JP3610256B2 - X-ray fluorescence analyzer - Google Patents
X-ray fluorescence analyzer Download PDFInfo
- Publication number
- JP3610256B2 JP3610256B2 JP8588799A JP8588799A JP3610256B2 JP 3610256 B2 JP3610256 B2 JP 3610256B2 JP 8588799 A JP8588799 A JP 8588799A JP 8588799 A JP8588799 A JP 8588799A JP 3610256 B2 JP3610256 B2 JP 3610256B2
- Authority
- JP
- Japan
- Prior art keywords
- fluorescent
- rays
- ray
- sample
- diffracted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measurement Of Radiation (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は試料にX線を照射し、試料から発する蛍光X線を測定して試料を構成している元素の含有量を求める蛍光X線分析装置に関する。
【0002】
【従来の技術】
図1はエネルギー分散型蛍光X線分析装置の構成を示す図である。X線管用高圧電源1より真空管の一種であるX線管2に高速電子を衝突させ、発生した1次X線を試料3に照射する。このとき発生するX線のエネルギー分布は図2に示すようにターゲットの材質に応じた特性X線が連続X線に重畳した分布となる。試料3からは色々の蛍光X線が発生し、これを半導体検出器4で検出する。半導体検出器4には検出器用高圧電源5から電圧が印加されている。半導体検出器4の出力は階段波状になり、階段の各1段がX線を検出していることを示し、各段の高さが波長、即ちエネルギーを表している。パルスプロセッサ6では、階段の各段をその高さに比例したパルスに変換し、ADC7では1つのパルス毎にその高さをデジタルデータに変換する。1つのパルスが変換されると、データメモリ8でパルスの高さに応じた位置に1を加算し、その結果、横軸に蛍光X線エネルギー、縦軸に量を表すスペクトラムが生成され、コンピュータシステム9でその内容を読みだすことにより、定性分析、定量分析を行って表示する。
【0003】
図3はステンレス(sus304)を測定した時のスペクトルデータを示す図であり、横軸はエネルギー、縦軸は元素の含有量に対応している。一方、コンピュータ内には予め各元素特有の蛍光X線のエネルギー、その強度がデータベース化して保存されており、図3のスペクトルデータと比較することにより、あるピークがどの元素の蛍光X線かを判断し、試料に含まれる元素を特定することができる。例えば、図3のスペクトラムで、1番強いピークが6.4keVにあることが分かり、データベースから6.4keVの蛍光X線を調べると、Feの蛍光X線のうちKα線であることが分かる。
【0004】
こうして定性分析を行った後、その元素がどの程度含まれているかの定量分析が行われる。定性分析された元素の強度を算出する場合、スペクトラムのエネルギーの上限と下限を指定し、その範囲内の値を積分すれば良い。しかし、実際にはバックグラウンドがあり、蛍光X線同士が重なることもあって単純に求められない。例えば、図3において、実際にはMnKαにはCrKβが、FeKαにはMnKβが重なっている。
【0005】
このように蛍光X線同士が重なっている時は、それぞれの元素の純粋なスペクトラムを測定したデータベースを用い、これと比較演算して正確な積分強度を算出する。例えば、図4において、FeKαとMnKβとが重なっている場合、それぞれの純粋なスペクトルをFeKαp、MnKβpとすると、FeKαは、
FeKα=A×FeKαp+B×MnKβp ……(1)
のように表すことができる。この関係は図4のスペクトラムの各エネルギーポイントについて成立するので、複数の点について(1)式を求め、これを解くことにより、定数A、Bが求められ、その結果純粋なスペクトルを求めることができ、定量分析が行われる。
【0006】
【発明が解決しようとする課題】
ところで、図1に示したエネルギー分散型X線分析装置においては、1次X線には連続X線が含まれており、得られるスペクトルデータには試料から発せられる蛍光X線以外にブラッグの条件を満たした回折X線が含まれるため、定性分析の精度、定量分析の精度、定量再現性の悪化の要因となる。
【0007】
検出される蛍光X線に回折X線が含まれることを避けるためには、例えば、
▲1▼1次X線を単色化する。
▲2▼試料への入射角,取り出し角を変更する。
等のことが考えられる。しかし、▲1▼の対策は有用ではあるが、そのための機構を追加する必要があるため装置が大がかりとなり、X線のパスが長く、また一定波長のみ取り出すためX線強度の大幅な低下があり,それを補うためにはX線源を数倍〜数十倍以上強度を上げなければならず、装置の大型化、高価格化が避けられない。▲2▼については、試料によって回折X線の出る波長が違うため、入射角、取り出し角を任意の位置に設定できなければならないが、やはり装置の大型化、高価格化が避けられない。
【0008】
本発明は上記課題を解決するためのもので、ソフトウエア的に回折X線を容易に取り除き、定性分析精度、定量分析精度、定量再現性を向上させることを目的とする。
【0009】
【課題を解決するための手段】
本発明は、試料にX線を照射し、試料から発する蛍光X線をエネルギー分散型検出器で検出し、検出されたスペクトルデータから試料を構成している元素の含有量を測定する蛍光X線分析装置において、予め標準試料によって測定して得た蛍光X線スペクトルデータベースと回折X線スペクトルデータベースを有し、測定した蛍光X線スペクトルデータに対し、前記蛍光X線スペクトルデータベース、回折X線スペクトルデータベースを参照し、蛍光X線同士の重なり、蛍光X線と回折X線との重なりを比較演算して分離し、蛍光X線スペクトルを算出する分析処理手段を備えたことを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明の実施の形勢について説明する。
図5は本発明の蛍光X線分析装置の装置構成を示すブロック図である。蛍光X線検出装置11は試料にX線を照射し、試料から発生するX線を検出する。分析処理装置12は標準試料について予め求めた蛍光X線スペクトルデータベース13、回折X線スペクトルデータベース14を参照し、検出されたスペクトルから蛍光X線同士の重なり、回折X線との重なりを評価分析し、純粋なスペクトルを算出する機能を備えている。
【0011】
例えば、図6に示すようなスペクトルデータが得られたと仮定し、ピーク▲1▼〜▲4▼は蛍光X線のピーク、▲5▼は回折X線としたとき、▲1▼〜▲3▼の強度は元素の量を表すデータとしてそのまま用いられるが、▲4▼のピークについては▲5▼の影響で誤差を伴ってしまう。▲5▼のピークが常に一定であれば、その誤差を考慮に入れることが可能であるが、同じ試料であっても1次X線の当たる位置や試料の面内回転位置によってもその強度が変ることが多い。図2に示したように、1次X線は連続X線であるため、どこかの波長が回折条件を満たす可能性が非常に高い。試料が粉末であればあらゆる結晶面の回折線が出ることが推定され、結晶粒が分布しているようにな試料ではそれぞれ箇所により回折線が出たり出なかったりする。
【0012】
図7はAl中の微量Tiと回折線の重なりを試料位置を変えて測定した例を示す図である。図7の例では、5ケ所の位置において測定した例を示し、Al(1,1,1)回折線、Al(2,2、0)回折線の強度をみると明らかなように、試料位置によって大幅に強度が変化し、これにTiKα、TiKβが重なるため、微量Tiの分析を正確に行う事は困難である。
【0013】
しかし、回折X線▲5▼のピークプロファイル自身は変化しないので、これを回折X線スペクトルデータベース14として持っておき、このデータとの比較により回折X線▲5▼を除外し、正確に蛍光X線の強度を求めることが可能である。そこで、本発明では、回折X線スペクトルデータベース14を持つことにより、従来行われている蛍光X線同士の重なりを蛍光X線スペクトルデータベースを用いて評価することと同様の方法により、回折X線の強度を除去する。例えば、図8に示すように、予めTiの入っていないAlの標準試料を測定して回折線のスペクトルデータを求めてデータベース化しておく。図7の例においては、Al(2,0,0)の回折線とTiKαの蛍光X線とが重なっており、これを分離するため、(1)式と同様な次式(2)を使用する。
TiKα=A×TiKαp+B×回折線(2,0,0) ……(2)
TiKαpは純粋なスペクトル、A、Bは定数である。(2)式は回折線と蛍光X線が重なっている各点において成立するので、これを複数の点について求め、これらの式を解くことにより定数A、Bが求められ、これにより回折X線を除去した蛍光X線強度を求めることができる。
【0014】
なお、本発明の適用できる条件としては、厳密には、予め回折X線のでる場所が分かる試料でなければならない。従って、全くの未知試料では適用は難しいが、品質管理等の管理分析では、予め分かっている、あるいは判断することが容易であるのが普通であり、しかも、定量再現性が強く要求されるので、本発明を適用するには最適である。
【0015】
【発明の効果】
以上のように本発明によれば、蛍光X線スペクトルデータベースの以外に、回折X線のピークプロファイルをデータベース化して記憶させ、蛍光X線強度を算出するときにこれらデータベースを参照して蛍光X線同士の重なり、回折X線の寄与を取り除くことができるので、蛍光X線の強度を正確に計算でき、定量精度、再現性を飛躍的に向上させることが可能となる。
【図面の簡単な説明】
【図1】従来のエネルギー分散型蛍光X線分析装置に構成を示す図である。
【図2】X線管で発生するエネルギー分布を示す図である。
【図3】ステンレスを測定した時のスペクトルデータを示す図である。
【図4】蛍光X線同士の重なりを分離する方法を説明する図である。
【図5】本発明の蛍光X線分析装置の装置構成を示すブロック図である。
【図6】回折X線との重なりがあるスペクトルデータの例を示す図である。
【図7】Al中の微量Tiと回折線の重なりを試料位置を変えて測定した例を示す図である。
【図8】Tiの入っていないAlの標準試料の回折線のスペクトルデータを示す図である。
【符号の説明】
11…蛍光X線検出装置、12…分析処理装置、13…蛍光X線スペクトルデータベース、14…回折X線スペクトルデータベース。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fluorescent X-ray analyzer that irradiates a sample with X-rays and measures the fluorescent X-rays emitted from the sample to determine the content of elements constituting the sample.
[0002]
[Prior art]
FIG. 1 is a diagram showing a configuration of an energy dispersive X-ray fluorescence analyzer. High-speed electrons collide with the
[0003]
FIG. 3 is a diagram showing spectrum data when stainless steel (sus304) is measured. The horizontal axis corresponds to energy, and the vertical axis corresponds to the element content. On the other hand, the energy and intensity of fluorescent X-rays peculiar to each element are stored in a database in advance in the computer. By comparing with the spectrum data of FIG. It is possible to determine and identify the elements contained in the sample. For example, in the spectrum of FIG. 3, it can be seen that the strongest peak is at 6.4 keV, and when 6.4 keV fluorescent X-rays are examined from the database, it can be seen that it is Kα ray among Fe fluorescent X-rays.
[0004]
After performing qualitative analysis in this way, quantitative analysis of how much the element is contained is performed. When calculating the intensity of an element subjected to qualitative analysis, an upper limit and a lower limit of spectrum energy may be designated and values within that range may be integrated. However, in practice, there is a background, and the fluorescent X-rays may overlap each other, and thus cannot be simply obtained. For example, in FIG. 3, CrKβ is actually overlapped with MnKα, and MnKβ is overlapped with FeKα.
[0005]
When the fluorescent X-rays overlap with each other in this way, an accurate integrated intensity is calculated using a database obtained by measuring the pure spectrum of each element and performing a comparison operation with this database. For example, in FIG. 4, when FeKα and MnKβ are overlapped, if the respective pure spectra are FeKαp and MnKβp, FeKα is
FeKα = A × FeKαp + B × MnKβp (1)
It can be expressed as Since this relationship is established for each energy point in the spectrum of FIG. 4, the constants A and B are obtained by obtaining the equation (1) for a plurality of points and solving this, and as a result, a pure spectrum can be obtained. Yes, quantitative analysis is performed.
[0006]
[Problems to be solved by the invention]
By the way, in the energy dispersive X-ray analyzer shown in FIG. 1, the primary X-ray includes continuous X-rays, and the obtained spectral data includes Bragg conditions other than the fluorescent X-rays emitted from the sample. Diffracted X-rays satisfying the above conditions are included, which causes deterioration in accuracy of qualitative analysis, accuracy of quantitative analysis, and quantitative reproducibility.
[0007]
In order to avoid the inclusion of diffracted X-rays in the detected fluorescent X-rays, for example,
(1) Monochromatic primary X-rays.
(2) Change the incident angle to the sample and the extraction angle.
Etc. can be considered. However, although the measure (1) is useful, it is necessary to add a mechanism for that purpose, so the apparatus becomes large, the X-ray path is long, and only a certain wavelength is extracted, so the X-ray intensity is greatly reduced. In order to compensate for this, the intensity of the X-ray source must be increased several times to several tens of times, and the size and cost of the apparatus cannot be avoided. Regarding (2), since the wavelength at which the diffracted X-rays are emitted differs depending on the sample, it is necessary to set the incident angle and the extraction angle at arbitrary positions, but it is still inevitable to increase the size and cost of the apparatus.
[0008]
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to easily remove diffracted X-rays by software and improve qualitative analysis accuracy, quantitative analysis accuracy, and quantitative reproducibility.
[0009]
[Means for Solving the Problems]
The present invention irradiates a sample with X-rays, detects fluorescent X-rays emitted from the sample with an energy dispersive detector, and measures the content of elements constituting the sample from the detected spectral data. The analyzer has a fluorescent X-ray spectrum database and a diffracted X-ray spectrum database obtained by measuring in advance with a standard sample, and for the measured fluorescent X-ray spectrum data, the fluorescent X-ray spectrum database and the diffracted X-ray spectrum database. And an analysis processing means for calculating a fluorescent X-ray spectrum by comparing and separating the overlap of fluorescent X-rays and the overlap of fluorescent X-rays and diffracted X-rays.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described.
FIG. 5 is a block diagram showing the apparatus configuration of the X-ray fluorescence analyzer of the present invention. The fluorescent X-ray detector 11 irradiates the sample with X-rays and detects X-rays generated from the sample. The analysis processor 12 refers to the fluorescent X-ray spectrum database 13 and the diffracted X-ray spectrum database 14 obtained in advance for the standard sample, and evaluates and analyzes the overlap between the fluorescent X-rays and the overlap with the diffracted X-rays from the detected spectrum. It has a function to calculate a pure spectrum.
[0011]
For example, assuming that spectrum data as shown in FIG. 6 is obtained, peaks (1) to (4) are fluorescent X-ray peaks, and (5) is diffraction X-rays. (1) to (3) The intensity of is used as it is as data representing the amount of the element, but the peak of (4) is accompanied by an error due to the influence of (5). If the peak of (5) is always constant, the error can be taken into account, but the intensity of the same sample is also affected by the position where the primary X-ray strikes and the in-plane rotation position of the sample. Often changes. As shown in FIG. 2, since the primary X-ray is a continuous X-ray, there is a high possibility that some wavelength satisfies the diffraction condition. If the sample is powder, it is presumed that diffraction lines of all crystal planes are emitted, and in a sample in which crystal grains are distributed, diffraction lines may or may not come out depending on the location.
[0012]
FIG. 7 is a diagram showing an example in which the overlap between a minute amount of Ti and diffraction lines in Al is measured by changing the sample position. In the example of FIG. 7, an example of measurement at five positions is shown, and it is clear from the intensity of the Al (1, 1, 1) diffraction line and Al (2, 2, 0) diffraction line that the sample position is clear. The strength changes greatly depending on the amount of TiKα and TiKβ, which makes it difficult to accurately analyze trace amounts of Ti.
[0013]
However, since the peak profile of the diffracted X-ray (5) itself does not change, this is stored as the diffracted X-ray spectrum database 14 and compared with this data, the diffracted X-ray (5) is excluded and the fluorescent X-ray is accurately detected. It is possible to determine the intensity of the line. Therefore, in the present invention, by having the diffracted X-ray spectrum database 14, the diffracted X-ray spectra can be obtained by a method similar to the conventional method for evaluating the overlap of fluorescent X-rays using the fluorescent X-ray spectrum database. Remove strength. For example, as shown in FIG. 8, a standard sample of Al that does not contain Ti is measured in advance to obtain spectral data of diffraction lines and create a database. In the example of FIG. 7, the diffraction line of Al (2, 0, 0) and the fluorescent X-ray of TiKα overlap, and the following equation (2) similar to equation (1) is used to separate this. To do.
TiKα = A × TiKαp + B × Diffraction line (2, 0, 0) (2)
TiKαp is a pure spectrum, and A and B are constants. Since the equation (2) is established at each point where the diffraction lines and the fluorescent X-rays overlap, the constants A and B are obtained by solving these equations and solving these equations, whereby the diffraction X-rays are obtained. The X-ray fluorescence intensity from which is removed can be obtained.
[0014]
Strictly speaking, the conditions to which the present invention can be applied must be a sample in which the location where the diffracted X-rays appear is known in advance. Therefore, it is difficult to apply to completely unknown samples, but it is usually known in advance or easy to judge in management analysis such as quality control, and quantitative reproducibility is strongly required. It is most suitable for applying the present invention.
[0015]
【The invention's effect】
As described above, according to the present invention, in addition to the fluorescent X-ray spectrum database, the peak profile of diffracted X-rays is stored as a database, and when calculating the fluorescent X-ray intensity, the fluorescent X-rays are referenced with reference to these databases. Since the overlap and the contribution of diffracted X-rays can be removed, the intensity of fluorescent X-rays can be accurately calculated, and the quantitative accuracy and reproducibility can be dramatically improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a conventional energy dispersive X-ray fluorescence spectrometer.
FIG. 2 is a diagram showing an energy distribution generated in an X-ray tube.
FIG. 3 is a diagram showing spectral data when stainless steel is measured.
FIG. 4 is a diagram illustrating a method for separating the overlap of fluorescent X-rays.
FIG. 5 is a block diagram showing an apparatus configuration of a fluorescent X-ray analyzer according to the present invention.
FIG. 6 is a diagram showing an example of spectral data having an overlap with diffracted X-rays.
FIG. 7 is a diagram showing an example in which the overlap between a trace amount of Ti in Al and a diffraction line is measured by changing the sample position.
FIG. 8 is a diagram showing spectral data of diffraction lines of an Al standard sample not containing Ti.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... X-ray fluorescence detection apparatus, 12 ... Analysis processing apparatus, 13 ... X-ray fluorescence spectrum database, 14 ... Diffraction X-ray spectrum database
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8588799A JP3610256B2 (en) | 1999-03-29 | 1999-03-29 | X-ray fluorescence analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8588799A JP3610256B2 (en) | 1999-03-29 | 1999-03-29 | X-ray fluorescence analyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000283933A JP2000283933A (en) | 2000-10-13 |
JP3610256B2 true JP3610256B2 (en) | 2005-01-12 |
Family
ID=13871425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8588799A Expired - Fee Related JP3610256B2 (en) | 1999-03-29 | 1999-03-29 | X-ray fluorescence analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3610256B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3928656B2 (en) * | 2003-07-11 | 2007-06-13 | 学校法人早稲田大学 | Energy dispersive X-ray diffraction / spectrometer |
JP4831689B2 (en) * | 2007-02-06 | 2011-12-07 | 独立行政法人産業技術総合研究所 | Photon or particle counting method |
US20130279653A1 (en) * | 2012-04-19 | 2013-10-24 | Graeme Mark Hansford | Methods and apparatus for x-ray diffraction |
US9952165B2 (en) | 2012-04-19 | 2018-04-24 | University Of Leicester | Methods and apparatus for X-ray diffraction |
CN105758882B (en) * | 2016-02-29 | 2018-04-03 | 章炜 | A kind of lubricating oil metal XRF detection and preprocessing procedures |
CN106370682A (en) * | 2016-08-22 | 2017-02-01 | 合肥德泰科通测控技术有限公司 | Fully-automatic dangerous product detection station |
CN112129798A (en) * | 2020-10-21 | 2020-12-25 | 中国食品药品检定研究院 | A kind of content determination method of natural copper in Chinese patent medicine |
CN113866205B (en) * | 2021-12-06 | 2022-02-18 | 天津海关动植物与食品检测中心 | Chinese herbal medicine fluorescence spectrum heavy metal detection device and detection method |
CN114705708B (en) * | 2022-06-07 | 2022-08-23 | 四川大学 | A kind of intelligent analysis method and system of sample surface composition |
-
1999
- 1999-03-29 JP JP8588799A patent/JP3610256B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000283933A (en) | 2000-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10082475B2 (en) | X-ray fluorescence spectrometer | |
JPH06174663A (en) | Analyzing method of contaminant element | |
JP2848751B2 (en) | Elemental analysis method | |
JP3610256B2 (en) | X-ray fluorescence analyzer | |
US6310935B1 (en) | Fluorescent x-ray analyzer | |
JP3965173B2 (en) | X-ray fluorescence analyzer and program used therefor | |
WO2006112084A1 (en) | Fluorescence x-ray spectroscope and program used therefore | |
JP4237891B2 (en) | Background correction method for fluorescent X-ray analyzer and fluorescent X-ray analyzer using the method | |
JP2928688B2 (en) | Pollution element analysis method and device | |
JP4523958B2 (en) | X-ray fluorescence analyzer and program used therefor | |
JP5874108B2 (en) | X-ray fluorescence analyzer | |
JPH0247542A (en) | Quantitative analysis using x-ray spectroscope | |
EP1521947B1 (en) | Scatter spectra method for x-ray fluorescent analysis with optical components | |
JP6713110B2 (en) | Background removal method and X-ray fluorescence analyzer | |
JPH05107363A (en) | Method for separating peak from fluorescent x-ray spectrum | |
JP2000074857A (en) | X-ray fluorescence analyzer | |
JP7653718B2 (en) | X-ray fluorescence analyzer | |
JP4279983B2 (en) | X-ray fluorescence analyzer | |
JP2645226B2 (en) | X-ray fluorescence analysis method | |
JP2020067392A (en) | Element analysis method, and element analyzer | |
JP3377328B2 (en) | X-ray fluorescence analysis method | |
JP3389161B2 (en) | X-ray fluorescence analyzer and recording medium used therein | |
JP2645227B2 (en) | X-ray fluorescence analysis method | |
USH922H (en) | Method for analyzing materials using x-ray fluorescence | |
Platbrood et al. | Automated qualitative wavelength‐dispersive x‐ray fluorescence analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040604 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041008 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041018 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091022 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091022 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101022 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101022 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111022 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121022 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131022 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |