックグラウンド分を差し引いたネット強度)を理論強度スケールに換算した換算測定強度とが一致するように、前記仮定した元素の濃度を逐次近似的に修正計算して、試料における元素の濃度(分析値)つまり組成を算出する(例えば、特許文献1、2参照)。 Conventionally, there is an X-ray fluorescence analyzer that analyzes a composition and an area density of a sample using a fundamental parameter method (hereinafter referred to as FP method). In the FP method, the theoretical intensity of secondary X-rays generated from each element in a sample is calculated based on the assumed composition, that is, the concentration of the element, and the theoretical intensity and the measured intensity measured by the detection means (the background component is calculated). The calculated concentration of the element is approximated and corrected so that the calculated measured intensity converted to the theoretical intensity scale is the same as the subtracted net intensity), and the element concentration (analytical value), that is, the composition in the sample is calculated. Calculate (for example, refer to Patent Documents 1 and 2).
ここで、分析対象元素について濃度とともに検出限界も要求され、検出限界は、検出された元素、つまり算出した組成に含まれる検出元素だけでなく、検出されなかった元素、つまり測定強度が0で濃度を実質0とされ算出した組成に含まれない非検出元素についても要求される。非検出元素について検出限界を報告することにより、実際の濃度が各元素について指定された規制値以下であることを示すためである。 Here, a detection limit is required for the analysis target element together with the concentration, and the detection limit is not only the detected element, that is, the detection element included in the calculated composition, but also the element that was not detected, that is, the measurement intensity is 0 and the concentration. Is also required for non-detectable elements not substantially included in the calculated composition. This is to report that the actual concentration is less than the specified regulation value for each element by reporting the detection limit for the non-detectable element.
検出限界LLDは、次式(1)により、例えば、検量線法では、目的元素を含まないブランク試料についての測定強度の統計変動σBの3倍に検量線勾配kを乗じて求められる。 For example, in the calibration curve method, the detection limit LLD is obtained by multiplying the calibration curve gradient k by 3 times the statistical variation σ B of the measured intensity for the blank sample not containing the target element.
LLD=3kσB (1) LLD = 3 kσ B (1)
FP法には検量線の概念はないが、検出元素については、算出した濃度と測定強度から検量線勾配を計算でき、また、ブランク試料についての測定強度の統計変動の代わりにバックグラウンドの測定強度の統計変動を計算できるので、検出限界を算出できる。
しかし、非検出元素については、測定強度も算出濃度も0であるため、検量線勾配を計算できず、検出限界も算出できない。そこで、実際に測定された測定強度に、非検出元素について検出元素の分析値算出結果に影響を与えない程度の適切な微量濃度に相当する測定強度を加えて、FP法で組成を算出することにより微量濃度を求め、加えた測定強度と求めた微量濃度とから非検出元素の検量線勾配を計算し、検出限界を算出することが考えられる。しかし、単位濃度あたりの測定強度が、試料の大きさや組成により大きく異なるので、様々な試料を扱うFP法では、個々の試料に対して、加えるべき測定強度を推定できず、例えば、加えた測定強度に相当する濃度が高すぎると、検出元素の分析値算出結果が、非検出元素の濃度が0の場合と異なる結果になってしまう。 However, since the measured intensity and the calculated concentration are 0 for the non-detectable element, the calibration curve gradient cannot be calculated and the detection limit cannot be calculated. Therefore, the composition is calculated by the FP method by adding the measured intensity corresponding to an appropriate trace concentration that does not affect the analytical value calculation result of the detected element for the non-detected element to the actually measured measured intensity. It is conceivable that the trace limit is obtained by calculating the calibration curve gradient of the non-detected element from the added measured intensity and the obtained trace concentration to calculate the detection limit. However, since the measurement intensity per unit concentration varies greatly depending on the size and composition of the sample, the FP method that handles various samples cannot estimate the measurement intensity to be applied to each sample. If the concentration corresponding to the intensity is too high, the analysis value calculation result of the detected element is different from the case where the concentration of the non-detected element is 0.
本発明は前記従来の問題に鑑みてなされたもので、FP法で試料の組成や面積密度を分析する蛍光X線分析装置およびそれに用いるプログラムにおいて、非検出元素について正確に検出限界を算出できるものを提供することを目的とする。 The present invention has been made in view of the above-mentioned conventional problems. In the X-ray fluorescence analyzer for analyzing the composition and area density of a sample by the FP method and a program used therefor, it is possible to accurately calculate the detection limit for a non-detectable element. The purpose is to provide.
前記目的を達成するために、本発明の第1構成は、まず、試料に1次X線を照射するX線源と、試料から発生する2次X線の強度を測定する検出手段と、仮定した組成に基づいて、試料中の各元素から発生する2次X線の理論強度を計算し、その理論強度と前記検出手段で測定した測定強度を理論強度スケールに換算した換算測定強度とが一致するように、前記仮定した組成を逐次近似的に修正計算して、試料の組成を算出する算出手段としてのコンピュータとを備えた蛍光X線分析装置である。そして、前記算出手段が、算出した組成に含まれない非検出元素については所定の微量濃度を加えて検出限界算出用の組成を仮定し、その検出限界算出用の組成に基づいて、非検出元素から発生する2次X線の理論強度を計算し、その非検出元素の理論強度と、あらかじめ理論強度と測定強度との間の換算のために求められた装置感度係数とから、非検出元素の推定測定強度を計算し、その非検出元素の推定測定強度と前記所定の微量濃度とから、非検出元素の検量線勾配を計算し、前記検出手段で測定した非検出元素のバックグラウンドの測定強度から、非検出元素のバックグラウンドの統計変動を計算し、その非検出元素のバックグラウンドの統計変動と前記非検出元素の検量線勾配とから、非検出元素の検出限界を算出することを特徴とする。 In order to achieve the above object, the first configuration of the present invention first assumes an X-ray source that irradiates a sample with primary X-rays, and a detection means that measures the intensity of secondary X-rays generated from the sample. Based on the measured composition, the theoretical intensity of secondary X-rays generated from each element in the sample is calculated, and the theoretical intensity and the measured intensity measured by the detection means agree with the converted measured intensity converted to the theoretical intensity scale. Thus, the X-ray fluorescence analysis apparatus includes a computer as a calculation means for calculating the composition of the sample by sequentially correcting and calculating the assumed composition. Then, for the non-detectable elements not included in the calculated composition, the calculation means assumes a composition for calculating the detection limit by adding a predetermined trace concentration, and based on the composition for calculating the detection limit, the non-detectable element Calculate the theoretical intensity of the secondary X-rays generated from the non-detectable element from the theoretical intensity of the non-detectable element and the device sensitivity coefficient previously determined for conversion between the theoretical intensity and the measured intensity. Calculate the estimated measurement intensity, calculate the calibration curve slope of the non-detection element from the estimated measurement intensity of the non-detection element and the predetermined trace concentration, and measure the background measurement intensity of the non-detection element measured by the detection means From this, the statistical fluctuation of the background of the non-detectable element is calculated, and the detection limit of the non-detectable element is calculated from the statistical fluctuation of the background of the non-detectable element and the calibration curve slope of the non-detectable element. To.
第1構成の装置によれば、非検出元素について、組成つまり検出元素の濃度に影響しない程度の所定の微量濃度を想定し、その微量濃度を算出した組成に加えた検出限界算出用の組成に基づいて検出限界を算出するので、大きさや組成が異なる個々の試料に対して、非検出元素の検出限界を正確に算出できる。 According to the apparatus of the first configuration, for a non-detection element, a predetermined trace concentration that does not affect the composition, that is, the concentration of the detection element, is assumed, and the detection limit calculation composition added to the calculated composition is used. Since the detection limit is calculated based on this, the detection limit of the non-detection element can be accurately calculated for individual samples having different sizes and compositions.
本発明の第2構成は、前記第1構成の装置が備えるコンピュータを前記算出手段として機能させるためのプログラムである。本発明の第2構成のプログラムによっても、前記第1構成の装置と同様の作用効果が得られる。 A second configuration of the present invention is a program for causing a computer included in the device of the first configuration to function as the calculation unit. The same effect as the apparatus of the first configuration can be obtained by the program of the second configuration of the present invention.
以下、本発明の一実施形態の蛍光X線分析装置について、図にしたがって説明する。図1に示すように、この装置は、試料13が載置される試料台8と、試料13に1次X線2を照射するX線管などのX線源1と、試料13から発生する蛍光X線や散乱線などの2次X線4の強度を測定する検出手段9とを備えている。検出手段9は、試料13から発生する2次X線4を分光する分光素子5と、分光された2次X線6ごとにその強度を測定する検出器7で構成される。なお、分光素子5を用いずに、エネルギー分解能の高い検出器を検出手段としてもよい。
Hereinafter, an X-ray fluorescence analyzer according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, this apparatus generates from a
そして、仮定した組成つまり元素の濃度に基づいて、試料13中の各元素から発生する2次X線4の理論強度を計算し、その理論強度と検出手段9で測定した測定強度を理論強度スケールに換算した換算測定強度とが一致するように、仮定した元素の濃度を逐次近似的に修正計算して、試料13における元素の濃度つまり組成を算出する算出手段10を備えている。
Based on the assumed composition, that is, the concentration of the element, the theoretical intensity of the secondary X-ray 4 generated from each element in the
この算出手段10は、前記試料の組成を算出した後に、算出した組成に含まれない非検出元素について、以下のような手順で検出限界を算出する。まず、非検出元素について所定の微量濃度を加えるとともに、その加えた所定の微量濃度分だけ算出した組成において他の元素(例えば最大濃度の元素)について減ずることにより、検出限界算出用の組成を仮定し、その検出限界算出用の組成に基づいて、非検出元素から発生する2次X線4の理論強度を計算する。次に、その非検出元素の理論強度と、あらかじめ理論強度と測定強度との間の換算のために求められた装置感度係数とから、非検出元素の推定測定強度を計算する。次に、その非検出元素の推定測定強度と前記所定の微量濃度とから、非検出元素の検量線勾配を計算する。次に、前記検出手段9で測定した非検出元素のバックグラウンドの測定強度から、非検出元素のバックグラウンドの統計変動を計算する。そして、その非検出元素のバックグラウンドの統計変動と前記非検出元素の検量線勾配とから、非検出元素の検出限界を算出する。 After calculating the composition of the sample, the calculation means 10 calculates a detection limit for the non-detection elements not included in the calculated composition by the following procedure. First, a predetermined trace concentration is added to the non-detectable element, and the composition for calculating the detection limit is assumed by subtracting other elements (for example, the element with the maximum concentration) from the composition calculated for the added trace concentration. Then, based on the composition for calculating the detection limit, the theoretical intensity of the secondary X-ray 4 generated from the non-detectable element is calculated. Next, the estimated measured intensity of the non-detected element is calculated from the theoretical intensity of the non-detected element and the device sensitivity coefficient obtained in advance for conversion between the theoretical intensity and the measured intensity. Next, a calibration curve gradient of the non-detection element is calculated from the estimated measurement intensity of the non-detection element and the predetermined trace concentration. Next, the statistical fluctuation of the background of the non-detected element is calculated from the measured intensity of the background of the non-detected element measured by the detection means 9. Then, the detection limit of the non-detectable element is calculated from the statistical fluctuation of the background of the non-detectable element and the calibration curve gradient of the non-detectable element.
この蛍光X線分析装置は、以下のように動作する。試料台8に載置された試料13に、X線源1から1次X線2を照射して、発生した2次X線4を分光素子5に入射させ、分光された2次X線6ごとにその強度を検出器7で測定する。そして、算出手段10が従来のFP法により試料13の組成を算出する。より詳細には、仮定した組成つまり元素の濃度に基づいて、試料13中の各元素から発生する2次X線4の理論強度を計算し、その理論強度と検出手段9で測定した測定強度(バックグラウンド分を差し引いたネット強度)を理論強度スケールに換算した換算測定強度とが一致するように、仮定した元素の濃度を逐次近似的に修正計算して、試料13における元素の濃度つまり組成を算出する。
This X-ray fluorescence analyzer operates as follows. The
この際、算出手段10が、前記試料の組成を算出した後に、以下のような手順で、算出した組成に含まれる検出元素のみならず、算出した組成に含まれない非検出元素についても、検出限界を算出し、組成とともに図示しない表示器に表示する。 At this time, after the calculation means 10 calculates the composition of the sample, it detects not only detected elements included in the calculated composition but also non-detected elements not included in the calculated composition by the following procedure. The limit is calculated and displayed on the display (not shown) together with the composition.
まず、あらかじめ、次式(2)で定義される、理論強度ITと測定強度IMとの間の換算のための装置感度係数Kが求められており、それを算出手段10は記憶している。 First, in advance, it is defined by the following equation (2), has been required a device sensitivity coefficient K for the conversion between the theoretical strength I T and the measured intensity I M, it calculating means 10 stores Yes.
IM=KIT (2) I M = K I T (2)
そして、検出元素iについては、次式(3)により、算出した濃度Wiと検出手段9で測定した測定強度IiMとから検量線勾配kを計算する。 For the detection element i, the calibration curve gradient k is calculated from the calculated concentration W i and the measured intensity I iM measured by the detection means 9 by the following equation (3).
k=Wi/IiM (3) k = W i / I iM (3)
また、検出手段9で測定したバックグラウンドの測定強度の統計変動σBを以下のように計算する。例えば、波長分散型蛍光X線分析装置においてピークの前後の2点でバックグラウンドを測定する場合では、まず、ネット強度INet(=IiM)である測定強度を次式(4)、(5)により計算する。 Further, the statistical variation σ B of the background measurement intensity measured by the detection means 9 is calculated as follows. For example, in the case of measuring the background at two points before and after the peak in a wavelength dispersive X-ray fluorescence spectrometer, first, the measured intensity, which is the net intensity I Net (= I iM ), is expressed by the following equations (4), (5 )
INet=IP−IB (4) I Net = I P -I B ( 4)
IB=k1×IB1+k2×IB2 (5) I B = k1 × I B1 + k2 × I B2 (5)
ここで、INetはバックグラウンド除去後のネット強度(kcps)、IPはピーク位置PのX線強度すなわちピーク強度(kcps)、IBは計算されたバックグラウンド強度(kcps)、IB1,IB2はバックグラウンド測定位置B1,B2のX線強度(kcps)、k1,k2はバックグラウンド除去係数である。 Here, the net intensity after I Net background removal (kcps), I P is the X-ray intensity or peak intensity of the peak position P (kcps), I B is calculated background intensity (kcps), I B1, I B2 background X-ray intensity of the measuring positions B1, B2 (kcps), k1 , k2 are the background subtraction factor.
ピーク位置P、バックグラウンド測定位置B1,B2での測定時間を、それぞれTP,TB1,TB2とすると、ネット強度の統計変動σNetは、次式(6)で計算される。 If the measurement times at the peak position P and the background measurement positions B1 and B2 are T P , T B1 , and T B2 , respectively, the statistical fluctuation σ Net of the net intensity is calculated by the following equation (6).
目的元素を含まないブランク試料では、IP=IBであるから、式(6)は、次式(7)のようになる。 In the blank sample containing no purpose element, because it is I P = I B, equation (6) is given by the following equation (7).
このσBとして、バックグラウンドの測定強度の統計変動を計算する。なお、1点のみでバックグラウンドを測定する場合は、式(5)〜(7)でIB2の項を使用しない。 As this σ B , the statistical fluctuation of the measured intensity of the background is calculated. When the background is measured at only one point, the term IB2 is not used in the equations (5) to (7).
式(3)で計算した検量線勾配kと、式(7)で計算したバックグラウンドの測定強度の統計変動σBとから、式(1)により、検出元素の検出限界LLD(=3kσB)を算出する。 From the calibration curve gradient k calculated by the equation (3) and the statistical fluctuation σ B of the background measurement intensity calculated by the equation (7), the detection limit LLD (= 3 kσ B ) of the detection element is calculated by the equation (1). Is calculated.
非検出元素iについては、まず、所定の微量濃度Wi(例えば1ppm )を加えるとともに、その加えた所定の微量濃度Wi分だけ算出した組成において他の元素(例えば最大濃度の元素)について減ずることにより、検出限界算出用の組成を仮定し、その検出限界算出用の組成に基づいて、非検出元素から発生する2次X線(蛍光X線)4の理論強度IiTを計算する。 For the non-detectable element i, first, a predetermined trace concentration W i (for example, 1 ppm) is added, and other elements (for example, elements having the maximum concentration) are reduced in the composition calculated for the added trace level concentration W i. Thus, assuming the composition for calculating the detection limit, the theoretical intensity I iT of the secondary X-ray (fluorescent X-ray) 4 generated from the non-detectable element is calculated based on the composition for calculating the detection limit.
次に、その非検出元素の理論強度IiTと前記装置感度係数Kとから、式(2)により、所定の微量濃度Wiに相当する推定測定強度IiM(=KIiT)を計算する。 Next, an estimated measured intensity I iM (= KI iT ) corresponding to a predetermined trace concentration W i is calculated from the theoretical intensity I iT of the non-detectable element and the device sensitivity coefficient K by Equation (2).
次に、その非検出元素の推定測定強度IiMと所定の微量濃度Wiとから、式(3)により、非検出元素の検量線勾配k(=Wi/IiM)を計算する。 Next, a calibration curve gradient k (= W i / I iM ) of the non-detectable element is calculated from the estimated measurement intensity I iM of the non-detectable element and a predetermined trace concentration W i according to Equation (3).
次に、前記検出手段9で測定した非検出元素のバックグラウンドの測定強度IB1,IB2から、検出元素と同様に式(7)により、非検出元素のバックグラウンドの統計変動σBを計算する。 Next, the background statistical fluctuation σ B of the non-detected element is calculated from the measured intensity I B1 and I B2 of the non-detected element measured by the detecting means 9 by the equation (7) similarly to the detected element. To do.
そして、その非検出元素のバックグラウンドの統計変動σBと前記非検出元素の検量線勾配kとから、式(1)により、非検出元素の検出限界LLD(=3kσB)を算出する。 Then, the detection limit LLD (= 3 kσ B ) of the non-detectable element is calculated from the statistical fluctuation σ B of the background of the non-detectable element and the calibration curve gradient k of the non-detectable element, using Equation (1).
以上のように、この実施形態の蛍光X線分析装置によれば、非検出元素について、組成つまり検出元素の濃度に影響しない程度の所定の微量濃度Wiを想定し、その微量濃度Wiを算出した組成に加えた検出限界算出用の組成に基づいて検出限界LLDを算出するので、大きさや組成が異なる個々の試料13に対して、非検出元素の検出限界LLDを正確に算出できる。
As described above, according to the fluorescent X-ray analysis apparatus of this embodiment, the non-detection element, assuming the predetermined trace concentrations W i so as not to affect the concentration of the composition that is detected element, the trace concentrations W i Since the detection limit LLD is calculated based on the detection limit calculation composition added to the calculated composition, the detection limit LLD of the non-detection element can be accurately calculated for the
なお、本発明におけるネット強度である測定強度には、従来用いられている種々の補正を適用することが望ましい。例えば、試料の置かれる雰囲気や試料を覆うフィルムでX線が吸収される場合には、雰囲気におけるX線の透過率TaおよびフィルムにおけるX線の透過率Tsを前記装置感度係数Kに乗じて、補正後の装置感度係数とする。また、ネット強度が得られているが、他の元素のスペクトルが重なっており、それを除去する重なり補正で分析線の強度が0となって非検出元素となった場合は、重なり強度を含んだピーク強度の統計変動を計算し、前記非検出元素のバックグラウンドの統計変動として用いる。 Note that it is desirable to apply various conventionally used corrections to the measured intensity, which is the net intensity in the present invention. For example, if X-rays are absorbed by the film over the atmosphere and the sample is placed the sample, multiplied by the transmittance T s of X-rays in the transmittance T a and films X-rays in the atmosphere in the apparatus sensitivity coefficient K Thus, the corrected device sensitivity coefficient is used. In addition, the net intensity is obtained, but when the spectrum of other elements overlaps, and the overlap correction that removes them causes the analytical line intensity to become 0 and becomes a non-detectable element, the overlap intensity is included. The statistical fluctuation of the peak intensity is calculated and used as the statistical fluctuation of the background of the non-detected element.
以上の実施形態の蛍光X線分析装置は、通常、コンピュータを備えるが、そのコンピュータを前記算出手段として機能させるためのプログラム、つまりコンピュータに上述の各手順を実行させるためのプログラムも、本発明の実施形態である。 The fluorescent X-ray analysis apparatus of the above embodiment usually includes a computer, but a program for causing the computer to function as the calculation means, that is, a program for causing the computer to execute each of the above-described procedures is also included in the present invention. It is an embodiment.
1 X線源
2 1次X線
4 2次X線
9 検出手段
10 算出手段
13 試料
DESCRIPTION OF SYMBOLS 1
Claims (2)
試料から発生する2次X線の強度を測定する検出手段と、
仮定した組成に基づいて、試料中の各元素から発生する2次X線の理論強度を計算し、その理論強度と前記検出手段で測定した測定強度を理論強度スケールに換算した換算測定強度とが一致するように、前記仮定した組成を逐次近似的に修正計算して、試料の組成を算出する算出手段としてのコンピュータとを備えた蛍光X線分析装置において、
前記算出手段が、
算出した組成に含まれない非検出元素については所定の微量濃度を加えて検出限界算出用の組成を仮定し、その検出限界算出用の組成に基づいて、非検出元素から発生する2次X線の理論強度を計算し、
その非検出元素の理論強度と、あらかじめ理論強度と測定強度との間の換算のために求められた装置感度係数とから、非検出元素の推定測定強度を計算し、
その非検出元素の推定測定強度と前記所定の微量濃度とから、非検出元素の検量線勾配を計算し、
前記検出手段で測定した非検出元素のバックグラウンドの測定強度から、非検出元素のバックグラウンドの統計変動を計算し、
その非検出元素のバックグラウンドの統計変動と前記非検出元素の検量線勾配とから、非検出元素の検出限界を算出することを特徴とする蛍光X線分析装置。 An X-ray source for irradiating the sample with primary X-rays;
Detection means for measuring the intensity of secondary X-rays generated from the sample;
Based on the assumed composition, the theoretical intensity of secondary X-rays generated from each element in the sample is calculated, and the theoretical intensity and the measured intensity measured by the detecting means are converted into a theoretical intensity scale. In a fluorescent X-ray analysis apparatus provided with a computer as a calculation means for calculating the composition of the sample by sequentially correcting and correcting the assumed composition so as to match,
The calculating means is
For a non-detectable element not included in the calculated composition, a predetermined trace concentration is added to assume a detection limit calculation composition, and secondary X-rays generated from the non-detection element based on the detection limit calculation composition Calculate the theoretical strength of
From the theoretical strength of the non-detectable element and the device sensitivity coefficient obtained for conversion between the theoretical strength and the measured strength in advance, calculate the estimated measured strength of the non-detectable element,
From the estimated measurement intensity of the non-detectable element and the predetermined trace concentration, a calibration curve gradient of the non-detectable element is calculated,
From the measured intensity of the background of the non-detectable element measured by the detection means, calculate the statistical fluctuation of the background of the non-detectable element,
An X-ray fluorescence analyzer characterized in that a detection limit of a non-detectable element is calculated from a statistical fluctuation of a background of the non-detectable element and a calibration curve gradient of the non-detectable element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007244720A JP4523958B2 (en) | 2007-09-21 | 2007-09-21 | X-ray fluorescence analyzer and program used therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007244720A JP4523958B2 (en) | 2007-09-21 | 2007-09-21 | X-ray fluorescence analyzer and program used therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009074954A JP2009074954A (en) | 2009-04-09 |
JP4523958B2 true JP4523958B2 (en) | 2010-08-11 |
Family
ID=40610061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007244720A Active JP4523958B2 (en) | 2007-09-21 | 2007-09-21 | X-ray fluorescence analyzer and program used therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4523958B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011099749A (en) * | 2009-11-05 | 2011-05-19 | Horiba Ltd | Concentration measuring method and x-ray fluorescence spectrometer |
KR101440236B1 (en) * | 2013-06-13 | 2014-09-12 | 전북대학교산학협력단 | METHOD FOR ANALYZING X-Ray FLUORESCENCE AND METHOD FOR REMOVING BACKGROUND |
JP7190751B2 (en) * | 2020-10-30 | 2022-12-16 | 株式会社リガク | X-ray fluorescence analyzer |
JP2024120518A (en) * | 2023-02-24 | 2024-09-05 | 株式会社リガク | X-ray fluorescence analyzer |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001050917A (en) * | 1999-08-06 | 2001-02-23 | Rigaku Industrial Co | X-ray fluorescence analyzer |
JP2005003471A (en) * | 2003-06-11 | 2005-01-06 | Murata Mfg Co Ltd | X-ray fluorescence analysis method for plating film |
-
2007
- 2007-09-21 JP JP2007244720A patent/JP4523958B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001050917A (en) * | 1999-08-06 | 2001-02-23 | Rigaku Industrial Co | X-ray fluorescence analyzer |
JP2005003471A (en) * | 2003-06-11 | 2005-01-06 | Murata Mfg Co Ltd | X-ray fluorescence analysis method for plating film |
Also Published As
Publication number | Publication date |
---|---|
JP2009074954A (en) | 2009-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3428629B1 (en) | Analysis of x-ray spectra using curve fitting | |
EP3064931B1 (en) | Quantitative x-ray analysis | |
EP3239702B1 (en) | X-ray fluorescence spectrometer | |
JP5975181B2 (en) | X-ray fluorescence analysis method and X-ray fluorescence analyzer | |
JP5697388B2 (en) | X-ray analysis method, X-ray analysis apparatus and program thereof | |
JP4523958B2 (en) | X-ray fluorescence analyzer and program used therefor | |
US11782000B2 (en) | Quantitative analysis method, quantitative analysis program, and X-ray fluorescence spectrometer | |
JP3965191B2 (en) | X-ray fluorescence analyzer and program used therefor | |
JP3965173B2 (en) | X-ray fluorescence analyzer and program used therefor | |
JP3610256B2 (en) | X-ray fluorescence analyzer | |
JP2001091481A (en) | Background correction method for fluorescent x-ray analyzer | |
JP5874108B2 (en) | X-ray fluorescence analyzer | |
JP6917668B1 (en) | Energy dispersive X-ray fluorescence analyzer, evaluation method and evaluation program | |
WO2014175363A1 (en) | Component-concentration measurement device and method | |
JP6467684B2 (en) | X-ray fluorescence analyzer | |
US7289598B2 (en) | X-ray fluorescent analysis apparatus | |
JP3331192B2 (en) | X-ray fluorescence analysis method and apparatus | |
JP7190751B2 (en) | X-ray fluorescence analyzer | |
JP4279983B2 (en) | X-ray fluorescence analyzer | |
JP2000065764A (en) | X-ray fluorescence analysis of liquid sample | |
WO2024176943A1 (en) | Fluorescent x-ray analysis device | |
JP5043387B2 (en) | Film analysis method and apparatus by fluorescent X-ray analysis | |
JP3377328B2 (en) | X-ray fluorescence analysis method | |
JP2011089953A (en) | Fluorescent x-ray analyzer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20090113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100302 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100525 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100528 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4523958 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130604 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140604 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
SG99 | Written request for registration of restore |
Free format text: JAPANESE INTERMEDIATE CODE: R316G99 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
SG99 | Written request for registration of restore |
Free format text: JAPANESE INTERMEDIATE CODE: R316G99 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S803 | Written request for registration of cancellation of provisional registration |
Free format text: JAPANESE INTERMEDIATE CODE: R316805 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S803 | Written request for registration of cancellation of provisional registration |
Free format text: JAPANESE INTERMEDIATE CODE: R316805 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |