JP4119696B2 - 送信装置、受信装置及び無線通信方法 - Google Patents
送信装置、受信装置及び無線通信方法 Download PDFInfo
- Publication number
- JP4119696B2 JP4119696B2 JP2002206150A JP2002206150A JP4119696B2 JP 4119696 B2 JP4119696 B2 JP 4119696B2 JP 2002206150 A JP2002206150 A JP 2002206150A JP 2002206150 A JP2002206150 A JP 2002206150A JP 4119696 B2 JP4119696 B2 JP 4119696B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- ofdm
- modulation
- spread
- multiplexed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000006854 communication Effects 0.000 title claims description 235
- 238000004891 communication Methods 0.000 title claims description 234
- 238000000034 method Methods 0.000 title claims description 212
- 238000001228 spectrum Methods 0.000 claims description 411
- 230000005540 biological transmission Effects 0.000 claims description 385
- 230000007480 spreading Effects 0.000 claims description 235
- 230000008569 process Effects 0.000 claims description 56
- 239000000284 extract Substances 0.000 claims description 14
- 238000010586 diagram Methods 0.000 description 59
- 108010003272 Hyaluronate lyase Proteins 0.000 description 48
- 238000006243 chemical reaction Methods 0.000 description 41
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 30
- 108010076504 Protein Sorting Signals Proteins 0.000 description 19
- 230000003111 delayed effect Effects 0.000 description 17
- 238000000926 separation method Methods 0.000 description 15
- 238000001514 detection method Methods 0.000 description 7
- 230000003321 amplification Effects 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 230000001934 delay Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7073—Synchronisation aspects
- H04B1/7075—Synchronisation aspects with code phase acquisition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7097—Interference-related aspects
- H04B1/711—Interference-related aspects the interference being multi-path interference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J13/00—Code division multiplex systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0002—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
- H04L1/0003—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/18—Phase-modulated carrier systems, i.e. using phase-shift keying
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/18—Phase-modulated carrier systems, i.e. using phase-shift keying
- H04L27/22—Demodulator circuits; Receiver circuits
- H04L27/227—Demodulator circuits; Receiver circuits using coherent demodulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2662—Symbol synchronisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
- H04L27/36—Modulator circuits; Transmitter circuits
- H04L27/362—Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
- H04L27/364—Arrangements for overcoming imperfections in the modulator, e.g. quadrature error or unbalanced I and Q levels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
- H04L27/38—Demodulator circuits; Receiver circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0016—Time-frequency-code
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Allocation of payload; Allocation of data channels, e.g. PDSCH or PUSCH
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2201/00—Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
- H04B2201/69—Orthogonal indexing scheme relating to spread spectrum techniques in general
- H04B2201/707—Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
- H04B2201/70703—Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation using multiple or variable rates
- H04B2201/70705—Rate detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2201/00—Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
- H04B2201/69—Orthogonal indexing scheme relating to spread spectrum techniques in general
- H04B2201/707—Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
- H04B2201/70716—Quadrature
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2201/00—Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
- H04B2201/69—Orthogonal indexing scheme relating to spread spectrum techniques in general
- H04B2201/707—Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
- H04B2201/70728—Frequency aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0014—Carrier regulation
- H04L2027/0024—Carrier regulation at the receiver end
- H04L2027/0026—Correction of carrier offset
- H04L2027/0038—Correction of carrier offset using an equaliser
- H04L2027/004—Correction of carrier offset using an equaliser the equaliser providing control signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0014—Carrier regulation
- H04L2027/0044—Control loops for carrier regulation
- H04L2027/0053—Closed loops
- H04L2027/0061—Closed loops remodulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
- Mobile Radio Communication Systems (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
Description
【発明の属する技術分野】
本発明は送信装置、受信装置及び無線通信方法に関し、例えば限られた周波数帯域でより多くのデータを伝送する場合に適用して好適なものである。
【0002】
【従来の技術】
従来の無線通信方式における時間軸におけるフレーム構成例の一例を図76に示す。図76において、参照符号1はデータシンボル、参照符号2はパイロットシンボル、参照符号3はユニークワードを示している。受信装置は、送信装置から送信された信号を復調するためには、送信装置との時間同期をとらねばなら無い。このため受信装置では例えばユニークワード3を検出することで、時間同期をとる。またデータシンボル1を復調する際に、パイロットシンボル2を用いてチャネル変動を補償する。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の無線通信方式では、フレーム構成の時間軸上に情報がのらないユニークワードやパイロットシンボルを挿入しているため、その分データの伝送速度が低下していた。
【0004】
そこでユニークワードやパイロットシンボルをデータとは異なる周波数帯域を使用して、データと同一時間に伝送することが考えられる。しかし、このようにした場合には、使用する周波数帯域が広くなる欠点がある。またデータと異なる周波数帯域を使用することになるため、ユニークワードやパイロットシンボルがデータとは異なる伝搬路変動を受けるので、チャネル変動を補償する際の精度が劣化する欠点がある。
【0005】
本発明はかかる点に鑑みてなされたものであり、限られた周波数帯域を用いて、受信品質を劣化させることなくより多くのデータを伝送し得る送信装置、受信装置及び無線通信方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
かかる課題を解決するため本発明は、以下の構成を採る。
【0007】
本発明の送信装置は、情報信号をディジタル変調して第1変調信号を得る第1変調手段と、予め設定された信号系列をディジタル変調して第2変調信号を得る第2変調手段と、第1変調信号と第2変調信号とを同一周波数帯域で多重して多重化信号を得る多重化手段と、多重化信号を送信する送信手段とを具備する構成を採る。
【0008】
本発明の送信装置は、第2変調手段は、予め設定された信号系列をPSK変調方式によりディジタル変調する構成を採る。
【0009】
本発明の送信装置は、予め設定された信号系列を変更することが可能な構成を採る。
【0010】
これらの構成によれば、送信装置が第1変調信号と第2変調信号を同一周波数帯域に多重して送信するため、周波数の有効利用を図ることができる。また予め設定された信号系列をPSK変調方式によりディジタル変調することにより、送信装置および受信装置の構成を容易にすることができる。さらに予め設定された信号系列を暗号の鍵とすれば、信号系列を変更することで秘匿性のある無線通信を行うことができる。
【0011】
本発明の受信装置は、情報信号がディジタル変調された第1変調信号と予め設定された信号系列がディジタル変調された第2変調信号とが同一周波数帯域に多重された多重化信号を受信する受信手段と、第2変調信号を用いて送信装置との時間同期をとる同期手段と、同期手段により得られた同期情報を用いて多重化信号から第1変調信号を復調する復調手段とを具備する構成を採る。
【0012】
この構成によれば、同期手段において、予め設定された第2変調信号に基づいて時間同期を行うことができるので、時間同期を行うためのユニークワードやパイロット信号を別途伝送する必要がなくなる。この結果、その分だけ他の情報信号を余分に伝送できるようになるので、データの伝送速度を向上させることができるようになる。
【0013】
本発明の受信装置は、復調手段が、同期手段により得られた同期情報を用いて多重化信号中の第2変調信号を再生することにより第2変調信号のレプリカ信号を形成する信号再生手段と、多重化信号から第2変調信号のレプリカ信号を除去することにより第1変調信号を抽出する信号除去手段とを具備する構成を採る。
【0014】
この構成によれば、情報信号がディジタル変調された第1変調信号と予め設定された信号系列がディジタル変調された第2変調信号とが同一周波数帯域に多重された場合でも、第1変調信号と第2変調信号を良好に分離することができるようになる。
【0015】
本発明の受信装置は、信号再生手段が、多重化信号に対して第2変調信号に対応する符号を乗算する第1の符号乗算手段と、符号乗算後の信号に対して第2の変調信号に対応する符号を再び乗算することにより第2の変調信号についてのレプリカ信号を形成する第2の符号乗算手段とを具備する構成を採る。
【0016】
この構成によれば、第1の符号乗算手段により多重化信号に対して第2変調信号に同期したタイミングで第2変調信号に対応する符号が乗算されると多重化信号から第2変調信号のみが抽出される。次に第2の符号乗算手段により再び第2変調信号に対応する符号が乗算されることにより第2変調信号のレプリカ信号が形成される。このレプリカ信号を多重化信号から除去すれば、第1変調信号が抽出される。かくして、第2変調信号を予め設定された信号系列の信号とすることにより、同一周波数帯域に多重化された多重化信号から良好に第1変調信号と第2変調信号とを分離できるようになる。
【0017】
本発明の受信装置は、第1の符号乗算手段による符号乗算後の信号の低周波数領域信号のみを通過させて第2の符号乗算手段に供給するローパスフィルタを、さらに具備する構成を採る。
【0018】
この構成によれば、第1の符号乗算手段による符号乗算後の信号に含まれる、第1変調信号に基づくノイズ成分をローパスフィルタにより除去できるので、第2変調信号を一段と精度良く分離できるようになる。この結果、第2変調信号のレプリカ信号の品質も良くなるので第1変調信号の分離精度も向上する。
【0019】
本発明の受信装置は、多重化信号に対して第2変調信号に対応する符号を乗算することによりパイロット信号を生成するパイロット信号推定手段と、生成したパイロット信号を用いて、信号除去手段により抽出された第1変調信号を同期検波する同期検波手段とを具備する構成を採る。
【0020】
この構成によれば、第2変調信号からパイロット信号を生成して、第1変調信号の同期検波を行うので、第1変調信号を一段と精度良く復調できるようになる。
【0021】
本発明の受信装置は、複数の送信装置から同時に送信された多重化信号を同時に受信し、同期手段により各々の多重化信号の同期タイミングを検出し、復調手段により同期タイミングを用いて第1変調信号に対して等化処理を施して第1変調信号を復調する構成を採る。
【0022】
この構成によれば、第1及び第2変調信号が同一周波数帯域に多重された多重化信号が複数の送信装置から送信され、受信装置から各送信装置までの距離の違いによって伝搬遅延差が生じた場合でも、第1変調信号を復調する際に、第2変調手段に基づいて検出した同期タイミングを使った等化処理を行うことで、第1変調信号を一段と精度良く復調できるようになる。
【0023】
本発明の受信装置は、予め設定された信号系列を秘匿情報として保持する構成を採る。
【0024】
この構成によれば、予め設定された信号系列が分からなければ、多重化信号から第2変調信号を分離することができない。従って、第1変調信号を得ることもできない。よって予め設定された信号系列を暗号の鍵とすることにより、秘匿性をもたせた無線通信を行うことができるようになる。
【0025】
本発明の送信装置は、情報信号をディジタル変調して第1変調信号を得る第1変調手段と、情報信号をスペクトル拡散方式によりディジタル変調して第2変調信号を得る第2変調手段と、第1変調信号と第2変調信号とを同一周波数帯域で多重して多重化信号を得る多重化手段と、多重化信号を送信する送信手段とを具備する構成を採る。
【0026】
この構成によれば、第1変調信号と第2変調信号を同一周波数帯域に多重して送信するため、周波数の有効利用を図ることができる。またスペクトル拡散方式によりディジタル変調された第2変調信号は、受信側で送信側と同一の拡散符号を用いることで多重化信号から分離できるようになる。
【0027】
本発明の送信装置は、第2変調手段は、情報信号を複数の拡散符号を用いて拡散することにより複数の第2変調信号を得る構成を採る。
【0028】
この構成によれば、第2変調信号を異なる拡散符号を用いた符号分割多重信号とすることができるので、同一周波数帯域に多重する情報信号の量を一段と増加させることができ、データ伝送速度を一段と向上させることができる。
【0029】
本発明の送信装置は、第2変調手段に入力される情報信号を制御情報とする構成を採る。
【0030】
この構成によれば、第2変調信号で、パイロット信号やユニークワードなどまたは通信を行うために必要な端末や基地局を制御するための制御情報を伝送するため、第1変調信号に制御情報を挿入しなくて済む。これによりこの分だけ第1変調信号で多くのデータを伝送でき、データの伝送速度を向上させることができる。
【0031】
本発明の送信装置は、第2変調手段で用いられる拡散符号を変更することが可能な構成を採る。
【0032】
この構成によれば、拡散符号を暗号の鍵とし、拡散符号を変更することで秘匿性をもった無線通信を行うことができる。
【0033】
本発明の受信装置は、情報信号がディジタル変調された第1変調信号と情報信号がスペクトル拡散変調された第2変調信号とが同一周波数帯域に多重された多重化信号を受信する受信手段と、第2変調信号を逆拡散することにより多重化信号から第2変調信号の復調信号を得るスペクトル拡散復調手段と、スペクトル拡散復調手段により得られた信号に対して拡散処理を施すことにより第2変調信号のレプリカ信号を形成するスペクトル拡散変調信号再生手段と、多重化信号から第2変調信号のレプリカ信号を除去することにより第1変調信号を抽出する信号除去手段と、抽出された第1変調信号を復調する復調手段とを具備する構成を採る。
【0034】
この構成によれば、情報信号がディジタル変調された第1変調信号と情報信号がスペクトル拡散変調された第2変調信号とが同一周波数帯域に多重された場合でも、第1変調信号と第2変調信号を良好に分離することができるようになる。
【0035】
本発明の受信装置は、第2変調信号は、複数の情報信号をそれぞれ異なる拡散符号を用いてスペクトル拡散処理されることにより得られた符号分割多重信号であり、スペクトル拡散復調手段は、多重化信号に対して複数の拡散符号を用いて逆拡散処理を行うことにより符号分割多重された複数の信号を復調し、スペクトル拡散変調信号再生手段は、スペクトル拡散復調手段により得られた複数の信号に対して複数の拡散符号を用いて拡散処理を施すことにより第2変調信号のレプリカ信号を形成する構成を採る。
【0036】
この構成によれば、第2変調信号が複数の拡散符号を用いて符号分割多重された信号の場合でも、第1変調信号と第2変調信号を良好に分離することができるようになる。また第2変調信号が符号分割多重された信号となっているので、一段と多くの情報を取得できるようになる。
【0037】
本発明の受信装置は、多重化信号と同時に受信されるパイロットシンボルを用いて多重化信号の伝送路歪みを推定する歪み推定手段を、さらに具備し、スペクトル拡散変調信号再生手段は、推定された伝送路歪み成分が加えられたレプリカ信号を形成する構成を採る。
【0038】
この構成によれば、レプリカ信号を多重化信号と同様の伝送路歪みをもった信号とすることができるので、多重化信号からレプリカ信号を除去すると、第1変調信号を一段と良好に抽出できるようになる。
【0039】
本発明の送信装置は、情報信号をディジタル変調して変調信号を得る変調手段と、複数の特定変調信号の中から情報信号に対応したものを選択する選択手段と、変調信号と選択手段にて選択された特定変調信号とを同一周波数帯域に多重して多重化信号を得る多重化手段と、多重化信号を送信する送信手段とを具備する構成を採る。
【0040】
この構成によれば、情報信号を特定の変調信号を介して伝送しているため、受信側では特定変調信号から情報信号を推定できるようになる。この結果、同一周波数帯域で実質的に伝送できる情報量を増やすことができるようになる。因みに特定変調信号は数が限られているため、受信側では例えば多重化信号と数が限られた各特定変調信号との相関値をとれば、多重化信号に含まれている特定変調信号を容易に検出することができる。
【0041】
本発明の送信装置は、選択手段は、選択する特定変調信号と情報信号との対応関係が変更可能とされている構成を採る。
【0042】
この構成によれば、特定信号と情報信号の対応関係を暗号の鍵とすれば、対応関係を変更することで秘匿性のある無線通信を行うことができる。つまり、この対応関係を認識している受信装置のみが、特定変調信号に対応する情報信号を得ることができるようになる。
【0043】
本発明の受信装置は、情報信号がディジタル変調された変調信号と情報信号に対応して選択された特定変調信号とが同一周波数帯域に多重された多重化信号を受信する受信手段と、多重化信号に含まれる特定変調信号を推定して当該特定変調信号に対応する情報信号を出力する特定変調信号推定手段と、多重化信号から特定変調信号を除去することにより多重化信号中の変調信号を抽出する信号除去手段と、抽出された変調信号を復調する復調手段とを具備する構成を採る。
【0044】
この構成によれば、特定変調信号推定手段では、例えば複数の特定変調信号と多重化信号との相関値をとって多重化信号に含まれている特定変調信号を推定し、推定した特定変調信号に対応する情報信号を得る。信号除去手段では推定された特定変調信号が多重化信号から除去されることで変調信号が抽出される。この結果、同一周波数帯域に多重化された多重化信号から、変調信号に対応する情報信号と特定変調信号に対応する情報信号を得ることができるようになる。
【0045】
本発明の受信装置は、多重化信号と同時に受信されるパイロットシンボルを用いて多重化信号の伝送路歪みを推定する歪み推定手段を、さらに具備し、信号除去手段は、多重化信号から推定された伝送路歪み成分を加えた特定変調信号を除去する構成を採る。
【0046】
この構成によれば、推定した特定信号を多重化信号と同様の伝送路歪みをもった信号とすることができるので、信号除去手段では歪み成分を含んだ多重化信号から歪み成分を加えた特定変調信号を除去することになる。この結果、変調信号を一段と良好に抽出できるようになる。
【0047】
本発明の受信装置は、特定変調信号と情報信号との対応関係についての情報を送信局から受信し、特定変調信号推定手段は、受信した対応関係情報に基づいて、特定変調信号に対応する情報信号を出力する構成を採る。
【0048】
この構成によれば、特定変調信号と情報信号の対応関係を受け取った受信装置のみが特定変調信号に対応する情報信号を得ることができるようになる。この結果、秘匿性をもった無線通信を行うことができる。
【0049】
本発明の送信装置は、情報信号をディジタル変調して第1変調信号を得る第1変調手段と、情報信号をスペクトル拡散方式を用いて変調して第2変調信号を得る第2変調手段と、第1変調信号と第2変調信号とを同一周波数帯域で多重して多重化信号を得る多重化手段と、多重化信号を送信する送信手段とを具備し、第1及び第2変調手段は、同相−直交平面における第1変調信号と第2変調信号の信号点を異なる位置に配置するように変調処理を行う構成を採る。
【0050】
この構成によれば、第1変調信号と第2変調信号のI−Q平面上の信号点が異なるように配置されているので、各変調信号を復調する際のデータ誤りを抑制できる。この結果、送信信号を高速でかつ品質の良い状態で伝送できるようになる。
【0051】
本発明の送信装置は、情報信号をディジタル変調して第1変調信号を得る第1変調手段と、情報信号をスペクトル拡散方式を用いて変調することにより第2変調信号を得る第2変調手段と、第1変調信号と第2変調信号とを同一周波数帯域で多重して多重化信号を得る多重化手段と、多重化信号を送信する送信手段とを具備し、第2変調手段は、拡散対象の信号をそれぞれ異なる拡散符号を用いて拡散処理することにより第2変調信号として複数の拡散情報信号を形成し、多重化手段は、多重化信号と共に多重フレーム情報及び又は拡散符号の情報を多重する構成を採る。
【0052】
この構成によれば、多重フレームや拡散符号の情報を暗号の鍵として用いることができるので、秘匿性通信を実現できるようになる。
【0053】
本発明の送信装置は、情報信号をディジタル変調して第1変調信号を得る第1変調手段と、受信側とで予め決められた特定の既知配列で変調した複数の特定変調信号を形成する第2変調手段と、複数の特定変調信号の中から情報信号に対応したものを選択する選択手段と、第1変調信号と選択手段にて選択された特定変調信号とを同一周波数帯域で多重して多重化信号を得る多重化手段と、多重化信号を送信する送信手段とを具備し、第1及び第2変調手段は、同相−直交平面における第1変調信号と特定変調信号の信号点を異なる位置に配置するように変調処理を行う構成を採る。
【0054】
この構成によれば、情報信号を特定の変調信号を介して伝送しているため、受信側では特定変調信号から情報信号を推定できるようになる。この結果、同一周波数帯域で伝送できる情報量を増やすことができるようになる。因みに特定変調信号は数が限られているため、受信側では例えば多重化信号と数が限られた特定変調信号との相関値を順次とることにより、多重化信号に含まれている特定変調信号を容易に検出することができる。加えて、第1変調信号と特定変調信号のI−Q平面上の信号点が異なるように配置されているので、各変調信号を復調する際のデータ誤りを抑制できる。
【0055】
本発明の送信装置は、情報信号に対して直交周波数分割多重処理を施してOFDM変調信号を得るOFDM変調手段と、情報信号に対して拡散処理及び直交周波数分割多重処理を施してOFDM−拡散変調信号を得るOFDM−拡散変調手段と、OFDM変調信号とOFDM−拡散変調信号とを同一周波数帯域で多重して多重化信号を得る多重化手段と、多重化信号を送信する送信手段とを具備する構成を採る。
【0056】
この構成によれば、OFDM変調信号とOFDM−拡散変調信号を同一周波数帯域で多重化して送信するため、周波数の有効利用を図ることができる。またOFDM−拡散変調信号は、受信側で送信側と同一の拡散符号を用いることで多重化信号から分離できる。
【0057】
本発明の送信装置は、OFDM変調手段及びOFDM−拡散変調手段は、同相−直交平面におけるOFDM変調信号とOFDM−拡散変調信号の信号点を異なる位置に配置するように変調処理を行う構成を採る。
【0058】
この構成によれば、OFDM変調信号とOFDM−拡散変調信号のI−Q平面上の信号点が異なるように配置されているので、受信側で各変調信号を分離後に各変調信号を復調する際のデータ誤りを抑制できる。
【0059】
本発明の送信装置は、多重化手段が、OFDM変調信号とOFDM−拡散変調信号とを特定のサブキャリアで多重化する構成を採る。
【0060】
本発明の送信装置は、多重化手段が、周波数−時間軸におけるフレームで、特定の時間においてOFDM変調信号とOFDM−拡散変調信号を多重化する構成を採る。
【0061】
これらの構成によれば、特定のサブキャリアでの伝送情報量のみ又は特定の時間のみ伝送情報量を増やすことができるので、多様性のある通信を行うことができるようになる。
【0062】
本発明の送信装置は、OFDM変調信号及びOFDM−拡散変調信号に加えて、OFDM−拡散変調処理を行う際に用いた拡散符号の情報を多重化して送信する構成を採る。
【0063】
この構成によれば、受信側では拡散符号の情報に基づいてOFDM−拡散変調信号を多重化信号から的確に分離して復調できるようになる。
【0064】
本発明の送信装置は、特定の時間にOFDM変調信号とOFDM−拡散変調信号を同一周波数帯域で多重化して送信すると共に、当該特定の時間以外の時間にはOFDM変調信号又はOFDM−拡散変調信号のいずれか一方を送信する構成を採る。
【0065】
この構成によれば、例えばより多くの情報を伝送したい場合には、この情報を特定の時間でOFDM変調信号とOFDM−拡散変調信号とを多重化した信号として送信し、伝送情報量よりも伝送品質を重視したい情報の場合には、この情報を特定の時間以外の時間にOFDM変調信号又はOFDM−拡散変調信号として送信する。この結果、より多様性のある通信を行うことができるようになる。
【0066】
本発明の受信装置は、情報信号がディジタル変調された第1変調信号と、情報信号がスペクトル拡散方式を用いて変調されかつ同相−直交平面における信号点位置が第1変調信号と異なる位置に配置された第2変調信号とが同一周波数帯域に多重された多重化信号を受信する受信手段と、受信多重化信号を逆拡散すると共に変調時の信号点配置を考慮して第2変調信号を復調する逆拡散復調手段と、復調された信号から第2変調信号を再生して第2変調信号のレプリカ信号を形成する再生手段と、受信多重化信号からレプリカ信号を除去することにより第1変調信号を抽出する信号除去手段と、抽出された第1変調信号を変調時の信号点配置を考慮して復調する復調手段とを具備する構成を採る。
【0067】
この構成によれば、逆拡散復調手段により第1変調信号を復調する際、および復調手段により第2変調信号を復調する際に、一方の変調信号が他方の変調信号とは信号点位置が異なるようにされているので、一方の変調信号を復調する際に他方の変調信号成分が残っている場合でも、一方の変調信号を精度良く復調できるようになる。
【0068】
本発明の受信装置は、情報信号がディジタル変調された第1変調信号と拡散対象の情報信号をそれぞれ異なる拡散符号を用いて拡散処理することにより形成された第2変調信号とが同一周波数帯域に多重された多重化信号と、多重フレーム情報及び又は拡散符号の情報とを受信する受信手段と、それぞれ異なる拡散符号を用いて受信多重化信号を逆拡散して各拡散情報信号を復調する逆拡散復調手段と、復調された各情報信号から第2変調信号を再生することにより第2変調信号のレプリカ信号を形成する再生手段と、受信多重化信号から所定のタイミングで第2変調信号のレプリカ信号を除去することにより第1変調信号を抽出する信号除去手段と、抽出された第1変調信号を復調する復調手段とを具備し、逆拡散復調手段及び又は信号除去手段は、受信した多重フレーム情報及び又は拡散符号の情報に基づいて逆拡散復調処理及び又は信号除去処理を行う構成を採る。
【0069】
この構成によれば、多重フレーム情報や拡散符号の情報に基づいて、逆拡散復調手段による第2変調信号の逆拡散処理、信号除去手段による多重化信号からのレプリカ信号の除去処理を良好に行って、第2変調信号及び第1変調信号を品質良く分離復調することができる。
【0070】
本発明の受信装置は、情報信号に対してOFDM変調処理が施されたOFDM変調信号と情報信号に対してOFDM−拡散変調処理が施されたOFDM−拡散変調信号とが同一周波数帯域に多重された多重化信号を受信する受信手段と、多重化信号中のOFDM−拡散変調信号を復調する第1復調手段と、復調された信号からOFDM−拡散変調信号を再生することによりOFDM−拡散変調信号のレプリカ信号を形成する再生手段と、受信多重化信号からOFDM−拡散変調信号のレプリカ信号を除去することによりOFDM変調信号を抽出する信号除去手段と、抽出されたOFDM変調信号を復調する第2復調手段とを具備する構成を採る。
【0071】
この構成によれば、先ず第1復調手段により拡散符号を使ってOFDM−拡散変調信号を多重化信号から分離復調し、次に信号除去手段において、再生手段により形成したOFDM−拡散変調信号のレプリカ信号を多重化信号から除去することで、OFDM変調信号を多重化信号から分離できる。これにより、同一周波数帯域で多重化されたOFDM変調信号とOFDM−拡散信号を各々分離して復調できるようになる。
【0072】
本発明の受信装置は、情報信号に対してOFDM変調処理が施されたOFDM変調信号と情報信号に対してOFDM−拡散変調処理が施されたOFDM−拡散変調信号とが同一周波数帯域に多重された多重化信号と、OFDM−拡散変調処理を行う際に用いられた拡散符号の情報とを受信する受信手段と、拡散符号の情報に基づき多重化信号中のOFDM−拡散変調信号を復調する第1復調手段と、復調された信号からOFDM−拡散変調信号を再生することによりOFDM−拡散変調信号のレプリカ信号を形成する再生手段と、受信多重化信号からOFDM−拡散変調信号のレプリカ信号を除去することによりOFDM変調信号を抽出する信号除去手段と、抽出されたOFDM変調信号を復調する第2復調手段とを具備する構成を採る。
【0073】
この構成によれば、第1復調手段が多重化信号からOFDM−拡散変調信号を分離する際に用いる拡散符号を送信相手側から受信するようにしたので、この拡散符号を送られた特定の受信装置のみが多重化信号からOFDM変調信号とOFDM−拡散変調信号を分離復調できるようになり、秘匿通信を実現できる。
【0074】
本発明の受信装置は、受信多重化信号中の既知信号に基づいて伝送路歪みを推定する歪み推定手段を、さらに具備し、再生手段は、推定された伝送路歪み成分が加えられたOFDM−拡散変調信号のレプリカ信号を形成する構成を採る。
【0075】
この構成によれば、レプリカ信号を受信多重化信号と同様の伝送路歪みをもった信号とすることができるので、信号除去手段では歪み成分を含んだ受信多重化信号から歪み成分を加えたレプリカ信号を除去することになり、OFDM変調信号を一段と良好に抽出できるようになる。
【0076】
本発明の送信装置は、情報信号を第1の拡散率を有する第1の拡散符号を用いて拡散することにより第1拡散信号を得る第1拡散手段と、情報信号を第1の拡散率と異なる第2の拡散率を有する第2の拡散符号を用いて拡散することにより第2拡散信号を得る第2拡散手段と、第1拡散信号と第2拡散信号を同一周波数帯域で多重することにより多重化信号を得る多重化手段と、多重化信号を送信する送信手段とを具備する構成を採る。
【0077】
この構成によれば、互いに拡散率の異なる第1拡散信号と第2拡散信号とを同一周波数帯域で多重化して送信するため、周波数の有効利用を図ることができる。また拡散率の異なる拡散信号は、受信側で拡散率の異なる拡散符号を用いることにより多重化信号から分離できる。
【0078】
本発明の送信装置は、情報信号を第1の拡散率を有する第1の拡散符号を用いて拡散処理すると共に直交周波数分割多重処理することにより第1のOFDM−拡散変調信号を得る第1のOFDM−拡散変調手段と、情報信号を第1の拡散率と異なる第2の拡散率を有する第2の拡散符号を用いて拡散すると共に直交周波数分割多重処理することにより第2のOFDM−拡散変調信号を得る第2のOFDM−拡散変調手段と、第1のOFDM−拡散変調信号と第2のOFDM−拡散変調信号とを同一周波数帯域で多重することにより多重化信号を得る多重化手段と、多重化信号を送信する送信手段とを具備する構成を採る。
【0079】
この構成によれば、第1及び第2のOFDM−拡散変調信号を同一周波数帯域で多重化して送信するため、周波数の有効利用を図ることができる。また拡散率の異なる2つのOFDM−拡散変調信号は、受信側で拡散率の異なる拡散符号を用いることにより多重化信号から分離できる。
【0080】
本発明の送信装置は、第2変調信号の送信電力を、第1変調信号の送信電力よりも大きくする構成を採る。
【0081】
この構成によれば、第1変調信号と第2変調信号の相関を小さくできるので、受信側では多重化信号から一段と精度良く各信号を分離できるようになる。また受信側では送信電力が大きい方の第2変調信号を第1変調よりも先に多重化信号から分離すれば、先に分離される第2変調信号の分離精度を良くすることができるので、多重化信号から第2変調信号のレプリカ信号を減算して抽出される第1変調信号の分離精度も良くすることができる。
【0082】
本発明の送信装置は、OFDM−拡散変調信号の送信電力を、OFDM変調信号の送信電力よりも大きくする構成を採る。
【0083】
この構成によれば、OFDM−拡散変調信号とOFDM変調信号の相関を小さくできるので、受信側では多重化信号から一段と精度良く各信号を分離できるようになる。また受信側ではOFDM−拡散変調信号をOFDM変調信号よりも先に多重化信号から分離することになるが、このとき先に分離されるOFDM−拡散変調信号の送信電力の方が大きいのでOFDM−拡散変調信号を精度良く分離できる。従って、多重化信号からOFDM−拡散変調信号のレプリカを除去して抽出されるOFDM変調信号の分離精度も良くすることができる。
【0084】
本発明の送信装置は、第1又は第2の拡散信号のうち拡散率の大きい拡散符号を用いて拡散された拡散信号の送信電力を他方の拡散信号の送信電力よりも大きくする構成を採る。
【0085】
この構成によれば、第1の拡散信号と第2の拡散信号の相関を小さくできるので、受信側では多重化信号から一段と精度良く各拡散信号を分離できるようになる。また受信側において、拡散率の大きい拡散信号を先に多重化信号から分離する場合に、この拡散率の大きい拡散信号の送信電力が他方の送信電力よりも大きくされているので、多重化信号から拡散率の大きい拡散信号を精度良く分離できる。従って、多重化信号から拡散率の大きい拡散信号のレプリカ信号を減算して抽出される拡散率の小さい拡散信号の分離精度も良くすることができる。
【0086】
本発明の送信装置は、第1又は第2のOFDM−拡散変調信号のうち拡散率の大きい拡散符号を用いて形成したOFDM−拡散変調信号の送信電力を他方のOFDM−拡散変調信号の送信電力よりも大きくする構成を採る。
【0087】
この構成によれば、第1のOFDM−拡散変調信号と第2のOFDM−拡散変調信号の相関を小さくできるので、受信側では多重化信号から一段と精度良く各OFDM−拡散変調信号を分離できるようになる。また受信側において、拡散率の大きいOFDM−拡散変調信号を先に多重化信号から分離する場合に、この拡散率の大きいOFDM−拡散変調信号の送信電力が他方の送信電力よりも大きくされているので、多重化信号から拡散率の大きいOFDM−拡散変調信号を精度良く分離できる。従って、多重化信号から拡散率の大きいOFDM−拡散変調信号のレプリカ信号を減算して抽出される拡散率の小さいOFDM−拡散変調信号の分離精度も良くすることができる。
【0088】
本発明の受信装置は、情報信号に対してそれぞれ拡散率の異なる拡散符号を用いて形成された第1及び第2のスペクトル拡散信号が同一周波数帯域で多重された多重化信号を受信する受信手段と、第1のスペクトル拡散信号に対応する拡散符号を用いて受信多重化信号から第1のスペクトル拡散信号を分離復調する第1復調手段と、復調された信号から第1のスペクトル拡散信号を再生することにより第1のスペクトル拡散信号のレプリカ信号を形成する再生手段と、受信多重化信号から第1のスペクトル拡散信号のレプリカ信号を除去することにより第2のスペクトル拡散信号を抽出する信号除去手段と、抽出された第2のスペクトル拡散信号を復調する復調手段とを具備する構成を採る。
【0089】
この構成によれば、第1復調手段による逆拡散処理によって受信多重化信号から第1のスペクトル拡散信号が分離復調される。また信号除去手段によって受信多重信号から第1のスペクトル拡散信号成分が除去されることで第2のスペクトル拡散信号が分離される。かくして、受信多重化信号から拡散率の異なるスペクトル拡散信号を各々分離して復調できる。
【0090】
本発明の受信装置は、第1のスペクトル拡散信号は、第2のスペクトル拡散信号よりも拡散率が大きいスペクトル拡散信号であり、拡散率の大きいスペクトル拡散信号から順に復調する構成を採る。
【0091】
この構成によれば、拡散率の異なる拡散信号が多重化されている場合には、拡散率の大きい拡散信号の方が逆拡散の精度が高くなることに着目して、受信多重化信号のうち拡散率の大きい拡散信号から順に分離復調するようにした。このようにすれば、多重化信号からレプリカ信号を減算することで次に抽出される拡散信号の分離精度も向上するようになるので、全ての拡散信号を精度良く分離復調できるようになる。
【0092】
本発明の受信装置は、情報信号に対してそれぞれ拡散率の異なる拡散符号を用いかつ拡散後の信号に対して直交周波数分割多重処理が施されて形成された第1及び第2のOFDM−拡散変調信号が同一周波数帯域で多重された多重化信号を受信する受信手段と、第1のOFDM−拡散変調信号に対応する拡散符号を用いて受信多重化信号から第1のOFDM−拡散変調信号を分離復調する第1復調手段と、復調された信号から第1のOFDM−拡散変調信号を再生することにより第1のOFDM−拡散変調信号のレプリカ信号を形成する再生手段と、受信多重化信号から第1のOFDM−拡散変調信号のレプリカ信号を除去することにより第2のOFDM−拡散変調信号を抽出する信号除去手段と、抽出された第2のOFDM−拡散変調信号を復調する復調手段とを具備する構成を採る。
【0093】
この構成によれば、第1復調手段による逆拡散処理によって受信多重化信号から第1のOFDM−拡散変調信号が分離復調される。また信号除去手段によって受信多重信号から第1のOFDM−拡散変調信号成分が除去されることで第2のOFDM−拡散変調信号が分離される。かくして、受信多重化信号から拡散率の異なる拡散符号を用いて形成されたOFDM−拡散変調信号を各々分離して復調できる。
【0094】
本発明の受信装置は、第1のOFDM−拡散変調信号は、第2のOFDM−拡散変調信号よりも拡散率の大きい拡散符号を用いて形成されたOFDM−拡散変調信号であり、拡散率の大きい拡散符号を用いて形成されたOFDM−拡散変調信号から順に復調する構成を採る。
【0095】
この構成によれば、拡散率の異なるOFDM−拡散変調信号が多重化されている場合には、拡散率の大きいOFDM−拡散変調信号の方が逆拡散の精度が高くなることに着目して、受信多重化信号のうち拡散率の高いOFDM−拡散変調信号から順に分離復調するようにした。このようにすれば、多重化信号からレプリカ信号を減算することで次に抽出されるOFDM−拡散変調信号の分離精度も向上するようになるので、全てのOFDM−拡散変調信号を精度良く分離復調できるようになる。
【0096】
本発明の送信装置は、情報信号をスペクトル拡散方式を用いて変調することにより拡散信号を得る第1の変調手段と、情報信号をスペクトル拡散方式を用いずに変調することにより非拡散信号を得る第2の変調手段と、送信相手局の伝搬路環境に基づき、伝搬路環境が悪い場合には第1の変調手段を選択して当該送信相手局宛の情報信号を拡散処理すると共に伝搬環境が良い場合には第2の変調手段を選択して当該送信相手局宛の情報信号を拡散処理しないようになされた変調選択手段と、選択された変調方式により変調処理された複数の変調信号を同一周波数帯域に多重して多重化信号を得る多重化手段と、多重化信号を送信する送信手段と、を具備する構成を採る。
【0097】
この構成によれば、伝搬環境が悪い送信相手局には誤り耐性の強い拡散信号を、伝搬環境が良い送信相手局には伝送量の多い非拡散信号を、同一周波数帯域に多重化して送信するようにしたので、誤り率特性の向上と伝送データ量の増加とを両立させることができる。
【0098】
本発明の送信装置は、情報信号に対して直交周波数分割多重処理を施してOFDM変調信号を得るOFDM変調手段と、情報信号に対して拡散処理及び直交周波数分割多重処理を施してOFDM−拡散変調信号を得るOFDM−拡散変調手段と、送信相手局の伝搬路環境に基づき、伝搬路環境が悪い場合にはOFDM−拡散変調手段を選択して当該送信相手局宛の情報信号に対して拡散処理及び直交周波数分割多重処理を施すと共に伝搬環境が良い場合にはOFDM変調手段を選択して当該送信相手局宛の情報信号に対して直交周波数分割多重処理を施すようになされた変調選択手段と、選択された変調方式により変調処理された複数の変調信号を同一周波数帯域に多重して多重化信号を得る多重化手段と、多重化信号を送信する送信手段と、を具備する構成を採る。
【0099】
この構成によれば、伝搬環境が悪い送信相手局には誤り耐性の強いOFDM−拡散変調信号を、伝搬環境が良い送信相手局には伝送レートの高いOFDM変調信号を、同一周波数帯域に多重化して送信するようにしたので、誤り率特性の向上と伝送データ量の増加とを両立させることができる。
【0100】
本発明の送信装置は、情報信号をスペクトル拡散方式を用いて変調することにより拡散信号を得る第1の変調手段と、情報信号をスペクトル拡散方式を用いずに変調することにより非拡散信号を得る第2の変調手段と、を具備し、同一の情報信号に対して第1及び第2の変調手段による処理を施すことにより、同一の情報信号についての拡散信号と非拡散信号を得て、当該拡散信号と非拡散信号とを同一周波数帯域に多重化して送信する、構成を採る。
【0101】
この構成によれば、受信側で電波伝搬環境に応じて、誤り耐性の強い拡散信号か伝送量の多い非拡散信号かを選択して情報信号を得ることができるようになるので、結果的に多くの情報を得ることができるようになる。
【0102】
本発明の送信装置は、情報信号に対して直交周波数分割多重処理を施してOFDM変調信号を得るOFDM変調手段と、情報信号に対して拡散処理及び直交周波数分割多重処理を施してOFDM−拡散変調信号を得るOFDM−拡散変調手段と、を具備し、同一の情報信号に対してOFDM変調手段とOFDM−拡散変調手段による処理を施すことにより、同一の情報信号についてのOFDM変調信号とOFDM−拡散変調信号を得て、当該OFDM変調信号とOFDM−拡散変調信号とを同一周波数帯域に多重化して送信する、構成を採る。
【0103】
この構成によれば、受信側で電波伝搬環境に応じて、誤り耐性の強いOFDM−拡散変調信号か伝送量の多いOFDM変調信号かを選択して情報信号を得ることができるようになるので、結果的に多くの情報を得ることができるようになる。
【0104】
本発明の受信装置は、同一の情報信号についての拡散信号と非拡散信号とが同一周波数帯域に多重された多重化信号を受信する受信手段と、受信多重化信号を逆拡散することにより多重化信号中の拡散信号を復調する逆拡散復調手段と、復調された信号から拡散信号を再生して拡散信号のレプリカ信号を形成する再生手段と、受信多重化信号からレプリカ信号を除去することにより非拡散信号を抽出する信号除去手段と、抽出された非拡散信号を復調する復調手段と、送信局との間の電波伝搬環境を推定する電波伝搬環境推定手段と、推定された電波伝搬環境に基づいて、復調された拡散信号または復調された非拡散信号のいずれかを選択する選択手段と、を具備する構成を採る。
【0105】
この構成によれば、伝搬環境が悪い場合には誤り耐性の強い拡散信号を用いて伝送された情報信号を選択するのに対して、伝搬環境が良い場合には伝送量の多い非拡散信号を用いて伝送された情報信号を選択できるので、結果的に多くの情報を得ることができるようになる。
【0106】
本発明の受信装置は、同一の情報信号についてのOFDM変調信号とOFDM−拡散変調信号とが同一周波数帯域に多重された多重化信号を受信する受信手段と、受信多重化信号中のOFDM−拡散変調信号を復調する第1の復調手段と、復調されたOFDM−拡散変調信号からOFDM−拡散変調信号を再生してOFDM−拡散変調信号のレプリカ信号を形成する再生手段と、受信多重化信号からレプリカ信号を除去することによりOFDM変調信号を抽出する信号除去手段と、抽出されたOFDM変調信号を復調する第2の復調手段と、送信局との間の電波伝搬環境を推定する電波伝搬環境推定手段と、推定された電波伝搬環境に基づいて、復調されたOFDM変調信号または復調されたOFDM−拡散変調信号のいずれかを選択する選択手段と、を具備する構成を採る。
【0107】
この構成によれば、伝搬環境が悪い場合には誤り耐性の強いOFDM−拡散変調信号を用いて伝送された情報信号を選択するのに対して、伝搬環境が良い場合には伝送量の多いOFDM変調信号を用いて伝送された情報信号を選択できるので、結果的に多くの情報を得ることができるようになる。
【0108】
本発明の無線通信方法は、送信装置が、情報信号をディジタル変調して得た第1変調信号と、予め設定された信号系列をディジタル変調して得た第2変調信号とを同一周波数帯域に多重化して送信し、受信装置が、予め設定された信号系列を用いて多重化信号から第2変調信号を復調し、復調された信号を基に第2変調信号のレプリカ信号を形成し、多重化信号から第2変調信号のレプリカ信号を除去することにより第1変調信号を抽出し、抽出した第1変調信号を復調する。
【0109】
この方法によれば、情報信号がディジタル変調された第1変調信号と予め設定された信号系列がディジタル変調された第2変調信号とが同一周波数帯域に多重された場合でも、第1変調信号と第2変調信号を良好に分離することができるようになる。
【0110】
本発明の無線通信方法は、送信装置が、情報信号をディジタル変調して得た第1変調信号と、情報信号をスペクトル拡散方式によりディジタル変調して得た第2変調信号とを同一周波数帯域に多重化して送信し、受信装置が、受信多重化信号に対してスペクトル拡散復調を行うことにより第2変調信号を復調し、復調した第2変調信号に対してスペクトル拡散処理を行って第2変調信号のレプリカ信号を形成し、受信多重化信号から第2変調信号のレプリカ信号を除去することにより第1変調信号を抽出し、抽出した第1変調信号を復調する。
【0111】
この方法によれば、情報信号がディジタル変調された第1変調信号と情報信号がスペクトル拡散方式によりディジタル変調された第2変調信号とが同一周波数帯域に多重された場合でも、第1変調信号と第2変調信号を良好に分離することができるようになる。
【0112】
本発明の無線通信方法は、送信装置が、情報信号をディジタル変調して得た変調信号と、複数の特定信号の中から選択した情報信号に対応する特定信号とを同一周波数帯域に多重化して送信し、受信装置が、受信多重化信号に含まれる特定信号を識別し、受信多重化信号から識別した特定信号を除去することにより前記変調信号を得るようにする。
【0113】
この方法によれば、情報信号を特定の変調信号を介して伝送しているため、受信側では特定変調信号から情報信号を推定できるようになる。この結果、同一周波数帯域で伝送できる情報量を増やすことができるようになる。因みに特定変調信号は数が限られているため、受信側では例えば多重化信号と数が限られた特定変調信号との相関値を順次とることにより、多重化信号に含まれている特定変調信号を容易に検出することができる。
【0114】
本発明の無線通信方法は、送信装置が、情報信号を直交周波数分割多重処理して得たOFDM変調信号と、情報信号を拡散処理及び直交周波数分割多重処理して得たOFDM−拡散変調信号とを同一周波数帯域に多重化して送信し、受信装置が、受信多重化信号に対してOFDM−拡散復調処理を施すことによりOFDM−拡散変調信号を抽出し、抽出したOFDM−拡散変調信号を再生することによりOFDM−拡散変調信号のレプリカ信号を形成し、受信多重化信号からOFDM−拡散変調信号のレプリカ信号を除去することによりOFDM変調信号を得るようにする。
【0115】
この方法によれば、先ず拡散符号を使ってOFDM−拡散変調信号を多重化信号から分離復調し、次にOFDM−拡散変調信号のレプリカ信号を多重化信号から除去することでOFDM変調信号を多重化信号から分離できる。これにより、同一周波数帯域で多重化されたOFDM変調信号とOFDM−拡散信号を各々分離して復調できるようになる。この結果、周波数を有効利用して大容量の通信を実現できる。
【0116】
本発明の無線通信方法は、送信装置が、異なる拡散率の異なる第1及び第2の拡散符号を用いて形成した第1及び第2の拡散信号を同一周波数帯域に多重化して送信し、受信装置が、受信多重化信号から第1の拡散信号に対応する拡散符号を用いて第1の拡散信号を復調し、復調した信号から第1の拡散信号を再生することにより第1の拡散信号のレプリカ信号を形成し、受信多重化信号からレプリカ信号を除去することにより第2の拡散信号を得るようにする。
【0117】
この方法によれば、先ず第1の拡散符号を用いた逆拡散処理によって受信多重化信号から第1のスペクトル拡散信号が分離復調される。次に受信多重信号から第1のスペクトル拡散信号のレプリカ信号が除去されることで第2のスペクトル拡散信号が分離される。かくして、受信多重化信号から拡散率の異なるスペクトル拡散信号を各々分離して復調できる。この結果、周波数を有効利用して大容量の通信を実現できる。
【0118】
本発明の無線通信方法は、送信装置が、異なる拡散率の第1及び第2の拡散符号を用いて形成した第1及び第2のOFDM−拡散変調信号を同一周波数帯域に多重化して送信し、受信装置が、受信多重化信号から第1のOFDM−拡散変調信号に対応する拡散符号を用いて第1のOFDM−拡散変調信号を復調し、復調した信号から第1のOFDM−拡散変調信号を再生することにより第1のOFDM−拡散変調信号のレプリカ信号を生成し、受信多重化信号からレプリカ信号を除去することにより第2のOFDM−拡散変調信号を得るようにする。
【0119】
この方法によれば、先ず第1の拡散符号を用いた逆拡散処理によって受信多重化信号から第1のOFDM−拡散変調信号が分離復調される。次に受信多重信号から第1のOFDM−拡散変調信号のレプリカ信号が除去されることで第2のOFDM−拡散変調信号が分離される。かくして、受信多重化信号から拡散率の異なるOFDM−拡散変調信号を各々分離して復調できる。この結果、周波数を有効利用して大容量の通信を実現できる。
【0120】
本発明の無線通信方法は、受信装置が、受信多重化信号に含まれる信号の中で拡散率の大きい拡散符号を用いて得られた信号から順に復調する。
【0121】
この方法によれば、拡散率の大きい拡散信号の方が逆拡散の精度が高くなることに着目して、受信多重化信号のうち拡散率の大きい信号から順に分離復調するようにした。このようにすれば、多重化信号からレプリカ信号を減算することで次に抽出される信号の分離精度も向上するようになるので、全ての信号を精度良く分離復調できるようになる。
【0122】
本発明の無線通信方法は、受信装置が、受信多重化信号に含まれる信号の中で受信電力の大きい信号から順に復調する。
【0123】
この方法によれば、受信電力の大きい信号の方が多重化信号から分離する際の精度が高くなることに着目して、受信多重化信号のうち受信電力の大きい信号から順に分離復調するようにした。このようにすれば、多重化信号からレプリカ信号を減算することで次に抽出される信号の分離精度も向上するようになるので、全ての信号を精度良く分離復調できるようになる。
【0124】
本発明の無線通信方法は、送信装置が、同一の信号から拡散信号と非拡散信号を得て、これらを同一周波数帯域に多重化して送信し、受信装置が、送信装置との間の電波伝搬環境を推定し、推定した電波伝搬環境に基づいて、受信多重化信号から拡散信号または非拡散信号のいずれかを選択して復調する。
【0125】
この方法によれば、伝搬環境が悪い場合には誤り耐性の強い拡散信号を用いて伝送された情報信号を選択し、一方、伝搬環境が良い場合には伝送量の多い非拡散信号を用いて伝送された情報信号を選択すれば、結果的に多くの情報を得ることができるようになる。
【0126】
本発明の無線通信方法は、送信装置が、同一の信号からOFDM信号とOFDM−拡散信号を得て、これらを同一周波数帯域に多重化して送信し、受信装置が、送信装置との間の電波伝搬環境を推定し、推定した電波伝搬環境に基づいて、受信多重化信号からOFDM信号またはOFDM−拡散信号のいずれかを選択して復調する。
【0127】
この方法によれば、伝搬環境が悪い場合には誤り耐性の強いOFDM−拡散信号を用いて伝送された情報信号を選択し、一方、伝搬環境が良い場合には伝送量の多いOFDM信号を用いて伝送された情報信号を選択すれば、結果的に多くの情報を得ることができるようになる。
【0128】
【発明の実施の形態】
本発明の骨子は、同一周波数帯域に複数の変調信号を多重化して送信することである。但し、単純に複数の変調信号を多重化するのではなく、受信側で各信号を分離できるような変調信号を組み合わせて同一周波数帯域に多重化する。
【0129】
この組み合わせとして、予め設定された信号系列をディジタル変調した変調信号、スペクトル拡散方式によりディジタル変調した変調信号、OFDM−拡散変調信号、拡散率の異なる拡散符号を用いてスペクトル拡散方式によりディジタル変調した変調信号、拡散率の異なる拡散符号を用いて形成したOFDM−拡散変調信号などを多重化信号に含めて送信することを提案する。
【0130】
そして受信側では、上記変調信号を含んだ多重化信号の中から、先ず、上記変調信号を、予め設定された信号系列との相関処理、逆拡散処理、拡散率の異なる拡散符号を用いた逆拡散処理などを行って復調する。次に、一旦復調した信号のレプリカ信号を形成し、多重化信号からレプリカ信号を除去することで多重化信号に含まれる他の信号を抽出する。
【0131】
これにより、同一周波数帯域に複数の変調信号を多重化して送信した場合でも、受信側でそれらの信号を分離して復調することができるようになる。
【0132】
(実施の形態1)
実施の形態1では、送信側で情報をディジタル変調した変調信号(以下、「情報変調信号」という)と、ある特定の信号系列をディジタル変調した変調信号(以下、「特定情報信号」という)とを、同一周波数帯域に多重し、受信側で多重された信号を分離し、情報変調信号を復調する場合について説明する。
【0133】
図1は、実施の形態1に係るフレーム構成の一例を示したものである。図1(A)は、変調方式を16QAMとした場合の情報変調信号のフレーム構成を示しており、データシンボル101が10シンボルで構成されている。また図1(B)は、特定変調信号のフレーム構成を示しおり、一例として変調方式をBPSK変調とする。
【0134】
図2は、同相−直交平面(I−Q平面)における16QAMの信号点マッピングを示しており、参照符号201は16QAMの信号点を示している。図1(A)のデータシンボル101は、図2における信号点201のいずれかに配置されることになる。
【0135】
図3は、I−Q平面におけるBPSK変調の信号点マッピングを示しており、参照符号301および参照符号302はBPSK変調の信号点であり、BPSK変調信号点301の座標は(I,Q)=(1,0)、BPSK変調信号点302の座標は(I,Q)=(−1,0)である。そして、図1における参照符号102は、図3におけるBPSK変調信号点301のシンボルであり、参照符号103は、図3におけるBPSK変調信号点302のシンボルである。このとき、情報変調信号を多重する特定変調信号のフレームは、図1(B)に示すように参照符号102の5シンボル、参照符号103の5シンボルで構成されている。
【0136】
なお、図1は本実施の形態における無線通信方式のフレーム構成の一例であり、特定変調信号とは、例えば時間軸で周期をもった信号であり、図1(B)に示したような既知の信号、あるいはスペクトル拡散通信のように情報が伝送されているが、拡散符号周期内で規則のある信号でもよい。本実施の形態では、特定変調信号をパイロット信号として用いる。
【0137】
図1(A)の情報変調信号と図1(B)の特定変調信号を多重した様子を図4に示す。図4は、縦軸を信号パワ、横軸を周波数としたときの情報変調信号と特定変調信号の配置を示したものである。参照符号401は、情報変調信号のスペクトル、参照符号402は、特定変調信号のスペクトルを示している。このとき、図4に示すように、情報変調信号のスペクトル401および特定変調信号のスペクトル402は多重されており、これにより周波数が有効利用される。
【0138】
このように、これらの信号を同一周波数帯域で多重するためには、情報変調信号のスペクトル401の占有帯域と特定変調信号のスペクトル402の占有帯域を等しくすればよい。そのためには、情報変調信号のシンボル伝送速度と特定変調信号のシンボル伝送速度を等しくすればよい。
【0139】
図5は、本実施の形態における送信装置の構成を示している。このとき、図1のフレーム構成を一例として、図5について説明する。図5において、情報変調部501は、入力された情報信号を16QAM変調し、情報変調信号を加算部503に出力する。ディジタル変調部502は、図1(B)のフレーム構成に従った時間軸において、10シンボルの周期のBPSK変調された特定変調信号を加算部503に出力する。
【0140】
加算部503は、情報変調部501より出力された情報変調信号と、ディジタル変調部502より出力されたBPSK変調された特定変調信号とを多重し、多重された信号(以下、「多重信号」という)を帯域制限フィルタ部504に出力する。
【0141】
帯域制限フィルタ部504は、加算部503より出力された多重信号を例えばナイキストフィルタにより帯域制限した後、無線部505に出力する。無線部505は、帯域制限フィルタ部504より出力された帯域制限後の信号に所定の無線処理を行い、送信信号を送信電力増幅部506に出力する。送信電力増幅部506は、無線部505より出力された無線処理後の信号を電力増幅し、アンテナ507を介して送信する。
【0142】
図6は、本実施の形態における受信装置の構成を示している。図6において、無線部602は、アンテナ601を介して受信した信号(受信信号)に所定の無線処理を行い、同期部603と復調部604に出力する。
【0143】
同期部603は、無線部602より出力された無線処理後の信号に基づいて、送信装置との時間同期をとり、タイミング信号を復調部604に出力する。復調部604は、同期部603より出力されたタイミング信号に基づいて、無線部602より出力された無線処理後の信号を復調し、情報信号を出力する。
【0144】
次に、上記構成を有する送信装置および受信装置の動作を説明する。図5において、情報信号は、情報変調部501において、16QAM変調され、加算部503に出力される。図1(B)のフレーム構成にしたがって、10シンボルの周期をもった信号は、ディジタル変調部502において、BPSK変調され、加算部503に出力される。
【0145】
情報変調部501より出力された情報変調信号と、ディジタル変調部502より出力されたBPSK変調後の特定変調信号は、加算部503において、多重され、帯域制限フィルタ部504に出力される。加算部503より出力された多重信号は、帯域制限フィルタ部504において、帯域制限され、無線部505に出力される。帯域制限フィルタ部504より出力された帯域制限後の信号は、無線部505において、所定の無線処理が行われ、送信電力増幅部506に出力される。無線部505より出力された無線処理後の信号は、送信電力増幅部506において、電力増幅され、アンテナ507を介して送信される。
【0146】
送信装置から送信された信号は、図6におけるアンテナ601を介して無線部602において受信される。アンテナ601を介して受信された信号(受信信号)は、無線部602において、所定の無線処理が行われ、同期部603と復調部604に出力される。無線部602より出力された信号は、同期部603において、送信装置との時間同期がとられ、タイミング信号が復調部604に出力される。無線部602より出力された信号は、復調部604において、同期部603より出力されたタイミング信号に基づいて復調される。
【0147】
次に、図6における同期部603の内部構成について図7を用いて説明する。図7は、本実施の形態における相関演算を行う構成を示している。このとき、図1のフレーム構成で送信された信号を例に説明する。遅延部701は、入力された信号を1シンボル遅延させて出力するものである。ここで、受信直交ベースバンド信号を(Ii,Qi)とし、1シンボル遅延した受信直交ベースバンド信号を(Ii−1,Qi−1)、2シンボル遅延した受信直交ベースバンド信号を(Ii−2,Qi−2)とし、nシンボル遅延した受信直交ベースバンド信号を(Ii−n,Qi−n)(1≦n≦9)とする。
【0148】
遅延部701によりnシンボル遅延された信号と受信直交ベースバンド信号は、乗算部702により予め定められた定数(図1(B)に示すシンボルの配置に由来する1または−1)が乗算され、送信された10シンボル周期のBPSK変調信号との相関がとられる。乗算後の信号は、加算部703に出力される。
【0149】
乗算部702により出力された乗算後のそれぞれの信号は、加算部703において、加算され、加算後の信号(Iadd,Qadd)がパワ計算部704に出力される。加算部703により出力された加算後の信号(Iadd,Qadd)は、パワ計算部704において、相関信号(Iadd2+Qadd2)が求められ、出力される。
【0150】
パワ計算部704により求められる相関信号の時間変動の様子を図8に示す。図8は、横軸が時間を、縦軸はパワを示しており、参照符号801がその変動を示している。このとき、参照符号801が示すように、特定変調信号の周期は、10シンボルごとに相関のピークがあることになる。受信装置は、このピーク位置を検出することで、送信装置との時間同期を確立することができる。このため、情報変調信号に、送受信間の時間同期を確立するためのユニークワードを挿入しなくても、時間同期を確立することができる。これにより、情報変調信号にユニークワードを挿入する分、データシンボルを挿入することでデータの伝送効率を向上させることができる。
【0151】
図9は、図6における復調部604の内部構成を示している。遅延部901は、入力された受信信号を、信号再生部902において、信号を再生するのにかかる時間分遅延させ、遅延した受信信号を減算部903に出力する。信号再生部902は、入力された受信信号を入力されたタイミング信号に基づいて、特定変調信号を再生し、減算部903に出力する。なお、信号再生部902の詳しい動作については後述する。
【0152】
減算部903は、遅延部901より出力された遅延後の受信信号から信号再生部902より出力された特定変調信号を減算する。これにより、受信信号から特定変調信号が除去され、情報変調信号のみが抽出される。そして、情報変調信号が検波部905に出力される。
【0153】
パイロット信号推定部904は、入力されたタイミング信号に基づいて、入力された受信信号から情報変調信号を除去した特定変調信号を抽出し、送受信間で既知のパイロット信号として検波部905に出力する。なお、パイロット信号推定部904の詳しい動作については後述する。検波部905は、パイロット信号推定部904より出力された特定変調信号およびタイミング信号に基づいて、減算部903より出力された情報変調信号に検波処理を行い検波後の信号を出力する。
【0154】
このように、特定変調信号をパイロット信号とすることで、情報変調信号にパイロットシンボル挿入しなくても情報変調信号を検波することができる。この結果、パイロットシンボルの分だけデータシンボルを割り当てることができるため、データの伝送効率を向上させることができる。
【0155】
図10は、図9における信号再生部902の内部構成を示している。図10において、符号乗算部1001は、入力された受信信号にタイミング信号に基づいて特定変調信号に対応した符号を乗算し、符号乗算後の受信信号をLPF(Low Pass Filter)1002に出力する。LPF1002は、符号乗算部1001より出力された符号乗算後の多重信号から情報変調信号成分(因みに、符号乗算後の信号において情報変調信号成分は高周波成分となっている)を取り除き、特定変調信号成分を再符号乗算部1003に出力する。再符号乗算部1003は、LPF1002を通過した特定変調信号成分をタイミング信号に基づいて、再度符号乗算を行うことで、特定変調信号を再生する。このように特定変調信号のレプリカ信号を形成する。
【0156】
ここで、符号乗算部1001により符号乗算された受信信号について、図11を用いて詳しく説明する。符号乗算後の受信直交ベースバンド信号は、符号乗算後の情報変調信号と、特定変調信号で構成されている。このとき、図11に示すように、符号乗算後の情報変調信号の周波数軸におけるスペクトルは、参照符号1101のようになり、特定変調信号の周波数軸上におけるスペクトルは、参照符号1102のようになる。よって、情報変調信号のスペクトル1101より特定変調信号のスペクトル1102の方が、周波数が低いため、LPF1002により、符号乗算後の信号から情報変調信号の成分を取り除くことができ、LPF1002通過後の信号は特定変調信号の成分のみで構成されることになる。
【0157】
図12は、図9におけるパイロット信号推定部904の内部構成を示している。符号乗算部1201は、入力された受信信号をタイミング信号に基づいて、符号乗算を行い、符号乗算後の受信信号をLPF1202に出力する。LPF1202は、符号乗算部1201より出力された符号乗算後の受信信号から特定変調信号の成分のみを出力し、この信号をパイロット信号として用いる。
【0158】
なお、図1において、特定変調信号として、BPSK変調方式で説明したが、これに限ったものではない。例えば多重した特定変調信号をパイロット信号として用いる場合、I−Q平面において振幅成分に情報がないPSK変調を用いるのは有効な手段となり、特にBPSK変調やQPSK変調を用いると送信装置および受信装置の構成が容易となる。
【0159】
また、本実施の形態における無線通信システムの受信装置では、多重する特定変調信号の信号系列がわからないと、情報変調信号を復調できないことになる。よって、多重する特定変調信号を暗号の鍵とすることで、秘匿性のある無線通信を行うことが可能となる。
【0160】
ここで多重する特定変調信号は、例えば図1(B)のように10シンボルの周期をもつので、多くの種類生成することが可能である。送信装置で多重する特定変調信号の種類を変更し、受信装置で多重する特定変調信号を識別すれば、受信装置に情報を伝送したことになり、受信装置の簡単な制御情報として用いることができる。
【0161】
以上のように本実施の形態によれば、送信装置が情報変調信号と特定変調信号を同一周波数帯域に多重して送信するようにしたことにより、限られた周波数帯域で実質的に伝送できる情報量を増やすことができる。また多重信号から情報変調信号と特定変調信号を分離し、特定変調信号に基づいて伝送路による変動を補償して、情報変調信号を復調することができるため、情報変調信号に時分割でユニークワードやパイロットシンボルを挿入する必要が無くなるので、その分データの伝送速度を向上させることができる。
【0162】
(実施の形態2)
実施の形態2では、実施の形態1により多重された送信信号を複数の局で同時に送信することを特徴とした無線通信方式について説明する。
【0163】
図13は、本実施の形態における無線通信システムの構成を示している。図13において、送信信号生成局1304は、例えば図1のフレーム構成にしたがった変調信号を生成し、基地局1301および基地局1302に伝送し、基地局1301および基地局1302が情報変調信号と特定変調信号を同一周波数帯域に多重して電波として送信する。端末1303は、図6に示す受信装置を具備しており、同期部603が、図7に示す相関演算部を具備しているものとする。
【0164】
図13に示すように、端末1303は、基地局1301からの電波と基地局1302からの電波を受信する。このとき、端末1303は、基地局1301からの電波と基地局1302からの電波を分離、等化することで受信誤り率特性を改善することができる。これを、図14を用いて説明する。図14は、基地局1301からの電波と基地局1302からの電波を端末1303が受信したとき、図7に示す相関演算を行ったときの相関特性の一例を示している。図14において、参照符号1401は、基地局1301からの電波の相関特性を、参照符号1402は、基地局1302からの電波の相関特性を示している。図14に示すように、基地局1301からの電波と基地局1302からの電波が端末1303に到達するまでの伝搬遅延がわかる。この遅延差に基づき、受信信号を等化することで、端末1303における受信誤り率特性を改善することができる。
【0165】
以上のように本実施の形態によれば、実施の形態1により多重された送信信号を複数の局で同時に送信する場合、多重された送信信号を受信した受信装置が受信信号を等化するようにしたことにより、受信誤り率特性を改善することができる。
【0166】
(実施の形態3)
実施の形態3では、同一周波数帯域に、情報変調信号とスペクトル拡散通信方式の変調方式で変調した変調信号(以下、「拡散変調信号」という)を多重し、受信側で多重された信号を情報変調信号と拡散変調信号に分離して、復調する場合について説明する。
【0167】
図15は、本実施の形態における無線通信方式の時間軸におけるフレーム構成の一例を示している。図15(A)は、情報変調信号のフレーム構成を示しており、変調方式を16QAM変調とする。参照符号1501、1502、1503はパイロットシンボルを示しており、1シンボルで構成される。参照符号1504、1505は、データシンボルを示しており、10シンボルで構成される。一方、図15(B)は、情報の拡散変調信号のフレーム構成を示している。参照符号1506、1507はスペクトル拡散変調シンボルを示しており、スペクトル拡散を行った場合、10シンボルに相当する10チップで構成されている。データシンボルとスペクトル拡散変調シンボルは時間軸上で多重されているものとする。
【0168】
図16は、I−Q平面における16QAMおよびパイロットシンボルの信号点マッピングを示している。図16において、参照符号1601は、図15における参照符号1504、1505に示すデータシンボルの信号点を示しており、参照符号1602は、図15における参照符号1501、1502、1503のパイロットシンボルの信号点を示している。
【0169】
図17は、本実施の形態における送信装置1700を示している。図17において、情報変調部1701は、入力された情報信号に、図1(A)のフレーム構成にしたがったディジタル変調を行い、情報変調信号を加算部1703に出力する。スペクトル拡散変調部1702は、入力された情報信号にスペクトル拡散変調を行い、図1(B)のフレーム構成にしたがって、拡散変調信号を加算部1703に出力する。
【0170】
加算部1703は、情報変調部1701より出力された情報変調信号と、スペクトル拡散変調部1702より出力された拡散変調信号とを加算し、加算された信号(多重信号)を帯域制限フィルタ部1704に出力する。帯域制限フィルタ部1704は、加算部1703により出力された多重信号に帯域制限を行い、無線部1705に出力する。
【0171】
無線部1705は、帯域制限フィルタ部1704より出力された帯域制限後の信号に所定の無線処理を行い、送信信号を送信電力増幅部1706に出力する。送信電力増幅部1706は、無線部1705により出力された送信信号を電力増幅し、増幅された送信信号をアンテナ1707を介して送信する。
【0172】
これにより、情報変調信号と拡散変調信号を多重した変調信号を送信することが可能である。
【0173】
図18は、本実施の形態における受信装置1800の構成を示している。以下、図15のフレーム構成における16QAM変調されたデータシンボル1504およびスペクトル拡散変調シンボル1506の復調について説明する。図18において、無線部1802は、アンテナ1801を介して受信した信号(受信信号)に所定の無線処理を行い、無線処理後の受信信号をスペクトル拡散復調部1803と遅延部1806に出力する。
【0174】
スペクトル拡散復調部1803は、無線部1802により出力された信号をスペクトル拡散復調し、得られた受信ディジタル信号をスペクトル拡散変調信号再生部1805に出力する。歪み推定部1804は、入力された受信信号から、例えば図15のパイロットシンボル1501および1502を検出し、データシンボル1504およびスペクトル拡散変調シンボル1506における受信信号の歪みを推定し、この歪みを示す信号(以下、「歪み信号」という)をスペクトル拡散変調信号再生部1805および情報復調部1808に出力する。歪み推定部1804の詳しい動作説明は後述する。
【0175】
スペクトル拡散変調信号再生部1805は、スペクトル拡散復調部1803より出力された受信ディジタル信号に対してスペクトル拡散変調部1702と逆の処理を施すことにより、スペクトル拡散変調された信号のレプリカ信号を形成する。このときスペクトル拡散変調信号再生部1805は、歪み推定部1804より推定された歪み情報を使ってレプリカ信号を形成することにより、伝送時の歪み量を含んだレプリカ信号を形成する。そして形成したレプリカ信号を減算部1807に出力する。
【0176】
遅延部1806は、推定スペクトル拡散変調信号を生成するのに要する時間分、入力された信号を遅延させ、遅延させた信号を減算部1807に出力する。減算部1807は、遅延部1806より出力された遅延後の信号から、スペクトル拡散変調信号再生部1805より出力された受信信号に含まれる拡散変調信号成分を減算し、多重した拡散変調信号成分が取り除かれた受信信号、すなわち情報変調信号のみを情報復調部1808に出力する。
【0177】
情報復調部1808は、歪み推定部1804より出力された受信信号の歪み信号に基づいて、減算部1807より出力された情報変調信号を復調し、情報を取り出し、情報信号を出力する。
【0178】
ここで歪み推定部1804の動作を、図19を用いて詳しく説明する。図19は、パイロットシンボルおよびパイロットシンボル間のシンボルの構成を示している。図19において、参照符号1901、1902は、パイロットシンボルを示しており、パイロットシンボル1901は、図15のパイロットシンボル1501に相当するものとし、そのときの受信信号(直交ベースバンド信号)の同相成分をIp1、直交成分をQp1とする。
【0179】
そしてパイロットシンボル1902は、図15のパイロットシンボル1502を示しており、そのときの受信信号(直交ベースバンド信号)の同相成分をIp2、直交成分をQp2とする。このとき、1番目のシンボル1903の歪み信号の同相成分をI1、直交成分をQ1とすると、Ip1およびIp2を用いて、I1=10Ip1/11+Ip2/11、Qp1およびQp2から、Q1=10Qp1/11+Qp2/11で求めるものとする。
【0180】
同様に、n番目(1≦n≦10)のシンボルの歪み信号の同相成分をIn、直交成分をQnとすると、In=(11−n)Ip1/11+nIp2/11、Qn=(11−n)Qp1/11+nQp2/11で求めることができる。このように求められた歪み信号を受信信号(直交ベースバンド信号)の歪み信号として出力する。
【0181】
上記構成を有する受信装置により、情報変調信号と拡散変調信号を同一周波数帯域に多重した信号から情報変調信号と拡散変調信号を分離することができるようになる。かくして、情報変調信号と拡散変調信号をそれぞれ単独で伝送する場合と比較して、それらを多重して伝送した分だけ、データ伝送速度を向上させることができる。
【0182】
なお、図17において、パイロット信号の生成機能を情報変調部1701にもたせて説明したが、スペクトル拡散変調部1702にもたせてもよい。またそれ以外の方法として、パイロット信号生成部を設け、情報変調部1701、スペクトル拡散変調部1702には、パイロット信号生成機能をもたせない装置構成が考えられる。
【0183】
またフレーム構成は図15に限ったものではなく、例えばパイロットシンボルを挿入しなくてもよい。このとき、送信装置では、パイロット生成機能は必要としないことになる。またユニークワードやプリアンブルなどの制御シンボルを挿入してもよい。
【0184】
また図18の受信装置において、例えば多重信号と拡散符号との相関演算を行いパワのピークを検出することで、送信装置との時間同期をとることが可能である。これは、多重信号の拡散信号成分を検出することと等しい。
【0185】
また送信装置および受信装置の構成は、図17および図18の構成に限ったものではない。
【0186】
また図15において、情報変調信号として、シングルキャリア方式を用いて説明したがシングルキャリア方式に限ったものではなく、直交周波数分割多重方式(OFDM:Orthogonal Frequency Division Multiplex)を例とするマルチキャリア方式でもよい。このときフレーム構成を示す図15の横軸を周波数軸と考えればよい。また変調方式として、16QAM変調方式で説明したが、BPSK変調、QPSK変調などでもよい。
【0187】
また多重するスペクトル拡散変調の符号多重数を一つで説明したが、多数でもよい。よって、図17の送信装置において、スペクトル拡散変調部は、一つの符号でスペクトル拡散変調するものに限ったものではなく、符号分割多重方式(CDMA:Code Division Multiple Access)でもよい。また図18のスペクトル拡散復調部およびスペクトル拡散変調信号再生部は、一つの符号でスペクトル拡散変調された信号の復調および再生に限ったものではなく、符号分割多重されている場合、多重されている符号について、スペクトル拡散復調、および再生を行うものとする。
【0188】
さらにパイロットシンボルは、図16のようにI−Q平面の特定位置としたがこれに限ったものではない。
【0189】
また本実施の形態における無線通信システムの受信装置が、多重するスペクトル拡散信号の拡散符号がわからないと、情報変調信号を復調できないことになる。よって、拡散符号を暗号の鍵とすることで、秘匿性のある無線通信を行うことが可能となる。送信装置で変更した拡散符号の情報は、受信装置の暗号の鍵となる。
【0190】
また情報信号をディジタル変調した変調方式と比較し、スペクトル拡散通信方式は、誤り耐性がある。よって重要度の高いデータをスペクトル拡散して送信すると信頼度の高い無線通信を行うことができるようになる。この点を考慮すると、チャネル情報、情報信号の変調方式情報などの制御情報をスペクトル拡散して送信するとよい。
【0191】
以上のように本実施の形態によれば、送信側で情報変調信号と拡散変調信号を同一周波数帯域に多重し、受信側で多重された信号を情報変調信号と拡散変調信号に分離し、復調することができるため、多重した信号で情報を伝送することで、データの伝送速度を向上させることができる。
【0192】
(実施の形態4)
実施の形態4では、送信側で情報変調信号と特定変調信号を同一周波数帯域に多重し、多重するある特定のディジタル変調された信号(以下、「特定信号」という)の種類で情報を伝送し、受信側で多重された信号を情報変調信号と特定信号に分離する場合について説明する。
【0193】
図20は、本実施の形態における無線通信方式の時間軸におけるフレーム構成例を示している。図20(A)は、図15(A)と同一であるので、詳しい説明を省略する。図20(B)は、特定変調信号のフレーム構成を示している。参照符号2001、参照符号2002は、特定のディジタル変調シンボル10シンボルで、データシンボルと特定のディジタル変調シンボルシンボルは時間軸上で多重されている。多重する特定の情報信号は、例えば、特定信号A、特定信号B、特定信号C、特定信号Dの4種類のいずれかとし、それぞれの信号には所定の情報を含ませるものとする。受信装置ではこれら4種類の信号を区別することで、情報を得るものとする。
【0194】
図21は、本実施の形態における送信装置2100の構成を示している。図21において、図17と共通する部分は図17と同一の符号を付し、詳しい説明を省略する。
【0195】
図21において、特定変調信号選択部2101は、入力された情報信号の情報に対応する特定信号A、特定信号B、特定信号C、特定信号Dのいずれかから特定信号を選択し、図20(B)のフレーム構成にしたがって、特定信号を加算部1703に出力する。
【0196】
加算部1703は、情報変調部1701により出力された情報変調信号および特定変調信号選択部2101により出力された特定信号を加算し、加算された信号(多重信号)を帯域制限フィルタ部1704に出力する。
【0197】
図22は、本実施の形態における受信装置2200の構成を示している。図22において、図18と共通する部分は図18と同一の符号を付し、詳しい説明を省略する。以下では、図20のフレーム構成における16QAM変調されたデータシンボル1504、および、特定のディジタル変調シンボル2001の復調について説明する。
【0198】
図22において、特定変調信号推定部2201は、入力された受信信号に基づいて、図20の特定のディジタル変調シンボルに含まれるディジタル信号を識別する。すなわち、特定信号A、特定信号B、特定信号C、特定信号Dの4種類のどの信号が多重されていたかを識別する。これにより、多重信号を推定して得られた受信ディジタル信号を特定変調信号再生部2203に出力する。歪み推定部2202は、受信信号から、例えば図20のパイロットシンボル1501およびパイロットシンボル1502を検出し、データシンボル1504および特定のディジタル変調シンボル2001における歪み推定信号を情報復調部1808と特定変調信号再生部2203に出力する。
【0199】
特定変調信号再生部2203は、特定変調信号推定部2201より出力された多重信号を推定して得られた受信ディジタル信号、および歪み推定部2202より出力された伝送路による歪み信号を入力とし、受信信号に含まれる多重信号成分を推定し、推定多重信号を減算部1807に出力する。
【0200】
遅延部1806は、推定多重信号を生成するのに要する時間分、受信信号を遅延させ、遅延させた受信信号を減算部1807に出力する。減算部1807は、遅延部1806より出力された遅延後の受信信号から、特定変調信号再生部2203より出力された推定多重信号を減算し、多重信号成分が取り除かれた受信信号を情報復調部1808に出力する。
【0201】
上記構成を有する受信装置により、情報変調信号と多重した特定信号を識別することができ、多重した特定信号で送信した情報分、データ伝送速度が向上する。
【0202】
なお、図21において、パイロット信号の生成機能を情報変調部1701にもたせて説明したが、特定変調信号選択部2101にもたせてもよい。またそれ以外の方法として、パイロット信号生成部を設け、情報変調部1701、特定変調信号選択部2101には、パイロット信号生成機能をもたせない装置構成が考えられる。
【0203】
またフレーム構成は図20に限ったものではなく、例えばパイロットシンボルを挿入しなくてもよい。このとき送信装置では、パイロット信号生成機能は必要としないことになる。またユニークワードやプリアンブルなどの制御シンボルを挿入してもよい。
【0204】
また図22の受信装置において、例えば多重信号と特定信号との相関演算を行いパワのピークを検出することで、送信装置との時間同期をとることが可能である。これは、多重信号の特定信号成分を検出することと等しい。
【0205】
また、送信装置、および、受信装置の構成は、図21および図22の構成に限ったものではない。
【0206】
また、図21において、情報変調信号について、シングルキャリア方式を用いて説明したが、シングルキャリア方式に限ったものではなく、直交周波数分割多重方式(OFDM:Orthogonal Frequency Division Multiplex)を例とするマルチキャリア方式でもよい。このとき、フレーム構成を示す図20の横軸を周波数軸と考えればよい。また変調方式として、16QAM変調方式で説明したが、BPSK変調、QPSK変調などでもよい。
【0207】
また本実施の形態における無線通信システムの受信装置は、特定信号がわからないと、情報変調信号を復調できないことになる。よって、特定信号の対応方法を暗号の鍵とすることで、秘匿性のある無線通信を行うことが可能である。送信装置で、複数の特定信号の中から情報信号に対応したものを選択する選択手段において、対応方法を変更した情報は、受信装置の暗号の鍵となる。
【0208】
ここで情報信号をディジタル変調した変調方式と比較し、特定信号を選択して送信する情報は、誤り耐性がある。よって、特定信号に対応させるデータを重要度の高いデータとすれば、信頼性の高い無線通信を行うことができるようになる。この点を考慮すると、チャネル情報、情報信号の変調方式情報、などの制御情報を特定信号と対応させて送信するとよい。
【0209】
以上のように本実施の形態によれば、同一周波数帯域に、情報変調信号とある特定信号を多重し、多重するある特定信号の種類で情報を伝送し、受信側で多重された信号を情報変調信号と特定信号に分離することにより、データの伝送速度を向上させることができる。
【0210】
(実施の形態5)
実施の形態5では、情報をディジタル変調する変調方式を狭域通信に用いることを特徴とした無線通信方式、および、基地局装置、通信端末装置について説明する。
【0211】
図23は、本実施の形態における基地局装置と通信端末装置の位置を示しており、基地局装置2301、通信端末装置2302、通信端末装置2303、通信端末装置2304より構成されているものとする。基地局装置2301は、実施の形態3および実施の形態4で説明した多重信号を送信しているものとする。
【0212】
ところで、実施の形態3および実施の形態4の無線通信方式において、情報をディジタル変調する変調方式は、データの伝送速度は高速であるが、受信可能なエリア範囲が狭いという特徴をもつ。またスペクトル拡散通信方式およびある特定のディジタル変調された信号は、データの伝送速度は低速であるが、受信可能なエリア範囲が広いという特徴をもつ。
【0213】
このとき、例えば、実施の形態3および実施の形態4における情報をディジタル変調する変調方式で変調された信号の受信可能なエリア限界を参照符号2305で示し、実施の形態3における無線通信方式のスペクトル拡散通信方式および実施の形態4における無線通信方式の特定のディジタル変調方式で変調された変調信号の受信可能なエリア限界を参照符号2306で示す。
【0214】
そして、実施の形態3および実施の形態4における無線通信方式における情報をディジタル変調する変調方式では、高速データ伝送向けの情報Aが提供されており、実施の形態3における無線通信方式のスペクトル拡散通信方式および実施の形態4における無線通信方式の特定のディジタル変調方式では、低速データ伝送向けの情報Bが提供されている。このように、同一周波数で、高速データ伝送向けの情報A、低速データ伝送向けの情報Bのように、異なる質の情報を提供することが可能であり、また、異なる質の情報の受信可能な範囲が異なっていることとなる。
【0215】
このとき、例えば、通信端末装置2302は、実施の形態3における無線通信方式のスペクトル拡散通信方式および実施の形態4における無線通信方式の特定のディジタル変調方式から、低速向けの情報Bを受けることができる専用通信端末装置であるものとする。通信端末装置2303は、実施の形態3および実施の形態4の無線通信方式における情報をディジタル変調する変調方式から、高速向けの情報Aを受けることができる専用通信端末装置であるものとする。
【0216】
通信端末装置2304は、実施の形態3における無線通信方式のスペクトル拡散通信方式および実施の形態4における無線通信方式の特定のディジタル変調方式から、低速向けの情報Bを受けることができ、また実施の形態3および実施の形態4の無線通信方式における情報をディジタル変調する変調方式から、高速向けの情報Aを受けることができる通信端末装置であるものとする。そして、通信端末装置2304は、エリア2305内にある場合、情報A、情報Bのどちらの情報も受信可能であり、情報A、情報Bのいずれかまたは両方を受けるものとし、エリア2305の外側であり、エリア2306の内側にある場合、情報Bを受けるものとする。
【0217】
以上のように本実施の形態によれば、情報をディジタル変調する変調方式を狭域通信に用いることを特徴とした無線通信方式とすることにより、同一周波数帯域で、異なる種類の情報の送受信を行うことができる。
【0218】
(実施の形態6)
この実施の形態では、同一時間の同一周波数帯域に、ディジタル変調した第1の変調信号とスペクトル拡散した第2の変調信号とを多重化して送信すると共に、同相−直交平面における第1変調信号と第2変調信号の信号点を異なる位置に配置するようにした送信装置とその多重化信号を受信して復調する受信装置について説明する。
【0219】
この実施の形態の送信装置及び受信装置は、上述した実施の形態3の送信装置1700及び受信装置1800とほぼ同様の構成でなる。このためこの実施の形態では、図17及び図18を流用して送信装置及び受信装置の構成を説明する。この実施の形態の送信装置と実施の形態3の送信装置1700との異なる部分は、情報変調部1701とスペクトル拡散変調部1702だけなので、以下情報変調部1701とスペクトル拡散変調部1702について説明する。
【0220】
この実施の形態の送信装置は、図17の情報変調部1701とスペクトル拡散変調部1702とで同相−直交平面(I−Q平面)における信号点が異なる位置に配置されるように変調処理を行うようになっている。つまり、情報変調部1701によって得られる情報変調信号のI−Q平面上での信号点とスペクトル拡散変調部1702によって得られる拡散変調信号のI−Q平面上での信号点が異なるように各変調部1701、1702により変調処理を行う。
【0221】
これによりこの実施の形態の送信装置においては、送信される情報変調信号とスペクトル拡散変調信号の相関を低くできることにより、受信側で各変調信号を復調する際の誤り率を低減できる。
【0222】
ここで図24及び図25に信号点配置の例を示す。図24は、情報信号変調部1701及びスペクトル拡散変調部1702でQPSK変調処理を行う場合の例であり、情報信号変調部1701はπ/4シフトQPSK変調処理を行うことにより、図中黒丸及び白丸で示す信号点配置となる情報変調信号を形成する。これに対してスペクトル拡散変調部1702は図中白丸で示す信号点配置となるスペクトル拡散変調信号を形成する。
【0223】
因みに、ここでは情報信号形成部1701がπ/4シフトQPSK変調処理を行うことにより、信号点配置を図中黒丸及び白丸で交互に切り替える場合について説明しているが、QPSK変調を行いその信号点の位相をπ/4だけずらすことにより、信号点配置を図中黒丸で示す位置に固定するようにしてもよい。
【0224】
図25は、情報信号変調部1701及びスペクトル拡散変調部1702でBPSK変調処理を行う場合の例であり、情報信号変調部1701はπ/2シフトBPSK変調処理を行うことにより図中白丸及び黒丸で示す信号点配置となる情報変調信号を形成する。これに対してスペクトル拡散変調部1702は図中黒丸で示す信号点配置となるスペクトル拡散変調信号を形成する。
【0225】
因みに、ここでは情報信号変調部1701がπ/2シフトBPSK変調処理を行うことにより、信号点配置を図中白丸及び黒丸で交互に切り替える場合について説明しているが、BPSK変調を行いその信号点の位相をπ/4だけずらすことにより、信号点配置を図中白丸で示す位置に固定するようにしてもよい。
【0226】
実施の形態3で説明した図18の受信装置1800とこの実施の形態の受信装置との違いは、スペクトル拡散復調部1803と情報復調部1808がそれぞれ異なる信号点に配置された信号を復調することである。
【0227】
このスペクトル拡散復調部の構成を、図26に示す。スペクトル拡散復調部2600は、情報変調信号とスペクトル拡散変調信号が多重化された受信信号を逆拡散部2603及び同期部2601に入力する。同期部2601はマッチトフィルタにより構成されており、受信信号に含まれるスペクトル拡散部分と拡散符号の相関値に基づき同期タイミング信号を形成し、これを符号発生部2602に送出する。符号発生部2602は同期タイミング信号に応じたタイミングで拡散符号を発生し、これを逆拡散部2603に送出する。
【0228】
逆拡散部2603は入力される受信多重化信号と拡散符号とを乗算することにより逆拡散処理を行う。これにより受信多重化信号の中からスペクトル拡散処理前の信号のみが逆拡散により復元される。つまり情報変調信号は、逆拡散処理により非常に信号レベルの低いノイズ成分にしかならないので、結果として逆拡散部2603により除去されるようになる。
【0229】
このとき情報変調信号とスペクトル拡散変調信号の信号点がI−Q平面上で異なる配置とされ、相関値が低く抑えられているので、逆拡散部2603からは、情報変調信号によるノイズ成分が出力されることなく、スペクトル拡散前の信号のみが出力されるようになる。逆拡散後の信号は復調部2604により復調されることにより拡散変調前の信号が復元される。
【0230】
復元された信号は、図18のスペクトル拡散変調信号再生部1805に送出される。スペクトル拡散変調信号再生部1805は、入力信号に対して再び送信側のスペクトル拡散変調部1702(図17)での処理と同様の変調処理を施す。このときスペクトル拡散変調信号再生部1805は歪み推定部1804から入力される歪み推定信号を考慮してスペクトル拡散変調処理を施す。これにより伝送路歪みを含んだスペクトル拡散変調信号が再生され、これが減算部1807に送出される。
【0231】
減算部1807は受信多重化信号からスペクトル拡散変調信号再生部1805により再生された信号を減算することにより、情報変調信号のみを出力する。情報復調部1808は、歪み推定部1804から入力される歪み推定信号に基づき、減算部1807から入力される情報変調信号の伝送路歪みを考慮して情報信号を復調する。
【0232】
この結果、受信装置1800により、ディジタル変調処理が施された情報信号と、スペクトル拡散変調処理が施された情報信号が共に復元される。
【0233】
かくして以上の構成によれば、第1の送信信号をディジタル変調し、第2の送信信号をスペクトル拡散変調して同一周波数帯域に多重化して伝送する場合に、各変調信号の信号点をI−Q平面上の異なる位置に配置するようにしたことにより、伝送速度を向上し得るのに加えて、スペクトル拡散変調信号と第1のディジタル変調信号との相関を低くすることができるので、通信品質を向上させることができる。
【0234】
なお、情報をディジタル変調した信号及びスペクトル拡散変調信号は、シングルキャリアで送信する場合に限らず、OFDM方式を例とするマルチキャリアで送信してもよい。但し、OFDM方式とOFDM−拡散変調方式の両方を用いて送信する例は、後述の実施の形態で説明する。
【0235】
またこの実施の形態では、多重するスペクトル拡散通信方式の符号多重数が1つの場合について説明したが、複数、つまりスペクトル拡散通信方式としてCDMA方式を適用してもよい。このようにすれば、多重データ数を一層増やすことができるので、データ伝送速度を一層向上させることができる。
【0236】
(実施の形態7)
この実施の形態では、同一時間の同一周波数帯域に、ディジタル変調した第1の変調信号と、異なる拡散符号を用いてスペクトル拡散した複数のスペクトル拡散変調信号と、拡散符号の情報とを多重化して送信する送信装置及びその多重化信号を受信して復調する受信装置について説明する。
【0237】
図17との対応部分に同一符号を付して図27において、2700は全体として実施の形態7の送信装置を示す。送信装置2700は情報信号を選択部2701に入力する。選択部2701はシステム制御部(図示せず)からの選択制御信号を入力し、当該選択制御信号に従って情報信号を、情報変調部1701、又はスペクトル拡散変調部2705のうちの拡散符号Xを用いるスペクトル拡散変調部2702若しくは拡散符号Yを用いるスペクトル拡散変調部2703に選択的に出力する。
【0238】
情報変調部1701は入力信号に対して例えばQPSK変調処理を施し、処理後の信号を加算部1703に送出する。スペクトル拡散変調部2702、2703は入力信号に対してそれぞれ拡散符号X、Yを用いてスペクトル拡散処理を施し、処理後の信号を加算部1703に送出する。
【0239】
また選択制御信号は多重情報変調部2704に入力される。多重情報変調部2704は、選択制御信号の情報、すなわち多重フレーム情報を変調し、変調後の信号を加算部1703に送出する。
【0240】
つまり多重情報変調部2704では、情報信号のどの部分が情報変調部1701により変調されているか、どの部分がスペクトル拡散変調部2702により変調され、どの部分がスペクトル拡散変調部2703により処理されているかを示す情報が変調される。
【0241】
加算部1703は、各変調部1701、2702〜2704から入力された変調信号を加算することにより、これらの変調信号を多重化する。図28に加算部1703から出力される多重化信号の一例を示す。この実施の形態では、図28(A)に示すように、情報変調部1701により変調されたデータシンボルの前後にパイロットシンボル(P)を配置し、パイロットシンボルに挟まれる位置に多重情報変調部2704により変調された多重情報シンボルが配置される。
【0242】
また図28(B)に示すように、あるデータシンボルと同一周波数帯域にはスペクトル拡散変調部2702により拡散符号Xを用いてスペクトル拡散変調されたシンボルが多重されている。さらに図28(C)に示すように、あるデータシンボルと同一周波数帯域にはスペクトル拡散変調部2703により拡散符号Yを用いてスペクトル拡散変調されたシンボルが多重されている。
【0243】
この結果、送信装置2700においては、図28に示すように、同一時間の同一周波数帯域で3つ以上の信号を多重化して送信することができることにより、上述した実施の形態1〜6と比較して、一段と高速なデータ伝送を行うことができるようになる。
【0244】
次に送信装置2700により送信された多重化送信信号を受信復調する受信装置2900の構成を、図29に示す。アンテナ2901で受信された多重化送信信号は無線部2902により所定の無線受信処理が施された後、遅延部2903、拡散符号Xのスペクトル拡散復調部2904、拡散符号Yのスペクトル拡散復調部2905及び多重情報復調部2906に送出される。
【0245】
スペクトル拡散復調部2904は、入力された多重信号に対して拡散符号Xを用いて逆拡散処理を行う。これにより送信側で拡散符号Xを用いて拡散された元の信号のみが出力される。この信号は情報信号として出力されると共に、スペクトル拡散変調信号再生部2907に送出される。
【0246】
スペクトル拡散変調信号再生部2907は入力信号に対して拡散符号Xを用いて拡散処理を行う。これによりスペクトル拡散変調信号再生部2907からはスペクトル拡散変調部2702(図27)から出力されるスペクトル拡散変調信号と同様のスペクトル拡散変調信号が再生され、これが減算部2909に送出される。
【0247】
同様に、スペクトル拡散復調部2905は、入力された多重信号に対して拡散符号Yを用いて逆拡散処理を行う。これにより送信側で拡散符号Yを用いて拡散された元の信号のみが出力される。この信号は情報信号として出力されると共に、スペクトル拡散変調信号再生部2908に送出される。
【0248】
スペクトル拡散変調信号再生部2908は入力信号に対して拡散符号Yを用いて拡散処理を行う。これによりスペクトル拡散変調信号再生部2907からはスペクトル拡散変調部2703(図27)から出力されるスペクトル拡散変調信号と同様のスペクトル拡散変調信号が再生され、これが減算部2909に送出される。
【0249】
多重情報復調部2906は受信多重化信号に含まれる多重情報シンボルを復調する。ここで図28からも分かるように、多重情報シンボルは他の信号とは多重化されておらず、かつパイロットシンボルの近傍に規則的に配置されているので、多重情報復調部2906により多重情報シンボルを簡単かつ正確に復調することができる。そして復調された多重情報は減算部2909及びデータセレクタ2910に送出される。
【0250】
減算部2909は、遅延部2903によりタイミングを合わされて入力された受信多重化信号から、拡散符号Xでスペクトル拡散された再生信号及び拡散符号Yでスペクトル拡散された再生信号を減算する。このとき減算部2909では、多重情報に基づいて、受信多重化信号から減算する再生スペクトル拡散変調信号の種類及びタイミングを適宜制御しながら減算処理を行うようになっている。
【0251】
すなわち図28に示すように、受信多重化信号には減算部2909により抽出すべきデータシンボルに対して拡散符号Xによりスペクトル拡散変調された信号のみが多重化されている場合もあれば、拡散符号Xによりスペクトル拡散変調された信号及び拡散符号Yによりスペクトル拡散変調された2つの信号が多重化されている場合もあるので、減算部2909はこれらの情報を多重情報から読み取って、図28(A)のデータシンボルのみを抽出する。
【0252】
情報復調部2911は減算部2909から入力されるデータシンボルに対して送信装置2700の情報変調部1701に対応した復調処理(この実施の形態の場合、QPSK復調処理)を施すことにより変調前の情報信号を復調する。
【0253】
情報復調部2911、スペクトル拡散復調部2904及びスペクトル拡散復調部2905によりそれぞれ復調された復調データはデータセレクタ2910に入力される。またデータセレクタ2910には、多重情報復調部2906により復調された多重情報が入力される。データセレクタ2910は多重情報に基づいて、各復調データを選択的に出力する。これによりデータセレクタ2910からは送信装置2700の選択部2701により分流される前の原信号が出力される。
【0254】
かくして以上の構成によれば、同一周波数帯域に多重化する信号を、複数の拡散符号を用いて拡散処理するようにしたことにより、多重化し得る信号数を増やすことができるので、一段と高速なデータ伝送を行うことができる。
【0255】
また上述の実施の形態では、図28に示すように、多重情報シンボルをデータシンボルと同一のフレーム上で伝送するようにした場合について述べたが、本発明はこれに限らず、図30に示すように多重情報シンボルもデータシンボルに多重化して伝送するようにしてもよい。かくするにつき、同一周波数帯で伝送し得るデータ量を一段と増加させることができるので、一段と高速なデータ伝送を行うことができるようになる。
【0256】
この場合の送信装置の構成を、図27を流用して説明する。図27の多重情報変調部2704で多重情報に対して、拡散符号X、Yとは異なる拡散符号Zを用いたスペクトル拡散変調処理を施す。そして加算部1703により、図30に示すように、情報変調部1701により得られるデータシンボル、スペクトル拡散変調部2702により得られる拡散シンボル及びスペクトル拡散変調部2703により得られる拡散シンボルと共に、拡散された多重情報シンボルも同一周波数帯域に多重するように加算すればよい。これにより受信側で簡単かつ多重化による劣化が非常に少ない状態で多重情報を分離できる。
【0257】
図31に、拡散符号情報シンボルをスペクトル拡散変調処理し多重化してなる多重化送信信号を受信復調する受信装置の構成を示す。図29との対応部分に同一符号を付して示す図31において、受信装置3100は無線部2902から出力された受信多重化信号を拡散多重情報復調部3101に送出する。
【0258】
拡散多重情報復調部3101は、拡散符号Zを用いて受信多重化信号に逆拡散処理を施す。これにより拡散多重情報復調部3101からは多重情報のみが出力され、当該多重情報がスペクトル拡散変調信号再生部3102、減算部3103及びデータセレクタ2910に送出される。
【0259】
スペクトル拡散変調信号再生部3102では、拡散符号Zを用いて多重情報を拡散することにより多重情報を再び拡散し、拡散処理後の信号を減算部3103に送出する。
【0260】
減算部3103では、多重情報で示されるタイミングに基づき、遅延部2903から入力した受信多重化信号から、スペクトル拡散変調信号再生部2907、スペクトル拡散変調信号再生部2908及びスペクトル拡散変調信号再生部3102で再生された各信号を減算することにより情報信号のみを抽出し、これを情報復調部2911に送出する。
【0261】
データセレクタ2910は、多重情報をセレクト信号として、入力される各復調信号を順次選択的に出力する。かくしてデータセレクタ2910からは送信側で分離多重化される前の原信号が出力される。
【0262】
なおこの実施の形態では、複数のスペクトル拡散変調信号と共に多重情報を送信する場合について述べたが、本発明はこれに限らず、多重情報に替えて又は多重情報に加えて、拡散符号の情報(拡散符号X、Y)を複数のスペクトル拡散情報と共に送信するようにしてもよい。
【0263】
また情報をディジタル変調した信号及びスペクトル拡散変調信号は、シングルキャリアで送信する場合に限らず、OFDM方式を例とするマルチキャリアで送信してもよい。
【0264】
またこの実施の形態では、多重するスペクトル拡散通信方式の符号多重数が2つ又は3つの場合について説明したが、4つ以上としてもよい。このようにすれば、多重データ数を一層増やすことができるので、データ伝送速度を一層向上させることができる。
【0265】
(実施の形態8)
この実施の形態では、情報信号をディジタル変調して第1変調信号を得る第1変調手段と、受信側とで予め決められた特定の既知配列で変調した複数の特定変調信号を形成する第2変調手段と、複数の特定変調信号の中から情報信号に対応したものを選択する選択手段と、第1変調信号と選択手段にて選択された特定変調信号とを同一周波数帯域で多重して多重化信号を得る多重化手段と、多重化信号を送信する送信手段とを具備し、第1及び第2変調手段は、同相−直交平面における第1変調信号と特定変調信号の信号点を異なる位置に配置するように変調処理を行う、送信装置及びその受信装置について説明する。
【0266】
この実施の形態の送信装置は、実施の形態4で上述した送信装置2100及び受信装置2200とほぼ同じ構成でなる。そのためこの実施の形態では、図21及び図22を流用して説明する。
【0267】
ここでこの実施の形態の送信装置と実施の形態4の送信装置2100との違いは、この実施の形態の送信装置では、情報変調部1701と特定変調信号選択部2101がそれぞれI−Q平面上で信号点が異なる位置に配置するように変調処理を行う点である。
【0268】
つまり、情報変調部1701によって得られる情報変調信号のI−Q平面上での信号点と特定変調信号選択部2101によって得られる特定変調信号のI−Q平面上での信号点が異なるように変調部1701、特定変調信号選択部2101により変調処理を行う。
【0269】
これによりこの実施の形態の送信装置においては、送信される情報変調信号と特定変調信号の相関を低くできることにより、受信側で各変調信号を復調する際の誤り率を低減できる。
【0270】
実際上、特定変調信号選択部2101は、図32に示すように構成されている。すなわちこの実施の形態の特定変調信号選択部3200は情報信号を複数の特定信号発生部3201〜3204及び選択部3205に入力する。各特定信号発生部3201〜3204は入力した情報信号に応じてそれぞれ異なる信号配列の変調信号を発生する。
【0271】
例えば「00」の情報信号が入力された場合、特定信号A発生部3201が第1の信号配列でなる第1の特定変調信号を発生し、「01」の情報信号が入力された場合、特定信号B発生部3202が第1の信号配列とは異なる第2の信号配列でなる第2の特定変調信号を発生する。同様に「10」の情報信号が入力された場合、特定信号C発生部3203が第1及び第2の信号配列とは異なる第3の信号配列でなる第3の特定変調信号を発生し、「11」の情報信号が入力された場合、特定信号D発生部3204が第1〜第3の信号配列とは異なる第4の信号配列でなる第4の特定変調信号を発生する。
【0272】
そして選択部3205によりこれらの特定変調信号のいずれかが選択されて出力される。つまり、選択部3205は情報信号として「00」が入力されると第1の特定変調信号を出力し、「01」が入力されると第2の特定変調信号を出力し、「10」が入力されると第3の特定変調信号を出力し、「11」が入力される第4の特定変調信号を出力する。
【0273】
そして上述したように送信装置2100(図21)からは、図20に示すように、データシンボルと特定変調シンボルとが多重化されて送信される。この特定変調信号は通信相手である受信装置では、情報信号と簡単に分離できるのに対して、通信相手以外の受信装置では分離することができず、妨害信号となるので情報信号に秘匿性を持たせることができる。
【0274】
すなわち、図22に示す受信装置2200の特定変調信号推定部2201に、各特定信号発生部3201〜3204(図32)が発生する信号配列に対応した相関器を持たせることにより、特定変調信号推定部2201は受信多重化信号の中から各特定信号発生部3201〜3204で発生された特定信号のみを出力できる。
【0275】
そしてこの特定信号をそのまま情報信号として出力することにより、有意情報として用いることができる。また特定変調信号推定部2201により推定された特定信号を、特定変調信号再生部2203により伝送時と同じ特定変調信号に再生した後、減算部1807に送出すれば、減算部1807により受信多重化信号から特定変調信号を除去して情報変調信号のみを抽出できる。
【0276】
これに対して通信相手である受信装置2200とは異なる他の受信装置では、特定信号の信号配列が分からないので、受信多重化信号から特定信号を分離することができず、情報信号を抽出できない。
【0277】
これに加えて、この実施の形態の送信装置では、情報変調信号のI−Q平面上での信号点と特定変調信号のI−Q平面上での信号点を異なるようにしているので、情報変調信号と特定変調信号の相関が低くなり、受信側で各変調信号を復調する際の誤り率を低減できる。実際には、図22に示す特定変調信号推定部2201での相関演算の精度が上がり、各特定信号を忠実に復元できるようになる。
【0278】
ここで図24及び図25を用いて説明する。図24は、情報信号変調部2100(図21)及び特定変調信号選択部2101内の各特定信号発生部3201〜3204(図32)でQPSK変調処理を行う場合の例であり、情報信号変調部1701はπ/4シフトQPSK変調処理を行うことにより黒丸及び白丸で示す信号点配置となる情報変調信号を形成する。これに対して各特定信号発生部3201〜3204は白丸で示す信号点配置となる特定変調信号を形成する。
【0279】
図25は、情報信号変調部1701及び特定信号発生部3201〜3204でBPSK変調処理を行う場合の例であり、情報信号変調部1701はπ/2シフトBPSK変調処理を行うことにより白丸及び黒丸で示す信号点配置となる情報変調信号を形成する。これに対して特定信号発生部3201〜3204は黒丸で示す信号点配置となる特定変調信号を形成する。
【0280】
かくして以上の構成によれば、同一周波数帯域で、ディジタル変調した情報信号と、予め受信側とで既知の特定配列で変調された特定変調信号を多重化して送信する場合に、情報変調信号と特定変調信号とのI−Q平面上での信号点位置が異なるように変調処理を行うようにしたことにより、秘匿性をもったデータを高速伝送し得るのに加えて、多重化による通信品質の劣化を抑制することができる。
【0281】
なお、この実施の形態についても、情報をディジタル変調した信号及びスペクトル拡散変調信号は、シングルキャリアで送信する場合に限らず、OFDM方式を例とするマルチキャリアで送信してもよい。
【0282】
また送信装置、受信装置の構成は、図21、図22の構成に限らず、適宜変更して実施することができる。
【0283】
(実施の形態9)
この実施の形態では、同一周波数帯域に、OFDM変調信号とOFDM−拡散変調信号を多重化して送信する送信装置及びその多重化送信信号を受信復調する受信装置を提案する。
【0284】
図33に、この実施の形態における周波数−時間軸上でのフレーム構成例を示す。ここで図33では、細かい網掛けで示す1ブロックがOFDM変調された1シンボル分を表し、粗い網掛けで示す1ブロックがOFDM−拡散変調された1チップ分を表し、斜線で示す1ブロックがパイロット信号の1シンボル分を表す。
【0285】
図33から分かるように、この実施の形態の送信装置は、同一時間の同一周波数帯域にOFDM変調信号とOFDM−拡散変調信号を多重化して送信するようになっている。これにより、単独でも高速データ伝送が可能なOFDM変調信号に加えて、OFDM−拡散変調信号を多重化するようにしたことにより、非常に高速なデータ伝送が可能となる。
【0286】
因みに、この実施の形態の場合、パイロット信号についてはOFDM変調処理するが、データシンボルとは異なり、OFDM−拡散変調とは同一時間の同一周波数では、多重化しないようになっている。これにより受信復調時にパイロットシンボルを容易に抽出できるようになる。
【0287】
つまり、OFDM変調方式では、各サブキャリアが互いに直交する関係となるように変調されるので、図33に示すパイロットシンボルを同一時間で見た場合、周波数の異なるパイロットシンボルは各サブキャリアを復調することにより劣化のない状態で簡単に復元することができる。そして異なる時点で同様の処理を行えば他のパイロットシンボルも復元することができる。
【0288】
この実施の形態の送信装置は、図34に示すように構成されている。送信装置3400は第1の情報信号をシリアルパラレル変換部(S/P)3401によりシリアルパラレル変換処理した後、加算部3404に送出する。
【0289】
また送信装置3400は第2の情報信号に対して拡散部3402により拡散処理を施し、シリアルパラレル変換部(S/P)3403によりシリアルパラレル変換処理を施した後、加算部3404に送出する。
【0290】
これら2つの信号は加算部3404により加算された後、逆離散フーリエ変換部(idft)3405により逆離散フーリエ変換処理が施される。これにより、図33に示すようなフレーム構成でなるOFDM変調信号とOFDM−拡散変調信号が同一周波数帯域で多重化された多重化送信信号が形成される。
【0291】
この多重化送信信号は無線部3406により所定の無線処理が施され、増幅器3407により増幅された後、アンテナ3408から送信される。かくして同一周波数帯域にOFDM変調信号とOFDM−拡散変調信号が多重化された大容量の多重化送信信号が送信装置3400から送信される。
【0292】
この実施の形態の受信装置は、図35に示すように構成されている。受信装置3500は、OFDM変調信号とOFDM−拡散変調信号が同一周波数帯域で多重化された多重化送信信号をアンテナ3501で受信すると、無線部3502で所定の無線受信処理を行う。無線受信処理後の信号は離散フーリエ変換部(dft)3503により離散フーリエ変換処理が施され、処理後の信号は、遅延部3509、パラレルシリアル変換部(P/S)3504及び歪み推定部3508に送出される。
【0293】
パラレルシリアル変換部3504によりパラレルシリアル変換された受信多重化信号は逆拡散部3505に入力され、ここで逆拡散処理が施される。逆拡散部3505から出力される信号はOFDM−拡散変調の対象となった信号のみであり、OFDM信号は逆拡散により非常に信号レベルの小さいノイズ成分となり、結果的に逆拡散部3505により除去される。逆拡散部3505の出力は復調部3506に送出される。
【0294】
復調部3506は送信側で施された1次変調に対応する復調処理を施す。因みに、図34に示す送信装置3400では、この復調部3506に対応する1次変調部の構成を省略しているが、実際には、シリアルパラレル変換部3401の入力側と逆拡散部3402の入力側にはそれぞれ後述する情報復調部3511と復調部3506に対応する変調処理を施す変調部が設けられている。
【0295】
復調部3506により復調されたOFDM−拡散変調前の信号はそのまま第2の情報信号として出力されると共に、再生部3507に送出される。また再生部3507には歪み推定部3508により推定された伝送路歪み情報が入力される。歪み推定部3508は受信多重化信号に含まれるパイロット信号に基づいて伝送路歪みを推定する。
【0296】
再生部3507は、復調部3506により得られた第2の情報信号に対して送信側で行ったのと同じ拡散処理及びシリアルパラレル変換処理を施すことにより、OFDM−拡散変調信号を再生する。このとき再生部3507は伝送路歪み情報を考慮することにより、伝送路歪みが反映されたOFDM−拡散変調信号を形成し、これを減算部3510に送出する。
【0297】
減算部3510には、遅延部3509によりパラレルシリアル変換部3504、逆拡散部3505、復調部3506及び再生部3507の処理遅延分だけ遅延された受信多重化信号が入力される。減算部3510は受信多重化信号からOFDM−拡散変調信号を減算することにより、OFDM変調信号のみを出力する。情報復調部3511は、OFDM変調信号に対して、送信側の1次変調処理に対応した復調処理を施すことにより、第1の情報信号を復元してこれを出力する。
【0298】
因みに、この実施の形態の場合、OFDM変調信号の信号点の位置と、OFDM−拡散変調信号の信号点の位置は互いに異なるように配置されている。これにより、同一周波数帯域にOFDM変調信号とOFDM−拡散変調信号を多重した場合でも、互いの変調信号の干渉を未然に防ぐことができると共に、互いの信号間の相関を低くできることにより、復調時のデータ誤りを抑制し得るようになされている。実際には、OFDM−拡散変調信号とOFDM変調信号との相関が低いので、逆拡散部3505によりOFDM−拡散変調された信号のみを抽出できるようになる。
【0299】
ここで信号点の配置例を、図24及び図25に示す。図24は、OFDM変調信号及びOFDM−拡散変調信号がQPSK変調された場合の例であり、OFDM変調信号がπ/4シフトQPSK変調されることにより黒丸及び白丸で示す信号点配置とされている。これに対してOFDM−拡散変調信号はQPSK変調されることにより白丸で示す信号点配置とされる。
【0300】
図25は、OFDM変調信号及びOFDM−拡散変調信号がBPSK変調された場合の例であり、OFDM変調信号はπ/2シフトBPSK変調されることにより白丸及び黒丸で示す信号点配置とされている。これに対してOFDM−拡散変調信号はBPSK変調されることにより黒丸で示す信号点配置とされている。
【0301】
かくして以上の構成によれば、同一周波数帯域で、OFDM変調信号と、OFDM−拡散変調信号を多重化して送信するようにしたことにより、非常に高速なデータ伝送を行うことができる。
【0302】
またOFDM変調信号とOFDM−拡散変調信号のI−Q平面上での信号点位置を異なるようにしたことにより、多重化による信号劣化を抑制することができると共に、2つの信号をデータ誤りの少ない状態で分離することができる。
【0303】
なおこの実施の形態では、図34について説明したようにOFDM−拡散変調信号を形成する際に拡散部3402により拡散処理を行った後、シリアルパラレル変換部3403によりシリアルパラレル変換処理を行った場合について説明した。つまり、情報信号を周波数軸上に拡散した後、互いに直交するサブキャリアを形成した。
【0304】
しかし本発明はこれに限らず、図36に示す送信装置3600のように、シリアルパラレル変換処理を行った後、拡散処理を行うようにしてもよい。つまり、先ず情報信号を互いに直交する複数のサブキャリアに割り当てた後、サブキャリア毎に拡散処理を行うようにしてもよい。
【0305】
この場合、図37に示すように、受信装置3700の構成は、逆拡散部3505とパラレルシリアル変換部3504の接続順序を逆にして逆拡散処理の後にパラレルシリアル変換処理を行うようにすればよい。
【0306】
(実施の形態10)
この実施の形態では、同一周波数帯域に、OFDM変調信号とOFDM−拡散変調信号を多重化して送信すると共に、OFDM−拡散変調処理を行う際に用いた拡散符号の情報を送信する。
【0307】
これにより、この実施の形態の送信装置と受信装置との間では、大容量のデータを伝送できるのに加えて、秘匿性の高い通信を行うことができる。つまり、拡散符号情報を互いの通信相手間だけの暗号キーとして用いれば、拡散符号情報を特定の通信相手とのみの共有することができる。
【0308】
この結果、他の通信端末ではOFDM−拡散変調信号を復元できなくなる。またOFDM−拡散変調信号を復元できないということは、同一周波数及び同一時間に多重化されているOFDM変調信号を分離して復元することもできないと言うことを意味する。
【0309】
例えば互いの通信相手間で「00」の拡散符号情報は拡散符号Aに対応し、「01」の拡散符号情報は拡散符号Bに対応し、「10」の拡散符号情報は拡散符号Cに対応し、「11」の拡散符号情報は拡散符号Dに対応するといった規則を予め決めておけばよい。
【0310】
図38及び図39に、拡散符号情報(多重拡散符号情報シンボル)を送信する際のフレーム構成例を示す。図38は、多重拡散符号情報シンボルを同一時間に異なる周波数サブキャリアで伝送する場合のフレーム構成を示す。また図39は、多重拡散符号情報シンボルを同一周波数帯域で伝送する場合のフレーム構成を示す。
【0311】
ここで図38及び図39からも明らかなように、多重拡散符号情報シンボルは他のシンボル又はチップとは、時間、周波数の少なくとも1つの要素では多重化されないようにされている。例えば図38では、周波数方向ではOFDMシンボル、OFDM−拡散変調シンボル及びパイロットシンボルと多重化されているが時間方向では独立している。また図39では、時間方向ではOFDMシンボル、OFDM−拡散変調シンボル及びパイロットシンボルと多重化されているが周波数方向では独立している。
【0312】
これにより受信側で容易に多重拡散符号情報シンボルを抽出し得るようになっている。
【0313】
図34との対応部分に同一符号を付して示す図40に、この実施の形態の送信装置4000の構成を示す。送信装置4000は、図38に示したフレーム構成の多重化送信信号を形成する。送信装置4000は当該送信装置4000のシステム制御部(図示せず)から出力された拡散符号情報に対してシリアルパラレル変換部(S/P)4001によりシリアルパラレル変換処理を施した後、加算部4002に送出する。
【0314】
加算部4002は、シリアルパラレル変換部3401によりシリアルパラレル変換された第1の情報信号、逆拡散部3402及びシリアルパラレル変換部3403により逆拡散処理及びシリアルパラレル変換処理が施された第2の情報信号、及びシリアルパラレル変換部4001によりシリアルパラレル変換された拡散符号情報を加算する。そして加算信号が逆離散フーリエ変換部(idft)4003により逆離散フーリエ変換処理される。
【0315】
このように送信装置4000では、拡散符号情報をシリアルパラレル変換した後、加算及び逆離散フーリエ変換処理を施すようにしたことにより、図38に示すように、拡散符号情報がOFDM変調信号及びOFDM−拡散変調信号と共に互いに直交関係にある複数のサブキャリアに重畳されるようになる。
【0316】
図37との対応部分に同一符号を付して示す図41は、図40の送信装置4000から送信された多重化送信信号を受信復調する受信装置4100の構成を示す。受信装置4100は拡散符号情報復調部4101に離散フーリエ変換処理後の受信多重化信号を入力する。拡散符号情報復調部4101は受信多重化信号から拡散符号情報のみを抽出して復調する。
【0317】
この実施の形態の拡散符号情報は、図38に示すように、周波数方向ではOFDMシンボル、OFDM−拡散変調シンボル及びパイロットシンボルと多重化されているが時間方向では独立してので、拡散符号情報復調部4101では、拡散符号情報にタイミングを合わせれば拡散符号情報のみを容易に抽出できる。
【0318】
拡散符号情報復調部4101はこのように抽出した拡散符号情報を復調し、送信装置4000とこの受信装置4100との間だけの規則に基づいて保持している拡散符号指定信号の中から復調データに応じた拡散符号指定信号を選択し、この拡散符号指定信号を逆拡散部3505及び再生部4102に送出する。
【0319】
これにより逆拡散部3505では、拡散符号指定信号で指定された拡散符号を用いて逆拡散処理を行うことによりOFDM−拡散変調処理前の第2の情報信号を復元することができる。これに対して他の受信装置では、拡散符号を知ることができないのでOFDM−拡散変調信号を復元することができない。
【0320】
再生部4102は、復調部3505により得られた第2情報信号に対して、拡散符号指定信号に応じた拡散符号を用いて、送信側で行ったのと同じ拡散処理及びシリアルパラレル変換処理を施すことにより、OFDM−拡散変調信号を再生する。
【0321】
かくして以上の構成によれば、同一周波数帯域で、OFDM変調信号とOFDM−拡散変調信号を多重化するのに加えて、OFDM−拡散変調処理を行う際に用いた拡散符号の情報を特定の通信相手のみが知り得る暗号キー情報として送信するようにしたことにより、高速データ伝送を行うことができるのに加えて、秘匿性の高い通信を行うことができる。
【0322】
なお上述の実施の形態では、図38に示すように、同一時間方向に拡散符号情報を配列した多重化送信信号を形成する送信装置4000及びその多重化送信信号を受信復調する受信装置4100の構成について説明したが、図39に示すように同一周波数方向に拡散符号情報を配列した送信信号を形成する送信装置は、図42に示すように構成すればよい。
【0323】
図40との対応部分に同一符号を付して示す図42において、送信装置4200は拡散符号情報をシリアルパラレル変換処理せずにそのまま加算部4201に入力する。逆離散フーリエ変換部4202は拡散符号情報を同一周波数に割り当てるように逆離散フーリエ変換処理を施す。これにより、図39に示すようなフレーム構成の多重化送信信号が形成される。
【0324】
またこの場合の受信装置は、図41で示した受信装置4100とほぼ同様の構成とすればよい。そして拡散符号情報復調部4101で所定周波数の情報を抽出することで、容易に拡散符号情報を抽出できる。
【0325】
またこの実施の形態では、OFDM−拡散変調信号を形成する際に拡散部3402により拡散処理を行った後、シリアルパラレル変換部3403によりシリアルパラレル変換処理を行った場合について説明したが、本発明はこれに限らず、実施の形態9で説明したように、シリアルパラレル変換処理を行った後、拡散処理を行うようにしてもよい。この場合、受信装置もそれに合わせて、逆拡散処理の後にパラレルシリアル変換処理を行うようにすればよい。
【0326】
(実施の形態11)
この実施の形態では、第1に、図43(A)に示すように、ある特定の時間でOFDM変調信号とOFDM−拡散変調信号を多重化して送信すると共に、特定時間以外の時間ではOFDM変調信号又はOFDM−拡散変調信号のいずれかを送信する方式を提案する。
【0327】
また第2に、図43(B)に示すように、ある特定のサブキャリアでOFDM変調信号とOFDM−拡散変調信号を多重化して送信すると共に、特定のサブキャリア以外のサブキャリアではOFDM変調信号又はOFDM−拡散変調信号のいずれかを送信する方法を提案する。
【0328】
これにより、この実施の形態では、大容量のデータを高速伝送できるようになされている。
【0329】
この実施の形態の送信装置の構成を、図44に示す。送信装置4400は第1の情報信号をOFDM−拡散変調方式パラレル信号生成部4401に入力すると共に、第2の情報信号をOFDM方式及びOFDM−拡散変調方式多重パラレル信号生成部4402に入力する。
【0330】
OFDM−拡散変調方式パラレル信号生成部4401は、拡散部及びパラレルシリアル変換部により構成されており、第1の情報信号から、拡散処理されたパラレル信号を生成する。
【0331】
OFDM方式及びOFDM−拡散変調方式多重パラレル信号生成部4402は、図36の前段で示すような構成となっている。つまり、シリアルパラレル変換部と、シリアルパラレル変換部及び拡散部とが加算部の入力段に並列に接続された構成とされており、加算部にシリアルパラレル変換されたパラレル信号とシリアルパラレル変換及び拡散されたパラレル信号とが入力され、加算部によりこれら2つのパラレル信号が加算されるようになっている。
【0332】
OFDM−拡散変調方式パラレル信号生成部4401により生成されたパラレル信号と、OFDM方式及びOFDM−拡散変調方式多重パラレル信号生成部4402により生成された多重パラレル信号は、逆離散フーリエ変換部(idft)4403により逆離散フーリエ変換処理が施されることにより、図43に示すようなフレーム構成の多重化送信信号とされる。
【0333】
逆離散フーリエ変換処理後の多重化送信信号は、無線部4404、増幅器4405及びアンテナ4406を介して送信される。このようにして送信された多重化送信信号は、図45に示す構成の受信装置4500により受信復調される。
【0334】
受信装置4500は、アンテナ4501で受信した信号を無線部4502を介して離散フーリエ変換部(dft)4503に入力する。離散フーリエ変換部4503により離散フーリエ変換処理された受信多重化信号は、OFDM−拡散変調方式パラレル信号生成部4401(図44)と逆の処理を行うOFDM−拡散変調方式復調部4504に送出されると共に、OFDM方式及びOFDM−拡散変調方式多重パラレル信号生成部4402(図44)と逆の処理を行うOFDM方式及びOFDM−拡散変調方式多重信号復調部4505に送出される。
【0335】
そしてOFDM−拡散変調方式復調部4504によりOFDM−拡散変調前の第1の情報信号のみが復調される。またOFDM方式及びOFDM−拡散変調方式多重信号復調部4505により、多重化されたOFDM変調信号及びOFDM−拡散変調信号がそれぞれ復調される。
【0336】
かくして以上の構成によれば、OFDM変調信号とOFDM−拡散変調信号を多重化して送信する領域と、OFDM変調信号又はOFDM−拡散変調信号のみを送信する領域を設けるようにしたことにより、大容量のデータを高速伝送することができるのに加えて、多様性の増した通信を行うことができる。
【0337】
なお図44の送信装置4400では、OFDM−拡散変調方式パラレル信号生成部4401によりOFDM−拡散変調パラレル信号を生成し、OFDM変調信号とOFDM−拡散変調信号が多重化される特定の時間又は特定のサブキャリア以外の箇所にOFDM−拡散変調信号を割り当てる場合について述べたが、本発明はこれに限らず、OFDM−拡散変調パラレル信号生成部4401に替えてOFDMパラレル信号生成部を用いるようにすれば、特定の時間又は特定のサブキャリア以外の箇所にOFDM変調信号を割り当てることができるようになる。
【0338】
(実施の形態12)
この実施の形態では、図46に示すように、同一時間の同一周波数帯域にデータシンボルと共にスペクトル拡散シンボルを多重化して送信する。そしてスペクトル拡散シンボルに情報を載せるようになっていると共に、受信側でスペクトル拡散シンボルを同期のための信号としても用いるようになっている。
【0339】
これによりこの実施の形態では、高速のデータ伝送を行うことができると共に、受信側での同期処理を的確かつ容易に行うことができるようになされている。
【0340】
図47に、この実施の形態の送信装置4700の構成を示す。図5との対応部分に同一符号を付して示す図47において、送信装置4700はディジタル変調部502に替えてスペクトル拡散変調部4701が設けられている。
【0341】
スペクトル拡散変調部4701は情報変調部501に入力される第1の情報信号とは異なる第2の情報信号を入力し、この第2の情報信号を所定の拡散符号を用いて拡散処理することによりスペクトル拡散信号を形成する。情報変調部501により得られたディジタル変調信号及びスペクトル拡散変調部4701により得られたスペクトル拡散信号は加算部503により加算される。加算部503以降の処理は、図5について説明した処理と同様なのでここでは説明を省略する。
【0342】
図48に、この実施の形態の受信装置4800の構成を示す。図18との対応部分に同一符号を付して示す図48において、受信装置4800は同期部4801を有することを除いて図18の受信装置1800と同様の構成でなる。
【0343】
同期部4801には、図46に示したフレーム構成でなる受信多重化信号が入力される。同期部4801は、送信装置4700(図47)のスペクトル拡散変調部4701で用いたのと同じ拡散符号を受信多重化信号に乗じる。
【0344】
これにより同期部4801では、受信多重化信号中のスペクトル拡散シンボルが入力された時点で相関値のピークが検出される。同期部4801はこのピークが検出された時点を同期タイミングとして同期タイミング信号をスペクトル拡散復調部1803、スペクトル拡散変調信号再生部1805、歪み推定部1804及び情報復調部1808に送出する。
【0345】
スペクトル拡散復調部1803は、受信多重化信号に対してスペクトル拡散変調部4701(図47)で用いたのと同じ拡散符号を同期タイミング信号のタイミングで乗じることにより、受信多重化信号からスペクトル拡散シンボルのみを抽出する。これにより復調されたスペクトル拡散シンボルは第2の情報信号として出力されると共に、スペクトル拡散変調信号再生部1805に送出される。
【0346】
スペクトル拡散変調信号再生部1805は、復調されたスペクトル拡散シンボルに対して、同期信号タイミング信号に基づいたタイミングで拡散符号を乗じることにより、スペクトル拡散変調信号を再生する。減算部1807では、受信多重化信号から再生スペクトル拡散変調信号が減算されることにより、図49の上段に示すデータシンボルを含むフレームが抽出される。
【0347】
情報復調部1808は、同期部4801からの同期タイミング信号に基づいて、当該同期タイミング信号から遅延部1806の遅延時間及び減算部1807の処理時間だけ遅れたタイミングで入力信号を復調する。これにより第1の情報信号が復調される。
【0348】
因みに、データシンボルを含むフレームの中で、データシンボルの両隣に配置されているパイロットシンボル(P)は、この実施の形態では、伝送路歪みを推定するための信号として用いられている。
【0349】
かくして以上の構成によれば、同一時間の同一周波数帯域に、ディジタル変調した第1の情報信号とスペクトル拡散変調した第2の情報信号とを多重化して送信するようにしたことにより、第1の情報信号の同期のための信号を第1の情報信号と同じフレーム中に挿入せずに済むようになる。この結果、同期信号を必要としない分だけ第1の情報信号のフレーム内に多くの情報信号を入れることができるので、高速伝送が可能となる。
【0350】
またスペクトル拡散変調した信号を同期のための信号のみならず、第2の情報を伝送するようにしたことにより、一段と高速なデータ伝送ができる。
【0351】
なお上述の実施の形態では、スペクトル拡散シンボルを同期のための信号として多重化した場合について述べたが、図49に示すようにスペクトル拡散シンボルに替えて既知シンボルを多重して伝送するようにしてもよい。
【0352】
このようにした場合も、データシンボルを含むフレーム中に同期シンボルを挿入しなくても済むようになるので、当該フレーム中により多くのデータを入れることができるようになり、高速データ伝送が可能となる。
【0353】
この場合の送信装置は、図50に示すように構成すればよい。すなわち図47との対応部分に同一符号を付して示す図50において、送信装置5000と送信装置4700との違いは、スペクトル拡散変調部4701に替えて既知信号発生部5001を設けた点である。
【0354】
またこの場合の受信装置は、図51に示すように構成すればよい。図48との対応部分に同一符号を付して示す図51において、受信装置4800と受信装置5100との違いは、同期部5102が受信多重化信号に含まれる既知シンボルとの相関演算に基づき同期タイミングを検出する点である。また既知信号再生部5101において、同期部5102で検出された同期タイミングでかつ歪み推定部1804で推定された歪み成分を加えた既知信号を再生する点である。
【0355】
同期部5102は既知シンボルと同じシンボルを保持しており、この保持しているシンボルと受信多重化信号との相関値を随時算出する。同期部5102では、既知シンボルが入力された時点で最大相関値が検出され、この時点を同期タイミングとする。
【0356】
(実施の形態13)
この実施の形態では、拡散率の異なるスペクトル拡散通信方式の変調信号を多重する送信方法、その送信方法を用いた送信装置および受信装置を提案する。
【0357】
図52は、本実施の形態の送信方法を用いて形成された送信信号のフレーム構成を示す。スペクトル拡散通信方式Aでは、制御シンボルに続いて各シンボルを所定の拡散率のスペクトル拡散方式Aで拡散して送信する。因みに、制御シンボルは、後述するように送受信間での時間同期を行ったり、伝送路歪みの推定を行ったり、又は受信装置側で周波数オフセットの推定及び除去を行うために用いられ、スペクトル拡散通信方式A変調信号やスペクトル拡散通信方式B信号とは多重されずに送信される。
【0358】
一方、スペクトル拡散通信方式Bでは、各シンボルをスペクトル拡散方式Aとは異なる拡散率(この実施の形態の場合には2倍の拡散率)で拡散して送信する。そしてこれら異なる拡散率であるスペクトル拡散方式A、Bにより形成された信号が同一周波数帯域に多重して送信するようになされている。ここでは、スペクトル拡散方式Bがスペクトル拡散方式Aに対して拡散率が2倍とされているので、スペクトル拡散通信方式Aの2シンボルに対してスペクトル拡散通信方式Bの1シンボルが多重される。
【0359】
この実施の形態では、図53に示すように、スペクトル拡散方式Aにより1シンボルを4チップに拡散する。また図54に示すように、スペクトル拡散方式Bにより1シンボルを8チップに拡散する。また各スペクトル拡散方式A、Bにおいては、相関値がほぼ0の拡散符号を用いることにより、複数チャネル(チャネル1、2)分の拡散変調信号を形成する。
【0360】
次に、このように拡散率の異なる拡散変調信号を多重して送信する送信装置の構成を、図55に示す。送信装置5500は、第1の送信ディジタル信号D1をスペクトル拡散通信方式A変調部5501に入力すると共に、第2の送信ディジタル信号D2をスペクトル拡散通信方式B変調部5502に入力する。またスペクトル拡散通信方式A変調部5501及びスペクトル拡散通信方式B変調部5502には、図52に示すようなフレームを形成するためのフレーム情報でなるフレーム構成信号S1が入力される。
【0361】
上述したように、スペクトル拡散通信方式A変調部5501は第1の送信ディジタル信号D1に対して例えばQPSKや16QAM等の変調を施した後、1シンボルを4チップに拡散処理することによりスペクトル拡散通信方式Aの直交ベースバンド信号を形成する。一方、スペクトル拡散通信方式B変調部5502は第2の送信ディジタル信号D2に対して例えばQPSKや16QAM等の変調を施した後、1シンボルを8チップに拡散処理することによりスペクトル拡散通信方式Bの直交ベースバンド信号を形成する。
【0362】
スペクトル拡散通信方式A変調部5501及びスペクトル拡散通信方式B変調部5502は拡散処理後の信号を加算部5503に送出する。因みに、スペクトル拡散通信方式A変調部5501では、フレーム構成信号S1に従って、図52に示すように、フレームの先頭位置に制御シンボルを付加する。なおここではスペクトル拡散通信方式A変調部5501で、制御シンボルを付加する場合について述べたが、スペクトル拡散通信方式B変調部5502でフレームの所定位置に制御シンボルを付加するようにしてもよい。
【0363】
加算部5503は入力した拡散率の異なる2つの変調拡散信号を多重化し、多重化後の信号を帯域制限フィルタ5504に送出する。帯域制限フィルタ5504により帯域制限された多重化信号は無線部5505によって所定の無線処理が施された後、増幅器5506を介してアンテナ5507から送信される。
【0364】
スペクトル拡散通信方式A変調部5501及びスペクトル拡散通信方式B変調部5502は、図56に示すように構成されている。ここでスペクトル拡散通信方式A変調部5501とスペクトル拡散通信方式B変調部5502は拡散率が異なることを除いて、ほぼ同一の構成であるためスペクトル拡散通信方式A変調部5501の構成について説明する。
【0365】
スペクトル拡散通信方式A変調部5501は、送信ディジタル信号D1をチャネル1用変調・拡散部5601及びチャネル2用変調・拡散部5602に入力する。チャネル1用変調・拡散部5601は送信ディジタル信号D1に対して例えばQPSKや16QAM等の変調処理を施した後、拡散処理を施すことにより、1シンボルを4チップに拡散する。同様にチャネル2用変調・拡散部5602は送信ディジタル信号D1に対して例えばQPSKや16QAM等の変調処理を施した後、チャネル1用変調・拡散部5601と相関値がほぼ0の拡散符号を用いて拡散処理を施すことにより、1シンボルを4チップに拡散する。
【0366】
またチャネル1用変調・拡散部5601、5602はフレーム構成信号S1に従ってフレームの先頭位置に制御シンボルを付加する。加算部5603では、チャネル1用変調・拡散部5601により得られた信号とチャネル2用変調・拡散部5602により得られた信号とが多重される。
【0367】
このようにして、互いに直交し、かつ同一の拡散率でなる拡散符号を用いて符号分割多重された複数チャネル分の信号がスペクトル拡散通信方式A変調部5501から出力される。スペクトル拡散通信方式B変調部5502は、拡散率としてスペクトル拡散通信方式A変調部5601の2倍の拡散符号を用い、かつ制御シンボルを付加しない点を除いて、スペクトル拡散通信方式A変調部5601とほぼ同様の処理を行って、複数チャネル分の符号分割多重信号を形成する。
【0368】
図57に、送信装置5500により送信された信号を受信復調する本実施の形態における受信装置5700の構成を示す。受信装置5700は、アンテナ5701で受信した受信信号に対して無線部5702により所定の無線処理を行う。無線処理後の信号は、遅延部5703を介して減算部5704に送出されると共に、スペクトル拡散通信方式B復調部5706及び歪み推定部5708に送出される。
【0369】
スペクトル拡散通信方式B復調部5706は、入力信号に対して送信側のスペクトル拡散通信方式B変調部5502と逆の処理を行うことにより、拡散前のディジタル信号を得る。このスペクトル拡散通信方式Bについての復調信号はそのまま復調信号として出力されると共にスペクトル拡散通信方式B変調信号再生部5707に送出される。
【0370】
スペクトル拡散通信方式B変調信号再生部5707は、一旦復調されたスペクトル拡散通信方式Bの信号に対して再びスペクトル拡散通信方式Bによる拡散変調処理を行うことにより、スペクトル拡散通信方式Bについてのレプリカ信号を形成する。
【0371】
このときスペクトル拡散通信方式B変調信号再生部5707は、歪み推定部5708により制御シンボルを用いて推定された伝送路歪み情報を使ってレプリカ信号を形成することにより、伝送時の歪み量を含んだレプリカ信号を形成する。実際には、スペクトル拡散通信方式B変調信号再生部5707は、一旦復調されたスペクトル拡散通信方式Bの信号に対して再拡散し、伝送路歪み情報を用いて再変調することでレプリカ信号を形成する。スペクトル拡散通信方式B変調信号再生部5707は形成したレプリカ信号を減算部5704に送出する。
【0372】
減算部5704では、遅延部5703によって、レプリカ信号を形成する時間分だけ遅延されたスペクトル拡散通信方式A変調信号とスペクトル拡散通信方式B変調信号の多重信号から、スペクトル拡散通信方式B変調信号再生部5707により得られたスペクトル拡散通信方式B変調信号のレプリカ信号が減算されることにより、スペクトル拡散通信方式Aで拡散変調された拡散変調信号のみが抽出される。
【0373】
抽出されたスペクトル拡散通信方式Aの拡散変調信号は、スペクトル拡散通信方式A復調部5705により復調されることにより、拡散前のディジタル信号とされる。
【0374】
かくして、受信装置5700によれば、それぞれ拡散率の異なるスペクトル拡散方式を用いて拡散された拡散信号を同一周波数帯域に多重して伝送した場合でも、これら拡散率の異なるスペクトル拡散方式で拡散された信号を分離して、各々復調することができるようになる。
【0375】
因みに、スペクトル拡散通信方式A復調部5705及びスペクトル拡散通信方式B復調部5706は、例えば図58に示すように構成すればよい。ここではスペクトル拡散通信方式A復調部5705の場合について説明する。スペクトル拡散通信方式A復調部5705は、減算部5704により抽出されたスペクトル拡散方式Aで拡散変調された信号を同期部5801、チャネル1逆拡散部5803及びチャネル2逆拡散部5804に入力する。
【0376】
同期部5801は、入力信号に付加されている同期用の信号に基づいて逆拡散タイミングを検出し、検出した逆拡散タイミング信号をチャネル1符号発生部5802及びチャネル2符号発生部5805に送出する。チャネル1符号発生部5802及びチャネル2符号発生部5805は、逆拡散タイミング信号に応じたタイミングでそれぞれチャネル1用に用いられた拡散符号及びチャネル2用に用いられた拡散符号を発生し、これらをチャネル1逆拡散部5803及びチャネル2逆拡散部5804に送出する。チャネル1逆拡散部5803及びチャネル2逆拡散部5804により得られた逆拡散後の信号は、それぞれチャネル1復調部5806及びチャネル2復調部5807により復調され、この結果チャネル1及びチャネル2のディジタル信号とされる。
【0377】
なお図58では、2チャネル分の拡散変調信号を復調する構成について説明したが、チャネル数は2に限らず、任意の数を選定できることは言うまでもない。例えば1チャネル分の拡散変調信号を復調する場合の、スペクトル拡散通信方式A復調部5705及びスペクトル拡散通信方式B復調部5706の構成例を、図59に示す。
【0378】
ここではスペクトル拡散通信方式A復調部5705の場合について説明する。スペクトル拡散通信方式A復調部5705は、減算部5704により抽出されたスペクトル拡散方式Aで拡散変調された信号を同期部5901、チャネル1逆拡散部5903に入力する。
【0379】
同期部5901は、入力信号に付加されている同期用の信号に基づいて逆拡散タイミングを検出し、検出した逆拡散タイミング信号をチャネル1符号発生部5902に送出する。チャネル1符号発生部5902は、逆拡散タイミング信号に応じたタイミングでチャネル1用に用いられた拡散符号を発生し、これらをチャネル1逆拡散部5903に送出する。チャネル1逆拡散部5903により得られた逆拡散後の信号は、チャネル1復調部5904により復調され、この結果チャネル1のディジタル信号とされる。
【0380】
かかる構成に加えて、この実施の形態の場合、スペクトル拡散通信方式Bの送信パワを、スペクトル拡散通信方式Aの送信パワよりも大きくするようになされている。具体的には、図60のI−Q平面で示した場合(ここではQPSK変調処理を行った場合について説明する)、スペクトル拡散通信方式Bの信号点6201の原点からの距離rBがスペクトル拡散通信方式Aの信号点6202の原点からの距離rAよりも大きくなるように、すなわちrB>rAとなるようにする。つまり、この実施の形態では、レプリカ信号を形成する対象となるスペクトル拡散通信方式Bの送信電力をスペクトル拡散通信方式Aの送信電力よりも大きくする。
【0381】
これにより、スペクトル拡散通信方式B復調部5706及びスペクトル拡散通信方式B変調信号再生部5707により形成するスペクトル拡散通信方式Bについてのレプリカ信号を、一段と精度の良いものとすることができる。
【0382】
このことについて具体的に説明する。図57の受信装置5700において、スペクトル拡散通信方式B復調部5706に入力される信号は、スペクトル拡散通信方式Aとスペクトル拡散通信方式Bによりそれぞれ変調拡散された信号が多重された受信直交ベースバンド信号である。
【0383】
よって、スペクトル拡散通信方式B復調部5706において、スペクトル拡散通信方式Bに対応する拡散符号を用いて逆拡散処理を行う際に、スペクトル拡散通信方式Bに対応する拡散符号とスペクトル拡散通信方式Aに対応する拡散符号の相互相関が大きいと、スペクトル拡散通信方式Bにより拡散された信号のみを高精度で分離することができなくなる。
【0384】
これを回避するために、この実施の形態では、スペクトル拡散通信方式Bの信号パワをスペクトル拡散通信方式Aの信号パワよりも大きくすることで、スペクトル拡散通信方式Bの信号とスペクトル拡散通信方式Aの信号の相関を低くして逆拡散精度を向上させ、スペクトル拡散通信方式B復調部5706においてスペクトル拡散方式Bにより拡散された信号のみを高精度で抽出する。これにより、スペクトル拡散通信方式B変調信号再生部5707において高精度のレプリカ信号を形成できるので、減算部5704でもスペクトル拡散通信方式Aにより拡散された信号を高精度で抽出できるようになる。
【0385】
またこの実施の形態では、受信装置5700において、受信多重化信号から拡散率の異なる拡散信号を分離するにあたって、先ず拡散率の大きいスペクトル拡散通信方式Bの信号を逆拡散により分離するようにした。ここで拡散率の大きい拡散信号の方が拡散利得が大きいので、最初に分離する拡散信号(スペクトル拡散通信方式Bの信号)の分離精度が高い。この結果、レプリカ信号の精度が向上するので、次に抽出される拡散率の小さい拡散信号(スペクトル拡散通信方式Aの信号)の分離精度も向上するようになる。この結果、全ての拡散信号を精度良く分離復調できるようになる。
【0386】
以上の構成によれば、送信側において、拡散率の異なるスペクトル拡散通信方式の変調信号を同一周波数帯域に多重して送信し、受信側において、多重した信号のうちいずれかの信号を逆拡散したのち再拡散することでレプリカ信号を形成し、多重信号からレプリカ信号を減算するようにして多重された信号を分離抽出するようにしたことにより、多重した信号のどちらも復調できる。この結果、データ伝送速度を向上させることができる。
【0387】
因みに、この実施の形態で説明した多重化信号のうち、減算のためのレプリカ信号を形成する方の信号の送信電力を他の多重信号の送信電力よりも大きくする方法は、上述した他の実施の形態や後述する実施の形態に適用した場合にも効果がある。
【0388】
例えば、実施の形態3で述べた、同一周波数帯域に、情報変調信号とスペクトル拡散通信方式の変調信号を多重する場合に適用した場合について説明する。ここで情報変調信号の信号点を図60の6202、スペクトル拡散通信方式の変調信号の信号点を6201とし、スペクトル拡散通信方式の信号点6201と原点からの距離をrB、情報変調信号の信号点6202と原点からの距離をrAとする。このとき、rB>rAとする。つまり、レプリカ信号形成の対象となるスペクトル拡散通信方式の送信電力を情報変調の送信電力よりも大きくする。
【0389】
これにより、スペクトル拡散信号に対して妨害である情報信号との相関が小さくなるため、図18のスペクトル拡散復調部1803から得られた情報信号の受信特性が向上することとなる。この結果、スペクトル拡散復調部1803での逆拡散精度を向上させることができるので、スペクトル拡散された信号のみを高精度で抽出することできる。従って、スペクトル拡散変調信号再生部1805において、高精度のレプリカ信号を形成できるので、減算部でも情報変調信号を高精度で抽出できるようになる。
【0390】
またこの実施の形態で説明した拡散率の異なる拡散符号を用いて生成した信号を同一周波数帯域に多重化した場合に、拡散率の大きい信号から順に分離復調する方法は、後述する実施の形態に適用した場合にも同様の効果を得ることができる。
【0391】
なおこの実施の形態では、図57に示すように、スペクトル拡散通信方式Aの信号を復調するスペクトル拡散通信方式A復調部5705とスペクトル拡散通信方式Bの信号を復調するスペクトル拡散通信方式B復調部5706の両方を設けた受信装置5700について述べたが、必ずしも多重された信号を全て復調する復調部を設ける必要はない。例えばスペクトル拡散通信方式A復調部5705のみを設ければスペクトル拡散通信方式Aの信号のみを受信復調する専用受信装置を得ることができ、スペクトル拡散通信方式B復調部5706のみを設ければスペクトル拡散通信方式Bの信号のみを受信復調する専用受信装置を得ることができる。
【0392】
またこの実施の形態では、スペクトル拡散通信方式A及びスペクトル拡散通信方式Bどちらも2チャネル分の信号を送受信する場合について述べたが、チャネル数は任意に選定できることは言うまでもない。例えばスペクトル拡散通信方式A、スペクトル拡散通信方式Bそれぞれ3チャネル以上多重してもよい。
【0393】
またこの実施の形態では、スペクトル拡散通信方式A、スペクトル拡散通信方式Bの2方式多重で説明したがこれに限ったものではなく、拡散率の異なるスペクトル拡散通信方式を3方式以上多重してもよい。また同時に拡散されていないつまりスペクトル拡散通信方式でない変調信号を同時に多重してもよい。
【0394】
(実施の形態14)
この実施の形態では、同一周波数帯域に、それぞれ拡散率の異なる拡散符号を用いて形成した複数のOFDM−拡散変調方式の信号を多重化して送信する送信装置及びその多重化送信信号を受信復調する受信装置を提案する。この実施の形態では、拡散符号により拡散したチップを周波数軸方向のサブキャリアに亘って拡散する、いわゆる周波数領域拡散を行うものとする。
【0395】
図61に、この実施の形態における周波数−時間軸上でのフレーム構成例を示す。図61において、1つの枠は1シンボルに相当するものとする。図からも分かるように、1シンボルが周波数軸方向に拡散されている。
【0396】
この実施の形態では、図61(A)に示すOFDM−拡散変調方式Aの信号と図61(B)に示すOFDM−拡散変調方式Bの信号が同一周波数帯域に多重されて送信される。ここで、図61(A)に示すOFDM−拡散変調方式Aと図61(B)に示すOFDM−拡散変調方式Bを比較した場合、OFDM−拡散変調方式Bの拡散率の方が、OFDM−拡散変調方式Aの拡散率よりも大きくされている。この結果、同一期間に伝送されるシンボル数はOFDM−拡散変調方式Aの方がOFDM−拡散変調方式Bの2倍となる。
【0397】
またOFDM−拡散変調方式Aのフレームには、時間方向に亘って制御シンボルが配置されていると共に、OFDM−拡散変調方式Bのフレームにおける制御シンボルに対応する位置にはガードシンボル(すなわち何の信号も配置されていない区間)が配置されている。これにより、伝搬路推定や同期処理の際の元となる制御シンボルを受信側で容易かつ高精度で取り出すことができるようになっている。
【0398】
次に、このように拡散率の異なる拡散符号を用いて形成した複数のOFDM−拡散変調方式の信号を多重化して送信する送信装置の構成を、図62に示す。送信装置6200は、第1の送信ディジタル信号D1をスペクトル拡散通信方式A変調部6201に入力すると共に、第2の送信ディジタル信号D2をスペクトル拡散通信方式B変調部6202に入力する。またスペクトル拡散通信方式A変調部6201及びスペクトル拡散通信方式B変調部6202には、図61に示すようなフレームを形成するためのフレーム情報でなるフレーム構成信号S1が入力される。
【0399】
スペクトル拡散通信方式A変調部6201は第1の送信ディジタル信号D1に対して例えばQPSKや16QAM等の変調を施した後、1シンボルを4チップに拡散処理することによりスペクトル拡散通信方式Aの直交ベースバンド信号を形成する。一方、スペクトル拡散通信方式B変調部6202は第2の送信ディジタル信号D2に対して例えばQPSKや16QAM等の変調を施した後、1シンボルを8チップに拡散処理することによりスペクトル拡散通信方式Bの直交ベースバンド信号を形成する。スペクトル拡散通信方式A変調部6201及びスペクトル拡散通信方式B変調部6202は拡散処理後の信号を加算部6203に送出する。
【0400】
因みに、図61に示すように、フレーム構成信号S1に従って、スペクトル拡散通信方式A変調部6201ではフレームの所定位置に制御シンボルを付加すると共にスペクトル拡散通信方式B変調部6202では制御シンボルに対応する位置にガードシンボル(ヌル信号)を配置する。なおここではスペクトル拡散通信方式A変調部6201で、制御シンボルを付加する場合について述べたが、スペクトル拡散通信方式B変調部6202でフレームの所定位置に制御シンボルを付加するようにしてもよい。
【0401】
加算部6203は入力した拡散率の異なる2つの変調拡散信号を多重化する。多重化された信号は、シリアルパラレル変換部(S/P)6204によりシリアルパラレル変換され、続く逆離散フーリエ変換部(idft)6205により逆離散フーリエ変換処理が施される。これにより、拡散後のチップが周波数軸方向に複数のサブキャリアに亘って拡散され、図61に示すようなフレーム構成でなるOFDM−拡散変調方式Aの信号とOFDM−拡散変調方式Bの信号が同一周波数帯域で多重化された多重化送信信号が形成される。この多重化送信信号は、無線部6206によって所定の無線処理が施された後、増幅器6207を介してアンテナ6208から送信される。
【0402】
図63に、送信装置6200により送信された信号を受信復調する本実施の形態における受信装置6300の構成を示す。受信装置6300は、アンテナ6301で受信した受信信号に対して無線部6302により所定の無線処理を行う。無線処理後の信号は、離散フーリエ変換部(dft)6303によりフーリエ変換処理が施されたのち、パラレルシリアル変換部(P/S)6304によりパラレルシリアル変換が施されることにより、周波数軸方向に拡散されたチップが元の符号分割多重信号に戻される。
【0403】
符号分割多重信号は、遅延部6305を介して減算部6306に送出されると共に、スペクトル拡散方式B復調部6308及び歪み推定部6310に送出される。
【0404】
スペクトル拡散方式B復調部6308は、入力信号に対して送信側のスペクトル拡散方式B変調部6202と逆の処理を行うことにより、拡散前のディジタル信号を得る。このスペクトル拡散方式Bの復調信号はそのまま復調信号として出力されると共にスペクトル拡散方式B変調信号再生部6309に送出される。
【0405】
スペクトル拡散方式B変調信号再生部6309は、一旦復調されたスペクトル拡散通信方式Bの信号に対して再びスペクトル拡散方式Bによる拡散変調処理を行うことにより、スペクトル拡散方式Bについてのレプリカ信号を形成する。このときスペクトル拡散方式B変調信号再生部6309は、歪み推定部6310により制御シンボルを用いて推定された伝送路歪み情報を使ってレプリカ信号を形成することにより、伝送時の歪み量を含んだレプリカ信号を形成する。実際には、スペクトル拡散方式B変調信号再生部6309は、一旦復調されたスペクトル拡散方式Bについての信号に対して再拡散し、伝送路歪み情報を用いて再変調することでレプリカ信号を形成する。スペクトル拡散方式B変調信号再生部6309は形成したレプリカ信号を減算部6306に送出する。
【0406】
減算部6306では、遅延部6305によって、レプリカ信号を形成する時間分だけ遅延されたスペクトル拡散方式A変調信号とスペクトル拡散方式B変調信号の多重信号から、スペクトル拡散方式B変調信号再生部6309により得られたスペクトル拡散方式B変調信号のレプリカ信号が減算されることにより、スペクトル拡散方式Aで拡散変調された拡散変調信号のみが抽出される。
【0407】
抽出されたスペクトル拡散方式Aの拡散変調信号は、スペクトル拡散方式A復調部6307により復調されることにより、拡散前のディジタル信号とされる。
【0408】
かくして、受信装置6300によれば、それぞれ拡散率の異なる拡散符号を用いて形成した複数のOFDM−拡散変調方式の信号を同一周波数帯域に多重化して送信した場合でも、これら複数のOFDM−拡散変調方式の信号を分離して、各々復調することができるようになる。
【0409】
因みに、スペクトル拡散通信変調方式A変調部6201及びスペクトル拡散通信変調方式B変調部6202を、図56に示すように構成することで、異なる拡散符号を用いて複数チャネル分の信号を符号分割多重してもよい。この場合、受信装置6300のスペクトル拡散方式A復調部6307及びスペクトル拡散方式B復調部6308の構成を、図57に示したように、複数チャネル分の拡散信号を逆拡散及び復調できるような構成とすればよい。
【0410】
かかる構成に加えて、この実施の形態の場合も実施の形態13と同様に、スペクトル拡散方式Bの送信パワを、スペクトル拡散方式Aの送信パワよりも大きくするようになされている。これにより、スペクトル拡散方式B復調部6308において、スペクトル拡散方式Bに対応する拡散符号を用いて逆拡散処理を行う際に、スペクトル拡散方式Bに対応する拡散信号とスペクトル拡散方式Aに対応する拡散信号の相関を小さくすることができるので、スペクトル拡散方式Bにより拡散された信号のみを高精度で分離することができるようになる。
【0411】
この結果、スペクトル拡散方式B復調部6308においてスペクトル拡散方式Bにより拡散された信号のみを高精度で抽出できるようになるので、スペクトル拡散方式B変調信号再生部6309において高精度のレプリカ信号を形成できるので、減算部6306でもスペクトル拡散方式Aにより拡散された信号を高精度で抽出できるようになる。
【0412】
また受信装置6300において、受信多重化信号から拡散率の異なるOFDM−拡散変調信号を分離するにあたって、先ず拡散率の大きいOFDM−拡散変調信号を逆拡散により分離するようにした。ここで拡散率の大きいOFDM−拡散変調信号の方が拡散利得が大きいので、最初に分離するOFDM−拡散変調信号(スペクトル拡散通信方式Bを用いたOFDM−拡散変調信号)の分離精度を向上させることができる。またこの結果、レプリカ信号の精度が向上するので、次に抽出される拡散率の小さいOFDM−拡散変調信号(スペクトル拡散通信方式Aを用いたOFDM−拡散変調信号)の分離精度も向上するようになる。この結果、全てのOFDM−拡散変調信号を精度良く分離復調できるようになる。
【0413】
以上の構成によれば、送信側において、それぞれ拡散率の異なる拡散符号を用いて形成した複数のOFDM−拡散変調方式の信号を多重化して送信し、受信側において、多重した信号のうちいずれかの信号を逆拡散したのち再拡散することでレプリカ信号を形成し、多重信号からレプリカ信号を減算するようにして多重された信号を分離抽出するようにしたことにより、多重した信号のどちらも復調できる。この結果、データ伝送速度を向上させることができる。
【0414】
なおこの実施の形態では、制御シンボルを除く全ての周波数−時間軸のフレームで、拡散率の異なるOFDM−拡散変調方式の信号を多重する方法について説明したが、これに限ったものではなく、例えば周波数−時間軸のある一部の特定のフレームにおいてのみ多重するようにしてもよい。つまり、他のフレームは、OFDM方式の単独の信号又は拡散率の異なるものを多重していないOFDM−拡散変調方式の単独の信号とすることが考えられる。これは後述する実施の形態15の場合も同様である。
【0415】
またこの実施の形態では、図63に示すように、スペクトル拡散方式Aの信号を復調するスペクトル拡散方式A復調部6307とスペクトル拡散方式Bの信号を復調するスペクトル拡散方式B復調部6308の両方を設けた受信装置について述べたが、必ずしも多重された信号を全て復調する復調部を設ける必要はない。例えばスペクトル拡散方式A復調部6307のみを設ければOFDM−拡散変調方式Aの信号のみを受信復調する専用受信装置を得ることができ、スペクトル拡散方式B復調部6308のみを設ければOFDM−拡散変調方式Bの信号のみを受信復調する専用受信装置を得ることができる。
【0416】
またこの実施の形態では、OFDM−拡散変調方式A、OFDM−拡散変調方式Bの2方式多重で説明したがこれに限ったものではなく、例えば拡散率の異なる拡散符号を3つ用意して3つのOFDM−拡散変調方式の信号を形成して、これらを同一周波数帯域に多重しても、上述した方法によりこれらの全てのOFDM−拡散変調方式で伝送された信号を分離復調することができる。これは、後述する実施の形態15の場合も同様である。
【0417】
(実施の形態15)
上述した実施の形態14では、それぞれ拡散率の異なる拡散符号を用い、かつ周波数軸方向に亘ってチップを拡散することにより得た複数のOFDM−拡散変調方式の信号を同一周波数帯域に多重化する送信装置及び受信装置を提案したが、この実施の形態では、それぞれ拡散率の異なる拡散符号を用い、かつ時間軸方向に亘ってチップを拡散する(いわゆる時間領域拡散する)ことにより得た複数のOFDM−拡散変調方式の信号を同一周波数帯域に多重化する送信装置及び受信装置を提案する。
【0418】
図64に、この実施の形態における周波数−時間軸上でのフレーム構成例を示す。図64において、1つの枠は1シンボルに相当するものとする。図からも分かるように、1シンボルが時間軸方向に拡散されている。
【0419】
この実施の形態では、図64(A)に示すOFDM−拡散変調方式Aの信号と図64(B)に示すOFDM−拡散変調方式Bの信号が同一周波数帯域に多重されて送信される。ここで、図64(A)に示すOFDM−拡散変調方式Aと図64(B)に示すOFDM−拡散変調方式Bを比較した場合、OFDM−拡散変調方式Bの拡散率の方が、OFDM−拡散変調方式Aの拡散率よりも大きくされている(この実施の形態の場合、2倍)。この結果、同一期間に伝送されるシンボル数はOFDM−拡散変調方式Aの方がOFDM−拡散変調方式Bの2倍となる。
【0420】
またOFDM−拡散変調方式Aのフレームには、時間方向に亘って制御シンボルが配置されていると共に、OFDM−拡散変調方式Bのフレームにおける制御シンボルに対応する位置にはガードシンボルが配置されている。これにより、伝搬路推定や同期処理の際の元となる制御シンボルを受信側で容易かつ高精度で取り出すことができるようになっている。
【0421】
次に、このように拡散率の異なる拡散符号を用いて形成した複数のOFDM−拡散変調方式の信号を多重化して送信する送信装置の構成を、図65を用いて説明する。送信装置6500は、第1の送信ディジタル信号D1を変調部6501に入力すると共に第2の送信ディジタル信号D2を変調部6502に入力する。また変調部6501及び変調部6502には、図64に示すようなフレームを形成するためのフレーム情報でなるフレーム構成信号S1が入力される。変調部6501、6502は、入力信号に対してQPSKや16QAMの変調処理を施し、変調後の信号はシリアルパラレル変換部(S/P)6503、6504を介して拡散方式A拡散部6505及び拡散方式B拡散部6506に送出される。
【0422】
拡散方式A拡散部6505は、入力パラレル信号の1シンボルを例えば4チップに拡散する。これに対して拡散方式B拡散部6506は、入力パラレル信号の1シンボルを例えば8チップに拡散する。拡散方式A拡散部6505及び拡散方式B拡散部6506から出力される拡散後のパラレル信号は、加算部6509により多重される。
【0423】
また加算部6509には、フレーム構成信号S1に従って制御シンボル発生部6507で発生された制御シンボルがシリアルパラレル変換部(S/P)6508を介して入力され、このシリアルパラレル変換された制御シンボルが拡散方式A拡散部6505及び拡散方式B拡散部6506から出力される拡散後のパラレル信号と共に多重される。多重された信号は、逆離散フーリエ変換部(idft)6510により逆離散フーリエ変換処理が施される。
【0424】
これにより、拡散後のチップが時間軸方向に拡散され、図64に示すようなフレーム構成でなるOFDM−拡散変調方式Aの信号とOFDM−拡散変調方式Bの信号が同一周波数帯域で多重化された多重化送信信号が形成される。この多重化送信信号は、無線部6511によって所定の無線処理が施された後、増幅器6512を介してアンテナ6513から送信される。
【0425】
図66に、送信装置6500により送信された信号を受信復調する本実施の形態における受信装置6600の構成を示す。受信装置6600は、アンテナ6601で受信した受信信号に対して無線部6602により所定の無線処理を行う。無線処理後の信号は、離散フーリエ変換部(dft)6603によりフーリエ変換処理が施されたのち、遅延部6604を介して減算部6605に入力されると共に拡散方式B逆拡散部6609及びパラレルシリアル変換部(P/S)6613に入力される。
【0426】
スペクトル拡散方式B逆拡散部6609は、入力信号に対して送信側のスペクトル拡散方式B拡散部6506と逆の処理を行う。逆拡散後の信号は、パラレルシリアル変換部(P/S)6610によりパラレルシリアル変換処理され、続く復調部6611により復調されたのち、そのまま復調信号として出力されると共に逆拡散方式B信号再生部6612に入力される。一方、パラレルシリアル変換部(P/S)6613によりパラレルシリアル変換された信号は伝送路歪み推定部6614に入力される。伝送路歪み推定部6614では、制御シンボルに基づいて伝送路歪みを推定し、推定した伝送路歪み情報を拡散方式B信号再生部6612に送出する。因みに、制御シンボルは拡散処理されていないので、逆拡散処理を施すことなく、伝送路歪み推定部6614で用いることができる。
【0427】
スペクトル拡散方式B信号再生部6612は、一旦復調されたスペクトル拡散方式Bの信号に対して、再び変調処理、シリアルパラレル変換処理及び拡散方式Bでの拡散処理を施すことにより、スペクトル拡散方式Bについてのレプリカ信号を形成する。このとき拡散方式B信号再生部6612は、伝送路歪み推定部6614からの伝送路歪み情報を使ってレプリカ信号を形成することにより、伝送時の歪み量を含んだレプリカ信号を形成する。拡散方式B信号再生部6612は形成したレプリカ信号を減算部6605に送出する。
【0428】
減算部6605では、遅延部6604によって、レプリカ信号を形成する時間分だけ遅延されたスペクトル拡散方式Aの信号とスペクトル拡散方式Bの信号の多重信号から、拡散方式B信号再生部6612により得られたスペクトル拡散方式Bのレプリカ信号が減算されることにより、スペクトル拡散方式Aで拡散変調された拡散変調信号のみが抽出される。
【0429】
抽出されたスペクトル拡散方式Aの拡散変調信号は、拡散方式A逆拡散部6606により、拡散方式A拡散部6505と同じ拡散符号を用いて逆拡散処理されることにより、逆拡散後のパラレル信号とされる。このパラレル信号はパラレルシリアル変換部(P/S)6607を介して復調部6608に入力され、復調部6608により復調信号とされる。
【0430】
かくして、受信装置6600によれば、それぞれ拡散率の異なる拡散符号を用いて時間軸拡散して形成した複数のOFDM−拡散変調方式の信号を同一周波数帯域に多重化して送信した場合でも、これら複数のOFDM−拡散変調方式の信号を分離して、各々復調することができるようになる。
【0431】
ここで多重されるOFDM−拡散変調方式A、又はOFDM−拡散変調方式Bの信号を複数チャネルで構成すれば、一段と伝送情報量を増やすことができる。このようにするには、例えばOFDM−拡散変調方式Aの信号を形成する、図65に示す変調部6501、シリアルパラレル変換部(S/P)6503及び拡散方式A拡散部6505を、図67に示すように構成すればよい。これはOFDM−拡散変調方式Bの信号を形成する、変調部6502、シリアルパラレル変換部(S/P)6504及び拡散方式B拡散部6506についても同様なので、以下ではOFDM−拡散変調方式Aの信号を形成する場合について説明する。
【0432】
図67において、第1の送信ディジタル信号D1がチャネル数分(図67では2チャネル分)だけ用意された複数系統のチャネル変調部6701、6702、シリアルパラレル変換部(S/P)6703、6704、チャネル拡散部6705、6706を介して加算部6707に送出される。ここでチャネル1拡散部6705とチャネル2拡散部6706では、それぞれ拡散率が同じでかつ相互相関がほとんど無い拡散符号を用いた拡散処理が行われる。加算部6707により多重されて得られた複数チャネル分の符号分割多重信号は、図65の加算部6509に送出される。
【0433】
このように複数チャネルで構成されたOFDM−拡散変調方式A、又はOFDM−拡散変調方式Bの信号を復調する場合には、例えば、図66に示す、拡散方式A逆拡散部6606、パラレルシリアル変換部(P/S)6607及び復調部6608を、図68に示すように構成すればよい。これはOFDM−拡散変調方式Bの信号を復調する、拡散方式B逆拡散部6609、パラレルシリアル変換部(P/S)6610及び復調部6611についても同様なので、以下では2チャネル分のOFDM−拡散変調方式Aの信号を復調する場合について説明する。
【0434】
図68において、チャネル1逆拡散部6802及びチャネル2逆拡散部6803には、減算部6605からの出力信号が入力される。チャネル1逆拡散部6802及びチャネル2逆拡散部6803は、チャネル1符号発生部6801及びチャネル2符号発生部6804から入力される拡散符号を用いて逆拡散処理を行う。チャネル1逆拡散部6802により得られた逆拡散後の信号は、パラレルシリアル変換部(P/S)6805及びチャネル1復調部6807により、チャネル1の受信ディジタル信号とされる。同様に、チャネル2逆拡散部6803により得られた逆拡散後の信号は、パラレルシリアル変換部(P/S)6806及びチャネル2復調部6808により、チャネル2の受信ディジタル信号とされる。
【0435】
以上の構成によれば、送信側において、拡散率の異なる拡散符号を用いて時間領域拡散した複数のOFDM−拡散変調方式の信号を多重化して送信し、受信側において、多重した信号のうちいずれかの信号を逆拡散したのち再拡散することでレプリカ信号を形成し、多重信号からレプリカ信号を減算するようにして多重された信号を分離抽出するようにしたことにより、多重した信号のどちらも復調できる。この結果、データ伝送速度を向上させることができる。
【0436】
(実施の形態16)
この実施の形態では、OFDM変調信号とOFDM−拡散変調信号を同一周波数帯域に多重して送信するのに加えて、各送信相手局との間の電波伝搬路環境に応じて、各送信局宛の情報信号に対してOFDM変調処理を施すかOFDM−拡散変調処理を施すかを選択することを提案する。これにより、誤り率特性の向上と伝送データ量の増加とを両立させることができるようになる。
【0437】
図69に、この実施の形態の概念図を示す。図69において、基地局が端末A〜EにOFDM変調信号とOFDM−拡散変調信号を同一周波数帯域に多重して送信するようになっている。ここで基地局から距離的に近い領域AR1に存在する端末については、誤り耐性よりも伝送情報量を重視してOFDM変調処理を施した情報信号を送信する。これに対して、領域AR1の外側の領域AR2に存在する端末については誤り率耐性の強いOFDM−拡散変調処理を施した情報信号を送信する。
【0438】
具体的には、図69(A)に示すように、領域AR1内に端末Eのみが存在する場合には、端末E宛の情報信号をOFDM変調すると共に、端末A〜D宛の情報信号をOFDM−拡散変調し、これらの変調信号を同一周波数帯域に多重化して送信する。一方、図69(B)に示すように、端末C、Dが領域AR1内に移動した場合には、端末C、D、E宛の情報信号をOFDM変調すると共に、端末A、B宛の情報信号をOFDM−拡散変調し、これらの変調信号を同一周波数帯域に多重化して送信する。
【0439】
図70及び図71に基地局から送信される送信信号のフレーム構成例を示す。図70(A)及び図71(A)は、端末A〜Eが図69(A)に示すような位置に存在する場合の送信信号のフレーム構成を示す。一方、図70(B)及び図71(B)は、端末A〜Eが図69(A)に示すような位置に移動した場合の送信信号のフレーム構成を示す。図70及び図71の中の符号A〜Eは各端末A〜E宛の信号を示す。
【0440】
ここでOFDM−拡散変調信号(OFDM−CDMシンボル)は、周波数軸方向に拡散してもよく、時間軸方向に拡散してもよく、さらには周波数軸方向及び時間軸方向に二次元拡散してもよい。OFDMシンボルは端末が複数の場合には、図70(B)に示すように各端末宛のOFDM信号を時分割多重してもよく、図71(B)に示すように複数のキャリアを分割して各端末に割り当てるようにしてもよい。
【0441】
因みに、図69、図70、図71では、説明を簡単化するために、基地局に近い端末に対して伝送量の多いOFDM変調処理を施した信号を送信し、基地局から遠い端末に対して誤り耐性の強いOFDM−拡散変調処理を施した信号を送信する場合について述べたが、実際には以下に説明するように電波伝搬環境に応じて変調処理を選択するようになっている。
【0442】
図72に、この実施の形態の基地局の構成を示す。基地局は、各端末宛の情報信号をOFDM方式パラレル信号生成部7201及びOFDM拡散変調方式パラレル信号生成部7202にそれぞれ入力する。OFDM方式パラレル信号生成部7201及びOFDM拡散変調方式パラレル信号生成部7202は、変調選択手段としてのフレーム構成信号生成部7203により生成されたフレーム構成信号に従って、対応する端末の情報信号を処理する。例えば図69(A)に示すような状態であれば、OFDM方式パラレル信号生成部7201は端末E宛の情報信号のみを処理し、OFDM拡散変調方式パラレル信号生成部7202は端末A〜D宛の情報信号を処理する。
【0443】
OFDM方式パラレル信号生成部7201及びOFDM拡散変調方式パラレル信号生成部7202により生成された各信号は加算部7204によって加算され、続く逆離散フーリエ変換部(idft)7205により逆離散フーリエ変換処理が施される。これにより、電波伝搬環境に応じてOFDM変調処理又はOFDM−拡散変調処理が選択された各端末宛の情報信号が同一周波数帯域に多重化される。逆フーリエ変換処理後の信号は、無線部7206、アンプ7207を介してアンテナ7208から送信される。
【0444】
一方、受信系では、アンテナ7208で受信された端末からの信号が無線部7209を介して復調部7210に入力される。復調部7210により復調された受信データは方式決定部7211に入力される。ここで受信データは、例えば図74に示すようなフレーム構成とされており、方式決定部7211は各端末からの要求情報及び電波伝搬環境推定情報に基づいて、各端末に情報信号を送信するか否かと、送信するのであればOFDM変調信号を送信するかOFDM−拡散変調信号を送信するかを決定し、決定結果をフレーム構成信号生成部7203に送出する。
【0445】
次に、端末の構成を図73に示す。端末は、アンテナ7301で受信した受信信号に対して無線部7302により所定の無線処理を行う。無線処理後の信号は、離散フーリエ変換部(dft)7303によりフーリエ変換処理が施されたのち、遅延部7304を介して減算部7305に入力されると共にOFDM−拡散方式復調部7307、伝送路歪み推定部7308及び電波伝搬環境推定部7309に入力される。
【0446】
OFDM−拡散方式復調部7307は、受信多重化信号に対して逆拡散処理や離散フーリエ変換処理を施すことにより、OFDM−拡散変調信号を復調する。復調されたOFDM−拡散変調信号は、そのまま復調信号として出力されると共にOFDM−拡散方式信号再生部7310に入力される。
【0447】
OFDM−拡散方式信号再生部7310では、一旦復調されたOFDM−拡散変調信号に対して、再び変調処理、シリアルパラレル変換処理及び拡散処理を施すことにより、OFDM−拡散変調信号についてのレプリカ信号を形成する。このときOFDM−拡散方式信号再生部7310は、伝送路歪み推定部7308からの伝送路歪み情報を使ってレプリカ信号を形成することにより、伝送時の歪み量を含んだレプリカ信号を形成する。OFDM−拡散方式信号再生部7310は形成したレプリカ信号を減算部7305に送出する。
【0448】
減算部7305では、遅延部7304によって、レプリカ信号を形成する時間分だけ遅延された受信多重化信号から、OFDM−拡散方式信号再生部7310により得られたOFDM−拡散変調信号のレプリカ信号が減算されることにより、OFDM変調信号のみが抽出される。抽出されたOFDM変調信号はOFDM方式復調部7306により復調される。
【0449】
電波伝搬環境推定部7309は、受信信号に含まれるパイロットシンボル等の既知信号に基づいて、SIR(Signal to Interference Ratio)、ドップラー周波数、受信電界強度、マルチパス環境等の電波伝搬環境を推定し、推定結果を送信フレーム生成部7311に送出する。送信フレーム生成部7311には、電波伝搬環境推定結果に加えて、送信データD1及び信号の送信を要求する要求情報D2が入力される。送信フレーム生成部7311は、これらの信号を使って、図74に示すような送信フレームを生成する。送信フレーム生成部7311の出力は、直交ベースバンド信号生成部7312、無線部7313及びアンプ7314を介してアンテナ7301から送信される。
【0450】
かくして以上の構成によれば、伝搬環境が悪い送信相手局には誤り耐性の強いOFDM−拡散変調信号を、伝搬環境が良い送信相手局には伝送レートの高いOFDM変調信号を、同一周波数帯域に多重化して送信するようにしたので、誤り率特性の向上と伝送データ量の増加とを両立させることができる。
【0451】
なおこの実施の形態では、電波伝搬環境に応じて各端末宛の情報信号に対してOFDM変調処理を施すか又はOFDM−拡散変調処理を施すかを選択した場合について述べたが、各端末宛の情報信号に対してOFDM変調処理とOFDM−拡散変調処理の両方を施して送信し、端末側で電波伝搬環境に応じてそのいずれかを選択的に復調するようにしてもよい。また各局宛の情報信号に限らず、例えば放送信号のように各端末に共通の情報信号に対してOFDM変調処理とOFDM−拡散変調処理の両方を施して送信し、端末側で電波伝搬環境に応じてそのいずれかを選択的に復調するようにしてもよい。
【0452】
この場合の端末の受信系の構成を、図75に示す。図73との対応部分に同一符号を付して示す図75は、全体として端末の受信系の構成を示し、電波伝搬環境推定部7309の推定結果に基づいて、OFDM方式復調部7306により得られた復調データ又はOFDM−拡散方式復調部7307により得られた復調データのいずれかを選択する選択部7500が設けられていることを除いて、図73と同様の構成となっている。
【0453】
すなわち、電波伝搬環境が悪い場合には誤り耐性の強いOFDM−拡散方式を用いて伝送された情報を選択し、電波伝搬環境が良い場合には伝送量の多いOFDM変調方式を用いて伝送された情報を選択する。これにより、誤り率特性の向上と伝送データ量の増加とを両立させることができるようになる。
【0454】
またこの実施の形態では、電波伝搬環境に応じて各端末宛の情報信号に対してOFDM変調処理を施すか又はOFDM−拡散変調処理を施すかを選択した場合について述べたが、OFDM変調処理とOFDM−拡散変調処理との組み合わせに限らない。例えば電波伝搬環境に応じて各端末宛の情報信号に対して拡散処理を施すか又は拡散処理を施さないかを選択し、これらを同一周波数帯域に多重して送信してもよい。この場合でも、受信側では最初に拡散信号を復調し、次に拡散信号のレプリカ信号を形成し、多重化信号からレプリカ信号を除去すれば非拡散信号を抽出できるので、どちらの信号も復調することができる。この結果、この場合でも、伝搬環境が悪い場合には拡散信号を選択し、伝搬環境が良い場合には非拡散信号を選択することにより、誤り率特性の向上と伝送データ量の増加とを両立させることができるようになる。
【0455】
またこの実施の形態では、OFDM変調信号とOFDM−拡散変調信号とが同一帯域に多重された信号を受信する受信側で電波伝搬環境を推定する場合について述べたが、本発明はこれに限らず、OFDM変調信号とOFDM−拡散変調信号とを同一帯域に多重して送信する送信側で伝搬伝搬環境を推定してもよい。
【0456】
【発明の効果】
以上のように本発明によれば、同一周波数帯域で複数のディジタル変調信号を多重化して送信することにより、単位時間あたりのデータ伝送量を増加させることができるため、データの伝送速度を向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る多重化送信信号のフレーム構成の一例を示す図
【図2】I−Q平面での16QAMの信号点配置図
【図3】I−Q平面でのBPSK変調の信号点配置図
【図4】実施の形態1での周波数配置を示す概念図
【図5】実施の形態1の送信装置の構成を示すブロック図
【図6】実施の形態1の受信装置の構成を示すブロック図
【図7】同期部での相関演算の説明に供する図
【図8】相関信号の時間変動を示す図
【図9】図6の復調部の内部構成を示すブロック図
【図10】図9の信号再生部の内部構成を示すブロック図
【図11】符号乗算後の信号のスペクトル分布を示す図
【図12】図9のパイロット信号推定部の内部構成を示すブロック図
【図13】本発明の実施の形態2の無線通信システムの構成を示す図
【図14】実施の形態2での相関特性の一例を示す図
【図15】実施の形態3における多重化送信信号のフレーム構成例を示す図
【図16】I−Q平面での16QAMおよびパイロットシンボルの信号点配置図
【図17】実施の形態3の送信装置の構成を示すブロック図
【図18】実施の形態3の受信装置の構成を示すブロック図
【図19】実施の形態3におけるパイロットシンボルおよびパイロットシンボル間のシンボル構成を示す図
【図20】実施の形態4における多重化送信信号のフレーム構成例を示す図
【図21】実施の形態4の送信装置の構成を示すブロック図
【図22】実施の形態4の受信装置の構成を示すブロック図
【図23】実施の形態5の無線通信システムでの基地局と通信端末の配置を示す図
【図24】I−Q平面でのQPSK変調信号とπ/4シフトQPSK変調信号の信号点配置を示す図
【図25】I−Q平面でのBPSK変調信号とπ/2シフトBPSK変調信号の信号点配置を示す図
【図26】実施の形態6の受信装置に用いられるスペクトル拡散復調部の構成を示すブロック図
【図27】実施の形態7の送信装置の構成を示すブロック図
【図28】実施の形態7における多重化送信信号のフレーム構成例を示す図
【図29】実施の形態7の受信装置の構成を示すブロック図
【図30】実施の形態7における多重化送信信号のフレーム構成の他の例を示す図
【図31】図30の多重化送信信号を受信復調する受信装置の構成を示すブロック図
【図32】実施の形態8の送信装置に用いられる多重信号選択部の構成を示す図
【図33】実施の形態9における多重化送信信号のフレーム構成例を示す図
【図34】実施の形態9の送信装置の構成を示すブロック図
【図35】実施の形態9の受信装置の構成を示すブロック図
【図36】実施の形態9の送信装置の他の構成例を示すブロック図
【図37】実施の形態9の受信装置の他の構成例を示すブロック図
【図38】実施の形態10における多重化送信信号のフレーム構成例を示す図
【図39】実施の形態10における多重化送信信号のフレーム構成例を示す図
【図40】図38の多重化送信信号を送信する送信装置の構成を示すブロック図
【図41】図38の多重化送信信号を受信する受信装置の構成を示すブロック図
【図42】図39の多重化送信信号を送信する送信装置の構成を示すブロック図
【図43】実施の形態11における多重化送信信号のフレーム構成例を示す図
【図44】図43の多重化送信信号を送信する送信装置の構成を示すブロック図
【図45】図43の多重化送信信号を受信する受信装置の構成を示すブロック図
【図46】実施の形態12における多重化送信信号のフレーム構成を示す図
【図47】図46の多重化送信信号を送信する送信装置の構成を示すブロック図
【図48】図46の多重化送信信号を受信する受信装置の構成を示すブロック図
【図49】実施の形態12における多重化送信信号の他のフレーム構成例を示す図
【図50】図49の多重化送信信号を送信する送信装置の構成を示すブロック図
【図51】図49の多重化送信信号を受信する受信装置の構成を示すブロック図
【図52】実施の形態13における多重化送信信号のフレーム構成例を示す図
【図53】実施の形態13におけるスペクトル拡散通信方式Aのシンボルの構成を示す図
【図54】実施の形態13におけるスペクトル拡散通信方式Bのシンボルの構成を示す図
【図55】実施の形態13における送信装置の構成を示すブロック図
【図56】図55のスペクトル拡散通信方式変調部の構成を示すブロック図
【図57】実施の形態13における受信装置の構成を示すブロック図
【図58】図57のスペクトル拡散通信復調部の構成を示すブロック図
【図59】図57のスペクトル拡散通信復調部の他の構成例を示すブロック図
【図60】多重される信号毎に送信パワを変える場合のI−Q平面での信号点配置を示す図
【図61】実施の形態14における多重化送信信号のフレーム構成を示す図
【図62】実施の形態14の送信装置の構成を示すブロック図
【図63】実施の形態14の受信装置の構成を示すブロック図
【図64】実施の形態15における多重化送信信号のフレーム構成を示す図
【図65】実施の形態15の送信装置の構成を示すブロック図
【図66】実施の形態15の受信装置の構成を示すブロック図
【図67】多重される信号を複数チャネルで構成する場合の変調部、シリアルパラレル変換部及び拡散部の構成を示すブロック図
【図68】複数チャネルで構成された信号を復調する場合の構成を示すブロック図
【図69】実施の形態16の説明に供する基地局と端末の位置関係を示す図
【図70】実施の形態16での送信信号のフレーム構成の一例を示す図
【図71】実施の形態16での送信信号のフレーム構成の一例を示す図
【図72】電波伝搬環境に応じてOFDM変調信号又はOFDM−拡散変調信号を選択して同一周波数帯域に多重化して送信する送信装置の構成を示すブロック図
【図73】図72の送信装置から送信された多重化信号を復調する受信装置の構成を示すブロック図
【図74】図73のフレーム生成部により生成されるフレーム構成を示す図
【図75】同一の情報信号に対してOFDM変調処理及びOFDM−拡散変調処理の両方が施されて同一周波数帯域に多重化された信号から、電波伝搬環境に応じていずれかの信号を選択する受信装置の構成を示すブロック図
【図76】従来の無線通信方式におけるフレーム構成例を示す図
【符号の説明】
500、1700、2100、2700、3400、3600、4000、4200、4400、4700、5000、5500、6200、6500 送信装置
501、1701 情報変調部
502 ディジタル変調部
503、703、1703、5503、6203 加算部
504、1704、5504 帯域制限フィルタ部
505、602、1705、1802、5505 無線部
506、1706、5506 送信電力増幅部
603 同期部
604 復調部
701、1806 遅延部
702 乗算部
704 パワ計算部
600、1800、2200、2900、3100、3500、3700、4100、4500、4800、5100、5700、6300、6600 受信装置
902 信号再生部
904 パイロット信号生成部
903、1807、5704 減算部
905 検波部
1001、1201 符号乗算部
1002、1202 LPF
1003 再符号乗算部
1304 送信信号生成局
1702 スペクトル拡散変調部
1803 スペクトル拡散復調部
1805 スペクトル拡散変調信号再生部
1808 情報復調部
512、1804、2202、5708 歪み推定部
2101、3200 特定変調信号選択部
2201 特定変調信号推定部
2203 特定変調信号再生部
5501、6201 スペクトル拡散通信方式A変調部
5502、6202 スペクトル拡散通信方式B変調部
5705 スペクトル拡散通信方式A復調部
5706 スペクトル拡散通信方式B復調部
5707 スペクトル拡散方式B変調信号再生部
7500 選択部
Claims (16)
- 情報信号に対して直交周波数分割多重処理を施してOFDM変調信号を得るOFDM変調手段と、
情報信号に対して拡散処理及び直交周波数分割多重処理を施してOFDM−拡散変調信号を得るOFDM−拡散変調手段と、
前記OFDM変調信号と前記OFDM−拡散変調信号とを同一サブキャリアにおいて多重して多重化信号を得る多重化手段と、
前記多重化信号を送信する送信手段と
を具備する送信装置。 - 前記OFDM変調信号と前記OFDM−拡散変調信号とを多重化するサブキャリアと、前記OFDM変調信号又は前記OFDM−拡散変調信号のいずれか一方の信号が配置されたサブキャリアとを選択する
請求項1記載の送信装置。 - 前記OFDM変調手段及び前記OFDM−拡散変調手段は、同相−直交平面における前記OFDM変調信号と前記OFDM−拡散変調信号の信号点を異なる位置に配置するように変調処理を行う請求項1又は請求項2記載の送信装置。
- 前記多重化手段は、周波数−時間軸におけるフレームで、同一の時間において前記OFDM変調信号と前記OFDM−拡散変調信号を多重化する請求項1から請求項3のいずれかに記載の送信装置。
- 前記OFDM変調信号及び前記OFDM−拡散変調信号に加えて、OFDM−拡散変調処理を行う際に用いた拡散符号の情報を多重化して送信する請求項1又は請求項2記載の送信装置。
- 特定の時間に前記OFDM変調信号と前記OFDM−拡散変調信号を同一サブキャリアで多重化して送信すると共に、当該特定の時間以外の時間には前記OFDM変調信号又は前記OFDM−拡散変調信号のいずれか一方を送信する請求項1又は請求項2記載の送信装置。
- 情報信号に対してOFDM変調処理が施されたOFDM変調信号と情報信号に対してOFDM−拡散変調処理が施されたOFDM−拡散変調信号とが同一サブキャリアに多重された多重化信号を受信する受信手段と、
前記多重化信号中のOFDM−拡散変調信号を復調する第1復調手段と、
復調された信号からOFDM−拡散変調信号を再生することによりOFDM−拡散変調信号のレプリカ信号を形成する再生手段と、
受信多重化信号から前記OFDM−拡散変調信号のレプリカ信号を除去することにより前記OFDM変調信号を抽出する信号除去手段と、
抽出されたOFDM変調信号を復調する第2復調手段と
を具備する受信装置。 - 情報信号に対してOFDM変調処理が施されたOFDM変調信号と情報信号に対してOFDM−拡散変調処理が施されたOFDM−拡散変調信号とが同一サブキャリアに多重された多重化信号と、OFDM−拡散変調処理を行う際に用いられた拡散符号の情報とを受信する受信手段と、
前記拡散符号の情報に基づき前記多重化信号中のOFDM−拡散変調信号を復調する第1復調手段と、
復調された信号からOFDM−拡散変調信号を再生することによりOFDM−拡散変調信号のレプリカ信号を形成する再生手段と、
受信多重化信号から前記OFDM−拡散変調信号のレプリカ信号を除去することにより前記OFDM変調信号を抽出する信号除去手段と、
抽出されたOFDM変調信号を復調する第2復調手段と
を具備する受信装置。 - 前記受信多重化信号中の既知信号に基づいて伝送路歪みを推定する歪み推定手段を、さらに具備し、前記再生手段は、推定された伝送路歪み成分が加えられたOFDM−拡散変調信号のレプリカ信号を形成する請求項7又は請求項8記載の受信装置。
- 前記OFDM−拡散変調信号の送信電力を、前記OFDM変調信号の送信電力よりも大きくする請求項1から請求項3のいずれかに記載の送信装置。
- 情報信号に対して直交周波数分割多重処理を施してOFDM変調信号を得るOFDM変調手段と、
情報信号に対して拡散処理及び直交周波数分割多重処理を施してOFDM−拡散変調信号を得るOFDM−拡散変調手段と、
送信相手局の伝搬路環境に基づき、伝搬路環境が悪い場合には前記OFDM−拡散変調手段を選択して当該送信相手局宛の情報信号に対して拡散処理及び直交周波数分割多重処理を施すと共に伝搬環境が良い場合には前記OFDM変調手段を選択して当該送信相手局宛の情報信号に対して直交周波数分割多重処理を施すようになされた変調選択手段と、
選択された変調方式により変調処理された複数の変調信号を同一サブキャリアに多重して多重化信号を得る多重化手段と、
前記多重化信号を送信する送信手段と、
を具備する送信装置。 - 情報信号に対して直交周波数分割多重処理を施してOFDM変調信号を得るOFDM変調手段と、
情報信号に対して拡散処理及び直交周波数分割多重処理を施してOFDM−拡散変調信号を得るOFDM−拡散変調手段と、
を具備し、
同一の情報信号に対して前記OFDM変調手段と前記OFDM−拡散変調手段による処理を施すことにより、同一の情報信号についてのOFDM変調信号とOFDM−拡散変調信号を得て、当該OFDM変調信号とOFDM−拡散変調信号とを同一サブキャリアに多重化して送信する、
送信装置。 - 同一の情報信号についてのOFDM変調信号とOFDM−拡散変調信号とが同一サブキャリアに多重された多重化信号を受信する受信手段と、
受信多重化信号中のOFDM−拡散変調信号を復調する第1の復調手段と、
復調されたOFDM−拡散変調信号からOFDM−拡散変調信号を再生してOFDM−拡散変調信号のレプリカ信号を形成する再生手段と、
前記受信多重化信号から前記レプリカ信号を除去することにより前記OFDM変調信号を抽出する信号除去手段と、
抽出されたOFDM変調信号を復調する第2の復調手段と、
送信局との間の電波伝搬環境を推定する電波伝搬環境推定手段と、
推定された電波伝搬環境に基づいて、復調されたOFDM変調信号または復調されたOFDM−拡散変調信号のいずれかを選択する選択手段と、
を具備する受信装置。 - 送信装置が、情報信号をディジタル変調して得た第1変調信号と、情報信号をスペクトル拡散方式によりディジタル変調して得た第2変調信号とを同一サブキャリアに多重化して送信し、
受信装置が、受信多重化信号に対してスペクトル拡散復調を行うことにより前記第2変調信号を復調し、復調した第2変調信号に対してスペクトル拡散処理を行って第2変調信号のレプリカ信号を形成し、前記受信多重化信号から前記第2変調信号のレプリカ信号を除去することにより前記第1変調信号を抽出し、抽出した第1変調信号を復調する
無線通信方法。 - 送信装置が、情報信号を直交周波数分割多重処理して得たOFDM変調信号と、情報信号を拡散処理及び直交周波数分割多重処理して得たOFDM−拡散変調信号とを同一サブキャリアに多重化して送信し、
受信装置が、受信多重化信号に対してOFDM−拡散復調処理を施すことにより前記OFDM−拡散変調信号を抽出し、抽出したOFDM−拡散変調信号を再生することによりOFDM−拡散変調信号のレプリカ信号を形成し、受信多重化信号から前記OFDM−拡散変調信号のレプリカ信号を除去することにより前記OFDM変調信号を得るようにした
無線通信方法。 - 送信装置が、同一の信号からOFDM信号とOFDM−拡散信号を得て、これらを同一サブキャリアに多重化して送信し、
受信装置が、前記送信装置との間の電波伝搬環境を推定し、推定した電波伝搬環境に基づいて、受信多重化信号からOFDM信号またはOFDM−拡散信号のいずれかを選択して復調する、
無線通信方法。
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002206150A JP4119696B2 (ja) | 2001-08-10 | 2002-07-15 | 送信装置、受信装置及び無線通信方法 |
EP02746136A EP1416657A4 (en) | 2001-08-10 | 2002-07-23 | Transmitter, receiver and radio communication method |
CN028200209A CN1568592B (zh) | 2001-08-10 | 2002-07-23 | 发送装置、接收装置以及射频通信方法 |
PCT/JP2002/007407 WO2003017547A1 (en) | 2001-08-10 | 2002-07-23 | Transmission device, reception device and radio communication method |
US10/485,115 US7724638B2 (en) | 2001-08-10 | 2002-07-23 | Transmission device, reception device and radio communication method |
KR20047002000A KR100892461B1 (ko) | 2001-08-10 | 2002-07-23 | 송신 장치 및 무선 통신 방법 |
KR1020087032081A KR100896835B1 (ko) | 2001-08-10 | 2002-07-23 | 송신 장치 및 송신 방법 |
US12/767,117 US8284650B2 (en) | 2001-08-10 | 2010-04-26 | Transmission device, reception device and radio communication method |
US13/606,327 US8462615B2 (en) | 2001-08-10 | 2012-09-07 | Transmission device, reception device, and radio communication method |
US13/891,027 US9112595B2 (en) | 2001-08-10 | 2013-05-09 | Transmission device, reception device, and radio communication method |
US14/792,917 US10128899B2 (en) | 2001-08-10 | 2015-07-07 | Transmission device, reception device, and radio communication method |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001244929 | 2001-08-10 | ||
JP2001-244929 | 2001-08-10 | ||
JP2001310777 | 2001-10-05 | ||
JP2001-310777 | 2001-10-05 | ||
JP2002206150A JP4119696B2 (ja) | 2001-08-10 | 2002-07-15 | 送信装置、受信装置及び無線通信方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003179573A JP2003179573A (ja) | 2003-06-27 |
JP4119696B2 true JP4119696B2 (ja) | 2008-07-16 |
Family
ID=27347327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002206150A Expired - Lifetime JP4119696B2 (ja) | 2001-08-10 | 2002-07-15 | 送信装置、受信装置及び無線通信方法 |
Country Status (6)
Country | Link |
---|---|
US (5) | US7724638B2 (ja) |
EP (1) | EP1416657A4 (ja) |
JP (1) | JP4119696B2 (ja) |
KR (2) | KR100896835B1 (ja) |
CN (1) | CN1568592B (ja) |
WO (1) | WO2003017547A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12231271B2 (en) | 2021-01-13 | 2025-02-18 | Samsung Electronics Co., Ltd. | Electronic device and operation method therefor |
Families Citing this family (113)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4119696B2 (ja) | 2001-08-10 | 2008-07-16 | 松下電器産業株式会社 | 送信装置、受信装置及び無線通信方法 |
WO2005011167A1 (ja) * | 2003-07-29 | 2005-02-03 | Fujitsu Limited | Ofdmシステムにおけるパイロット多重方法及び送受信装置 |
US7969857B2 (en) * | 2003-08-07 | 2011-06-28 | Nortel Networks Limited | OFDM system and method employing OFDM symbols with known or information-containing prefixes |
WO2005125139A1 (en) * | 2004-06-16 | 2005-12-29 | Samsung Electronics Co., Ltd. | Method for transmitting/receiving data in mobile communication systems using an ofdma scheme |
WO2006022136A1 (ja) * | 2004-08-24 | 2006-03-02 | Sharp Kabushiki Kaisha | データ通信システム、受信装置及び送信装置 |
US7606596B2 (en) * | 2004-12-01 | 2009-10-20 | Adaptix, Inc. | Exploiting multiuser diversity through phase modulation multiplexing |
TWI590626B (zh) | 2005-04-22 | 2017-07-01 | 英特爾股份有限公司 | 混合正交分頻多重存取系統及方法 |
US7715460B2 (en) * | 2005-04-22 | 2010-05-11 | Interdigital Technology Corporation | Hybrid orthogonal frequency division multiple access system and method |
US7865158B2 (en) * | 2005-07-26 | 2011-01-04 | Interdigital Technology Corporation | Method and apparatus for automatically correcting receiver oscillator frequency |
JP2007036893A (ja) * | 2005-07-28 | 2007-02-08 | Kyocera Corp | 無線通信方法、無線端末、プログラム |
US20080137715A1 (en) * | 2005-12-06 | 2008-06-12 | The Chamberlain Group, Inc. | Secure spread spectrum-facilitated remote control signaling method and apparatus |
US20070126552A1 (en) * | 2005-12-06 | 2007-06-07 | The Chamberlain Group, Inc. | Secure spread spectrum-facilitated remote control signaling method and apparatus |
DE602006015361D1 (de) * | 2006-02-08 | 2010-08-19 | Ericsson Telefon Ab L M | Generische parallel-spreizung |
EP2020158B1 (en) * | 2006-04-25 | 2016-11-02 | LG Electronics Inc. | A method of configuring multiuser packet and a structure thereof in a wireless communication system |
CN101444023B (zh) * | 2006-05-11 | 2013-10-23 | 日本电气株式会社 | 发射设备、接收设备、广播接收系统和通信方法 |
JP4940297B2 (ja) * | 2006-05-19 | 2012-05-30 | エルジー エレクトロニクス インコーポレイティド | 効率的で効果的な無線通信のための無線資源を用いて操作する方法 |
KR100766313B1 (ko) * | 2006-05-30 | 2007-10-11 | 삼성전자주식회사 | 이동통신단말기에서 보안 키의 암호화 장치 및 방법 |
JP4519817B2 (ja) * | 2006-08-22 | 2010-08-04 | 株式会社エヌ・ティ・ティ・ドコモ | 基地局および移動局 |
US8040844B2 (en) * | 2006-11-20 | 2011-10-18 | Telecom Ventures, L.L.C. | Wireless communications apparatus and methods employing opportunistic frequency band use |
KR100835175B1 (ko) | 2006-12-07 | 2008-06-05 | 한국전자통신연구원 | 주파수 선택적 기저대역을 이용하는 디지털 통신 시스템 및그 방법 |
KR100916640B1 (ko) * | 2007-07-26 | 2009-09-08 | 인하대학교 산학협력단 | 무선 통신 기반 송,수신 장치 간 거리 추정 방법 |
US8699319B2 (en) * | 2007-08-13 | 2014-04-15 | Sharp Kabushiki Kaisha | Base station device, reception device, wireless communication system, and wireless communication method |
WO2009035076A1 (ja) * | 2007-09-12 | 2009-03-19 | Sharp Kabushiki Kaisha | 無線通信方法、無線通信システムおよび無線送信装置 |
WO2009037989A1 (ja) * | 2007-09-21 | 2009-03-26 | Sharp Kabushiki Kaisha | 無線受信装置及び無線受信方法 |
US20100195597A1 (en) * | 2007-09-21 | 2010-08-05 | Toshizo Nogami | Transmission apparatus, reception apparatus, communication system and transmission method |
JPWO2009038018A1 (ja) * | 2007-09-21 | 2011-01-06 | シャープ株式会社 | 無線送信装置、無線通信システム及び無線送信方法 |
CN101471746B (zh) * | 2007-12-29 | 2012-06-27 | 中国移动通信集团公司 | 宽带无线传输的方法、装置及一种传输系统 |
EP2249498A1 (en) | 2008-03-05 | 2010-11-10 | Sharp Kabushiki Kaisha | Communication system, communication device and communication method |
KR100953564B1 (ko) * | 2008-03-11 | 2010-04-21 | 한국전자통신연구원 | 주파수 선택적 기저대역을 사용하는 변복조 장치 및 이를이용한 송수신 장치 |
KR101294023B1 (ko) * | 2008-05-29 | 2013-08-08 | 한국전자통신연구원 | 방송/통신 데이터 송수신 방법 및 장치 |
EP2299704B1 (en) | 2008-05-29 | 2019-11-27 | Electronics and Telecommunications Research Institute | Method and apparatus for transmitting broadcasting-communication data |
AU2010251752B2 (en) * | 2009-05-19 | 2014-11-13 | Advanced Micro Devices, Inc. | Synchronising a communications device |
JP2011003970A (ja) * | 2009-06-16 | 2011-01-06 | Fujitsu Ltd | 受信装置、基地局装置及び同期タイミング検出方法 |
US8976851B2 (en) | 2011-05-26 | 2015-03-10 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US9071285B2 (en) | 2011-05-26 | 2015-06-30 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US10681568B1 (en) | 2010-05-28 | 2020-06-09 | Cohere Technologies, Inc. | Methods of data channel characterization and uses thereof |
US9130638B2 (en) | 2011-05-26 | 2015-09-08 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US9071286B2 (en) | 2011-05-26 | 2015-06-30 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US11943089B2 (en) | 2010-05-28 | 2024-03-26 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-shifting communications system |
US10667148B1 (en) | 2010-05-28 | 2020-05-26 | Cohere Technologies, Inc. | Methods of operating and implementing wireless communications systems |
US9444514B2 (en) | 2010-05-28 | 2016-09-13 | Cohere Technologies, Inc. | OTFS methods of data channel characterization and uses thereof |
JP5601952B2 (ja) * | 2010-09-29 | 2014-10-08 | 株式会社日本自動車部品総合研究所 | 通信システム及び受信装置 |
CN101977172B (zh) * | 2010-10-18 | 2013-02-06 | 北京邮电大学 | 广播定位信号生成方法、定位方法及装置 |
JP5986565B2 (ja) | 2011-06-09 | 2016-09-06 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | 音声符号化装置、音声復号装置、音声符号化方法及び音声復号方法 |
JP5716600B2 (ja) * | 2011-08-01 | 2015-05-13 | 三菱電機株式会社 | 衛星通信システム及びその送信装置、受信装置 |
US8687808B2 (en) | 2012-04-10 | 2014-04-01 | Comtech Ef Data Corp. | Method and system for self synchronizing cryptographic parameters |
US10411843B2 (en) * | 2012-06-25 | 2019-09-10 | Cohere Technologies, Inc. | Orthogonal time frequency space communication system compatible with OFDM |
US10469215B2 (en) | 2012-06-25 | 2019-11-05 | Cohere Technologies, Inc. | Orthogonal time frequency space modulation system for the Internet of Things |
US9929783B2 (en) | 2012-06-25 | 2018-03-27 | Cohere Technologies, Inc. | Orthogonal time frequency space modulation system |
US9912507B2 (en) | 2012-06-25 | 2018-03-06 | Cohere Technologies, Inc. | Orthogonal time frequency space communication system compatible with OFDM |
US10003487B2 (en) | 2013-03-15 | 2018-06-19 | Cohere Technologies, Inc. | Symplectic orthogonal time frequency space modulation system |
US10090972B2 (en) | 2012-06-25 | 2018-10-02 | Cohere Technologies, Inc. | System and method for two-dimensional equalization in an orthogonal time frequency space communication system |
US9374141B2 (en) * | 2012-12-07 | 2016-06-21 | Sun Patent Trust | Signal generation method, transmission device, reception method, and reception device |
EP2942917B1 (en) * | 2013-02-13 | 2018-05-23 | Nippon Telegraph and Telephone Corporation | Optical transmission system, phase compensation method, and optical reception device |
JP2015171000A (ja) * | 2014-03-07 | 2015-09-28 | 三菱電機株式会社 | 多重伝送システム及び多重伝送方法 |
KR102208226B1 (ko) * | 2014-03-25 | 2021-01-27 | 한국전자통신연구원 | 송수신 방법 및 장치 |
US10090973B2 (en) | 2015-05-11 | 2018-10-02 | Cohere Technologies, Inc. | Multiple access in an orthogonal time frequency space communication system |
EP3295572A4 (en) | 2015-05-11 | 2018-12-26 | Cohere Technologies, Inc. | Systems and methods for symplectic orthogonal time frequency shifting modulation and transmission of data |
FR3036907B1 (fr) * | 2015-05-29 | 2017-07-14 | Sigfox | Procedes d’emission et de reception d’un signal de diffusion comportant un signal pilote et un signal d’information |
US9866363B2 (en) | 2015-06-18 | 2018-01-09 | Cohere Technologies, Inc. | System and method for coordinated management of network access points |
US10574317B2 (en) | 2015-06-18 | 2020-02-25 | Cohere Technologies, Inc. | System and method for providing wireless communication services using configurable broadband infrastructure shared among multiple network operators |
CN108353052B (zh) | 2015-06-27 | 2021-12-03 | 凝聚技术股份有限公司 | 与ofdm兼容的正交时频空间通信系统 |
KR20240144952A (ko) * | 2015-07-12 | 2024-10-04 | 코히어 테크널러지스, 아이엔씨. | Ofdm과 호환가능한 직교 시간 주파수 공간 통신 시스템 |
US10693581B2 (en) | 2015-07-12 | 2020-06-23 | Cohere Technologies, Inc. | Orthogonal time frequency space modulation over a plurality of narrow band subcarriers |
KR20240126068A (ko) | 2015-09-07 | 2024-08-20 | 코히어 테크널러지스, 아이엔씨. | 직교 시간 주파수 공간 변조를 이용한 다중액세스 |
CN112134605B (zh) | 2015-11-13 | 2024-04-09 | 华为技术有限公司 | 数据传输方法和装置 |
WO2017087706A1 (en) | 2015-11-18 | 2017-05-26 | Cohere Technologies | Orthogonal time frequency space modulation techniques |
WO2017100666A1 (en) | 2015-12-09 | 2017-06-15 | Cohere Technologies | Pilot packing using complex orthogonal functions |
EP3412063A4 (en) * | 2016-02-03 | 2019-09-18 | TrellisWare Technologies, Inc. | METHOD AND SYSTEM FOR COMMUNICATION USING HETEROGENEOUS BONDS |
US10666314B2 (en) | 2016-02-25 | 2020-05-26 | Cohere Technologies, Inc. | Reference signal packing for wireless communications |
CN109314619B (zh) | 2016-03-23 | 2021-05-25 | 凝聚技术公司 | 正交时间频率空间调制信号的接收器侧处理 |
WO2017173160A1 (en) | 2016-03-31 | 2017-10-05 | Cohere Technologies | Channel acquisition using orthogonal time frequency space modulated pilot signal |
US9667307B1 (en) | 2016-03-31 | 2017-05-30 | Cohere Technologies | Wireless telecommunications system for high-mobility applications |
EP3437197B1 (en) | 2016-04-01 | 2022-03-09 | Cohere Technologies, Inc. | Tomlinson-harashima precoding in an otfs communication system |
KR102276187B1 (ko) | 2016-04-01 | 2021-07-12 | 코히어 테크놀로지스, 아이엔씨. | 직교 시간 주파수 공간 변조된 신호들의 반복적 2차원 등화 |
US10790886B2 (en) * | 2016-04-27 | 2020-09-29 | Panasonic Intellectual Property Corporation Of America | Transmission apparatus and transmission method |
CN109121463B (zh) | 2016-04-27 | 2022-03-15 | 松下电器(美国)知识产权公司 | 发送装置和发送方法 |
US10938602B2 (en) | 2016-05-20 | 2021-03-02 | Cohere Technologies, Inc. | Iterative channel estimation and equalization with superimposed reference signals |
WO2018032016A1 (en) | 2016-08-12 | 2018-02-15 | Cohere Technologies | Localized equalization for channels with intercarrier interference |
CN116865924A (zh) | 2016-08-12 | 2023-10-10 | 凝聚技术公司 | 正交时间频率空间信号的多用户复用 |
EP3497799A4 (en) | 2016-08-12 | 2020-04-15 | Cohere Technologies, Inc. | MULTILEVEL ITERATIVE EQUALIZATION AND DECODING |
WO2018064587A1 (en) | 2016-09-29 | 2018-04-05 | Cohere Technologies | Transport block segmentation for multi-level codes |
EP3520310B1 (en) | 2016-09-30 | 2021-10-27 | Cohere Technologies, Inc. | Uplink user resource allocation for orthogonal time frequency space modulation |
EP3549200B1 (en) | 2016-12-05 | 2022-06-29 | Cohere Technologies, Inc. | Fixed wireless access using orthogonal time frequency space modulation |
WO2018129554A1 (en) | 2017-01-09 | 2018-07-12 | Cohere Technologies | Pilot scrambling for channel estimation |
US10356632B2 (en) | 2017-01-27 | 2019-07-16 | Cohere Technologies, Inc. | Variable beamwidth multiband antenna |
US10568143B2 (en) | 2017-03-28 | 2020-02-18 | Cohere Technologies, Inc. | Windowed sequence for random access method and apparatus |
US11817987B2 (en) | 2017-04-11 | 2023-11-14 | Cohere Technologies, Inc. | Digital communication using dispersed orthogonal time frequency space modulated signals |
WO2018195548A1 (en) | 2017-04-21 | 2018-10-25 | Cohere Technologies | Communication techniques using quasi-static properties of wireless channels |
WO2018200577A1 (en) | 2017-04-24 | 2018-11-01 | Cohere Technologies | Digital communication using lattice division multiplexing |
EP3616265A4 (en) | 2017-04-24 | 2021-01-13 | Cohere Technologies, Inc. | MULTI-HARNESS ANTENNA DESIGNS AND OPERATION |
CN111052692B (zh) | 2017-07-12 | 2022-10-11 | 凝聚技术公司 | 基于zak变换的数据调制方法 |
WO2019032605A1 (en) | 2017-08-11 | 2019-02-14 | Cohere Technologies | RADIATION TRACING TECHNIQUE FOR WIRELESS CHANNEL MEASUREMENTS |
US11324008B2 (en) | 2017-08-14 | 2022-05-03 | Cohere Technologies, Inc. | Transmission resource allocation by splitting physical resource blocks |
CN111279337B (zh) | 2017-09-06 | 2023-09-26 | 凝聚技术公司 | 一种由无线通信接收器装置实现的无线通信方法 |
WO2019051427A1 (en) | 2017-09-11 | 2019-03-14 | Cohere Technologies, Inc. | WIRELESS LOCAL NETWORKS USING ORTHOGONAL TIME-FREQUENCY SPACE MODULATION |
US11190308B2 (en) | 2017-09-15 | 2021-11-30 | Cohere Technologies, Inc. | Achieving synchronization in an orthogonal time frequency space signal receiver |
US11532891B2 (en) | 2017-09-20 | 2022-12-20 | Cohere Technologies, Inc. | Low cost electromagnetic feed network |
WO2019068053A1 (en) | 2017-09-29 | 2019-04-04 | Cohere Technologies, Inc. | ERROR CORRECTION WITHOUT RETURN CIRCUIT USING LOW DENSITY NON-BINARY PARITY CHECK CODES |
WO2019089986A1 (en) | 2017-11-01 | 2019-05-09 | Cohere Technologies, Inc. | Precoding in wireless systems using orthogonal time frequency space multiplexing |
WO2019113046A1 (en) | 2017-12-04 | 2019-06-13 | Cohere Technologies, Inc. | Implementation of orthogonal time frequency space modulation for wireless communications |
JP7216521B2 (ja) * | 2017-12-08 | 2023-02-01 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | 送信機、受信機、送信方法、及び、受信方法 |
KR102440023B1 (ko) * | 2018-01-18 | 2022-09-06 | 삼성전자주식회사 | 무선 신호 수신 장치 및 그 장치의 제어 방법 |
US11632270B2 (en) | 2018-02-08 | 2023-04-18 | Cohere Technologies, Inc. | Aspects of channel estimation for orthogonal time frequency space modulation for wireless communications |
US11489559B2 (en) | 2018-03-08 | 2022-11-01 | Cohere Technologies, Inc. | Scheduling multi-user MIMO transmissions in fixed wireless access systems |
EP3807952B1 (en) | 2018-06-13 | 2024-12-04 | Cohere Technologies, Inc. | Reciprocal calibration for channel estimation based on second-order statistics |
US11522600B1 (en) | 2018-08-01 | 2022-12-06 | Cohere Technologies, Inc. | Airborne RF-head system |
US12088398B1 (en) * | 2020-02-29 | 2024-09-10 | Space Exploration Technologies Corp. | Configurable orthogonal frequency division multiplexing (OFDM) signal and transmitter and receiver for same |
US11283666B1 (en) | 2020-02-29 | 2022-03-22 | Space Exploration Technologies Corp. | Stochastic digital pre-distortion compensation in a wireless communications system |
KR20220018358A (ko) * | 2020-08-06 | 2022-02-15 | 삼성전자주식회사 | 주파수 오프셋을 사용하는 비직교 다중 접속 시스템에서 채널 추정 방법 및 장치 |
KR102357837B1 (ko) * | 2020-12-24 | 2022-02-08 | 한국항공우주연구원 | 무선 통신 시스템에서 데이터 변조 및 복조를 수행하기 위한 장치 및 방법 |
US11997363B2 (en) | 2021-04-14 | 2024-05-28 | Charter Communications Operating, Llc | Regenerative active distributed networks |
US11917260B2 (en) * | 2022-03-15 | 2024-02-27 | Charter Communications Operating, Llc | Transparent clock functionality in regenerative taps |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07245574A (ja) * | 1994-03-07 | 1995-09-19 | Nippon Hoso Kyokai <Nhk> | ディジタル信号伝送方法 |
JPH09172685A (ja) * | 1995-12-19 | 1997-06-30 | Sony Corp | 無線通信システム及び通信方法並びに移動通信端末装置 |
JPH1022874A (ja) * | 1996-07-09 | 1998-01-23 | Hitachi Ltd | Cdma通信システムおよび通信方法 |
FI102577B1 (fi) * | 1996-09-05 | 1998-12-31 | Nokia Telecommunications Oy | Lähetys- ja vastaanottomenetelmä ja radiojärjestelmä |
JP3190859B2 (ja) | 1997-07-29 | 2001-07-23 | 松下電器産業株式会社 | Cdma無線送信装置及びcdma無線受信装置 |
JPH11145933A (ja) * | 1997-11-12 | 1999-05-28 | Oki Electric Ind Co Ltd | スペクトラム拡散通信方式及び装置 |
US6529492B1 (en) | 1997-12-30 | 2003-03-04 | Matsushita Electric Industrial Co., Ltd. | CDMA radio multiplex transmitting device and a CDMA radio multiplex receiving device |
US6256508B1 (en) * | 1998-02-27 | 2001-07-03 | Mitsubishi Denki Kabushiki Kaisha | Simultaneous broadcasting system, transmitter and receiver therefor |
JP3974712B2 (ja) * | 1998-08-31 | 2007-09-12 | 富士通株式会社 | ディジタル放送用送信・受信再生方法及びディジタル放送用送信・受信再生システム並びにディジタル放送用送信装置及びディジタル放送用受信再生装置 |
EP1039661A1 (en) | 1999-03-03 | 2000-09-27 | Sony International (Europe) GmbH | Multicast channel for a CDMA system |
JP3437942B2 (ja) | 1999-05-26 | 2003-08-18 | 岩井機械工業株式会社 | プレート式熱交換機のプレートに対するスケール付着の監視装置 |
JP3573039B2 (ja) | 1999-12-10 | 2004-10-06 | 株式会社日立製作所 | 無線端末位置測定方法およびそれを用いた端末装置、端末位置管理局装置 |
JP3581286B2 (ja) * | 2000-01-19 | 2004-10-27 | 松下電器産業株式会社 | Ofdm送信装置、ofdm受信装置および信号割当方法 |
EP1128592A3 (en) * | 2000-02-23 | 2003-09-17 | NTT DoCoMo, Inc. | Multi-carrier CDMA and channel estimation |
JP3563345B2 (ja) * | 2000-11-17 | 2004-09-08 | 松下電器産業株式会社 | 送信方法及び送信装置 |
US20020191568A1 (en) * | 2001-03-29 | 2002-12-19 | Koninklijke Philips Electronics N.V. | Adaptive chip equalizers for synchronous DS-CDMA systems with pilot sequences |
JP3628977B2 (ja) * | 2001-05-16 | 2005-03-16 | 松下電器産業株式会社 | 無線基地局装置及び通信端末装置 |
JP4119696B2 (ja) | 2001-08-10 | 2008-07-16 | 松下電器産業株式会社 | 送信装置、受信装置及び無線通信方法 |
JP4171261B2 (ja) * | 2001-08-27 | 2008-10-22 | 松下電器産業株式会社 | 無線通信装置及び無線通信方法 |
KR100918730B1 (ko) * | 2003-10-27 | 2009-09-24 | 삼성전자주식회사 | 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서기지국 구분을 위한 파일럿 패턴 세트 송수신 장치 및 방법 |
KR100856227B1 (ko) * | 2003-12-15 | 2008-09-03 | 삼성전자주식회사 | 이동통신시스템에서의 송/수신장치 및 방법 |
JP4447372B2 (ja) * | 2004-05-13 | 2010-04-07 | 株式会社エヌ・ティ・ティ・ドコモ | 無線通信システム、無線通信装置、無線受信装置、無線通信方法及びチャネル推定方法 |
WO2009035076A1 (ja) * | 2007-09-12 | 2009-03-19 | Sharp Kabushiki Kaisha | 無線通信方法、無線通信システムおよび無線送信装置 |
US9955361B2 (en) * | 2013-02-26 | 2018-04-24 | Dali Systems Co., Ltd. | Method and system for WI-FI data transmission |
US8750156B1 (en) * | 2013-03-15 | 2014-06-10 | DGS Global Systems, Inc. | Systems, methods, and devices for electronic spectrum management for identifying open space |
JP6481292B2 (ja) * | 2014-09-03 | 2019-03-13 | 株式会社ソシオネクスト | 受信回路及び受信方法 |
-
2002
- 2002-07-15 JP JP2002206150A patent/JP4119696B2/ja not_active Expired - Lifetime
- 2002-07-23 KR KR1020087032081A patent/KR100896835B1/ko active IP Right Review Request
- 2002-07-23 US US10/485,115 patent/US7724638B2/en active Active
- 2002-07-23 WO PCT/JP2002/007407 patent/WO2003017547A1/ja active Application Filing
- 2002-07-23 KR KR20047002000A patent/KR100892461B1/ko not_active IP Right Cessation
- 2002-07-23 CN CN028200209A patent/CN1568592B/zh not_active Expired - Fee Related
- 2002-07-23 EP EP02746136A patent/EP1416657A4/en not_active Withdrawn
-
2010
- 2010-04-26 US US12/767,117 patent/US8284650B2/en not_active Expired - Fee Related
-
2012
- 2012-09-07 US US13/606,327 patent/US8462615B2/en not_active Expired - Lifetime
-
2013
- 2013-05-09 US US13/891,027 patent/US9112595B2/en not_active Expired - Lifetime
-
2015
- 2015-07-07 US US14/792,917 patent/US10128899B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12231271B2 (en) | 2021-01-13 | 2025-02-18 | Samsung Electronics Co., Ltd. | Electronic device and operation method therefor |
Also Published As
Publication number | Publication date |
---|---|
US7724638B2 (en) | 2010-05-25 |
EP1416657A1 (en) | 2004-05-06 |
US10128899B2 (en) | 2018-11-13 |
EP1416657A4 (en) | 2007-07-04 |
US9112595B2 (en) | 2015-08-18 |
US20130251004A1 (en) | 2013-09-26 |
US20120328047A1 (en) | 2012-12-27 |
US8284650B2 (en) | 2012-10-09 |
KR20090014227A (ko) | 2009-02-06 |
CN1568592B (zh) | 2013-07-03 |
US20150365129A1 (en) | 2015-12-17 |
JP2003179573A (ja) | 2003-06-27 |
US20100202562A1 (en) | 2010-08-12 |
US8462615B2 (en) | 2013-06-11 |
US20040174812A1 (en) | 2004-09-09 |
KR100892461B1 (ko) | 2009-04-10 |
CN1568592A (zh) | 2005-01-19 |
KR20040017858A (ko) | 2004-02-27 |
WO2003017547A1 (en) | 2003-02-27 |
KR100896835B1 (ko) | 2009-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4119696B2 (ja) | 送信装置、受信装置及び無線通信方法 | |
US8948159B2 (en) | Transmitter, receiver, mobile communication system and synchronization channel | |
US8098751B2 (en) | Software adaptable high performance multicarrier transmission protocol | |
JP4384710B2 (ja) | 送信機 | |
EP1467508A1 (en) | Pilot multiplex method in ofdm system and ofdm receiving method | |
JPWO2003021829A1 (ja) | マルチキャリアcdma伝送システム及びその伝送方法 | |
WO2002067478A1 (fr) | Systeme de communication mobile, emetteur amcr a porteuses multiples, et recepteur amcr a porteuses multiples | |
JP4250738B2 (ja) | 通信システム用のプリディストーション方法及びmc−cdma通信システムの携帯端末用の送信機 | |
JP2004320679A (ja) | 送信装置、受信装置、送信方法、受信方法、ならびに、プログラム | |
JP2003348046A (ja) | 無線通信システム、通信装置および受信品質測定方法 | |
KR100416640B1 (ko) | 직교코드 다중화를 사용한 오에프디엠-씨디엠에이 전송 및수신방법과 그 방법을 이용한 송신기 및 수신기 | |
JP4731055B2 (ja) | 無線通信装置及び無線通信方法 | |
JP3801151B2 (ja) | スペクトラム拡散通信システム | |
JP2002152086A (ja) | スペクトラム拡散通信方法およびスペクトラム拡散通信装置 | |
JP3801153B2 (ja) | スペクトラム拡散通信方法 | |
JP3801152B2 (ja) | スペクトラム拡散通信方法 | |
JP3906116B2 (ja) | 受信装置、および通信システム | |
KR20060099674A (ko) | 광대역 무선 접속 통신 시스템에서 채널 추정 성능 향상을위한 장치 및 방법 | |
KR100586730B1 (ko) | 주파수 영역의 병렬 간섭 제거 알고리즘을 통해 반송파주파수 옵셋을 보상하는 직교 주파수 분할 다중 접속시스템의 수신장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070807 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080401 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080425 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4119696 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110502 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110502 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120502 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120502 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130502 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130502 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140502 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |