[go: up one dir, main page]

JP5874108B2 - X-ray fluorescence analyzer - Google Patents

X-ray fluorescence analyzer Download PDF

Info

Publication number
JP5874108B2
JP5874108B2 JP2012071535A JP2012071535A JP5874108B2 JP 5874108 B2 JP5874108 B2 JP 5874108B2 JP 2012071535 A JP2012071535 A JP 2012071535A JP 2012071535 A JP2012071535 A JP 2012071535A JP 5874108 B2 JP5874108 B2 JP 5874108B2
Authority
JP
Japan
Prior art keywords
component
analysis target
fluorescent
sample
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012071535A
Other languages
Japanese (ja)
Other versions
JP2013205080A (en
Inventor
片岡 由行
由行 片岡
真也 原
真也 原
松尾 尚
尚 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Corp filed Critical Rigaku Corp
Priority to JP2012071535A priority Critical patent/JP5874108B2/en
Publication of JP2013205080A publication Critical patent/JP2013205080A/en
Application granted granted Critical
Publication of JP5874108B2 publication Critical patent/JP5874108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、理論マトリックス補正係数を用いて補正した検量線に基づいて分析対象試料における各成分の含有率を求める蛍光X線分析装置に関する。   The present invention relates to a fluorescent X-ray analyzer that obtains the content of each component in a sample to be analyzed based on a calibration curve corrected using a theoretical matrix correction coefficient.

従来、蛍光X線分析の検量線法において、共存元素の吸収および励起の影響、いわゆるマトリックス効果についてマトリックス補正を行うにあたっては、標準試料を用いてマトリックス補正係数を実験的に求める方法もあるが、FP法(ファンダメンタルパラメータ法)を用いて蛍光X線の理論強度を計算して理論マトリックス補正係数を求める方法、いわゆるSFP法(セミファンダメンタルパラメータ法)が、係数の信頼性の観点から広く用いられている(特許文献1参照)。ここで、理論マトリックス補正係数に関しては、どのような成分をマトリックス補正項に加補正成分として加えるかによって、複数の補正モデルがある。   Conventionally, in the calibration curve method of X-ray fluorescence analysis, in order to perform matrix correction for the effects of absorption and excitation of coexisting elements, the so-called matrix effect, there is also a method of experimentally obtaining a matrix correction coefficient using a standard sample, The so-called SFP method (semi-fundamental parameter method) is widely used from the viewpoint of the reliability of the coefficients, which uses the FP method (fundamental parameter method) to calculate the theoretical intensity of fluorescent X-rays to obtain the theoretical matrix correction factor. (See Patent Document 1). Here, regarding the theoretical matrix correction coefficient, there are a plurality of correction models depending on what component is added as an additional correction component to the matrix correction term.

特開平8−240543号公報JP-A-8-240543

しかし、分析対象試料の組成とその試料を分析するための適切な補正モデルとの関係については明確でないため、従来の蛍光X線分析装置では、補正モデルが1つしか設定されていないか、複数の補正モデルが搭載されていてもどれに設定するかは操作者に委ねられており、分析対象試料に対して不適切な補正モデルに基づいて正確でない分析が行われるおそれがある。   However, since the relationship between the composition of the sample to be analyzed and an appropriate correction model for analyzing the sample is not clear, the conventional X-ray fluorescence analyzer has only one correction model or a plurality of correction models. Even if the correction model is mounted, it is left up to the operator to set the correction model, and there is a possibility that an inaccurate analysis may be performed on the analysis target sample based on an inappropriate correction model.

本発明は前記従来の問題に鑑みてなされたもので、分析対象試料に対して適切な補正モデルが設定されて正確な分析ができる蛍光X線分析装置を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a fluorescent X-ray analysis apparatus capable of performing an accurate analysis by setting an appropriate correction model for an analysis target sample.

前記目的を達成するために、本発明の第1構成は、試料に1次X線を照射して発生する蛍光X線の強度を測定する蛍光X線分析装置であって、算出手段と、分析対象試料における含有率が不明な残分成分を指定するための残分成分指定手段とを備える。前記算出手段は、組成を仮定した複数の試料から発生すべき蛍光X線の理論強度に基づいて、蛍光X線の吸収および励起に関する理論マトリックス補正係数を計算するとともに、組成が既知の標準試料中の成分から発生する蛍光X線の測定強度と、標準試料における成分の含有率とを記憶して、両者の相関関係を、前記理論マトリックス補正係数を用いて補正した検量線として求めて記憶し、分析対象試料中の成分から発生する蛍光X線の測定強度に前記検量線を適用して分析対象試料における成分の含有率を算出する。   In order to achieve the above object, a first configuration of the present invention is a fluorescent X-ray analyzer that measures the intensity of fluorescent X-rays generated by irradiating a sample with primary X-rays. A residual component designating unit for designating a residual component whose content in the target sample is unknown. The calculation means calculates a theoretical matrix correction coefficient for absorption and excitation of fluorescent X-rays based on a theoretical intensity of fluorescent X-rays to be generated from a plurality of samples assuming compositions, and in a standard sample having a known composition. Storing the measurement intensity of the fluorescent X-rays generated from the components of and the content of the components in the standard sample, and storing the correlation between the two as a calibration curve corrected using the theoretical matrix correction coefficient, The calibration curve is applied to the measured intensity of fluorescent X-rays generated from the components in the analysis target sample to calculate the content ratio of the components in the analysis target sample.

ここで、前記算出手段は、前記残分成分指定手段で残分成分が指定された場合には、前記理論マトリックス補正係数を計算するにあたり、分析対象成分自身を含めて残分成分以外の成分を加補正成分とする。   Here, when the residual component is specified by the residual component specifying unit, the calculating unit calculates components other than the residual component including the analysis target component itself when calculating the theoretical matrix correction coefficient. An additional correction component.

第1構成の蛍光X線分析装置では、分析対象試料について残分成分が指定された場合に、分析対象成分自身を含めて残分成分以外の成分を加補正成分とすることにより、分析対象試料に対して適切な補正モデルが設定されて正確な分析ができる。   In the X-ray fluorescence analyzer of the first configuration, when a residual component is specified for an analysis target sample, the analysis target sample is obtained by using components other than the residual component including the analysis target component as additional correction components. An appropriate correction model is set for and accurate analysis can be performed.

本発明の第2構成は、試料に1次X線を照射して発生する蛍光X線の強度を測定する蛍光X線分析装置であって、算出手段と、分析対象試料における含有率が不明な残分成分を指定するための残分成分指定手段と、分析対象試料の代表組成を設定するための代表組成設定手段とを備える。前記算出手段は、組成を仮定した複数の試料から発生すべき蛍光X線の理論強度に基づいて、蛍光X線の吸収および励起に関する理論マトリックス補正係数を計算するとともに、組成が既知の標準試料中の成分から発生する蛍光X線の測定強度と、標準試料における成分の含有率とを記憶して、両者の相関関係を、前記理論マトリックス補正係数を用いて補正した検量線として求めて記憶し、分析対象試料中の成分から発生する蛍光X線の測定強度に前記検量線を適用して分析対象試料における成分の含有率を算出する。   A second configuration of the present invention is a fluorescent X-ray analyzer that measures the intensity of fluorescent X-rays generated by irradiating a sample with primary X-rays, and the content of the calculation means and the sample to be analyzed is unknown. Residual component designating means for designating the residual component and representative composition setting means for setting the representative composition of the sample to be analyzed. The calculation means calculates a theoretical matrix correction coefficient for absorption and excitation of fluorescent X-rays based on a theoretical intensity of fluorescent X-rays to be generated from a plurality of samples assuming compositions, and in a standard sample having a known composition. Storing the measurement intensity of the fluorescent X-rays generated from the components of and the content of the components in the standard sample, and storing the correlation between the two as a calibration curve corrected using the theoretical matrix correction coefficient, The calibration curve is applied to the measured intensity of fluorescent X-rays generated from the components in the analysis target sample to calculate the content ratio of the components in the analysis target sample.

ここで、前記算出手段は、前記残分成分指定手段で残分成分が指定されていない場合には、前記代表組成設定手段で設定された代表組成における分析対象成分の含有率と20%以上80%以下である所定の含有率とを比較し、その結果、前記代表組成における分析対象成分の含有率が前記所定の含有率以下である場合には、前記理論マトリックス補正係数を計算するにあたり、分析対象成分自身を含めて最も含有率の大きい成分以外の成分を加補正成分とし、前記代表組成における分析対象成分の含有率が前記所定の含有率よりも大きい場合には、前記理論マトリックス補正係数を計算するにあたり、分析対象成分以外の成分を加補正成分とする。   Here, when the residual component is not specified by the residual component specifying means, the calculating means sets the content ratio of the analysis target component in the representative composition set by the representative composition setting means to 20% or more 80% When the content ratio of the component to be analyzed in the representative composition is equal to or lower than the predetermined content ratio, the analysis is performed to calculate the theoretical matrix correction coefficient. When the component other than the component with the largest content rate including the target component itself is an additional correction component, and the content rate of the analysis target component in the representative composition is larger than the predetermined content rate, the theoretical matrix correction coefficient is calculated. In the calculation, components other than the analysis target component are used as the correction component.

第2構成の蛍光X線分析装置では、分析対象試料について残分成分が指定されない場合に、分析対象試料の代表組成における分析対象成分の含有率と所定の含有率とを比較した結果に基づいて、分析対象成分自身を含めて最も含有率の大きい成分以外の成分を加補正成分とするか、分析対象成分以外の成分を加補正成分とするかを決めることにより、分析対象試料に対して適切な補正モデルが設定されて正確な分析ができる。   In the fluorescent X-ray analyzer of the second configuration, based on the result of comparing the content ratio of the analysis target component in the representative composition of the analysis target sample with the predetermined content ratio when the residual component is not specified for the analysis target sample. By determining whether the component other than the component with the highest content, including the analysis target component itself, is the correction component or the component other than the analysis target component is the correction component, it is appropriate for the sample to be analyzed A correct correction model is set and accurate analysis is possible.

本発明の一実施形態の蛍光X線分析装置を示す概略図である。1 is a schematic view showing a fluorescent X-ray analyzer according to an embodiment of the present invention. 種々の補正モデルに基づく検量線を示す図である。It is a figure which shows the calibration curve based on various correction models.

以下、本発明の一実施形態の蛍光X線分析装置について、図にしたがって説明する。図1に示すように、この装置は、試料3にX線管などのX線源1から1次X線2を照射して発生する蛍光X線4の強度を検出手段9で測定する蛍光X線分析装置であって、算出手段10と、分析対象試料3Bにおける含有率が不明な残分成分を指定するための残分成分指定手段11と、分析対象試料3Bの代表組成を設定するための代表組成設定手段12とを備える。算出手段10、残分成分指定手段11および代表組成設定手段12は、具体的には、コンピューターおよびそれに接続された入出力機器で構成される。   Hereinafter, an X-ray fluorescence analyzer according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, this apparatus uses a detection unit 9 to measure the intensity of fluorescent X-rays 4 generated when a sample 3 is irradiated with primary X-rays 2 from an X-ray source 1 such as an X-ray tube. A line analysis apparatus for calculating a representative component of a calculation means 10, a residual component designation means 11 for designating a residual component whose content in the analysis target sample 3B is unknown, and a representative composition of the analysis target sample 3B Representative composition setting means 12. Specifically, the calculation means 10, the residual component designation means 11, and the representative composition setting means 12 are configured by a computer and input / output devices connected thereto.

検出手段9は、試料3から発生する2次X線4を分光する分光素子5と、分光された2次X線6ごとにその強度を測定する検出器7で構成される。なお、分光素子5を用いる検出手段9には、測定する2次X線4の波長が固定された固定型と、測定する2次X線4の波長を走査できる走査型とがあるが、必要に応じ、いずれをいくつ備えてもよい。また、分光素子5を用いずに、エネルギー分解能の高い検出器を検出手段とすることもできる。   The detection means 9 includes a spectroscopic element 5 that splits secondary X-rays 4 generated from the sample 3 and a detector 7 that measures the intensity of each of the split secondary X-rays 6. The detection means 9 using the spectroscopic element 5 includes a fixed type in which the wavelength of the secondary X-ray 4 to be measured is fixed and a scanning type in which the wavelength of the secondary X-ray 4 to be measured can be scanned. Any number may be provided depending on the situation. In addition, a detector having high energy resolution can be used as the detection means without using the spectroscopic element 5.

算出手段10は、組成を仮定した複数の試料3から発生すべき蛍光X線4の理論強度に基づいて、蛍光X線4の吸収および励起に関する理論マトリックス補正係数を計算するとともに、組成が既知の標準試料3A中の成分から発生する蛍光X線4の測定強度と、標準試料3Aにおける成分の含有率とを記憶して、両者の相関関係を、前記理論マトリックス補正係数を用いて補正した検量線として求めて記憶し、分析対象試料3B中の成分から発生する蛍光X線4の測定強度に前記検量線を適用して分析対象試料3Bにおける成分の含有率を算出する。   The calculation means 10 calculates a theoretical matrix correction coefficient related to absorption and excitation of the fluorescent X-ray 4 based on the theoretical intensity of the fluorescent X-ray 4 to be generated from the plurality of samples 3 assuming the composition, and the composition is known. A calibration curve in which the measured intensity of the fluorescent X-rays 4 generated from the components in the standard sample 3A and the content of the components in the standard sample 3A are stored, and the correlation between the two is corrected using the theoretical matrix correction coefficient. Is calculated and stored, and the content of the component in the analysis target sample 3B is calculated by applying the calibration curve to the measured intensity of the fluorescent X-ray 4 generated from the component in the analysis target sample 3B.

また、算出手段10は、第1の加補正成分決定機能を有しており、残分成分指定手段11で残分成分が指定された場合には、前記理論マトリックス補正係数を計算するにあたり、分析対象成分自身を含めて残分成分以外の成分を加補正成分とする。   Further, the calculation means 10 has a first correction component determination function, and when a residual component is designated by the residual component designation means 11, an analysis is performed when calculating the theoretical matrix correction coefficient. Components other than the residual component including the target component itself are used as an additional correction component.

さらに、算出手段10は、第2の加補正成分決定機能も有しており、残分成分指定手段11で残分成分が指定されていない場合には、代表組成設定手段12で設定された代表組成における分析対象成分の含有率と20%以上80%以下である所定の含有率とを比較し、その結果、前記代表組成における分析対象成分の含有率が前記所定の含有率以下である場合には、前記理論マトリックス補正係数を計算するにあたり、分析対象成分自身を含めて最も含有率の大きい成分以外の成分を加補正成分とし、前記代表組成における分析対象成分の含有率が前記所定の含有率よりも大きい場合には、前記理論マトリックス補正係数を計算するにあたり、分析対象成分以外の成分を加補正成分とする。   Further, the calculation means 10 also has a second additional correction component determination function, and when the residual component is not designated by the residual component designation means 11, the representative composition set by the representative composition setting means 12 is set. When the content of the analysis target component in the composition is compared with a predetermined content of 20% or more and 80% or less, and as a result, the content of the analysis target component in the representative composition is equal to or less than the predetermined content In calculating the theoretical matrix correction coefficient, components other than the component with the largest content rate including the analysis target component itself are added correction components, and the content rate of the analysis target component in the representative composition is the predetermined content rate. If the value is larger than the above, components other than the analysis target component are used as additional correction components in calculating the theoretical matrix correction coefficient.

ここで、20%以上80%以下である所定の含有率は、当該蛍光X線分析装置による分析が想定される分析対象試料3Bの組成に応じて適宜決められ、例えば50%である。なお、本願で試料3というときは、標準試料3Aにも分析対象試料3Bにも限定されず、組成を仮定した仮想の試料も含まれる。また、本願で成分というときは、元素のみならず、酸化物などの化合物も含まれる。   Here, the predetermined content rate of 20% or more and 80% or less is appropriately determined according to the composition of the analysis target sample 3B assumed to be analyzed by the fluorescent X-ray analyzer, and is, for example, 50%. Note that the sample 3 in the present application is not limited to the standard sample 3A and the analysis target sample 3B, and includes a virtual sample assuming a composition. The term “component” used herein includes not only elements but also compounds such as oxides.

算出手段10の第1、第2の加補正成分決定機能の意義について、以下に説明する。まず、従来用いられている3つの補正モデルについて説明する。   The significance of the first and second correction component determination functions of the calculation means 10 will be described below. First, three correction models conventionally used will be described.

[補正モデルA]
分析対象成分自身を含めて、残分成分以外の成分を加補正成分とする補正モデルである。ここで、残分成分とは、分析対象試料において含有率が不明として扱われる成分であり、分析対象成分にも加補正成分にもならない。この補正モデルAによる検量線は、次式(1)で表される。
[Correction model A]
This is a correction model in which components other than the residual component including the analysis target component itself are added correction components. Here, the residual component is a component whose content rate is treated as unknown in the analysis target sample, and is neither an analysis target component nor a correction component. A calibration curve based on the correction model A is expressed by the following equation (1).

Wi =(BIi +C)(1+Σαj Wj ) …(1) Wi = (BIi + C) (1 + .SIGMA..alpha.j Wj) (1)

ここで、iは分析対象成分を、jは加補正成分を表しており、Wi は分析対象成分の含有率、B,Cは検量線定数、Ii は分析対象成分iからの蛍光X線強度、Wj は加補正成分jの含有率、αj は加補正成分jの含有率Wj にかかる理論マトリックス補正係数である。補正モデルAでは、分析対象成分iは加補正成分jに含まれる。試料が2つの成分からなる2元系試料である場合には、補正モデルAによる検量線は、次式(2)になる。   Here, i represents an analysis target component, j represents an additional correction component, Wi is a content rate of the analysis target component, B and C are calibration curve constants, Ii is a fluorescent X-ray intensity from the analysis target component i, Wj is a content ratio of the additional correction component j, and αj is a theoretical matrix correction coefficient relating to the content ratio Wj of the additional correction component j. In the correction model A, the analysis target component i is included in the additional correction component j. When the sample is a binary sample composed of two components, the calibration curve based on the correction model A is expressed by the following equation (2).

Wi =(BIi +C)(1+αi Wi ) …(2) Wi = (BIi + C) (1 + αi Wi) (2)

この式(2)で表される、補正モデルAによる2元系試料の検量線について検討する。基本的には、2元系試料の検量線は曲線となるが、主に分析線(分析対象成分からの蛍光X線)に対する分析対象成分と共存成分のX線の吸収の度合いにより、曲線の形状は異なる。分析対象成分よりも共存成分の吸収が大きい場合には、図2にB(1)で示すような曲線に、逆に分析対象成分よりも共存成分の吸収が小さい場合には、B(2)で示すような曲線に、両者の吸収が同程度の場合には、B(3)で示すような曲線になる。これに対し、式(2)の検量線は近似的に直線検量線になり、その基準検量線、すなわちマトリックス補正前のBIi +Cは、式(2)において分析対象成分の含有率Wi が0に近いときにマトリックス補正項αi Wi を含むかっこ内の1+αi Wi がほぼ1となることから、図2の曲線B(1)、B(2)に対して、含有率0からの接線A(1)、A(2)となることが分かる。   A calibration curve of the binary system sample by the correction model A represented by the equation (2) will be examined. Basically, the calibration curve of the binary sample is a curve, but the curve of the curve mainly depends on the degree of X-ray absorption of the analysis target component and the coexisting component with respect to the analysis line (fluorescence X-ray from the analysis target component). The shape is different. When the absorption of the coexisting component is larger than that of the analysis target component, the curve shown by B (1) in FIG. 2 is reversed. Conversely, when the absorption of the coexistence component is smaller than that of the analysis target component, B (2) When the absorption of both is similar to the curve as shown by (2), the curve becomes as shown by B (3). On the other hand, the calibration curve of the equation (2) is approximately a linear calibration curve, and the reference calibration curve, that is, BIi + C before matrix correction, is 0 in the content ratio Wi of the analysis target component in the equation (2). Since 1 + αi Wi in the parenthesis including the matrix correction term αi Wi is almost 1 when close, the tangent A (1) from the content 0 to the curves B (1) and B (2) in FIG. , A (2).

[補正モデルB]
分析対象成分自身および残分成分以外の成分を加補正成分とする補正モデルである。つまり、分析対象成分自身を加補正成分に含めない点で補正モデルAと異なる。この補正モデルBによる検量線は、次式(3)で表される。
[Correction model B]
This is a correction model in which components other than the analysis target component itself and the residual component are added correction components. That is, it differs from the correction model A in that the analysis target component itself is not included in the additional correction component. A calibration curve based on this correction model B is expressed by the following equation (3).

Wi =(AIi+BIi +C)(1+Σαj Wj ) …(3) Wi = (AIi 2 + BIi + C) (1 + Σαj Wj) ... (3)

ここで、Aは検量線定数であり、補正モデルBでは、分析対象成分iは加補正成分jに含まれない。試料が2元系試料である場合には、加補正成分jはないため、補正モデルBによる検量線は、次式(4)になる。   Here, A is a calibration curve constant, and in the correction model B, the analysis target component i is not included in the additional correction component j. When the sample is a binary sample, since there is no additional correction component j, the calibration curve by the correction model B is expressed by the following equation (4).

Wi =AIi+BIi +C …(4) Wi = AIi 2 + BIi + C ... (4)

この式(4)で表される、補正モデルBによる2元系試料の検量線は、図2の曲線B(1)、B(2)になる。   The calibration curve of the binary system sample by the correction model B represented by the equation (4) is the curves B (1) and B (2) in FIG.

[補正モデルC]
分析対象成分以外の全成分を加補正成分とする補正モデルである。この補正モデルCによる検量線も、式(1)で表されるが、補正モデルCでは、分析対象成分iは加補正成分jに含まれない。試料が2元系試料である場合には、補正モデルCによる検量線は、次式(5)になる。
[Correction model C]
This is a correction model in which all components other than the analysis target component are added correction components. The calibration curve based on the correction model C is also expressed by equation (1). However, in the correction model C, the analysis target component i is not included in the additional correction component j. When the sample is a binary sample, the calibration curve based on the correction model C is expressed by the following equation (5).

Wi =(BIi +C)(1+αj Wj ) …(5) Wi = (BIi + C) (1 + αj Wj) (5)

この式(5)の検量線は、式(5)において分析対象成分の含有率Wi が100%に近いときにマトリックス補正項αj Wj を含むかっこ内の1+αj Wj がほぼ1となることから、近似的に含有率0%と含有率100%との間を結ぶ直線検量線になり、その基準検量線は、図2の直線Cとなることが分かる。   The calibration curve of this equation (5) is approximate because 1 + αj Wj in the parenthesis including the matrix correction term αj Wj is almost 1 when the content ratio Wi of the analysis target component is close to 100% in equation (5). In particular, it becomes a linear calibration curve connecting between the content rate 0% and the content rate 100%, and it can be seen that the reference calibration curve is the straight line C in FIG.

次に、補正モデルAと補正モデルBとの違いについて検討する。補正モデルAによる検量線を示す式(1)において、記号jを分析対象成分自身以外の加補正成分のみ示す記号として書き換えると、次式(6)になる。   Next, the difference between the correction model A and the correction model B will be examined. In the equation (1) indicating the calibration curve by the correction model A, when the symbol j is rewritten as a symbol indicating only an additional correction component other than the analysis target component itself, the following equation (6) is obtained.

Wi =(BIi +C)(1+αi Wi +Σαj Wj ) …(6) Wi = (BIi + C) (1 + αi Wi + Σαj Wj) (6)

この式(6)を変形すると、次式(7)になる。   When this equation (6) is transformed, the following equation (7) is obtained.

Wi =[(BIi +C)/{1−αi (BIi +C)}](1+Σαj Wj ) …(7) Wi = [(BIi + C) / {1-.alpha.i (BIi + C)}] (1 + .SIGMA..alpha.j Wj) (7)

ここで、式(7)において(1+Σαj Wj )=1とした基準検量線を示す式を、変数Wi ,Ii による2次曲線を示す式としてみると、その2次曲線が双曲線であることから、本願発明者は、補正モデルAは基準検量線を双曲線とすることと等価であることを見出した。一方、補正モデルBによる検量線を示す式(3)から、補正モデルBでは基準検量線が放物線になる。さらに、式(7)と式(3)では、分析対象成分自身以外の各加補正成分jについて同じ値の理論マトリックス補正係数αj が得られることを考えあわせて、本願発明者は、補正モデルAと補正モデルBとの違いは基準検量線のフィッティングの違いであることを見出した。   Here, when the equation showing the standard calibration curve with (1 + Σαj Wj) = 1 in equation (7) is considered as an equation showing a quadratic curve by variables Wi and Ii, the quadratic curve is a hyperbola. The inventor of the present application has found that the correction model A is equivalent to making the reference calibration curve a hyperbola. On the other hand, from the equation (3) indicating the calibration curve by the correction model B, the reference calibration curve becomes a parabola in the correction model B. Further, in the equations (7) and (3), the inventor of the present application considers the correction model A in consideration that the same value of the theoretical matrix correction coefficient αj is obtained for each additional correction component j other than the analysis target component itself. And the correction model B were found to be differences in the fitting of the standard calibration curve.

一般的にマトリックス効果は蛍光X線の励起よりも吸収による場合が多いので、2元系試料において蛍光X線の吸収のみ考慮すると、蛍光X線強度と含有率との関係は近似的に双曲線で表される。このような観点から、補正モデルAは補正モデルBよりもフィッティングにおいて優れているといえる。また、含有率の範囲が広く、標準試料の点数が少ない場合に、補正モデルBで検量線を作成すると基準検量線が放物線になり、フィッティング誤差が生じやすいのに対し、補正モデルAで検量線を作成すると基準検量線が直線になり、フィッティング誤差が補正モデルBよりも小さくなることを、本願発明者は見出した。以上のような知見に基づき、本願発明者は、以下のように、算出手段10に第1、第2の加補正成分決定機能をもたせた。   In general, since the matrix effect is more often caused by absorption than the excitation of fluorescent X-rays, when only the absorption of fluorescent X-rays is considered in a binary sample, the relationship between the fluorescent X-ray intensity and the content is approximately a hyperbola. expressed. From this point of view, it can be said that the correction model A is superior to the correction model B in fitting. In addition, when the content range is wide and the number of standard samples is small, creating a calibration curve with the correction model B results in a parabolic curve for the reference calibration curve, which is likely to cause a fitting error. The inventor of the present application has found that the reference calibration curve becomes a straight line and the fitting error becomes smaller than that of the correction model B. Based on the above knowledge, the inventor of the present application provided the calculation means 10 with the first and second correction component determination functions as follows.

[第1の加補正成分決定機能]
残分成分指定手段11で残分成分が指定された場合に、加補正成分を決定する機能である。この場合には、残分成分の含有率は不明として扱われ、分析対象成分以外の全成分を加補正成分として各含有率が必要となる補正モデルCを設定することはできないので、補正モデルAと補正モデルBが候補となるが、上述した知見に基づき、適切な補正モデルとして補正モデルAを設定する。つまり、算出手段10は、第1の加補正成分決定機能として、残分成分指定手段11で残分成分が指定された場合には、理論マトリックス補正係数を計算するにあたり、分析対象成分自身を含めて残分成分以外の成分を加補正成分とする。
[First correction component determination function]
This is a function for determining an additional correction component when a residual component is designated by the residual component designation means 11. In this case, the content rate of the residual component is treated as unknown, and it is not possible to set a correction model C that requires each content rate with all components other than the analysis target component as additional correction components. The correction model B is a candidate, but the correction model A is set as an appropriate correction model based on the above-described knowledge. In other words, the calculation means 10 includes the analysis target component itself when calculating the theoretical matrix correction coefficient when the residual component is designated by the residual component designation means 11 as the first correction component determination function. Then, components other than the remaining components are used as additional correction components.

[第2の加補正成分決定機能]
残分成分指定手段11で残分成分が指定されていない場合に、加補正成分を決定する機能である。この場合には、分析対象成分以外の全成分を加補正成分とする補正モデルCを設定する以外に、補正モデルAまたは補正モデルBにおいて特定の成分を自動的に残分成分として設定することもできる。ただし、上述した知見に基づき、補正モデルBよりも補正モデルAが優先されるので、補正モデルCと補正モデルAが候補となる。
[Second correction component determination function]
This is a function for determining an additional correction component when the residual component is not specified by the residual component specifying means 11. In this case, in addition to setting the correction model C in which all components other than the analysis target component are added correction components, a specific component in the correction model A or the correction model B may be automatically set as a residual component. it can. However, since the correction model A has priority over the correction model B based on the above-described knowledge, the correction model C and the correction model A are candidates.

分析対象試料3Bの代表組成における分析対象成分の含有率が、前述のように適宜決められた所定の含有率以下である場合には、最も含有率の大きい成分(主成分)は分析対象成分ではなく、検量線は、例えば図2にB(1)で示したような曲線になる。この場合に補正モデルCを設定すると、最も含有率の大きい成分も加補正成分になって補正量が大きくなり、最も含有率の大きい成分の含有率の誤差および同成分の含有率にかかる理論マトリックス補正係数の誤差が、分析対象成分の含有率の誤差になる。   When the content of the analysis target component in the representative composition of the analysis target sample 3B is equal to or less than the predetermined content determined as described above, the component (main component) having the largest content is not the analysis target component. Instead, the calibration curve is a curve as shown by B (1) in FIG. 2, for example. In this case, when the correction model C is set, the component with the highest content rate becomes an additional correction component and the correction amount increases, and the error in the content rate of the component with the highest content rate and the theoretical matrix regarding the content rate of the same component The error in the correction coefficient becomes the error in the content rate of the analysis target component.

一方、この場合に最も含有率の大きい成分を残分成分として補正モデルAを設定すると、最も含有率の大きい成分は加補正成分にならないため、補正モデルCを設定したときよりも、補正量が小さくなり、分析対象成分の含有率の誤差も小さくなる。例えば、Fe 基中のNi の分析において、分析対象成分Ni が含有率1%で共存成分Fe が含有率99%の試料を、補正モデルCを設定して分析すると、Fe の含有率の相対分析誤差が1%のとき、Ni の含有率の相対分析誤差は0.6%になるが、Fe を残分成分として補正モデルAを設定して分析すると、Fe は加補正成分にならないため、このような誤差は生じず、Ni の含有率の誤差がより小さくなる。したがって、適切な補正モデルとして、最も含有率の大きい成分を残分成分とする補正モデルAを設定する。   On the other hand, in this case, if the correction model A is set with the component with the highest content rate as the residual component, the component with the highest content rate does not become the additional correction component, so the correction amount is larger than when the correction model C is set. It becomes smaller and the error of the content rate of the component to be analyzed becomes smaller. For example, in the analysis of Ni in the Fe group, when a sample having an analysis target component Ni of 1% content and a coexisting component Fe content of 99% is set with the correction model C and analyzed, a relative analysis of the Fe content is performed. When the error is 1%, the relative analysis error of the Ni content is 0.6%. However, when Fe is used as a residual component and analysis is performed by setting the correction model A, Fe does not become an additional correction component. Such an error does not occur, and the Ni content rate error becomes smaller. Therefore, as an appropriate correction model, a correction model A having a component with the largest content rate as a residual component is set.

分析対象試料3Bの代表組成における分析対象成分の含有率が、前述のように適宜決められた所定の含有率よりも大きい場合には、最も含有率の大きい成分は分析対象成分になり、検量線は、例えば図2にB(2)で示したような曲線になる。この曲線は高含有率で勾配が小さくなるので、補正モデルCを設定する方が補正モデルAを設定するよりも、分析対象成分の含有率の誤差が小さくなる。例えば、Zn −Al 合金中のZn の分析において、分析対象成分Zn が含有率97%で共存成分Al が含有率3%の試料を、Al を残分成分として補正モデルAを設定して分析すると、Zn の蛍光X線Zn −Kα線の強度の相対分析誤差が−0.5%のとき、Zn の含有率の定量値は95.9%になり、含有率の相対分析誤差−1.1%(95.9%−97%)が、蛍光X線強度の相対分析誤差−0.5%よりも大きくなる。   When the content rate of the analysis target component in the representative composition of the analysis target sample 3B is larger than the predetermined content rate determined as described above, the component with the highest content rate becomes the analysis target component, and the calibration curve Becomes a curve as shown by B (2) in FIG. 2, for example. Since this curve has a high content rate and a small gradient, setting the correction model C results in a smaller error in the content rate of the analysis target component than setting the correction model A. For example, in the analysis of Zn in a Zn-Al alloy, a sample with an analysis target component Zn content of 97% and a coexistence component Al content of 3% is set and analyzed with the correction model A set as Al as a residual component. When the relative analysis error of the intensity of the fluorescent X-ray Zn-Kα ray of Zn is −0.5%, the quantitative value of the Zn content is 95.9%, and the relative analysis error of the content −1.1 % (95.9% -97%) is larger than the relative analysis error of fluorescent X-ray intensity -0.5%.

しかし、補正モデルCを設定して分析すると、同様に蛍光X線強度の相対分析誤差が−0.5%のとき、Zn の含有率の定量値は96.5%になり、含有率の相対分析誤差−0.5%(96.5%−97%)が、蛍光X線強度の相対分析誤差−0.5%と同等になる。このとき、加補正成分であるAl の含有率の誤差は、含有率が小さいために絶対値で小さく、また同成分のマトリックス補正項αAl Al も小さくなり、加補正成分Al の含有率の相対分析誤差が、分析対象成分Zn の含有率の定量値に与える影響は、蛍光X線強度の相対分析誤差−0.5%が与える影響よりも大幅に小さくなる。したがって、適切な補正モデルとして補正モデルCを設定する。 However, when the correction model C is set and analyzed, when the relative analysis error of the fluorescent X-ray intensity is −0.5%, the quantitative value of the Zn content is 96.5%, and the relative content of An analysis error of -0.5% (96.5% -97%) is equivalent to a relative analysis error of fluorescent X-ray intensity of -0.5%. At this time, the error in the content rate of the correction component Al is small in absolute value because the content rate is small, and the matrix correction term α Al W Al of the same component is also small. The influence of the relative analysis error on the quantitative value of the content ratio of the analysis target component Zn is significantly smaller than the influence of the relative analysis error of the fluorescent X-ray intensity -0.5%. Therefore, the correction model C is set as an appropriate correction model.

つまり、算出手段10は、第2の加補正成分決定機能として、残分成分指定手段11で残分成分が指定されていない場合には、代表組成設定手段12で設定された代表組成における分析対象成分の含有率と20%以上80%以下である所定の含有率とを比較し、その結果、代表組成における分析対象成分の含有率が所定の含有率以下である場合には、理論マトリックス補正係数を計算するにあたり、分析対象成分自身を含めて最も含有率の大きい成分以外の成分を加補正成分とし、代表組成における分析対象成分の含有率が所定の含有率よりも大きい場合には、理論マトリックス補正係数を計算するにあたり、分析対象成分以外の成分を加補正成分とする。   In other words, the calculation unit 10 uses the second component component determination function as the second correction component determination function when the residual component is not designated by the residual component designation unit 11 and the analysis target in the representative composition set by the representative composition setting unit 12. When the content ratio of the component is compared with a predetermined content ratio of 20% or more and 80% or less, and as a result, the content ratio of the analysis target component in the representative composition is equal to or lower than the predetermined content ratio, the theoretical matrix correction coefficient When calculating the component other than the component with the largest content, including the analysis target component itself, as the correction component, and the content of the analysis target component in the representative composition is greater than the predetermined content, the theoretical matrix In calculating the correction coefficient, components other than the analysis target component are used as additional correction components.

以上のように、本実施形態の蛍光X線分析装置では、分析対象試料3Bについて残分成分が指定された場合に、分析対象成分自身を含めて残分成分以外の成分を加補正成分とすることにより、分析対象試料3Bに対して適切な補正モデルが設定されて正確な分析ができる。また、分析対象試料3Bについて残分成分が指定されない場合に、分析対象試料3Bの代表組成における分析対象成分の含有率と所定の含有率とを比較した結果に基づいて、分析対象成分自身を含めて最も含有率の大きい成分以外の成分を加補正成分とするか、分析対象成分以外の成分を加補正成分とするかを決めることにより、分析対象試料3Bに対して適切な補正モデルが設定されて正確な分析ができる。   As described above, in the X-ray fluorescence analyzer of the present embodiment, when a residual component is designated for the analysis target sample 3B, components other than the residual component including the analysis target component itself are used as an additional correction component. Thus, an appropriate correction model is set for the analysis target sample 3B, and accurate analysis can be performed. In addition, when the residual component is not specified for the analysis target sample 3B, the analysis target component itself is included based on the result of comparing the content rate of the analysis target component in the representative composition of the analysis target sample 3B with the predetermined content rate. By determining whether a component other than the component with the largest content ratio is to be an additional correction component or a component other than the analysis target component is to be an additional correction component, an appropriate correction model is set for the analysis target sample 3B. Accurate analysis.

なお、本実施形態の蛍光X線分析装置では、算出手段10に第1、第2の加補正成分決定機能を両方もたせたが、本発明の蛍光X線分析装置では、算出手段に第1、第2の加補正成分決定機能のいずれか一方のみをもたせてもよく、第1の加補正成分決定機能のみをもたせる場合には、代表組成設定手段を備える必要はない。   In the X-ray fluorescence analyzer of the present embodiment, the calculation means 10 has both the first and second correction component determination functions. However, in the X-ray fluorescence analyzer of the present invention, the calculation means has the first, Only one of the second correction component determination functions may be provided, and when only the first correction component determination function is provided, it is not necessary to include a representative composition setting unit.

1 X線源
2 1次X線
3 試料
3A 標準試料
3B 分析対象試料
4 蛍光X線
9 検出手段
10 算出手段
11 残分成分指定手段
12 代表組成設定手段
DESCRIPTION OF SYMBOLS 1 X-ray source 2 Primary X-ray 3 Sample 3A Standard sample 3B Analysis object sample 4 Fluorescence X-ray 9 Detection means 10 Calculation means 11 Residual component designation means 12 Representative composition setting means

Claims (2)

試料に1次X線を照射して発生する蛍光X線の強度を測定する蛍光X線分析装置であって、
組成を仮定した複数の試料から発生すべき蛍光X線の理論強度に基づいて、蛍光X線の吸収および励起に関する理論マトリックス補正係数を計算するとともに、組成が既知の標準試料中の成分から発生する蛍光X線の測定強度と、標準試料における成分の含有率とを記憶して、両者の相関関係を、前記理論マトリックス補正係数を用いて補正した検量線として求めて記憶し、分析対象試料中の成分から発生する蛍光X線の測定強度に前記検量線を適用して分析対象試料における成分の含有率を算出する算出手段と、
分析対象試料において含有率が不明として扱われる成分であって、分析対象成分にも加補正成分にもならない残分成分を指定するための残分成分指定手段とを備え、
前記算出手段が、前記残分成分指定手段で残分成分が指定された場合には、前記理論マトリックス補正係数を計算するにあたり、分析対象成分自身を含めて残分成分以外の成分を加補正成分とする蛍光X線分析装置。
A fluorescent X-ray analyzer that measures the intensity of fluorescent X-rays generated by irradiating a sample with primary X-rays,
Based on the theoretical intensities of fluorescent X-rays to be generated from a plurality of samples assuming the composition, a theoretical matrix correction factor for the absorption and excitation of the fluorescent X-rays is calculated, and the components are generated from components in a standard sample whose composition is known. The measured intensity of fluorescent X-rays and the content of components in the standard sample are stored, and the correlation between the two is obtained and stored as a calibration curve corrected using the theoretical matrix correction coefficient, A calculation means for calculating the content rate of the component in the sample to be analyzed by applying the calibration curve to the measurement intensity of the fluorescent X-ray generated from the component;
A component that is treated as an unknown content rate in an analysis target sample, and includes a residual component designation means for designating a residual component that is neither an analysis target component nor an additional correction component ;
In the case where the residual component is specified by the residual component specifying unit, the calculating unit calculates components other than the residual component including the analysis target component itself when calculating the theoretical matrix correction coefficient. X-ray fluorescence analyzer.
試料に1次X線を照射して発生する蛍光X線の強度を測定する蛍光X線分析装置であって、
組成を仮定した複数の試料から発生すべき蛍光X線の理論強度に基づいて、蛍光X線の吸収および励起に関する理論マトリックス補正係数を計算するとともに、組成が既知の標準試料中の成分から発生する蛍光X線の測定強度と、標準試料における成分の含有率とを記憶して、両者の相関関係を、前記理論マトリックス補正係数を用いて補正した検量線として求めて記憶し、分析対象試料中の成分から発生する蛍光X線の測定強度に前記検量線を適用して分析対象試料における成分の含有率を算出する算出手段と、
分析対象試料において含有率が不明として扱われる成分であって、分析対象成分にも加補正成分にもならない残分成分を指定するための残分成分指定手段と、
分析対象試料の代表組成を設定するための代表組成設定手段とを備え、
前記算出手段が、前記残分成分指定手段で残分成分が指定されていない場合には、前記代表組成設定手段で設定された代表組成における分析対象成分の含有率と20%以上80%以下である所定の含有率とを比較し、その結果、前記代表組成における分析対象成分の含有率が前記所定の含有率以下である場合には、前記理論マトリックス補正係数を計算するにあたり、分析対象成分自身を含めて最も含有率の大きい成分以外の成分を加補正成分とし、前記代表組成における分析対象成分の含有率が前記所定の含有率よりも大きい場合には、前記理論マトリックス補正係数を計算するにあたり、分析対象成分以外の成分を加補正成分とする蛍光X線分析装置。
A fluorescent X-ray analyzer that measures the intensity of fluorescent X-rays generated by irradiating a sample with primary X-rays,
Based on the theoretical intensities of fluorescent X-rays to be generated from a plurality of samples assuming the composition, a theoretical matrix correction coefficient for absorption and excitation of the fluorescent X-rays is calculated, and the components are generated from components in a standard sample with known compositions. The measured intensity of fluorescent X-rays and the content of components in the standard sample are stored, and the correlation between the two is obtained and stored as a calibration curve corrected using the theoretical matrix correction coefficient, A calculation means for calculating the content rate of the component in the sample to be analyzed by applying the calibration curve to the measurement intensity of the fluorescent X-ray generated from the component;
A residual component designating means for designating a residual component that is treated as unknown in the analysis target sample and that is neither an analysis target component nor an additional correction component ;
A representative composition setting means for setting a representative composition of the sample to be analyzed;
In the case where the residual component is not specified by the residual component specifying unit, the calculating unit has a content ratio of the analysis target component in the representative composition set by the representative composition setting unit and not less than 20% and not more than 80%. When the content ratio of the analysis target component in the representative composition is equal to or lower than the predetermined content ratio as a result of comparison with a certain predetermined content rate, the calculation target component itself is calculated in calculating the theoretical matrix correction coefficient. When the component other than the component with the largest content including the correction component is an additional correction component and the content of the analysis target component in the representative composition is larger than the predetermined content, the calculation of the theoretical matrix correction factor is performed. An X-ray fluorescence analyzer that uses components other than the analysis target component as correction components.
JP2012071535A 2012-03-27 2012-03-27 X-ray fluorescence analyzer Active JP5874108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012071535A JP5874108B2 (en) 2012-03-27 2012-03-27 X-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012071535A JP5874108B2 (en) 2012-03-27 2012-03-27 X-ray fluorescence analyzer

Publications (2)

Publication Number Publication Date
JP2013205080A JP2013205080A (en) 2013-10-07
JP5874108B2 true JP5874108B2 (en) 2016-03-02

Family

ID=49524333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012071535A Active JP5874108B2 (en) 2012-03-27 2012-03-27 X-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JP5874108B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038702A1 (en) * 2015-08-28 2017-03-09 株式会社リガク X-ray fluorescence analyzer
KR101908807B1 (en) * 2016-12-22 2018-10-16 주식회사 포스코 Apparatus and method for measuring element of metal sample
CN107290376B (en) * 2017-06-26 2019-10-18 中国建材检验认证集团股份有限公司 A kind of calculation method of the matrix correction coefficient of XRF analysis

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3377328B2 (en) * 1995-03-01 2003-02-17 理学電機工業株式会社 X-ray fluorescence analysis method
JP3635337B2 (en) * 2001-03-16 2005-04-06 理学電機工業株式会社 X-ray fluorescence analysis method and apparatus

Also Published As

Publication number Publication date
JP2013205080A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JP5975181B2 (en) X-ray fluorescence analysis method and X-ray fluorescence analyzer
JP6232568B2 (en) X-ray fluorescence analyzer
EP4033231B1 (en) Quantitative analysis method, quantitative analysis program, and x-ray fluorescence spectrometer
JP5697388B2 (en) X-ray analysis method, X-ray analysis apparatus and program thereof
WO2015056305A1 (en) X-ray fluorescence analysis method and x-ray fluorescence analysis device
JP5874108B2 (en) X-ray fluorescence analyzer
WO2021161631A1 (en) Quantitative analysis method, quantitative analysis program, and fluorescence x-ray analysis device
JP3965173B2 (en) X-ray fluorescence analyzer and program used therefor
WO2006112084A1 (en) Fluorescence x-ray spectroscope and program used therefore
JP3610256B2 (en) X-ray fluorescence analyzer
JP4523958B2 (en) X-ray fluorescence analyzer and program used therefor
CN113748333B (en) Fluorescent X-ray analyzer
WO2024095551A1 (en) Fluorescent x-ray analysis method, analysis program, and fluorescent x-ray analysis device
JP2001091481A (en) Background correction method for fluorescent x-ray analyzer
JP2014041065A (en) X-ray analyzer and computer program
JP6713110B2 (en) Background removal method and X-ray fluorescence analyzer
JP7233756B2 (en) X-ray fluorescence analyzer
JP3569734B2 (en) X-ray fluorescence analyzer
JP7653718B2 (en) X-ray fluorescence analyzer
JP2006313132A (en) Sample analysis method and X-ray analyzer
WO2022091597A1 (en) Fluorescent x-ray analysis device
WO2020003675A1 (en) Total reflection x-ray fluorescence analysis device and measuring method
JP3377328B2 (en) X-ray fluorescence analysis method
JP6779531B2 (en) X-ray fluorescence analyzer
JPH09269305A (en) Method and apparatus for fluorescent x-ray analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151215

R150 Certificate of patent or registration of utility model

Ref document number: 5874108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250