[go: up one dir, main page]

JP2011089953A - Fluorescent x-ray analyzer - Google Patents

Fluorescent x-ray analyzer Download PDF

Info

Publication number
JP2011089953A
JP2011089953A JP2009245378A JP2009245378A JP2011089953A JP 2011089953 A JP2011089953 A JP 2011089953A JP 2009245378 A JP2009245378 A JP 2009245378A JP 2009245378 A JP2009245378 A JP 2009245378A JP 2011089953 A JP2011089953 A JP 2011089953A
Authority
JP
Japan
Prior art keywords
sample
component
fluorescent
glass bead
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009245378A
Other languages
Japanese (ja)
Other versions
JP5285572B2 (en
Inventor
Yoshiyuki Kataoka
由行 片岡
Hisashi Honma
寿 本間
Yasuhiko Nakoshi
泰彦 名越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Denki Co Ltd
Rigaku Corp
Original Assignee
Rigaku Denki Co Ltd
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Denki Co Ltd, Rigaku Corp filed Critical Rigaku Denki Co Ltd
Priority to JP2009245378A priority Critical patent/JP5285572B2/en
Publication of JP2011089953A publication Critical patent/JP2011089953A/en
Application granted granted Critical
Publication of JP5285572B2 publication Critical patent/JP5285572B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorescent X-ray analyzer, capable of correcting a weight variation of an oxidizing agent with respect to a sample converted to a glass bead by the addition of the oxidizing agent and capable of properly calculating the concentrations of respective components. <P>SOLUTION: The fluorescent X-ray analyzer is equipped with a calculation means 10A for calculating the concentrations of the respective components in the sample 3a by an SFP method. In the calculation means 10A, the theoretical matrix correction constant related to the weight ratio of the oxidizing agent 3c and the sample 3a is contained in a theoretical matrix correction constant and, at the time of adaptation of a calibration curve, the respective weights of the sample 3a related to the glass bead 3, which is the analyzing target input to an input means 11A, and the oxidizing agent 3c are used to perform correction with respect to the variation of the weight ratio of the oxidizing agent 3c and the sample 3a. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、ガラスビードに調製された試料における各成分の濃度(含有率)を求める蛍光X線分析装置に関する。   The present invention relates to a fluorescent X-ray analyzer for determining the concentration (content ratio) of each component in a sample prepared in a glass bead.

従来、蛍光X線分析において、試料が粉状または粒状である場合には、試料中の元素を均一に分布させるために、試料および融剤を加熱溶融してガラスビードに調製してから、そのガラスビードに1次X線を照射し、発生する蛍光X線の強度を測定する。このようなガラスビード法を用いた蛍光X線分析では、検量線法が採用され、検量線法のうち、ファンダメンタルパラメータ法(FP法)の理論強度計算に基づいて理論マトリックス補正定数を計算するセミファンダメンタルパラメータ法(SFP法)も採用されている。   Conventionally, in a fluorescent X-ray analysis, when a sample is powdery or granular, in order to uniformly distribute the elements in the sample, the sample and the flux are heated and melted to prepare a glass bead. The glass beads are irradiated with primary X-rays, and the intensity of the generated fluorescent X-rays is measured. In such fluorescent X-ray analysis using the glass bead method, a calibration curve method is employed, and the semi-linear matrix correction constant is calculated based on the theoretical intensity calculation of the fundamental parameter method (FP method) in the calibration curve method. The fundamental parameter method (SFP method) is also employed.

ガラスビードについての測定強度と試料における各成分の濃度との関係は、ガラスビード化に際しての試料の希釈率によって変わってくるので、例えば試料の重量および融剤の重量がそれぞれあらかじめ決めておいた目標値になるように試料と融剤を厳密に秤量することが考えられるが、実際には秤量の効率化のために、秤量値については目標値に対して±数%程度の誤差を許容範囲として、試料の秤量値および融剤の秤量値から試料ごとに希釈率を計算し、その希釈率を用いることにより定量演算において目標値に対する秤量値の誤差について補正している(特許文献1参照)。   The relationship between the measured strength of the glass beads and the concentration of each component in the sample varies depending on the dilution rate of the sample during glass beading. For example, the weight of the sample and the weight of the flux are predetermined targets. It is conceivable that the sample and the flux are precisely weighed so that the value is the same, but in actuality, in order to improve the weighing efficiency, an error of about ± several% with respect to the target value is set as an allowable range for the weighing value. The dilution rate is calculated for each sample from the measured value of the sample and the measured value of the flux, and by using the diluted rate, an error in the measured value with respect to the target value is corrected in the quantitative calculation (see Patent Document 1).

ここで、試料が鉄鉱石やフェロアロイである場合には、ガラスビード化に際してNaNOなどの酸化剤の添加が必要となり、酸化剤の重量も試料の希釈率に影響することになるが、従来は、例えば融剤と酸化剤を一定比率であらかじめ混合しておき、その混合物を一種の融剤とみなして、上述のように試料の秤量値および混合物の秤量値から試料ごとに希釈率を計算し、その希釈率を用いることにより定量演算において目標値に対する秤量値の誤差について補正している(以下、このような混合物を混合融剤という)。 Here, when the sample is iron ore or ferroalloy, it is necessary to add an oxidizing agent such as NaNO 3 during the glass beading, and the weight of the oxidizing agent also affects the dilution rate of the sample. For example, a flux and an oxidizer are mixed in advance at a certain ratio, and the mixture is regarded as a kind of flux, and the dilution rate is calculated for each sample from the measured value of the sample and the measured value of the mixture as described above. By using the dilution ratio, an error in the weighing value with respect to the target value is corrected in the quantitative calculation (hereinafter, such a mixture is referred to as a mixed flux).

特許第2626857号公報Japanese Patent No. 2626857

しかし、試料品種によって酸化剤の重量または酸化剤の種類を変更する場合には、多種類の混合融剤を準備しておかなければならない。この手間を省くために、試料、融剤、酸化剤をそれぞれ秤量して酸化剤も含めて目標値に対する秤量値の誤差を補正しようとしても、従来のSFP法における理論マトリックス補正定数の計算では、酸化剤の重量を扱うことができず、したがって、酸化剤を添加してガラスビードに調製された試料における各成分の濃度を適切に求めることができない。酸化剤を添加するガラスビード法を用いた蛍光X線分析にFP法を採用する場合にも、同様の問題が生じる。   However, when changing the weight of the oxidizer or the type of oxidizer depending on the sample type, it is necessary to prepare many kinds of mixed fluxes. In order to save this trouble, even when trying to correct the error of the measured value with respect to the target value including the oxidizing agent by weighing each of the sample, the flux, and the oxidizing agent, in calculating the theoretical matrix correction constant in the conventional SFP method, The weight of the oxidant cannot be handled, and therefore the concentration of each component in the sample prepared in the glass bead by adding the oxidant cannot be appropriately determined. The same problem arises when the FP method is employed for fluorescent X-ray analysis using the glass bead method in which an oxidizing agent is added.

本発明は前記従来の問題に鑑みてなされたもので、酸化剤を添加してガラスビードに調製された試料について、酸化剤の重量の変動について補正ができ、各成分の濃度を適切に求めることができる蛍光X線分析装置を提供することを目的とする。   The present invention has been made in view of the above-mentioned conventional problems, and for a sample prepared in a glass bead by adding an oxidant, the variation in the weight of the oxidant can be corrected, and the concentration of each component can be determined appropriately. An object of the present invention is to provide an X-ray fluorescence analyzer capable of performing

前記目的を達成するために、本発明の第1構成の蛍光X線分析装置は、まず、試料、融剤および酸化剤が加熱溶融されて調製されたガラスビードに1次X線を照射するX線源と、前記ガラスビードから発生する蛍光X線の強度を測定する検出手段と、前記試料について仮定した各成分の濃度、希釈率および酸化剤と試料の重量比、ならびに分析対象であるガラスビードについての試料、融剤とガラスビードのいずれか一方および酸化剤の各重量が入力される入力手段とを備えている。   In order to achieve the above object, the X-ray fluorescence analyzer of the first configuration of the present invention first irradiates a glass bead prepared by heating and melting a sample, a flux and an oxidant with X-rays irradiated with primary X-rays. A radiation source, a detection means for measuring the intensity of fluorescent X-rays generated from the glass bead, the concentration of each component assumed for the sample, the dilution rate, the weight ratio of the oxidizing agent to the sample, and the glass bead to be analyzed And an input means for inputting the weight of each of the flux and glass beads and the oxidizer.

さらに、その入力手段に入力された前記試料について仮定した各成分の濃度、希釈率および酸化剤と試料の重量比を用いて、前記ガラスビード中の各成分から発生する蛍光X線の理論強度を計算し、その理論強度に基づいて蛍光X線の吸収および励起に関する理論マトリックス補正定数を計算するとともに、試料における組成が既知で相異なる複数の標準となるガラスビードについて前記検出手段で測定した測定強度と前記試料における成分の濃度との相関関係を、成分ごとに、前記理論マトリックス補正定数を用いて補正した検量線として求めて記憶し、分析対象であるガラスビードについて前記検出手段で測定した測定強度に前記検量線を適用して前記試料における各成分の濃度を算出する算出手段を備えている。   Further, the theoretical intensity of fluorescent X-rays generated from each component in the glass bead is calculated using the concentration, dilution rate and weight ratio of the oxidant and the sample assumed for the sample input to the input means. Calculating and calculating theoretical matrix correction constants related to absorption and excitation of fluorescent X-rays based on the theoretical intensity, and measuring intensities measured by the detection means for a plurality of standard glass beads having different compositions and different samples And the concentration of the component in the sample, for each component, obtained and stored as a calibration curve corrected using the theoretical matrix correction constant, measured intensity measured by the detection means for the glass beads to be analyzed And a calculation means for calculating the concentration of each component in the sample by applying the calibration curve.

そして、前記理論マトリックス補正定数に、酸化剤と試料の重量比についての理論マトリックス補正定数が含まれ、前記算出手段が、前記検量線を適用する際に、前記入力手段に入力された分析対象であるガラスビードについての試料および酸化剤の各重量を用いて、酸化剤と試料の重量比の変動について補正する。   The theoretical matrix correction constant includes a theoretical matrix correction constant for the weight ratio of the oxidant to the sample, and the calculation means uses the analysis object input to the input means when applying the calibration curve. Each weight of sample and oxidant for a glass bead is used to correct for variations in the weight ratio of oxidant to sample.

第1構成の蛍光X線分析装置は、SFP法により試料における各成分の濃度を算出する算出手段を備えているが、その算出手段において、前記理論マトリックス補正定数に、酸化剤と試料の重量比についての理論マトリックス補正定数が含まれ、前記算出手段が、前記検量線を適用する際に、前記入力手段に入力された分析対象であるガラスビードについての試料および酸化剤の各重量を用いて、酸化剤と試料の重量比の変動について補正するので、酸化剤の重量の変動について補正がなされ、したがって、酸化剤を添加してガラスビードに調製された試料における各成分の濃度を適切に求めることができる。   The X-ray fluorescence analyzer of the first configuration includes a calculating means for calculating the concentration of each component in the sample by the SFP method. In the calculating means, the theoretical matrix correction constant includes the weight ratio of the oxidant to the sample. A theoretical matrix correction constant is included, and when the calculation means applies the calibration curve, using the weight of the sample and the oxidant for the glass bead that is the analysis target input to the input means, Because corrections are made for variations in the weight ratio of the oxidizer to the sample, corrections are made for variations in the weight of the oxidizer, and therefore the concentration of each component in the sample prepared in the glass bead with addition of the oxidizer should be determined appropriately Can do.

本発明の第2構成の蛍光X線分析装置は、まず、試料、融剤および酸化剤が加熱溶融されて調製されたガラスビードに1次X線を照射するX線源と、前記ガラスビードから発生する蛍光X線の強度を測定する検出手段と、前記試料、融剤とガラスビードのいずれか一方および酸化剤の各重量が入力される入力手段とを備えている。   The X-ray fluorescence analyzer of the second configuration of the present invention first comprises an X-ray source for irradiating a glass bead prepared by heating and melting a sample, a flux and an oxidant with primary X-rays, and the glass bead. Detection means for measuring the intensity of the generated fluorescent X-rays, and input means for inputting each weight of the sample, one of the fluxing agent and the glass bead, and the oxidizing agent.

さらに、その入力手段に入力された前記試料、融剤とガラスビードのいずれか一方および酸化剤の各重量を用い、前記試料について仮定した各成分の濃度に基づいて、前記ガラスビード中の各成分から発生する蛍光X線の理論強度を計算し、その理論強度と前記検出手段で測定した測定強度を理論強度スケールに換算した換算測定強度とが合致するように、前記試料について仮定した各成分の濃度を逐次近似的に修正計算して、前記試料における各成分の濃度を算出する算出手段とを備えている。   Furthermore, each component in the glass bead is calculated based on the concentration of each component assumed for the sample using the weight of each of the sample, the flux and the glass bead, and the oxidant input to the input means. The theoretical intensity of fluorescent X-rays generated from the sample is calculated, and the theoretical intensity of each component assumed for the sample is matched so that the measured intensity measured by the detection means matches the converted measured intensity converted to the theoretical intensity scale. And a calculating means for calculating the concentration of each component in the sample by correcting the concentration sequentially and approximately.

そして、前記算出手段が、前記ガラスビード中の各成分から発生する蛍光X線の理論強度を計算する際に、前記入力手段に入力された前記試料および酸化剤の各重量を用いて、酸化剤と試料の重量比の変動について補正する。   Then, when the calculation means calculates the theoretical intensity of the fluorescent X-rays generated from each component in the glass bead, the weight of the sample and the oxidant input to the input means is used, and the oxidant And correct for variations in the weight ratio of the sample.

第2構成の蛍光X線分析装置は、FP法により試料における各成分の濃度を算出する算出手段を備えているが、その算出手段が、前記ガラスビード中の各成分から発生する蛍光X線の理論強度を計算する際に、前記入力手段に入力された前記試料および酸化剤の各重量を用いて、酸化剤と試料の重量比の変動について補正するので、酸化剤の重量の変動について補正がなされ、したがって、酸化剤を添加してガラスビードに調製された試料における各成分の濃度を適切に求めることができる。   The X-ray fluorescence analyzer of the second configuration is provided with a calculation means for calculating the concentration of each component in the sample by the FP method, and the calculation means is for the fluorescent X-ray generated from each component in the glass bead. When calculating the theoretical intensity, the weight of the oxidant and the sample is corrected using the weight of the sample and the oxidant input to the input means, so that the change in the weight of the oxidant is corrected. Therefore, the concentration of each component in the sample prepared in the glass bead by adding the oxidizing agent can be appropriately determined.

本発明の第1および第2実施形態の蛍光X線分析装置を示す概略図である。It is the schematic which shows the X-ray-fluorescence analyzer of 1st and 2nd embodiment of this invention.

以下、本発明の第1実施形態の蛍光X線分析装置について、図にしたがって説明する。図1に示すように、この装置は、試料3a、融剤3bおよび酸化剤3cが加熱溶融されて調製されたガラスビード3が載置される試料台8と、ガラスビード3に1次X線2を照射するX線管などのX線源1と、ガラスビード3から発生する蛍光X線4の強度を測定する検出手段9と、試料3a(SFP法を具現化した第1実施形態の装置では、分析対象の試料として想定されて代表的な組成をもつ試料)について仮定した各成分の濃度(濃度比)、希釈率および酸化剤3cと試料3aの重量比、ならびに分析対象であるガラスビード3についての試料3a、融剤3bとガラスビード3のいずれか一方および酸化剤3cの各重量が入力される、マウス、キーボード、タッチパネルなどの入力手段11Aとを備えている。   The X-ray fluorescence analyzer according to the first embodiment of the present invention will be described below with reference to the drawings. As shown in FIG. 1, this apparatus includes a sample stage 8 on which a glass bead 3 prepared by heating and melting a sample 3a, a flux 3b, and an oxidant 3c is placed, and a primary X-ray on the glass bead 3. 2, an X-ray source 1 such as an X-ray tube, detection means 9 for measuring the intensity of fluorescent X-rays 4 generated from the glass beads 3, and a sample 3 a (the apparatus of the first embodiment that embodies the SFP method) Then, the concentration (concentration ratio) of each component, the dilution ratio, the weight ratio of the oxidizing agent 3c and the sample 3a, and the glass bead that is the analysis target, which are assumed for the sample to be analyzed and have a typical composition) 3, input means 11 </ b> A such as a mouse, a keyboard, a touch panel, or the like, to which the weight of any one of the sample 3 a, the flux 3 b and the glass bead 3, and the oxidizer 3 c is input.

詳細には図示しないが、ガラスビード3は、公知の方法により、試料3a、融剤3bおよび酸化剤3cが加熱溶融されて調製されたものである。検出手段9は、ガラスビード3から発生する蛍光X線4を分光する分光素子5と、分光された蛍光X線6ごとにその強度を測定する検出器7で構成される。なお、分光素子5を用いずに、エネルギー分解能の高い検出器を検出手段としてもよい。つまり、この実施形態の蛍光X線分析装置は、波長分散型でも、エネルギー分散型でもよい。   Although not shown in detail, the glass bead 3 is prepared by heating and melting the sample 3a, the flux 3b, and the oxidizing agent 3c by a known method. The detecting means 9 is composed of a spectroscopic element 5 that splits fluorescent X-rays 4 generated from the glass beads 3 and a detector 7 that measures the intensity of each spectroscopic fluorescent X-ray 6. In addition, it is good also as a detection means not using the spectroscopic element 5, but a detector with high energy resolution. That is, the fluorescent X-ray analysis apparatus of this embodiment may be a wavelength dispersion type or an energy dispersion type.

この装置は、さらに、入力手段11Aに入力された試料3aについて仮定した各成分の濃度、希釈率および酸化剤3cと試料3aの重量比を用いて、ガラスビード3中の各成分から発生する蛍光X線4の理論強度を計算し、その理論強度に基づいて蛍光X線4の吸収および励起に関する理論マトリックス補正定数を計算するとともに、試料3aにおける組成が既知で相異なる複数の標準となるガラスビード3について検出手段9で測定した測定強度と試料3aにおける成分の濃度との相関関係を、成分ごとに、前記理論マトリックス補正定数を用いて補正した検量線として求めて記憶し、分析対象であるガラスビード3について検出手段9で測定した測定強度に前記検量線を適用して試料3aにおける各成分の濃度を算出する算出手段10Aを備えている。つまり、ガラスビード3に調製された試料3aにおける各成分の濃度をSFP法により算出する算出手段10Aを備えている。   This device further uses the concentration, dilution rate, and weight ratio of the oxidizing agent 3c and the sample 3a assumed for the sample 3a input to the input means 11A to generate fluorescence generated from each component in the glass bead 3. A glass bead that calculates the theoretical intensity of the X-ray 4 and calculates a theoretical matrix correction constant for absorption and excitation of the fluorescent X-ray 4 based on the theoretical intensity, as well as a plurality of different standards having different compositions in the sample 3a. 3, the correlation between the measured intensity measured by the detection means 9 and the concentration of the component in the sample 3a is obtained and stored for each component as a calibration curve corrected using the theoretical matrix correction constant, and is the glass to be analyzed. A calculating means 10A for calculating the concentration of each component in the sample 3a by applying the calibration curve to the measured intensity measured by the detecting means 9 for the bead 3. It is provided. That is, a calculation means 10A for calculating the concentration of each component in the sample 3a prepared on the glass bead 3 by the SFP method is provided.

そして、算出手段10Aにおいて、前記理論マトリックス補正定数に、酸化剤3cと試料3aの重量比についての理論マトリックス補正定数が含まれ、算出手段10Aが、前記検量線を適用する際に、入力手段11Aに入力された分析対象であるガラスビード3についての試料3aおよび酸化剤3cの各重量を用いて、酸化剤3cと試料3aの重量比の変動について補正する。   In the calculation means 10A, the theoretical matrix correction constant includes the theoretical matrix correction constant for the weight ratio of the oxidizer 3c and the sample 3a. When the calculation means 10A applies the calibration curve, the input means 11A Using the weights of the sample 3a and the oxidant 3c for the glass bead 3 that is the analysis target input to, the variation in the weight ratio of the oxidant 3c and the sample 3a is corrected.

この算出手段10Aについて、より具体的に、特に理論マトリックス補正定数とそれを用いて補正した検量線について説明する。そもそも従来は、次の(1)式のように、希釈率を用いることにより、試料および融剤の重量の変動について補正していた。   The calculation means 10A will be described more specifically, in particular, a theoretical matrix correction constant and a calibration curve corrected using the theoretical matrix correction constant. In the first place, conventionally, variations in the weight of the sample and the flux were corrected by using the dilution rate as in the following equation (1).

Figure 2011089953
Figure 2011089953

ここで、基準希釈率R とは目標とする所定の希釈率であり、希釈率Rは実際の希釈率であるが、希釈率の扱いに2つの方法があり、1つの方法では、融剤の重量Fと試料の重量Sの比F/Sを希釈率とする。この場合、いわゆる強熱減量(試料および融剤の合計重量からガラスビードの重量を差し引いた重量で、イグロスともいう)について補正するには、強熱減量に対応する強熱減量成分の質量吸収係数を0として扱う。 Here, the reference dilution rate R F A is a target predetermined dilution rate, and the dilution rate R F is an actual dilution rate, but there are two methods of handling the dilution rate, The ratio F / S between the weight F of the flux and the weight S of the sample is defined as a dilution rate. In this case, to correct for the so-called ignition loss (the weight obtained by subtracting the weight of the glass beads from the total weight of the sample and the flux, also referred to as Iglos), the mass absorption coefficient of the ignition loss component corresponding to the ignition loss Is treated as 0.

もう1つの方法では、ガラスビードの重量と試料の重量の比を用いた値B/S−1を希釈率とする。この場合、強熱減量について補正するには、強熱減量成分の質量吸収係数として融剤の質量吸収係数を用いる。   In another method, the value B / S-1 using the ratio between the weight of the glass beads and the weight of the sample is used as the dilution rate. In this case, in order to correct the ignition loss, the mass absorption coefficient of the flux is used as the mass absorption coefficient of the ignition loss component.

酸化剤を添加してガラスビードに調製された試料に適用するための、従来の(1)式に対応する、第1実施形態の算出手段10Aにおける理論マトリックス補正定数を用いて補正した検量線式は、以下のように導出される。まず、分析成分の蛍光X線強度Iの近似式を次の(2)式に示す。 Calibration curve formula corrected using the theoretical matrix correction constant in the calculation means 10A of the first embodiment, corresponding to the conventional formula (1), to be applied to a sample prepared in a glass bead by adding an oxidizing agent. Is derived as follows. First, an approximate expression of the fluorescent X-ray intensity I i of the analysis component is shown in the following expression (2).

Figure 2011089953
Figure 2011089953

融剤の重量F1と試料の重量Sの比F1/Sを希釈率とする場合に、(2)式を、試料中の各成分の濃度比Wを用いて書き直すと次の(3)式が得られる。 When the ratio F1 / S between the weight F1 of the flux and the weight S of the sample is used as the dilution ratio, the following equation (3) is obtained by rewriting the equation (2) using the concentration ratio W j of each component in the sample. Is obtained.

Figure 2011089953
Figure 2011089953

なお、酸化剤に、例えばNaNOを使用した場合、ガラスビード中にはNaOとして残存するので、酸化剤の重量F2としては、実際に秤量したNaNOの重量に0.3646の係数を掛けた、NaOとしての残存分重量を用いる。 For example, when NaNO 3 is used as the oxidizing agent, it remains as Na 2 O in the glass bead. Therefore, as the weight F2 of the oxidizing agent, a coefficient of 0.3646 is added to the weight of the actually weighed NaNO 3. Use the remaining weight as Na 2 O multiplied.

(3)式を書き直すと、分析元素の濃度比Wは次の(4)式で表される。 (3) Rewriting equation, concentration ratio W i of the analysis element is expressed by the following equation (4).

Figure 2011089953
Figure 2011089953

ここで、μをそのままマトリックス補正定数として使うこともできるが、さらに書き換えると次の(5)式が得られる。 Here, μ j can be used as a matrix correction constant as it is, but if it is further rewritten, the following equation (5) is obtained.

Figure 2011089953
Figure 2011089953

ここで、強熱減量(に対応する強熱減量成分)の濃度比Wに関し、W+ΣW=1.0であり、強熱減量成分も含めて100%となる。なお、基準重量比RF2 とは目標とする酸化剤と試料の所定の重量比であり、重量比RF2は実際の酸化剤と試料の重量比である。(5)式を、従来の(4)式に対応させて、分析元素の蛍光X線強度Iの2次式に書き直すと、次の(6)式が得られる。 Here, regarding the concentration ratio W L of ignition loss (corresponding to ignition loss component), W L + ΣW j = 1.0, which is 100% including the ignition loss component. The reference weight ratio R F2 A is a predetermined weight ratio between the target oxidant and the sample, and the weight ratio R F2 is the actual weight ratio between the oxidant and the sample. When the equation (5) is rewritten into a quadratic equation of the fluorescent X-ray intensity I i of the analytical element in correspondence with the conventional equation (4), the following equation (6) is obtained.

i=(AIi 2+BIi+C)(1+α11+…+αnn+αF1L+αF1ΔRF1+αF2ΔRF2) (6) W i = (AI i 2 + BI i + C) (1 + α 1 W 1 + ... + α n W n + α F1 W L + α F1 ΔR F1 + α F2 ΔR F2) (6)

これが、第1実施形態の装置の算出手段10Aにおける理論マトリックス補正定数を用いて補正した検量線を示す式の一例である。   This is an example of an equation showing a calibration curve corrected using the theoretical matrix correction constant in the calculation means 10A of the apparatus of the first embodiment.

一方、融剤重量F1に代えてガラスビード重量Bを用いる場合、つまりガラスビードの重量Bと試料の重量Sを用いて希釈率を表す場合には、(2)式を、試料中の各成分の濃度比Wを用いて書き直すと、次の(7)、(8)式が得られる。 On the other hand, when the glass bead weight B is used instead of the flux F1, that is, when the dilution rate is expressed by using the glass bead weight B and the sample weight S, the equation (2) is expressed as follows. rewritten using the concentration ratio W j, the following (7), the formula (8) is obtained.

Figure 2011089953
Figure 2011089953

(8)式を書き直すと、分析元素の濃度比Wは次の(9)式で表される。 Rewriting equation (8), the concentration ratio W i of the analysis element can be expressed by the following equation (9).

Figure 2011089953
Figure 2011089953

希釈率に(B−F2)/S−1を用いて(7)式を書き直してもよいが、希釈率の項が煩雑になるので、(8)式から(9)式を求めた。(9)式を、従来の(4)式に対応させて、分析元素の蛍光X線強度Iの2次式に書き直すと、次の(10)式が得られる。 Equation (7) may be rewritten using (B-F2) / S-1 as the dilution rate, but since the term of the dilution rate becomes complicated, Equation (9) was obtained from Equation (8). When the equation (9) is rewritten into a quadratic equation of the fluorescent X-ray intensity I i of the analytical element in correspondence with the conventional equation (4), the following equation (10) is obtained.

i=(AIi 2+BIi+C)(1+α11+…+αnn+αLL+αF1ΔRF1+αF2ΔRF2) (10) W i = (AI i 2 + BI i + C) (1 + α 1 W 1 +... + Α n W n + α L W L + α F1 ΔR F1 + α F2 ΔR F2 ) (10)

これが、第1実施形態の装置の算出手段10Aにおける理論マトリックス補正定数を用いて補正した検量線を示す式の他の例である。   This is another example of the equation showing the calibration curve corrected using the theoretical matrix correction constant in the calculation means 10A of the apparatus of the first embodiment.

(6)、(10)式における理論マトリックス補正定数α(α1〜αn,αF1,αF2,αL)は、入力手段11Aに入力された試料3a(分析対象の試料として想定されて代表的な組成をもつ試料)について仮定した各成分の濃度W、希釈率RF1および酸化剤3cと試料3aの重量比RF2を用いて、ガラスビード3中の各成分から発生する蛍光X線4の理論強度をFP法により計算し、その理論強度に基づいて求められる。そして、試料3aにおける組成が既知で相異なる複数の標準となるガラスビード3について検出手段9で測定した測定強度Iiと試料3aにおける成分の濃度Wiとの相関関係が、成分iごとに、前記理論マトリックス補正定数αを用いて補正した検量線として、例えば検量線定数A,B,Cを含む(6)、(10)式として、求められ、算出手段11Aに記憶される。 The theoretical matrix correction constant α (α 1 to α n , α F1 , α F2 , α L ) in the equations (6) and (10) is assumed to be the sample 3a (sample to be analyzed) input to the input means 11A. Fluorescence X generated from each component in the glass bead 3 using the concentration W j of each component assumed for the sample having a representative composition), the dilution ratio R F1, and the weight ratio R F2 of the oxidizing agent 3c and the sample 3a The theoretical strength of the line 4 is calculated by the FP method, and is obtained based on the theoretical strength. Then, for each component i, the correlation between the measured intensity I i measured by the detection means 9 and the concentration W i of the component in the sample 3a for a plurality of different standard glass beads 3 with known compositions in the sample 3a is The calibration curve corrected using the theoretical matrix correction constant α is obtained as equations (6) and (10) including calibration curve constants A, B, and C, and stored in the calculation means 11A.

このように、第1実施形態の装置は、SFP法により試料3aにおける各成分の濃度Wを算出する算出手段10Aを備えているが、その算出手段10Aにおいて、理論マトリックス補正定数αに、酸化剤3cと試料3aの重量比についての理論マトリックス補正定数αF2が含まれ、算出手段10Aが、検量線(6)式または(10)式を適用する際に、入力手段11Aに入力された分析対象であるガラスビード3についての試料3aおよび酸化剤3cの各重量S,F2を用いて、酸化剤3cと試料3aの重量比の変動ΔRF2について補正するので、酸化剤3cの重量F2の変動について補正がなされ、したがって、酸化剤3cを添加してガラスビード3に調製された試料3aにおける各成分の濃度Wを適切に求めることができる。 As described above, the apparatus according to the first embodiment includes the calculation unit 10A that calculates the concentration W i of each component in the sample 3a by the SFP method. In the calculation unit 10A, the theoretical matrix correction constant α is set to the oxidation matrix 10A. Analysis included in the input means 11A when the calculation means 10A applies the calibration curve (6) or (10), including the theoretical matrix correction constant α F2 for the weight ratio of the agent 3c and the sample 3a. Using the respective weights S and F2 of the sample 3a and the oxidant 3c for the target glass bead 3, the variation ΔR F2 in the weight ratio between the oxidant 3c and the sample 3a is corrected, so the variation in the weight F2 of the oxidant 3c correction is performed, therefore, it is possible to determine the concentration W i of each component in the sample 3a was prepared in a glass bead 3 with an oxidizing agent added 3c appropriately.

次に、本発明の第2実施形態の蛍光X線分析装置について説明する。図1に示すように、この装置は、前記第1実施形態の装置と比較すると、入力手段11Bに入力される内容と、算出手段10Bの構成、動作内容とが異なるのみである。具体的には、入力手段11Bには、試料3a、融剤3bとガラスビード3のいずれか一方および酸化剤3cの各重量S,F1とBのいずれか一方,F2が入力される。また、算出手段10Bは、入力手段11Bに入力された試料3a、融剤3bとガラスビード3のいずれか一方および酸化剤3cの各重量S,F1とBのいずれか一方,F2を用い、試料3aについて仮定した各成分の濃度Wに基づいて、ガラスビード3中の各成分から発生する蛍光X線4の理論強度を計算し、その理論強度と検出手段9で測定した測定強度を理論強度スケールに換算した換算測定強度とが合致するように、試料3aについて仮定した各成分の濃度Wを逐次近似的に修正計算して、試料3aにおける各成分の濃度Wを算出する。つまり、ガラスビード3に調製された試料3aにおける各成分の濃度WをFP法により算出する。 Next, a fluorescent X-ray analyzer according to the second embodiment of the present invention will be described. As shown in FIG. 1, this apparatus is different from the apparatus of the first embodiment only in the contents input to the input means 11B and the configuration and operation contents of the calculation means 10B. Specifically, the input means 11B receives the sample 3a, one of the flux 3b and the glass bead 3, and one of the weights S, F1 and B of the oxidant 3c, and F2. The calculation means 10B uses the sample 3a, the flux 3b and the glass bead 3 input to the input means 11B, and the respective weights S, F1 and B of the oxidant 3c, F2, and the sample. 3a based on the concentration W i of each component is assumed for the theoretical strength of the fluorescent X-rays 4 emitted from each of the components in the glass beads 3 is calculated, theoretical strength measurement strength measured by the detection means 9 and its theoretical strength as the conversion measured intensity in terms of the scale matches the concentration W i of each component assumed by successive approximation to modify calculated for samples 3a, it calculates the concentration W i of each component in the sample 3a. That is, the concentration W i of each component in the sample 3a was prepared in a glass bead 3 is calculated by FP method.

そして、算出手段10Bが、ガラスビード3中の各成分から発生する蛍光X線4の理論強度を計算する際に、入力手段11Bに入力された試料3aおよび酸化剤3cの各重量S,F2を用いて、酸化剤3cと試料3aの重量比の変動について補正する。   Then, when the calculating means 10B calculates the theoretical intensity of the fluorescent X-ray 4 generated from each component in the glass bead 3, the weights S and F2 of the sample 3a and the oxidant 3c input to the input means 11B are calculated. It is used to correct for variations in the weight ratio between the oxidant 3c and the sample 3a.

FP法による定量演算を行う算出手段10Bでは、測定強度から仮定の初期濃度(初期含有率)を計算する際に、(3)、(7)式に該当する式であって、強熱減量成分を残分または手入力成分として扱い、試料3aにおける各成分の濃度比W、強熱減量成分の濃度比Wおよび希釈率などを含む式を用い、理論強度計算をする際に、ガラスビード3における、各成分の濃度比C、融剤の濃度比CF1および酸化剤の濃度比CF2に換算し、(2)式に対応するより厳密な理論強度式を用いる。 In the calculation means 10B that performs quantitative calculation by the FP method, when calculating the assumed initial concentration (initial content ratio) from the measured intensity, the calculation means 10B is an expression corresponding to the expressions (3) and (7), and the ignition loss component When calculating the theoretical strength using a formula including the concentration ratio W i of each component in the sample 3a, the concentration ratio W L of the ignition loss component, the dilution rate, etc. 3 is converted into the concentration ratio C i of each component, the concentration ratio C F1 of the flux, and the concentration ratio C F2 of the oxidizing agent, and a stricter theoretical strength equation corresponding to the equation (2) is used.

融剤の重量F1と試料の重量Sの比F1/Sを希釈率とする場合、測定強度から仮定の初期濃度を計算する際には、(3)式に該当する式を用い、試料3aにおける各成分の濃度比W、強熱減量成分の濃度比W、希釈率F1/Sおよび酸化剤3cと試料3aの重量比を用いる。理論強度計算をする際には、強熱減量Lが負となりうるので、次の(11)〜(14)式を用いて、強熱減量Lを除去したガラスビードにおける各濃度比C,CF1,CF2を求める。 When the ratio F1 / S of the weight F1 of the flux and the weight S of the sample is used as the dilution rate, when calculating the assumed initial concentration from the measured intensity, the equation corresponding to the equation (3) is used and the sample 3a The concentration ratio W i of each component, the concentration ratio W L of the ignition loss component, the dilution rate F1 / S, and the weight ratio of the oxidizing agent 3c and the sample 3a are used. When calculating the theoretical strength, the ignition loss L can be negative. Therefore, using the following equations (11) to (14), the respective concentration ratios C i and C in the glass beads from which the ignition loss L has been removed. F1 and CF2 are obtained.

Figure 2011089953
Figure 2011089953

一方、融剤重量F1に代えてガラスビード重量Bを用いる場合、つまりガラスビードの重量Bと試料の重量Sを用いて希釈率を表す場合、測定強度から仮定の初期濃度を計算する際には、FP法の理論強度計算では成分で分ける必要があることから(8)式ではなく(7)式を用い、理論強度計算をする際には、次の(15)〜(17)式を用いて、強熱減量Lを除去したガラスビードにおける各濃度比C,CF1,CF2を求める。強熱減量成分は融剤として計算しているので、強熱減量Lは希釈率に含める。 On the other hand, when the glass bead weight B is used instead of the flux F1, that is, when the dilution rate is expressed using the glass bead weight B and the sample weight S, when calculating the assumed initial concentration from the measured intensity, In the theoretical strength calculation of the FP method, since it is necessary to divide by the component, the following formulas (15) to (17) are used when calculating the theoretical strength using formula (7) instead of formula (8). Thus, the respective concentration ratios C i , C F1 , C F2 in the glass beads from which the ignition loss L is removed are obtained. Since the ignition loss component is calculated as a flux, the ignition loss L is included in the dilution rate.

Figure 2011089953
Figure 2011089953

このように、第2実施形態の装置は、FP法により試料3aにおける各成分の濃度Wを算出する算出手段10Bを備えているが、その算出手段10Bが、ガラスビード3中の各成分から発生する蛍光X線4の理論強度を計算する際に、入力手段11Bに入力された試料3aおよび酸化剤3cの各重量S,F2を用いて、酸化剤3cと試料3aの重量比の変動について補正するので、酸化剤3cの重量F2の変動について補正がなされ、したがって、酸化剤3cを添加してガラスビード3に調製された試料3aにおける各成分の濃度Wを適切に求めることができる。また、第1、第2実施形態の装置では、みかけの強熱減量Lが負になる試料3aについても、酸化剤3cの重量F2の変動について適切に補正がなされる。 Thus, apparatus of the second embodiment is provided with the calculating means 10B for calculating the concentration W i of each component in the sample 3a by FP method, the calculating means 10B is, from each component in the glass beads 3 When calculating the theoretical intensity of the generated fluorescent X-ray 4, the weight ratio between the oxidant 3c and the sample 3a is changed using the weights S and F2 of the sample 3a and the oxidant 3c input to the input unit 11B. is corrected, the correction for variations in the weight F2 oxidant 3c made, therefore, it is possible to determine the concentration W i of each component in the sample 3a was prepared in a glass bead 3 with an oxidizing agent added 3c appropriately. In the apparatus of the first and second embodiments, the fluctuation of the weight F2 of the oxidizer 3c is appropriately corrected for the sample 3a in which the apparent ignition loss L is negative.

1 X線源
2 1次X線
3 ガラスビード
3a 試料
3b 融剤
3c 酸化剤
4 蛍光X線
9 検出手段
10A,10B 算出手段
11A,11B 入力手段
DESCRIPTION OF SYMBOLS 1 X-ray source 2 Primary X-ray 3 Glass bead 3a Sample 3b Fusing agent 3c Oxidizing agent 4 Fluorescent X-ray 9 Detection means 10A, 10B Calculation means 11A, 11B Input means

Claims (2)

試料、融剤および酸化剤が加熱溶融されて調製されたガラスビードに1次X線を照射するX線源と、
前記ガラスビードから発生する蛍光X線の強度を測定する検出手段と、
前記試料について仮定した各成分の濃度、希釈率および酸化剤と試料の重量比、ならびに分析対象であるガラスビードについての試料、融剤とガラスビードのいずれか一方および酸化剤の各重量が入力される入力手段と、
その入力手段に入力された前記試料について仮定した各成分の濃度、希釈率および酸化剤と試料の重量比を用いて、前記ガラスビード中の各成分から発生する蛍光X線の理論強度を計算し、その理論強度に基づいて蛍光X線の吸収および励起に関する理論マトリックス補正定数を計算するとともに、試料における組成が既知で相異なる複数の標準となるガラスビードについて前記検出手段で測定した測定強度と前記試料における成分の濃度との相関関係を、成分ごとに、前記理論マトリックス補正定数を用いて補正した検量線として求めて記憶し、分析対象であるガラスビードについて前記検出手段で測定した測定強度に前記検量線を適用して前記試料における各成分の濃度を算出する算出手段とを備えた蛍光X線分析装置であって、
前記理論マトリックス補正定数に、酸化剤と試料の重量比についての理論マトリックス補正定数が含まれ、前記算出手段が、前記検量線を適用する際に、前記入力手段に入力された分析対象であるガラスビードについての試料および酸化剤の各重量を用いて、酸化剤と試料の重量比の変動について補正する蛍光X線分析装置。
An X-ray source for irradiating a primary bead to a glass bead prepared by heating and melting a sample, a flux and an oxidizing agent;
Detection means for measuring the intensity of fluorescent X-rays generated from the glass beads;
The concentration of each component assumed for the sample, the dilution rate, and the weight ratio of the oxidant to the sample, and the sample for the glass bead to be analyzed, either the flux or glass bead, and the weight of the oxidant are input. Input means,
The theoretical intensity of fluorescent X-rays generated from each component in the glass bead is calculated using the concentration of each component assumed for the sample input to the input means, the dilution rate, and the weight ratio of the oxidizing agent to the sample. , Calculating theoretical matrix correction constants related to absorption and excitation of fluorescent X-rays based on the theoretical intensity, and measuring intensity measured by the detection means for a plurality of different standard glass beads whose compositions in the sample are known and different from each other The correlation with the concentration of the component in the sample is obtained and stored as a calibration curve corrected using the theoretical matrix correction constant for each component, and the measured intensity measured by the detection means for the glass bead to be analyzed is A fluorescent X-ray analyzer comprising: a calculating means for calculating a concentration of each component in the sample by applying a calibration curve;
The theoretical matrix correction constant includes a theoretical matrix correction constant for the weight ratio of the oxidant to the sample, and the calculation means uses the calibration curve to apply the glass that is the analysis target input to the input means. A fluorescent X-ray analyzer that corrects for variations in the weight ratio of the oxidant to the sample by using the weight of the sample and the oxidant for the bead.
試料、融剤および酸化剤が加熱溶融されて調製されたガラスビードに1次X線を照射するX線源と、
前記ガラスビードから発生する蛍光X線の強度を測定する検出手段と、
前記試料、融剤とガラスビードのいずれか一方および酸化剤の各重量が入力される入力手段と、
その入力手段に入力された前記試料、融剤とガラスビードのいずれか一方および酸化剤の各重量を用い、前記試料について仮定した各成分の濃度に基づいて、前記ガラスビード中の各成分から発生する蛍光X線の理論強度を計算し、その理論強度と前記検出手段で測定した測定強度を理論強度スケールに換算した換算測定強度とが合致するように、前記試料について仮定した各成分の濃度を逐次近似的に修正計算して、前記試料における各成分の濃度を算出する算出手段とを備えた蛍光X線分析装置であって、
前記算出手段が、前記ガラスビード中の各成分から発生する蛍光X線の理論強度を計算する際に、前記入力手段に入力された前記試料および酸化剤の各重量を用いて、酸化剤と試料の重量比の変動について補正する蛍光X線分析装置。
An X-ray source for irradiating a primary bead to a glass bead prepared by heating and melting a sample, a flux and an oxidizing agent;
Detection means for measuring the intensity of fluorescent X-rays generated from the glass beads;
Input means for inputting the weight of each of the sample, the flux and the glass bead, and the oxidizing agent,
Generated from each component in the glass bead based on the concentration of each component assumed for the sample, using each weight of the sample, flux or glass bead and oxidizer input to the input means The concentration of each component assumed for the sample is calculated so that the theoretical intensity of the fluorescent X-ray is calculated and the theoretical intensity matches the measured intensity measured by the detection means and converted to the theoretical intensity scale. A fluorescent X-ray analysis apparatus comprising a calculation means for calculating the concentration of each component in the sample by performing correction calculation in a successive approximation,
When the calculation means calculates the theoretical intensity of fluorescent X-rays generated from each component in the glass bead, each weight of the sample and the oxidant input to the input means is used to calculate the oxidant and the sample. X-ray fluorescence analyzer that corrects for fluctuations in the weight ratio.
JP2009245378A 2009-10-26 2009-10-26 X-ray fluorescence analyzer Active JP5285572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009245378A JP5285572B2 (en) 2009-10-26 2009-10-26 X-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009245378A JP5285572B2 (en) 2009-10-26 2009-10-26 X-ray fluorescence analyzer

Publications (2)

Publication Number Publication Date
JP2011089953A true JP2011089953A (en) 2011-05-06
JP5285572B2 JP5285572B2 (en) 2013-09-11

Family

ID=44108325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009245378A Active JP5285572B2 (en) 2009-10-26 2009-10-26 X-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JP5285572B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161631A1 (en) * 2020-02-12 2021-08-19 株式会社リガク Quantitative analysis method, quantitative analysis program, and fluorescence x-ray analysis device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322810A (en) * 1992-05-15 1993-12-07 Rigaku Denki Kogyo Kk X-ray fluorescence analyzing method using glass bead
JP2000046766A (en) * 1998-07-31 2000-02-18 Rigaku Industrial Co X-ray fluorescence analysis system by glass bead method
JP2001066269A (en) * 1999-08-26 2001-03-16 Rigaku Industrial Co X-ray fluorescence analyzer
JP2002357574A (en) * 2001-05-31 2002-12-13 Rigaku Industrial Co Calculation device and program for glass bead dilution rate etc.
JP2004325258A (en) * 2003-04-24 2004-11-18 Tdk Corp Conditioning method and analyzing method of solvent and glass bead sample
JP2005077223A (en) * 2003-08-29 2005-03-24 Tdk Corp Manufacturing method of evaluation sample, analyzing method, production method of electronic component material, electronic component and evaluation sample manufacturing apparatus
JP2007121129A (en) * 2005-10-28 2007-05-17 Rigaku Industrial Co Glass bead manufacturing apparatus, glass bead manufacturing method, and fluorescent X-ray analysis apparatus and fluorescent X-ray analysis method for analyzing glass beads manufactured by the apparatus or method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322810A (en) * 1992-05-15 1993-12-07 Rigaku Denki Kogyo Kk X-ray fluorescence analyzing method using glass bead
JP2626857B2 (en) * 1992-05-15 1997-07-02 理学電機工業株式会社 X-ray fluorescence analysis using glass bead method
JP2000046766A (en) * 1998-07-31 2000-02-18 Rigaku Industrial Co X-ray fluorescence analysis system by glass bead method
JP2001066269A (en) * 1999-08-26 2001-03-16 Rigaku Industrial Co X-ray fluorescence analyzer
JP2002357574A (en) * 2001-05-31 2002-12-13 Rigaku Industrial Co Calculation device and program for glass bead dilution rate etc.
JP2004325258A (en) * 2003-04-24 2004-11-18 Tdk Corp Conditioning method and analyzing method of solvent and glass bead sample
JP2005077223A (en) * 2003-08-29 2005-03-24 Tdk Corp Manufacturing method of evaluation sample, analyzing method, production method of electronic component material, electronic component and evaluation sample manufacturing apparatus
JP2007121129A (en) * 2005-10-28 2007-05-17 Rigaku Industrial Co Glass bead manufacturing apparatus, glass bead manufacturing method, and fluorescent X-ray analysis apparatus and fluorescent X-ray analysis method for analyzing glass beads manufactured by the apparatus or method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161631A1 (en) * 2020-02-12 2021-08-19 株式会社リガク Quantitative analysis method, quantitative analysis program, and fluorescence x-ray analysis device
JP2021128027A (en) * 2020-02-12 2021-09-02 株式会社リガク Quantitative analysis method, quantitative analysis program, and x-ray fluorescence analyzer
CN114787616A (en) * 2020-02-12 2022-07-22 株式会社理学 Quantitative analysis method, quantitative analysis program, and fluorescent X-ray analysis device
US11782000B2 (en) 2020-02-12 2023-10-10 Rigaku Corporation Quantitative analysis method, quantitative analysis program, and X-ray fluorescence spectrometer
CN114787616B (en) * 2020-02-12 2023-12-08 株式会社理学 Quantitative analysis method, quantitative analysis program, and fluorescent X-ray analysis device

Also Published As

Publication number Publication date
JP5285572B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
US10921267B2 (en) X-ray fluorescence analysis method, X-ray fluorescence analysis program, and X-ray fluorescence spectrometer
Sitko et al. Quantification in X-ray fluorescence spectrometry
CN102072912B (en) Concentration measuring method and fluorescent x-ray spectrometer
JP6861469B2 (en) Quantitative X-ray analysis and matrix thickness correction method
JP6232568B2 (en) X-ray fluorescence analyzer
CN113692533B (en) Fluorescent X-ray analyzer
JP3527955B2 (en) X-ray fluorescence analyzer
WO2021161631A1 (en) Quantitative analysis method, quantitative analysis program, and fluorescence x-ray analysis device
Barreiros et al. Quality assurance of X-ray spectrometry for chemical analysis
JP3965173B2 (en) X-ray fluorescence analyzer and program used therefor
WO2006112084A1 (en) Fluorescence x-ray spectroscope and program used therefore
JP5285572B2 (en) X-ray fluorescence analyzer
CN113748333B (en) Fluorescent X-ray analyzer
CN115343321A (en) Apparatus and method for X-ray fluorescence analysis
JP4523958B2 (en) X-ray fluorescence analyzer and program used therefor
JP5481752B2 (en) X-ray fluorescence analyzer
JP2626857B2 (en) X-ray fluorescence analysis using glass bead method
JP5874108B2 (en) X-ray fluorescence analyzer
JP5489096B2 (en) X-ray fluorescence analyzer
JP3569734B2 (en) X-ray fluorescence analyzer
CN116507943A (en) Fluorescent X-ray analysis device
JP6779531B2 (en) X-ray fluorescence analyzer
CN117460950B (en) Fluorescence X-ray analysis device
JP2000046766A (en) X-ray fluorescence analysis system by glass bead method
WO2022091598A1 (en) Fluorescent x-ray analysis device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130531

R150 Certificate of patent or registration of utility model

Ref document number: 5285572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250