JP4092464B2 - 排気浄化装置 - Google Patents
排気浄化装置 Download PDFInfo
- Publication number
- JP4092464B2 JP4092464B2 JP2002189206A JP2002189206A JP4092464B2 JP 4092464 B2 JP4092464 B2 JP 4092464B2 JP 2002189206 A JP2002189206 A JP 2002189206A JP 2002189206 A JP2002189206 A JP 2002189206A JP 4092464 B2 JP4092464 B2 JP 4092464B2
- Authority
- JP
- Japan
- Prior art keywords
- oxygen concentration
- filter
- temperature
- period
- control period
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/024—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
- F02D41/0245—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/024—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
- F02D41/025—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by changing the composition of the exhaust gas, e.g. for exothermic reaction on exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/029—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/08—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/22—Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1446—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1454—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Supercharger (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Description
【発明の属する技術分野】
本発明は例えばディーゼルエンジンの排気パティキュレートを処理する排気浄化装置に関する。
【0002】
【従来の技術】
ディーゼルエンジンから排出される排気パティキュレートを処理するために、排気系にパティキュレートを捕集するフィルタを配置し、フィルタに所定量のパティキュレートが堆積したとき、フィルタ温度を上昇させてフィルタに堆積しているパテキュレートを燃焼処理する、いわゆるフィルタの再生処理を行うものが各種提案されている(特開2000−179326号公報参照)。
【0003】
【発明が解決しようとする課題】
ところで、フィルタの再生処理には概ね次の3つの要求を共に満たさなければならない。
【0004】
(1)再生処理の開始に際しては、フィルタのベッド温度を、フィルタに堆積しているパティキュレートの自着火温度まで速やかに上昇させる必要がある。フィルタのベッドを昇温させるため例えばポスト噴射や燃料噴射時期の遅角が行われるが、速やかな昇温が要求されるのは、フィルタのベッド昇温期間が長引けばそれだけ燃費が悪化するからである。
【0005】
(2)フィルタのベッド温度がパティキュレートの自着火温度に達してパティキュレートが燃焼する段階になると、フィルタのベッド温度が許容最高温度を超えないようにパティキュレートの燃焼速度を抑制する必要がある。これは、パティキュレートの燃焼速度が速いとフィルタに堆積している大量のパティキュレートが急激に燃焼してフィルタのベッド温度が許容最高温度を超え、これによってフィルタに熱劣化が生じて耐久性が低下しかねないからである。
【0006】
(3)再生処理の終了間近に際しては、フィルタにパティキュレートの燃え残りが生じないようにする必要がある。これはフィルタに燃え残りが生じると、次のような問題点が生じるからである。
【0007】
▲1▼フィルタの圧力損失が完全になくならないので、燃費が悪化する。
【0008】
▲2▼燃え残り部分にパティキュレートが堆積すると堆積分布のアンバランスが生じ、次の再生処理時にその部分の急激燃焼によりフィルタの耐久性が低下する。
【0009】
しかしながら、上記従来装置は再生処理の全期間に亘って排気温度が一定の目標温度になるように制御するものにすぎず、再生処理の開始から終了までを1つの温度で制御している。そのため、上記(1)の再生処理の開始に際しての、上記(2)のパティキュレートが燃焼する段階での、上記(3)の再生処理終了間近での各要求をともに満たすことができない。
【0010】
例えば、従来装置において目標温度を高く設定すると、フィルタのベッド温度の上昇に要する期間は短縮できるものの、パティキュレートが燃焼を進行する段階でのフィルタのベッド温度が高くなりすぎてフィルタのベッド温度が許容最高温度を超えてしまいかねない(図22の第1段目、第2段目、第4段目の一点鎖線参照)。かといって目標温度を低く設定したのでは再生処理の終了までの期間が長引いてしまう(図22の第1段目、第2段目、第4段目の破線参照)。
【0011】
そこで本発明は、上記3つの要求に合わせて再生処理期間を前期、中期、後期の3つに分割し、分割した各段階に対して最適な制御を行うこととした。すなわち、
再生処理前期:フィルタのベッド温度をパティキュレートの自着火温度へと急速に上昇させるため、目標温度を高く設定する。
【0012】
再生処理中期:目標温度は再生処理前期より低く設定し、かつパティキュレートの燃焼速度を抑制するため排気中の目標酸素濃度を低濃度に設定した第1酸素濃度制御を行う。
【0013】
再生処理後期:目標温度は再生処理前期より低く設定し、かつフィルタにパティキュレートが燃え残ることがないように、排気中の目標酸素濃度を高濃度に設定した第2酸素濃度制御を行う。
【0014】
このように3段階の処理によって再生処理の上記3つの要求を共に満たす装置を提供することを目的とする。
【0015】
【課題を解決するための手段】
請求項1に記載の発明は、排気通路にパティキュレートを捕集するフィルタを備え、フィルタの再生時期になるとフィルタの再生処理を行うエンジンの排気浄化装置において、フィルタの再生処理が急速昇温制御とこの急速昇温制御の経過後の酸素濃度制御とを含み、酸素濃度制御期間のフィルタ入口温度の目標値は一定であり、急速昇温制御期間のフィルタ入口温度の目標値は酸素濃度制御期間のフィルタ入口温度の目標値よりも高く、かつ酸素濃度制御期間はパティキュレートの燃焼速度を抑制するため排気中の目標酸素濃度を低濃度に設定した第1酸素濃度制御を行う第1酸素濃度制御期間と、第1酸素濃度制御期間の経過後にフィルタにパティキュレートが燃え残ることがないように排気中の目標酸素濃度を高濃度に設定した第2酸素濃度制御を行う第2酸素濃度制御期間とを含む。
【0016】
請求項39に記載の発明は、排気通路にパティキュレートを捕集するフィルタを備え、フィルタの再生時期になるとフィルタの再生処理を行うエンジンの排気浄化装置において、フィルタの再生処理が昇温制御とこの昇温制御の経過後の酸素濃度制御とを含み、酸素濃度制御期間はパティキュレートの燃焼速度を抑制するため排気中の目標酸素濃度を低濃度に設定した第1酸素濃度制御を行う第1酸素濃度制御期間と、第1酸素濃度制御期間の経過後にフィルタにパティキュレートが燃え残ることがないように排気中の目標酸素濃度を高濃度に設定した第2酸素濃度制御を行う第2酸素濃度制御期間とを含む。
【0017】
【発明の効果】
請求項1に記載の効果によれば、次の効果が得られる。
【0018】
(1)急速昇温制御期間ではフィルタ入口温度の目標値はフィルタのベッド温度をパティキュレートの自着火温度へと上昇させる目的から設定することができるので、その目標値を従来装置より高く設定することが可能となり、これによりフィルタのベッド温度をパティキュレートが自着火する温度にまで急速に上昇させることができる。
【0019】
請求項1、39に記載の効果によれば、次の効果が得られる。
【0020】
(2)フィルタのベッド温度がパティキュレートが自着火する温度にまで達した後はフィルタ入口温度の目標値を急速昇温制御期間のときより低くした状態で第1酸素濃度制御が行われるが、この第1酸素濃度制御によればフィルタに堆積している大量のパティキュレートが急激に燃えることがないように排気中の目標酸素濃度を低濃度の酸素濃度に設定してあるので、フィルタのベッド温度が許容最高温度を上回ることがなく、これによりフィルタの耐久性が損なわれることがない。
【0021】
なお、排気温度を低下させることによりパティキュレートの燃焼速度を抑制する方法もあるが、この排気温度によるパティキュレート燃焼速度制御方法だと、排気やフィルタの熱慣性の影響を受けて制御の応答性が悪く、パティキュレートが急激に燃えることが困難で、制御性が劣る。これに対して請求項1に記載の発明では、こうした排気温度によるパティキュレート燃焼速度制御方法でないため、排気やフィルタの熱慣性の影響を排除でき、制御応答性がよく制御の信頼性が高い。
【0022】
(3)第2酸素濃度制御期間では、フィルタ入口温度の目標値を急速昇温制御期間のときより低くした状態で目標酸素濃度を第1酸素濃度制御期間より大きくして十分な酸素を供給することで、再生処理の終了間近にフィルタに残存するパティキュレートを迅速にかつ確実に燃え切らせることができる。
【0023】
このように、請求項1に記載の発明では、再生処理の前期(急速昇温制御期間)、中期(第1酸素濃度制御期間)、後期(第2酸素濃度制御期間)に要求されるところを総て満たすことから、再生処理期間を短縮できると共に、ほぼ完全なフィルタ再生を図ることができる。
【0024】
【発明の実施の形態】
本発明の実施の形態を図面に基づいて説明する。
【0025】
まず、図1において、1はディーゼルエンジンで、排気通路2と吸気通路3のコレクタ部3aとを結ぶEGR通路4に、圧力制御弁(図示しない)からの制御圧力に応動するダイヤフラム式のEGR弁6を備えている。圧力制御弁は、エンジンコントローラ31からのデューティ制御信号により駆動されるもので、これによって運転条件に応じた所定のEGR率を得るようにしている。
【0026】
エンジンにはコモンレール式の燃料噴射装置10を備える。この燃料噴射装置10は、主に燃料タンク(図示しない)、サプライポンプ14、コモンレール(蓄圧室)16、気筒毎に設けられるノズル17からなり、サプライポンプ14により加圧された燃料は蓄圧室16にいったん蓄えられたあと、蓄圧室16の高圧燃料が気筒数分のノズル17に分配される。
【0027】
ノズル17(燃料噴射弁)は、針弁、ノズル室、ノズル室への燃料供給通路、リテーナ、油圧ピストン、リターンスプリングなどからなり、油圧ピストンへの燃料供給通路に介装される三方弁(図示しない)が介装されている。三方弁(電磁弁)のOFF時には、針弁が着座状態にあるが、三方弁がON状態になると針弁が上昇してノズル先端の噴孔より燃料が噴射される。つまり三方弁のOFFからONへの切換時期により燃料の噴射開始時期が、またON時間により燃料噴射量が調整され、蓄圧室16の圧力が同じであればON時間が長くなるほど燃料噴射量が多くなる。
【0028】
EGR通路4の開口部下流の排気通路2に、排気の熱エネルギーを回転エネルギーに変換するタービン22と吸気を圧縮するコンプレッサ23とを同軸で連結した可変容量ターボ過給機21を備える。タービン22のスクロール入口に、アクチュエータ25により駆動される可変ノズル24が設けられ、エンジンコントローラ31により、可変ノズル24は低回転速度域から所定の過給圧が得られるように、低回転速度側ではタービン22に導入される排気の流速を高めるノズル開度(傾動状態)に、高回転速度側では排気を抵抗なくタービン22に導入させノズル開度(全開状態)に制御する。
【0029】
上記のアクチュエータ25は、制御圧力に応動して可変ノズル26を駆動するダイヤフラムアクチュエータ26と、このダイヤフラムアクチュエータ26への制御圧力を調整する圧力制御弁27とからなり、可変ノズル24の実開度が目標ノズル開度となるように、デューティ制御信号が作られ、このデューティ制御信号が圧力制御弁27に出力される。
【0030】
アクセルセンサ32、エンジン回転速度とクランク角度を検出するセンサ33、水温センサ34、エアフローメータ35からの信号が入力されるエンジンコントローラ31では、これらの信号に基づいて目標EGR率と目標過給圧とが得られるようにEGR制御と過給圧制御を協調して行う。
【0031】
排気通路2には排気中のパティキュレートを捕集するフィルタ41が設置される。フィルタ41のパティキュレートの堆積量が所定値に達すると、排気温度を上昇させてフィルタ41に堆積しているパティキュレートを燃焼除去する。
【0032】
フィルタ41の圧力損失(フィルタ41の上流と下流の圧力差)を検出するために、フィルタ41をバイパスする差圧検出通路に差圧センサ36が設けられる。
【0033】
この差圧センサ36により検出されるフィルタ41の圧力損失ΔPは、温度センサ37からのフィルタ入口温度T1、温度センサ38からのフィルタ出口温度T2と共にエンジンコントローラ31に送られ、主にマイクロプロセッサで構成されるエンジンコントローラ31では、これらに基づいてフィルタ41の再生処理を行う。すなわち、フィルタ41の再生処理の期間を時系列的に図2に示したように前期(t1の時間)、中期(t2の時間)、後期(t3の時間)の3つの期間に分割し、分割した各期間毎に次のように排気の温度制御と排気中の酸素濃度制御とを行う。
【0034】
なお、制御波形がどうなるかは図22を参照しながら説明する。図22において第2段目に本実施形態によるフィルタ入口温度の目標値の特性を実線で、これに対して同じく第2段目に比較のため従来装置による目標温度をフィルタ入口温度の目標値であると解した場合のの特性を一点鎖線と破線で示している。また、第3段目に本実施形態による排気中の目標酸素濃度の特性を示す。
【0035】
〈1〉前期:フィルタ41のベッド温度を目標ベッド温度tTbedへと急速に上昇させるため、フィルタ入口温度の目標値tT1を目標ベッド温度tTbedより高く設定し、この目標値tT1が得られるように急速昇温制御を行う。
【0036】
ここで、目標ベッド温度tTbedは、フィルタ41に堆積したパティキュレートが自着火して速やかに燃焼する温度(例えば450℃〜650℃)である。
【0037】
ここでは目標値tT1として、図22第2段目の実線で示したように従来装置である一点鎖線や破線の場合よりずっと高い温度を設定するので、目標ベッド温度tTbedへの昇温の仕方が図22最下段の実線で示したように、一点鎖線や破線で示す従来装置の場合より急速に行われる。このため、本実施形態による昇温を「急速昇温」といっている。
【0038】
ただし、この前期の時間内では排気中の目標酸素濃度は定めず、従って酸素濃度制御は行わない(図22第3段目参照)。
【0039】
目標値tT1が得られるように急速昇温制御を行うと、フィルタ41のベッド温度が上昇して目標ベッド温度tTbedへと達するので、前期を終了して次の段階の中期に移行する。
【0040】
〈2〉中期:フィルタ41に堆積しているパティキュレートの燃焼速度を抑制するため、排気中の目標酸素濃度を図22第3段目に示したように低濃度に設定し、この低濃度の目標酸素濃度が得られるように酸素濃度制御(第1酸素濃度制御)を行う。
【0041】
また、中期になるとフィルタ入口温度の目標値tT1を目標ベッド温度tTbedへと切換えて維持する。これは、目標ベッド温度tTbedが得られているのに、さらに昇温制御を継続したのでは、ベッド温度を許容最高温度Tmaxを超えて上昇させてしまうので、これを避けるためである。
【0042】
低濃度に設定した目標酸素濃度が得られるように排気中の酸素濃度制御を行うと、フィルタ41に堆積したパティキュレートが急激に燃焼することなく燃焼が進行する。
【0043】
〈3〉後期:再生処理の終了間近にフィルタ41に残存するパティキュレートをもれなく燃やし切るため、排気中の目標酸素濃度を図22第3段目のように中期の場合より高濃度に設定し、この高濃度の目標酸素濃度が得られるように酸素濃度制御(第2酸素濃度制御)を行う。
【0044】
また、後期においても、フィルタ入口温度の目標値tT1は中期と変わらず目標ベッド温度tTbedに維持する。
【0045】
高濃度に設定した目標酸素濃度が得られるように排気中の酸素濃度制御を行うと、図22第1段目の実線のように再生効率が高まり、完全再生である100%へと近づいていく。
【0046】
次に、エンジンコントローラ31により行われるこれら制御の内容を詳述する。
【0047】
図3のフローチャートは再生処理を行うためのメインルーチンで、このフローは一定時間毎(例えば10ms毎)に実行する。
【0048】
ステップ1では再生処理フラグをみる。この再生処理フラグの設定については、図4のフローにより説明する。
【0049】
図4のフローは図3とは別に一定時間毎(例えば10ms毎)に実行する。図4においてステップ11ではフィルタ41の圧力損失ΔPを差圧センサ36の出力から読み込む。
【0050】
ステップ12では再生処理フラグをみる。再生処理フラグは後述する再生処理条件が成立したとき1となるフラグである。エンジン始動時にはゼロに初期設定されているので、再生処理条件の成立する前にはステップ13、14に進み、再生処理条件をみる。再生処理条件の成立は、フィルタ41の圧力損失ΔPが再生開始判定値ΔPHmaxを超えかつ再生実施条件にあることである。
【0051】
ここで、再生実施条件は例えばエンジンの回転速度と燃料噴射量(エンジン負荷相当)により定まる運転条件が図14に示した領域R1〜R4の領域にある場合に成立する。
【0052】
アイドル時やアイドルに近い低負荷域である領域R5にある場合に再生実施条件が非成立であるとするのは、アイドル時はもともと排気温度が低く、ポスト噴射及び吸気絞りを行ってもフィルタ41のベッド温度を目標ベッド温度tTbedへと上昇させることができないからである。
【0053】
このため圧力損失ΔPが再生開始判定値ΔPHmax以下のときやエンジンの運転条件が再生実施条件にないときにはそのまま今回の処理を終了する。
【0054】
フィルタ41の圧力損失ΔPが再生開始判定値ΔPHmaxを超えかつエンジンの回転速度と燃料噴射量により定まる運転条件が再生実施条件にあるときには再生処理を行うことができると判断しステップ15に進んで再生処理フラグ=1とする。
【0055】
この再生処理フラグ=1により次回からはステップ12よりステップ13へと進むことができないため、そのまま処理を終了する。すなわち、再生処理フラグは、ステップ15で1になった後は後述する再生処理の中断時にも1のままであり(図11参照)、後述する再生処理の終了のタイミングで0にリセットされるようになっている(図5ステップ31参照)。
【0056】
図3に戻り、ステップ1で再生処理フラグ=1であるときには再生処理を行うためステップ2以降に進む。ステップ2では再生フェーズを設定する。この再生フェーズの設定については図5のフローにより説明する。
【0057】
図5のフローは再生処理の開始からの経過時間Tと設定時間t1、t2、t3とを比較して、再生フェーズの前期、中期、後期を設定するためのもので、一定時間毎(例えば10ms毎)に実行する。
【0058】
ステップ21では再生終了フラグをみる。再生終了フラグはゼロに初期設定されているので、ステップ22に進み、再生中断フラグをみる。再生中断フラグもゼロに初期設定されており、図11で後述するように再生処理の終了前に再生処理を継続できなくなったとき1となるフラグである。
【0059】
いまは再生処理の開始直後にあるとして説明すると、再生中断フラグ=0であるのでステップ23に進み再生処理フラグをみる。再生処理フラグ=0のときはそのまま今回の処理を終了する。
【0060】
再生処理フラグ=1であるときにはステップ24に進み、タイマ値T(ゼロに初期設定)を、
T=Tz+ΔT…(1)
ただし、ΔT:演算周期(=10ms)、
Tz:タイマ値の前回値、
の式によりインクリメントする。このタイマは再生処理開始からの経過時間(つまり再生処理時間)計測するためのものである。
【0061】
ステップ25、26ではこのタイマ値Tと設定時間t1、t2、t3(図2参照)とに基づいて、次のように再生フェーズの各期間を設定する。
【0062】
(1)T<t1であるとき:
ステップ25よりステップ27進み再生フェーズを前期に設定する。
【0063】
(2)t1≦T<t1+t2であるとき:
ステップ25よりステップ28に進み再生フェーズを中期に設定する。
【0064】
(3)t1+t2≦T<t1+t2+t3であるとき:
ステップ25、26よりステップ29に進み再生フェーズを後期に設定する。
【0065】
(4)t1+t2+t3≦Tであるとき:
このときには再生処理の終了であると判断し、ステップ25、26よりステップ30に進み再生終了フラグ=1とする。また、次回の再生処理に備えるためステップ31、32で再生処理フラグ=0かつタイマ値T=0とする。
【0066】
ステップ25で用いる上記の設定時間t1、t2、t3は一定値でもかまわないが、ここでは、t1とt2については次のように可変値で設定している。
【0067】
図6は再生処理開始時の実際のベッド温度に対するt1の設定例である。フィルタ41を再生するにはフィルタ41に堆積しているパティキュレートが自着火して燃焼し得る温度である目標ベッド温度tTbedにまで上昇させなければならないが、t1は再生処理の開始より目標ベッド温度tTbedに上昇させるまでの時間である。この時間t1は図6のように再生処理開始時のベッド温度が高くなるほど小さくなる。これは再生処理開始時のベッド温度が高ければフィルタのベッド温度を目標ベッド温度まで上昇させるに要する時間も短くて済むからである。
【0068】
また、tTbed以上の温度域ではt1=0である。これはtTbed以上の温度域では昇温制御を行わなくともフィルタ41に堆積しているパティキュレートが自着火して燃焼するので、このときにはt1をゼロとして次の段階の中期へと即座に移行させるためである。
【0069】
また、再生処理開始時のベッド温度が所定値Taより低い温度域では一定値としている。これは、Taより低い温度域ではフィルタ41を昇温させようとしても目標ベッド温度tTbedにまで昇温できないので、一定値としたものである。
【0070】
なお、図6において横軸の再生処理開始時の実際のベッド温度は、再生処理開始時にフィルタ41の前後に設けた温度センサ37、38により検出される2つの温度T1、T2から、
Tbed=b1・T1+b2・T2…(2)
ただし、Tbed:再生処理開始時のベッド温度、
b1、b2:定数、
の式により推定(算出)すればよい。(2)式のb1、b2は実験により決まる値である。
【0071】
図7は再生処理開始時のパティキュレート堆積量(図ではPM堆積量で略記)に対するt2の設定例である。フィルタ41のベッド温度を目標ベッド温度tTbedにまで上昇させた後は、フィルタ41に堆積しているパティキュレートが自着火して燃焼する。この場合に、排気中の酸素濃度が十分に大きい状態(空燃比でいうと理論空燃比よりリーン側の所定値A)ではフィルタ41に堆積している大量のパティキュレートが急激に燃焼し、これによってフィルタ41のベッド温度が許容最高温度Tmaxを超えて上昇し、フィルタ41に熱劣化が生じて耐久性が低下しかねない。このため、フィルタ41に堆積している大量のパティキュレートが急激には燃えない程度の低い酸素濃度(空燃比でいうと理論空燃比よりはリーン側で上記のAよりはリッチ側の所定値B)に維持する時間(期間)がt2である。この時間t2は再生開始時のパティキュレート堆積量が大きくなるほど長くなる。
【0072】
また、再生開始時のパティキュレート堆積量が最大パティキュレート堆積量pmax以上ではt2を一定としている。
【0073】
また、再生開始時のパティキュレート堆積量が所定値p以下の堆積量のときt2=0としている。これは、p以下のパティキュレート堆積量の場合には、中期を省略して後期に移行し、その総てを一気に燃焼させてもフィルタ41のベッド温度の上昇が少なく、フィルタ41のベッド温度が許容最高温度Tmaxに達することはないので、中期の段階を省略して即座に後期へと移行させるためである。すなわち、所定値pは、中期を介さずとも後期においてフィルタ41のベッド温度が許容最高温度を超えないパティキュレート堆積量の最大量付近に設定している。
【0074】
ただし、所定量のパテキュレートが堆積している場合に限って再生処理を開始するものとすれば、再生処理開始時のパテキュレート堆積量がp以下である事態はあり得ない。従って、これはむしろ後述する再生処理再開時に意味があると考えられる。すなわち、中期の期間中に再生処理が中断されれば、フィルタのパティキュレート堆積量がp以下の状態にとどまる事態が考えられ、このときには再生処理の再開時のパティキュレート堆積量がp以下の状態になる。従って、中期の期間中の再生処理の中断により再生処理再開時のパティキュレート堆積量がp以下のときには、即座に後期に移行して高濃度の目標酸素濃度への酸素濃度制御を行わせることで、再生処理期間を短縮することができる。
【0075】
なお、図7において、横軸の再生処理開始時のパティキュレート堆積量は、再生処理開始時のフィルタの圧力損失から図8を内容とするテーブルを検索することにより演算すればよい。
【0076】
図5に戻り、ステップ22で再生中断フラグ=1であるとき(再生処理の中断中)にはステップ36に進んで、
T=Tz−a×ΔT…(3)
ただし、a:所定値、
の式により再生処理開始からの経過時間を表すタイマ値Tを更新する。
【0077】
これは、一般的には再生処理中の中断時間は再生処理時間にカウントしていないのであるが、本実施形態では、再生処理中の中断に伴うフィルタのベッド温度の挙動に着目して次のようにタイマ値Tを補正するようにしている。
【0078】
(1)前期:
図9において再生処理開始後に再生処理の中断の機会が一度もなければ、本実施形態の急速昇温制御により、再生処理開始よりt1が経過したタイミングで実際のベッド温度が目標ベッド温度tTbedに達する。
【0079】
これに対して再生処理開始後に再生実施条件が不成立となり、再生処理(急速昇温制御)が中止され、その後に再生処理の再開で急速昇温制御が実行されたとすると、ベッド温度は再生処理中断時の温度Tcより低下し、再生処理再開時の温度Tdより再び上昇して目標ベッド温度tTbedへと達する(一点鎖線参照)。すなわち、再生処理の中断に伴うベッド温度の低下により、目標ベッド温度tTbedに達するまでの時間がt1よりt1´へと長引く。このため、再生処理の中断があるときにはt1´まで待って次の段階である中期へと移行させなければならないところ、再生処理の中断があるときにもt1が経過したタイミングで中期へと移行させたのでは、中期へと移行させるのが早すぎ、中期においてフィルタに堆積しているパティキュレートを十分に燃焼させることができなくなる。
【0080】
そこで、前期の時間内に再生処理の中断があるときには中期に移行させるのを遅らせるため、上記(3)式の所定値aに正の値を与えてタイマ値Tを小さくなる側に補正する。
【0081】
(2)中期:
中期の期間中での再生処理の中断は、前期の期間中での再生処理の中断と少し異なる。すなわち、中期の期間中での中断初期においてはフィルタ41の有する熱容量分でフィルタ41に堆積しているパティキュレートの燃焼がしばらく持続し、燃焼がやんだ後にベッド温度が低下していく。
【0082】
従って、このときにはパティキュレートの燃焼が持続する中断初期の期間とベッド温度が低下してゆく中断初期以降の期間との2つに分けて考える必要があり、この場合、中断初期の期間においては、再生処理の中断中といえどもパティキュレートの燃焼が継続しているのであるから、再生処理の中断のない場合の中期での再生処理中と同じである。このため、この中断初期の期間もタイマ値Tに加えるべきであり、加えないとしたら後期へと移行させるのが遅れてしまう。
【0083】
そこで、中期の期間中での中断時間が中断初期の期間内にある場合には後期へと移行させるのを早めるため、上記(3)式の所定値aに負の値を与えてタイマ値Tを大きくなる側に補正する。
【0084】
一方、中断初期移行の期間ではベッド温度が低下するのであるから、これは前述した前期の期間中の再生処理の中断と同じ扱いとすればよい。
【0085】
そこで、中期の期間中での中断時間が中断初期以降の期間にまで長くなったときには後期に移行させるのを遅らせるため、上記(3)式の所定値aに正の値を与えてタイマ値Tを小さくなる側に補正する。
【0086】
(3)後期:
後期の期間中での再生処理の中断は前述した中期の期間中での再生処理の中断と同様に扱えばよい。
【0087】
こうした考えにより、図5において上記(3)式の所定値aに次のようにして再生フェーズの各段階毎に異なる値を設定しておき、中断中にはその設定された所定値a1、a2、a3により上記(3)式によりタイマ値Tを補正する。
【0088】
(1)前期(T<t1であるとき):
ステップ25よりステップ33進み前期の期間中の中断に備えて所定値aに所定値aにa1を入れる。
【0089】
(2)中期(t1≦T<t1+t2であるとき):
ステップ25よりステップ34に進み中期の期間中の中断に備えて所定値aにa2を入れる。
【0090】
(3)後期(t1+t2≦T<t1+t2+t3であるとき):
ステップ25、26よりステップ35に進み後期の期間中の中断に備えて所定値aにa3を入れる。
【0091】
上記の所定値a1は図10左上に示したように前期での中断時間に関係なく正の一定値である。この結果、図10左下に示したように前期においては中断がないとき(中断時間=0)のタイマ値Tに対して中断時間が長くなるほど小さくなる側にタイマ値Tが補正される。
【0092】
これに対して所定値a2(またはa3)は図10右上に示したように中期での中断時間に応じ、その中断時間が所定値tb以下の期間(中断初期の期間)では負の一定値で、その中断期間がtbを超える期間(中断初期以降の期間)になると正の一定値である。この場合、中期(または後期)におけるtbを超える期間での温度低下のほうが、前期における温度低下より激しいので、これに合わせて正の値の区間のa2(またはa3)のほうをa1より大きくしている。
【0093】
この結果、図10右下に示したように中期(または後期)での中断がないときのタイマ値Tに対して中断時間が所定値tb以下のときにはタイマ値Tが大きくなる側に補正され、これに対して中期(または後期)での中断時間が所定値tbを超えると、前期における中断と同じに中断時間が長くなるほど小さくなる側にタイマ値Tが補正される。
【0094】
なお、上記の所定値a1、a2、a3、tb並びに図10左下の所定値tc、図10右下の所定値tdの実際の値は、フィルタ41の熱容量や放熱特性、エンジン1の排気温度の特性を考慮して実験的に求める必要がある。また、a2(またはa3)の値は中断時間がtb未満のときとtb以上のときとで切り換える必要があり、そのためには中断のタイミングよりタイマを起動して中断時間を計測すればよい。
【0095】
図11のフローは図5のステップ22において用いる再生中断フラグを設定するためのもので、一定時間毎(例えば10ms毎)に実行する。
【0096】
ステップ41では再生中断フラグをみる。再生中断フラグはエンジン始動時にゼロに初期設定されているので、ステップ42に進み、再生処理フラグをみる。再生処理フラグ=1のときにはステップ43に進み、再生実施条件が成立しているかどうかみる。再生実施条件が成立しているときにはそのまま今回の処理を終了するが、再生実施条件が成立していないときには再生処理を中断するためステップ44に進み、再生中断フラグ=1とする。
【0097】
再生中断フラグ=1より次回にはステップ41よりステップ45に進み、再生実施条件をみる。再生処理の中断中でも再生実施条件が成立しない間は中断を継続するためステップ44の操作を実行し、これに対して中断中に再生実施条件が成立したときには再び再生処理を再開させるためステップ46に進み再生中断フラグ=0とする。
【0098】
このようにして設定される再生中断フラグを図5のステップ22で用いる。
【0099】
なお、図示しないが、再生中断フラグ=1により再生処理が中断される。すなわち、前期の期間中に再生処理が中断されると、上記〈1〉の急速昇温制御が中断され、また中期や後期の期間中に再生処理が中断されると、上記〈2〉や〈3〉の酸素濃度制御が中断される。
【0100】
これに対して再生中断フラグが再びゼロになったときには再生処理が再開される。すなわち、急速昇温制御が中断されていればその中断されていた急速昇温制御が再開され、また酸素濃度制御が中断されていればその中断されていた酸素濃度制御が再開される。
【0101】
このため、中断後の再生処理再開時には次のようにしてt1、t2を設定し直すようにしている。
【0102】
(ア)前期の期間中に中断がありその後に再生処理が再開されたとき:
再生処理再開時のベッド温度から図6を内容とするテーブルを検索することによりt1を、また再生処理再開時のパティキュレート堆積量から図7を内容とするテーブルを検索することによりt2を演算し、このt1、t2を再生処理開始時に既に演算しているt1、t2に置き代えて用いて図5のステップ25での判定を行う。
【0103】
(イ)中期や後期の期間中に中断がありその後に再生処理が再開されたとき:再生処理再開時のパティキュレート堆積量から図7を内容とするテーブルを検索することによりt2を演算し、このt2を再生処理開始時に既に演算しているt2に置き代えて用いて図5のステップ25での判定を行う。
【0104】
なお、上記(ア)、(イ)において図7の横軸の再生処理再開時のパテキュレート堆積量は、再生処理再開時のフィルタ圧力損失から図8を内容とするテーブルを検索することにより演算する。
【0105】
このようにして図5の再生フェーズの各段階の設定を総て終了したら図3に戻り、ステップ3では現在の処理タイミングが再生フェーズのいずれの段階にあるのかをみて、次のように各制御を行う。すなわち、前期であればステップ4に進みフィルタ入口温度の目標値tT1を目標ベッド温度tTbedより高く設定し、この目標値tT1が得られるように排気温度制御(急速昇温制御)を行う。
【0106】
中期であるときにはステップ5、7に進みフィルタ入口温度の目標値tT1を目標ベッド温度tTbedに切換えて維持する共に、排気中の目標酸素濃度を低濃度に設定した酸素濃度制御(第1酸素濃度制御)を行う。後期になるとステップ6、7に進みフィルタ入口温度の目標値tT1は中期と同じく目標ベッド温度tTbedに維持すると共に、排気中の目標酸素濃度を中期の場合より高濃度に設定した酸素濃度制御(第2酸素濃度制御)を行う。
【0107】
ここで、図3のステップ4〜7での制御を急速昇温制御と酸素濃度制御に分けてさらに説明する。
【0108】
〔1〕急速昇温制御:
〔1〕−1.急速昇温制御方法その1:
図12は本実施形態によるフィルタ入口温度の制御結果とこれによってフィルタのベッド温度がどのように変化するのかを表している。すなわち、再生処理の開始時にはフィルタ入口温度の目標値tT1として目標ベッド温度tTbedよりも高い温度を設定し、前期の総ての期間に亘って、この目標値tT1が得られるように排気昇温手段を働かせる。
【0109】
前期の期間(t1)が終了したら、フィルタ入口温度の目標値tT1を目標ベッド温度tTbedへと切換えて維持する。
【0110】
〔1〕−2.急速昇温制御方法その2:
図13は前期の期間を前半と後半のほぼ2つに分け、前半部分で図12の場合よりもさらに高い温度をフィルタ入口温度の目標値tT1に設定し、後半部分で徐々に目標ベッド温度tTbedへと近づくよう目標値tT1を調整する(下段の実線参照)。そして、この目標値tT1が得られるように排気昇温手段を働かせる。
【0111】
これによって目標ベッド温度tTbedへと上昇させるに要する時間を図12の場合のt1よりt1´へと短縮することができ、さらに図12の場合に生じていたベッド温度のオーバーシュートをも防止できる。比較のため図13には図12の場合を破線で示している。
【0112】
〔1〕−3.排気昇温手段:
排気温度は燃料噴射量(エンジン負荷相当)と回転速度により異なるので、図14に示したように全運転領域を大きく5つに区分けし、区分けした各運転領域での排気温度に応じて、次のように排気昇温手段を働かせることにより、図12に示したフィルタ入口温度の目標値tT1を実現する。
【0113】
領域R1:全負荷付近の領域であり、この領域では排気温度が目標ベッド温度tTbedとなり、排気昇温手段を働かせなくても自然にパティキュレートが燃焼して再生が行われるため、排気昇温手段は働かせない。
【0114】
領域R2:領域R1より低負荷側である領域R2〜R5ではフィルタ入口温度T1がその目標値tT1とならないため排気昇温手段を働かせる必要がある。このため領域R2ではまず排気昇温手段である燃料噴射装置10から噴射される燃料の噴射時期(メイン噴射時期)を通常(再生処理前)よりも遅らせることによって排気温度を上昇させる。メイン噴射時期の遅角によってフィルタ入口温度T1はその目標値tT1へと上昇する。
【0115】
領域R3:メイン噴射時期の遅角だけではフィルタ入口温度T1をその目標値tT1にできない領域であり、メイン噴射時期の遅角に代わってポスト噴射(メイン噴射後にさらに膨張行程で噴射すること)を行うことによって排気を昇温させる。この膨張行程でのポスト噴射によりフィルタ入口温度T1はその目標値tT1へと上昇する。
【0116】
領域R4:ポスト噴射のみによってはフィルタ入口温度T1をその目標値tT1にできない領域であり、ポスト噴射に加えて、別の排気昇温手段である吸気絞り装置を用いて排気を昇温させる。この制御によりフィルタ入口温度T1はその目標値tT1へと上昇する。
【0117】
このため、図1においてコレクタ3a入口に、アクチュエータ43により駆動される吸気絞り弁42(吸気絞り装置)が設けられている。上記のアクチュエータ43は、制御圧力に応動して吸気絞り弁42を駆動するダイヤフラムアクチュエータ44と、このダイヤフラムアクチュエータ44への制御圧力を調整する圧力制御弁45とからなり、吸気絞り弁42が目標開度まで閉じられるように、デューティ制御信号が作られ、このデューティ制御信号が圧力制御弁45に出力される。
【0118】
なお、本実施形態のように可変容量ターボ過給機21やコモンレール式燃料噴射装置10を備える場合には、R2、R3、R4の領域でこれらも排気昇温手段として働かせ、目標値tT1へと昇温させることが可能である。例えば可変ノズル24を開くとタービン22の仕事が減るため吸入空気量が減って空気過剰率が小さくなり、これによってフィルタ入口温度T1が上昇する。また、コモンレール圧を低くすると噴射期間が長引いて燃焼期間が長くなる。すると、燃焼が悪化してエンジントルクが低下する。このエンジントルクの低下を補おうと燃料噴射量が増え、これによってフィルタ入口温度T1が上昇する。
【0119】
領域R5:アイドル時のように排気温度がもともと低い低負荷域であり、この領域では上記いずれの方法によってもフィルタ入口温度をその目標値tT1へと上昇させることができないので、再生処理は行わない(排気昇温手段は働かせない)。
【0120】
一方、図13に示した目標値tT1は、図14に示した昇温制御をベースとして、図14に示した領域R3、R4において感度の高いポスト噴射量を時間とともに変化させることで達成することができる。例えば、エンジンの回転速度と負荷から所定のマップ(図示しない)を検索することによりベース排気温度(排気昇温手段を働かせない状態での排気温度のこと)Tbaseを、またエンジンの回転速度とエンジントルクとから図15を内容とするマップを検索することにより排気温度を1℃上げるのに必要なポスト噴射増加量ΔPostを演算し、これらを用いて
ΔQp=ΔPost×(tT1−Tbase)…(4)
ただし、tT1:フィルタ入口温度の目標値、
の式によりポスト噴射量の上乗せ量ΔQpを演算し、この上乗せ量ΔQpを図14に示した領域R3、R4でのポスト噴射量に加えればよい。
【0121】
〔2〕酸素濃度制御:
〔2〕−1.中期の酸素濃度制御(第1酸素濃度制御):
図16にパティキュレート堆積量(PM堆積量)が多い状態(つまり中期)で再生処理を行ったときのフィルタ入口温度、排気中酸素濃度とフィルタ41のベッド温度の最高温度との関係を示すと、パテキュレート堆積量が多いため曲線と曲線の間の間隔が短く、これは温度勾配が急であることを表している。
【0122】
このようにパティキュレート堆積量が多い状態では、低酸素濃度側に目標酸素濃度の制御範囲を設けることで、フィルタ41のベッド温度の許容最高温度内でフィルタ41の再生処理を行うことができる。
【0123】
ここで、排気中の目標酸素濃度は空燃比に換算すると理論空燃比よりリーン側(例えば空気過剰率で1.5程度)である。パティキュレート堆積量が多い状態で高濃度の酸素があると、パティキュレートの燃焼速度が大きいためにフィルタ41に堆積しているパティキュレートが急激に燃えるので、これを抑えるため排気中の目標酸素濃度を低酸素濃度に設定している。
【0124】
また、目標酸素濃度の制御範囲に幅を設けているのは、バラツキと過渡時の制御遅れとを考慮したものである。
【0125】
〔2〕−2.後期の酸素濃度制御(第2酸素濃度制御):
図17には今度は、パティキュレート堆積量が少ない状態(つまり後期)で再生処理を行ったときのフィルタ入口温度、排気中酸素濃度とフィルタ41のベッド温度の最高温度との関係を示し、パティキュレート堆積量が少ない状態では曲線と曲線の間隔が広がり(温度勾配が緩やかとなり)、かつベッド温度の許容最高温度の位置も図16の場合より右方向に移動している。
【0126】
このため、パティキュレート堆積量が少ない状態では、排気中の酸素濃度を中期に比べ大きくしても、フィルタ41の再生処理中のベッド温度の最高温度を許容最高温度以下に保つことができるので、後期には図中1)のように中期よりも目標酸素濃度を大きくする。これによって十分な酸素を供給してパティキュレートの燃焼速度を大きくし、フィルタ41に燃え残っているパティキュレートの総てを短期間で完全に燃え切らせることが可能となる。さらに、図中2)のようにフィルタ入口温度の目標値tT1をも上昇させることで、さらに再生処理時間の短縮とパティキュレートの再生効率の向上を図ることができる。
【0127】
〔2〕−3.酸素濃度制御の制御結果:
図18に本実施形態による排気中酸素濃度の制御目標(目標酸素濃度)とその制御結果としての実際の排気中酸素濃度の変化を示す。図示のように中期に低酸素濃度に制御されていたものが、後期になると、それより高い酸素濃度へと切換えられている。なお、中期、後期を除く他の期間(前期を含む)では排気中酸素濃度が激しく変化している。これは、他の期間ではもともと排気中の酸素濃度制御を行っていないこと、また加速や減速が繰り返される過渡時のものであるからである。
【0128】
図18は排気中の目標酸素濃度を低濃度から高濃度へと単純に2段階に切換えるものであるが、図19のように、中期の後半部分で徐々に目標酸素濃度を大きくして後期の目標酸素濃度に滑らかにつなぐことにより、図18の場合より再生処理期間の短縮を図ることも可能である。
【0129】
〔2〕−4.酸素濃度制御手段:
排気中の目標酸素濃度をtRO2[%]、この目標酸素濃度tRO2が得られるときの空気過剰率を目標空気過剰率tλとすると、次式が成立する。
【0130】
tλ=21/(21−tRO2)…(5)
ただし、21:新気中の酸素濃度[%]、
なお、(5)式は燃焼による作動ガスのモル増加を考慮していないが、制御精度をさらに向上させるためにこの効果を(5)式に入れることもできる。
【0131】
(5)式の目標空気過剰率tλを得るための制御には吸入新気量の制御と、燃料噴射の制御とがある。
【0132】
〔2〕−4−1.吸入新気量の制御:
(5)式の目標空気過剰率tλを得るための吸入新気量をtQaとすれば、燃料噴射量Qfとの間に次式が成立する。
【0133】
tQa=Qf×理論空燃比×tλ…(6)
(5)式を(6)式に代入すると次式が得られる。
【0134】
tQa=Qa×理論空燃比×21/(21−tRO2)…(7)
従って、(7)式の目標吸入新気量tQaが得られるように吸入新気量を制御する。
【0135】
この場合、吸入新気量制御手段により、カバーできる運転領域が図20に示したように異なるので、吸入新気量制御手段に応じて次のように酸素濃度制御を行う。
【0136】
▲1▼吸入新気量制御手段が可変容量ターボ過給機21のとき:
R6、R7、R8の領域では可変容量ターボ過給機21により吸入新気量を制御する。例えば、可変ノズル24の開度を小さくするとタービン22の回転速度が高くなり、吸入新気量を増やす(酸素濃度を大きくする)ことができる。この逆に可変ノズル24の開度を大きくするとタービン22の回転速度が低くなり、吸入新気量を減らすことができる。
【0137】
▲2▼吸入新気量制御手段がEGR装置のとき:
R7、R8の領域ではEGR弁6(EGR装置)により吸入新気量を制御する。例えば、EGR率やEGR量を増加すれば吸入新気量を減らすことが、この逆にEGR率やEGR量を小さくすれば吸入新気量を増やすことができる。
【0138】
▲3▼吸入新気量制御手段が吸気絞り弁42(吸気絞り装置)のとき:
R8の領域では吸気絞り弁42により吸入新気量を制御する。例えば、吸気絞り弁42を閉じれば吸入新気量を減らすことが、この逆に吸気絞り弁42を戻せば吸入新気量を増やすことができる。
【0139】
〔2〕−4−2.燃料噴射の制御:
上記(5)式の目標空気過剰率tλを得るための目標燃料噴射量をtQfとすれば、吸入新気量Qaとの間に次式が成立する。
【0140】
Qa=tQf×理論空燃比×tλ…(8)
(5)式、(8)式を目標燃料噴射量tQfについて解くと次式が得られる。
【0141】
tQf=Qa×(1/理論空燃比)×(21−tRO2)/21…(9)
従って、(9)式の目標燃料噴射量tQfが得られるように燃料噴射を制御する。
【0142】
この場合、燃料噴射制御手段によりカバーできる運転領域が図21に示したように異なるので、燃料噴射制御手段に応じて次のように酸素濃度制御を行う。
【0143】
領域R9:メイン噴射時期を遅角しつつ(9)式の目標燃料噴射量tQfが得られるように燃料噴射を制御する。
【0144】
領域R10:メイン噴射時期の遅角とポスト噴射を行いつつ(9)式の目標燃料噴射量tQfが得られるように燃料噴射を制御する。ポスト噴射量を増加すれば燃料噴射量を増加する(酸素濃度を小さくする)ことができる。ポスト噴射はエンジンの膨張行程で行うため、トルク増加をあまり伴わずに噴射量の増加を行うことができる。そしてトルク増加分はメイン噴射量を減少してコントロールする。
【0145】
領域R11:ポスト噴射と吸気絞りとメイン噴射時期とにより燃料噴射量を制御する。例えば吸気絞りを行うとポンピングロスが増加するため、これを補う分だけポスト噴射量を増加できる。また、このときのメイン噴射時期は噴射量を制御しない場合よりも進角側に制御する。
【0146】
〔2〕−4−3.排気中酸素濃度のフィードバック制御:
上記の〔2〕−4−1、〔2〕−4−2での制御はオープンループ制御であるが、フィードバック制御を行わせることもできる。例えばエアフローメータ35出力より検出される実際の吸入新気量が上記(7)式の目標吸入新気量tQaと一致するように、あるいは実際の燃料噴射量が上記(9)式の目標燃料噴射量tQfと一致するようにフィードバック制御する。
【0147】
また、排気通路2に排気中の実際の酸素濃度を検出するセンサ(例えば広域空燃比センサ)を設けておき、このセンサにより検出される排気中の実際の酸素濃度が目標酸素濃度と一致するようにフィードバック制御を行わせることもできる。
【0148】
ここで、本実施形態の作用を図22を参照しながら説明すると、同図は上から再生効率、フィルタ入口温度の目標値、排気中の目標酸素濃度、フィルタのベッド温度の最高温度の動きをモデル的に示している。なお、第1段目、第2段目、第4段目においては本実施形態の場合を実線で、これに対して従来装置の場合を一点鎖線と破線で示している。
【0149】
(1)再生処理の前期:
前期には第2段目のようにフィルタ入口温度の目標値tT1(実線参照)が従来装置(一点鎖線と破線参照)より高く設定されるので、従来装置の場合よりフィルタ41のベッド温度の最高温度が最下段のように目標ベッド温度tTbedまでに急速に上昇している。
【0150】
(2)再生処理の中期:
▲1▼第3段目のように排気中の目標酸素濃度を低濃度側に設定して、フィルタ41に堆積しているパティキュレートの燃焼速度を抑制するので、フィルタのベッド温度の最高温度が許容最高温度を上回ることがなく(最下段の実線参照)、これによりフィルタ41の耐久性が損なわれることがない。
【0151】
▲2▼排気温度を低下させることによりパティキュレートの燃焼速度を抑制する方法もあるが、この排気温度によるパティキュレート燃焼速度制御方法だと、排気やフィルタ41の熱慣性の影響を受けて制御の応答性が悪くなる。これに対して本実施形態では、こうした排気温度によるパティキュレート燃焼速度制御方法でないため排気やフィルタ41の熱慣性の影響を排除でき、制御応答性がよく制御の信頼性が高い。
【0152】
▲3▼排気温度によるパティキュレート燃焼速度制御方法だと、パティキュレートの燃焼速度を抑えようと排気温度を低下させたとき、これに伴ってフィルタ41のベッド温度が目標ベッド温度以下に低下するようだと再生不良が生じ得る。これに対して本実施形態では、目標ベッド温度を保ちつつ、パテキュレートの燃焼速度の抑制は酸素濃度制御で行うので、パテキュレートの燃焼中においても、フィルタ41のベッド温度の最高温度が目標ベッド温度を下回ることがない。すなわち、本実施形態は、排気温度によるパティキュレート燃焼速度制御方法でないため、フィルタ41のベッド温度を目標ベッド温度より低下させる必要がなく、これによってフィルタ周辺の温度低下による再生不良を防止できる。
【0153】
(3)再生処理の後期:
第3段目のように排気中の目標酸素濃度を中期の段階より大きくすることで、再生処理の終了間近にフィルタ41に残存するパティキュレートの総てを迅速にかつ確実に燃え切らせることができ、これにより再生処理時間の短縮、ならびにほぼ完全なフィルタ再生を図ることができる。
【0154】
その結果、本実施形態では次の効果が得られる。
【0155】
(1)再生処理時間の短縮:
再生処理に要する燃料消費の増加を最小限とし、燃費悪化を抑制できる。再生処理中の高温維持時間が減少し、フィルタの熱劣化を抑制でき、排気性能の向上、寿命の延長が図れる。
【0156】
(2)完全再生の実現:
燃え残りのパティキュレートによる圧損上昇がなくなるので燃費悪化を防止できる。また、燃え残りパティキュレートの上に新たなパティキュレートが堆積して生じる不均一パティキュレート堆積は、局所的な急激なパティキュレート燃焼を引き起こし、その部分で耐久性が低下する可能性があるが、これを防止できる。
【0157】
また、本実施形態(請求項2に記載の発明)によれば、t1(急速昇温制御期間)を再生処理開始時のフィルタのベッド温度に基づいて設定するので、t1を、再生処理開始時のフィルタのベッド温度が相違しても精度良く与えることができる。
【0158】
また、本実施形態(請求項9に記載の発明)によれば、前期の期間(急速昇温制御期間)のフィルタ入口温度の目標値を、当初は中期、後期(酸素濃度制御期間)のフィルタ入口温度の目標値よりも高く設定し、その後に中期、後期のフィルタ入口温度の目標値まで徐々に低下するように設定するので(図13参照)、パティキュレートが自着火する温度へと上昇させるに要する時間を短縮することができると共に、ベッド温度のオーバーシュートをも防止できる。
【0159】
また、本実施形態(請求項15に記載の発明)によれば、中期の期間(第1酸素濃度制御期間)において排気中の目標酸素濃度を後期の期間(第2酸素濃度制御期間)の排気中の目標酸素濃度に向けて徐々に大きくするので(図19参照)、排気中の目標酸素濃度をステップ的に切換える場合より再生処理期間を短縮できる。
【0160】
また、再生処理再開時のパティキュレート堆積量が所定値p以下の場合には、低酸素濃度を目標とする酸素濃度制御(第1酸素濃度制御)を省略して高酸素濃度を目標とする酸素濃度制御(第2酸素濃度制御)に移行し、フィルタに残存するパティキュレートの総てを一気に燃焼させてもフィルタのベッド温度の上昇が少なく、フィルタのベッド温度が許容最高温度に達することはない。すなわち、本実施形態(請求項34に記載の発明)によれば、低酸素濃度を目標とする酸素濃度制御の中断により再生処理再開時のパティキュレート堆積量が所定値p以下のときには、即座に高酸素濃度を目標とする酸素濃度制御に移行させることで、再生処理期間を短縮することができる。
【0161】
急速昇温制御が中断されると、ベッド温度はその中断時の温度より低下し、再生処理再開時の温度より再び上昇してパティキュレートが自着火する温度へと上昇する。すなわち、急速昇温制御の中断に伴うベッド温度の低下により、パティキュレートが自着火する温度に達するまでの時間が中断がない場合より長引く。このため、急速昇温制御の中断があるときには中断がない場合より遅らせて次の段階である酸素濃度制御へと移行させなければならないところ、急速昇温制御の中断があるときにも中断がないときと同じタイミングで酸素濃度制御へと移行させたのでは、酸素濃度制御へと移行させるのが早すぎ、酸素濃度制御期間においてフィルタに堆積しているパティキュレートを十分に燃焼させることができなくなる。これに対して、本実施形態(請求項36に記載の発明)によれば、急速昇温制御に中断があるとき、タイマ値T(再生処理開始からの経過時間)を、急速昇温制御が中断された時間に基づいて短くなる側に補正するので(図10左下参照)、急速昇温制御が中断されることがあっても、適切なタイミングで酸素濃度制御へと移行させることができる。
【0162】
酸素濃度制御中の中断は、急速昇温制御中の中断と少し異なる。すなわち、酸素濃度制御中の中断初期においてはフィルタ41の有する熱容量分でフィルタ41に堆積しているパティキュレートの燃焼がしばらく持続し、燃焼がやんだ後にベッド温度が低下していく。従って、このときにはパティキュレートの燃焼が持続する中断初期の期間とベッド温度が低下してゆく中断初期以降の期間との2つに分けて考える必要があり、この場合、中断初期の期間においては、酸素濃度制御の中断中といえどもパティキュレートの燃焼が継続しているのであるから、酸素濃度制御の中断のない場合の酸素濃度制御中と同じである。このため、この中断初期の期間も急速昇温制御の終了からの経過時間や低酸素濃度を目標とする酸素濃度制御(第1酸素濃度制御)の終了からの経過時間に加えるべきであり、加えないとしたら高酸素濃度を目標とする酸素濃度制御(第2酸素濃度制御)へと移行させるのが遅れたり、再生処理の終了が遅れてしまう。
【0163】
これに対して、本実施形態(請求項37に記載の発明)によれば、低酸素濃度を目標とする酸素濃度制御が中断された時間に基づいて、その中断時間が所定時間tbまではタイマ値T(急速昇温制御の終了からの経過時間)を長くなる側に、またその中断時間が所定時間tbを超えるとタイマ値Tを短くなる側に補正するので(図10右下参照)、低酸素濃度を目標とする酸素濃度制御が中断されることがあっても、適切なタイミングで高酸素濃度を目標とする酸素濃度制御へと移行させることができる。
【0164】
また、本実施形態(請求項38に記載の発明)によれば、高酸素濃度を目標とする酸素濃度制御が中断された時間に基づいて、その中断時間が所定時間tbまではタイマ値T(第1酸素濃度制御の終了からの経過時間)を長くなる側に、またその中断時間が所定時間tbを超えるとタイマ値Tを短くなる側に補正するので(図10右下参照)、高酸素濃度を目標とする酸素濃度制御が中断されることがあっても適切なタイミングで再生処理を終了させることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す概略構成図。
【図2】再生処理期間の3つの段階を示す特性図。
【図3】再生処理の全体を説明するためのフローチャート。
【図4】再生処理フラグの設定を説明するためのフローチャート。
【図5】再生フェーズの設定を説明するためのフローチャート。
【図6】設定時間t1の特性図。
【図7】設定時間t2の特性図。
【図8】パティキュレート堆積量に対するフィルタ圧力損失の特性図。
【図9】急速昇温制御の途中で中断があった場合のフィルタのベッド温度の挙動を示す波形図。
【図10】所定値a1、a2、a3の特性図。
【図11】再生中断フラグの設定を説明するためのフローチャート。
【図12】前期におけるフィルタ入口温度の目標値の設定方法を説明するための波形図。
【図13】他の実施形態の前期におけるフィルタ入口温度の目標値の設定方法を説明するための波形図。
【図14】排気昇温手段を説明するための領域図。
【図15】排気温度を1℃上げるのに必要なポスト噴射増加量の特性図。
【図16】パティキュレート堆積量が多い場合の再生処理時のベッド温度の最高温度の特性図。
【図17】パティキュレート堆積量が少ない場合の再生処理時のベッド温度の最高温度の特性図。
【図18】排気中の目標酸素濃度の設定方法を説明するための波形図。
【図19】他の実施形態の排気中の目標酸素濃度の設定方法を説明するための波形図。
【図20】吸入新気量制御手段を説明するための領域図。
【図21】燃料噴射制御手段を説明するための領域図。
【図22】本実施形態の作用効果を説明するための波形図。
【符号の説明】
1 エンジン
2 排気通路
3 吸気通路
6 EGR弁
10 コモンレール式燃料噴射装置
17 ノズル(燃料噴射弁)
21 可変容量ターボ過給機
31 エンジンコントローラ
33 クランク角センサ
36 差圧センサ
37、38 温度センサ
41 フィルタ
42 吸気絞り弁
Claims (39)
- 排気通路にパティキュレートを捕集するフィルタを備え、フィルタの再生時期になるとフィルタの再生処理を行うエンジンの排気浄化装置において、
フィルタの再生処理が急速昇温制御とこの急速昇温制御の経過後の酸素濃度制御とを含み、
酸素濃度制御期間のフィルタ入口温度の目標値は一定であり、
急速昇温制御期間のフィルタ入口温度の目標値は酸素濃度制御期間のフィルタ入口温度の目標値よりも高く、かつ
酸素濃度制御期間はパティキュレートの燃焼速度を抑制するため排気中の目標酸素濃度を低濃度に設定した第1酸素濃度制御を行う第1酸素濃度制御期間と、第1酸素濃度制御期間の経過後にフィルタにパティキュレートが燃え残ることがないように排気中の目標酸素濃度を高濃度に設定した第2酸素濃度制御を行う第2酸素濃度制御期間とを含むことを特徴とする排気浄化装置。 - 急速昇温制御期間を再生処理開始時のフィルタ温度に基づいて設定することを特徴とする請求項1に記載の排気浄化装置。
- 急速昇温制御期間を再生処理開始時のフィルタ温度が高いほど短くなる傾向に設定することを特徴とする請求項1に記載の排気浄化装置。
- 第1酸素濃度制御期間を再生処理開始時のパティキュレート堆積量に基づいて設定することを特徴とする請求項1に記載の排気浄化装置。
- 第1酸素濃度制御期間を再生処理開始時のパティキュレート堆積量が大きいほど長くなる傾向に設定することを特徴とする請求項1に記載の排気浄化装置。
- 第1酸素濃度制御期間を再生処理開始時のパティキュレート堆積量が所定値以下のとき設定しないことを特徴とする請求項1に記載の排気浄化装置。
- 所定値を、第1酸素濃度制御期間を介さずとも第2酸素濃度制御期間においてフィルタ温度が所定温度を超えないパティキュレート堆積量の最大量付近に設定することを特徴とする請求項6に記載の排気浄化装置。
- 急速昇温制御期間のフィルタ入口温度の目標値を、急速昇温制御期間のほぼ全期間にわたって酸素濃度制御期間のフィルタ入口温度の目標値よりも高く設定することを特徴とする請求項1に記載の排気浄化装置。
- 急速昇温制御期間のフィルタ入口温度の目標値を、当初は酸素濃度制御期間のフィルタ入口温度の目標値よりも高く設定し、その後に酸素濃度制御期間のフィルタ入口温度の目標値まで徐々に低下するように設定することを特徴とする請求項1に記載の排気浄化装置。
- 急速昇温制御期間のフィルタ入口温度の目標値への昇温を、燃料噴射時期の遅角により達成することを特徴とする請求項8または9に記載の排気浄化装置。
- 急速昇温制御期間のフィルタ入口温度の目標値への昇温を、ポスト噴射により達成することを特徴とする請求項8または9に記載の排気浄化装置。
- 急速昇温制御期間のフィルタ入口温度の目標値への昇温を、ポスト噴射及び吸気絞りにより達成することを特徴とする請求項8または9に記載の排気浄化装置。
- 可変容量機構を有するターボ過給機を備え、急速昇温制御期間のフィルタ入口温度の目標値への昇温を、可変容量機構により達成することを特徴とする請求項8または9に記載の排気浄化装置。
- コモンレール式燃料噴射装置を備え、急速昇温制御期間のフィルタ入口温度の目標値への昇温を、コモンレール圧を低くすることにより達成することを特徴とする請求項8または9に記載の排気浄化装置。
- 第1酸素濃度制御期間において排気中の目標酸素濃度を第2酸素濃度制御期間の排気中の目標酸素濃度に向けて徐々に大きくすることを特徴とする請求項8または9に記載の排気浄化装置。
- 酸素濃度制御期間における排気中の目標酸素濃度を吸入新気量を制御することにより達成することを特徴とする請求項1に記載の排気浄化装置。
- 酸素濃度制御期間における排気中の目標酸素濃度を燃料噴射量を制御することにより達成することを特徴とする請求項1に記載の排気浄化装置。
- 排気中の実際の酸素濃度が酸素濃度制御期間における排気中の目標酸素濃度と一致するようにフィードバック制御することを特徴とする請求項1に記載の排気浄化装置。
- 可変容量機構を有するターボ過給機を備え、吸入新気量を可変容量機構により制御することを特徴とする請求項16に記載の排気浄化装置。
- 吸入新気量をEGR制御装置により制御することを特徴とする請求項16に記載の排気浄化装置。
- 吸入新気量を吸気絞り装置により制御することを特徴とする請求項16に記載の排気浄化装置。
- 燃料噴射量をポスト噴射により制御することを特徴とする請求項17に記載の排気浄化装置。
- 燃料噴射量をポスト噴射及び吸気絞りにより制御することを特徴とする請求項17に記載の排気浄化装置。
- 急速昇温制御期間では酸素濃度の制御を行わずにフィルタ入口温度を目標温度に制御することを特徴とする請求項1に記載の排気浄化装置。
- 急速昇温制御期間では酸素濃度の制御を行わずにフィルタ入口温度を目標温度に制御し、酸素濃度制御期間では排気中の実際の酸素濃度を目標酸素濃度にフィードバック制御することを特徴とする請求項1に記載の排気浄化装置。
- 急速昇温制御期間と再生処理の開始からの経過時間とを比較して酸素濃度制御へと切換えることを特徴とする請求項1に記載の排気浄化装置。
- 第1酸素濃度制御期間と急速昇温制御の終了からの経過時間とを比較して第2酸素濃度制御期間へと切り換えることを特徴とする請求項1に記載の排気浄化装置。
- 第2酸素濃度制御期間と第1酸素濃度制御の終了からの経過時間とを比較して再生処理の終了か否かを判定することを特徴とする請求項1に記載の排気浄化装置。
- 再生処理の開始後に再生実施条件を満たさなくなったとき再生処理を中断し、その後に再生実施条件を満たしたとき再生処理を再開することを特徴とする請求項1に記載の排気浄化装置。
- 急速昇温制御期間を再生処理再開時のフィルタ温度に基づいて設定し直すことを特徴とする請求項29に記載の排気浄化装置。
- 設定し直す急速昇温制御期間を再生処理再開時のフィルタ温度が高いほど短くなる傾向に設定することを特徴とする請求項30に記載の排気浄化装置。
- 第1酸素濃度制御期間を再生処理再開時のパティキュレート堆積量に基づいて設定し直すことを特徴とする請求項29に記載の排気浄化装置。
- 設定し直す第1酸素濃度制御期間を再生処理再開時のパティキュレート堆積量が大きいほど長くなる傾向に設定することを特徴とする請求項32に記載の排気浄化装置。
- 設定し直す第1酸素濃度制御期間を再生処理再開時のパティキュレート堆積量が所定値以下のとき設定しないことを特徴とする請求項32に記載の排気浄化装置。
- 所定値を、第1酸素濃度制御期間を介さずとも第2酸素濃度制御期間においてフィルタのベッド温度が所定温度を超えないパティキュレート堆積量の最大量付近に設定することを特徴とする請求項34に記載の排気浄化装置。
- 再生処理の中断が急速昇温制御の中断であり、かつ急速昇温制御期間と再生処理の開始からの経過時間とを比較して酸素濃度制御へと切換える場合に、前記再生処理の開始からの経過時間を、急速昇温制御が中断された時間に基づいて短くなる側に補正することを特徴とする請求項29に記載の排気浄化装置。
- 再生処理の中断が第1酸素濃度制御の中断であり、かつ第1酸素濃度制御期間と急速昇温制御の終了からの経過時間とを比較して第2酸素濃度制御期間へと切り換える場合に、第1酸素濃度制御が中断された時間に基づいて、その中断時間が所定時間までは前記急速昇温制御の終了からの経過時間を長くなる側に、またその中断時間が所定時間を超えると前記急速昇温制御の終了からの経過時間を短くなる側に補正することを特徴とする請求項29に記載の排気浄化装置。
- 再生処理の中断が第2酸素濃度制御の中断であり、かつ第2酸素濃度制御期間と第1酸素濃度制御の終了からの経過時間とを比較して再生処理の終了と判定する場合に、第2酸素濃度制御が中断された時間に基づいて、その中断時間が所定時間までは前記第1酸素濃度制御の終了からの経過時間を長くなる側に、またその中断時間が所定時間を超えると前記第1酸素濃度制御の終了からの経過時間を短くなる側に補正することを特徴とする請求項29に記載の排気浄化装置。
- 排気通路にパティキュレートを捕集するフィルタを備え、フィルタの再生時期になるとフィルタの再生処理を行うエンジンの排気浄化装置において、
フィルタの再生処理が昇温制御とこの昇温制御の経過後の酸素濃度制御とを含み、
酸素濃度制御期間はパティキュレートの燃焼速度を抑制するため排気中の目標酸素濃度を低濃度に設定した第1酸素濃度制御を行う第1酸素濃度制御期間と、第1酸素濃度制御期間の経過後にフィルタにパティキュレートが燃え残ることがないように排気中の目標酸素濃度を高濃度に設定した第2酸素濃度制御を行う第2酸素濃度制御期間とを含むことを特徴とする排気浄化装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002189206A JP4092464B2 (ja) | 2002-06-28 | 2002-06-28 | 排気浄化装置 |
EP03012547A EP1375877B1 (en) | 2002-06-28 | 2003-06-02 | Regeneration of particulate filter |
US10/452,378 US6851258B2 (en) | 2002-06-28 | 2003-06-03 | Regeneration of particulate filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002189206A JP4092464B2 (ja) | 2002-06-28 | 2002-06-28 | 排気浄化装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004028045A JP2004028045A (ja) | 2004-01-29 |
JP4092464B2 true JP4092464B2 (ja) | 2008-05-28 |
Family
ID=29717669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002189206A Expired - Fee Related JP4092464B2 (ja) | 2002-06-28 | 2002-06-28 | 排気浄化装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US6851258B2 (ja) |
EP (1) | EP1375877B1 (ja) |
JP (1) | JP4092464B2 (ja) |
Families Citing this family (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10108720A1 (de) * | 2001-02-23 | 2002-09-05 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine |
JP4022723B2 (ja) * | 2002-01-11 | 2007-12-19 | 株式会社デンソー | 排気フィルタ再生装置及び方法 |
JP2004176657A (ja) * | 2002-11-28 | 2004-06-24 | Isuzu Motors Ltd | 燃料噴射制御装置 |
JP4140371B2 (ja) * | 2002-12-16 | 2008-08-27 | 日産自動車株式会社 | パティキュレートフィルタの再生装置及びエンジンの排気ガス浄化装置 |
JP2004197657A (ja) * | 2002-12-18 | 2004-07-15 | Nissan Motor Co Ltd | パティキュレートフィルタの再生装置及びエンジンの排気ガス浄化装置 |
US20040123588A1 (en) * | 2002-12-30 | 2004-07-01 | Stanglmaier Rudolf H. | Method for controlling exhaust gas temperature and space velocity during regeneration to protect temperature sensitive diesel engine components and aftertreatment devices |
JP3894125B2 (ja) | 2003-01-28 | 2007-03-14 | 日産自動車株式会社 | 内燃機関の排気浄化装置 |
JP4288985B2 (ja) * | 2003-03-31 | 2009-07-01 | 株式会社デンソー | 内燃機関の排気浄化装置 |
JP4225126B2 (ja) * | 2003-06-11 | 2009-02-18 | 日産自動車株式会社 | エンジンの排気ガス浄化装置 |
JP4111094B2 (ja) * | 2003-07-31 | 2008-07-02 | 日産自動車株式会社 | 排気後処理装置付過給エンジンの制御装置および制御方法 |
JP4285141B2 (ja) * | 2003-07-31 | 2009-06-24 | 日産自動車株式会社 | ディーゼルエンジンの燃料噴射制御装置 |
JP4092499B2 (ja) * | 2003-09-17 | 2008-05-28 | 日産自動車株式会社 | Dpfの再生制御装置 |
JP4075755B2 (ja) * | 2003-09-22 | 2008-04-16 | トヨタ自動車株式会社 | 内燃機関のフィルタ過昇温抑制方法 |
FR2862102B1 (fr) * | 2003-11-07 | 2007-06-22 | Peugeot Citroen Automobiles Sa | Systeme d'aide a la regeneration de moyens de depollution d'un moteur de vehicule |
US7152397B2 (en) * | 2003-11-07 | 2006-12-26 | Peugeot Citroen Automobiles Sa | Additional system for assisting regeneration of pollution control means of a motor vehicle |
JP4075795B2 (ja) | 2003-12-19 | 2008-04-16 | 日産自動車株式会社 | ディーゼルエンジンの排気後処理装置 |
JP4170935B2 (ja) * | 2004-03-11 | 2008-10-22 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
JP4052268B2 (ja) * | 2004-03-11 | 2008-02-27 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
JP3962386B2 (ja) * | 2004-03-11 | 2007-08-22 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
JP4049113B2 (ja) * | 2004-03-11 | 2008-02-20 | トヨタ自動車株式会社 | 内燃機関排気浄化装置の粒子状物質再生制御装置 |
JP4314134B2 (ja) * | 2004-03-11 | 2009-08-12 | トヨタ自動車株式会社 | 内燃機関排気浄化装置の粒子状物質再生制御装置 |
JP2005256804A (ja) * | 2004-03-15 | 2005-09-22 | Denso Corp | 内燃機関の排気浄化装置 |
JP2005264785A (ja) * | 2004-03-17 | 2005-09-29 | Nissan Motor Co Ltd | ディーゼルエンジンの排気後処理装置 |
JP4434038B2 (ja) * | 2004-04-05 | 2010-03-17 | 株式会社デンソー | 内燃機関の排気浄化装置 |
JP4148178B2 (ja) * | 2004-04-08 | 2008-09-10 | いすゞ自動車株式会社 | 排気ガス浄化システムの制御方法及び排気ガス浄化システム |
JP4161932B2 (ja) * | 2004-04-09 | 2008-10-08 | いすゞ自動車株式会社 | 排気ガス浄化システムの制御方法及び排気ガス浄化システム |
JP4415749B2 (ja) * | 2004-05-10 | 2010-02-17 | 株式会社デンソー | 内燃機関の排気浄化装置 |
FR2872202B1 (fr) * | 2004-06-23 | 2006-11-03 | Peugeot Citroen Automobiles Sa | Systeme d'aide a la regeneration de moyens de depollution pour moteur de vehicule automobile |
FR2872214B1 (fr) | 2004-06-23 | 2006-11-03 | Peugeot Citroen Automobiles Sa | Systeme de controle de la regeneration de moyens de depollution |
FR2872213B1 (fr) | 2004-06-23 | 2006-11-03 | Peugeot Citroen Automobiles Sa | Systeme d'aide a la regeneration de moyens de depollution pour moteur de vehicule automobile |
JP4095979B2 (ja) * | 2004-07-20 | 2008-06-04 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
JP4400356B2 (ja) * | 2004-07-22 | 2010-01-20 | 株式会社デンソー | 内燃機関の排気浄化装置 |
JP4507737B2 (ja) * | 2004-07-23 | 2010-07-21 | 日産自動車株式会社 | 排気ガス浄化装置 |
JP2006063905A (ja) * | 2004-08-27 | 2006-03-09 | Toyota Motor Corp | パティキュレートフィルタの粒子状物質残量推定方法およびパティキュレートフィルタの再生方法 |
US7275365B2 (en) * | 2004-11-05 | 2007-10-02 | Southwest Research Institute | Method for controlling temperature in a diesel particulate filter during regeneration |
FR2879254B1 (fr) * | 2004-12-14 | 2007-01-26 | Renault Sas | Protection du catalyseur d'oxydation place en amont de filtre a particules pour moteur diesel par limitation de carburant injecte |
JP4595521B2 (ja) * | 2004-12-16 | 2010-12-08 | 日産自動車株式会社 | 内燃機関の排気浄化装置 |
US7441403B2 (en) * | 2004-12-20 | 2008-10-28 | Detroit Diesel Corporation | Method and system for determining temperature set points in systems having particulate filters with regeneration capabilities |
US7210286B2 (en) * | 2004-12-20 | 2007-05-01 | Detroit Diesel Corporation | Method and system for controlling fuel included within exhaust gases to facilitate regeneration of a particulate filter |
US7461504B2 (en) * | 2004-12-21 | 2008-12-09 | Detroit Diesel Corporation | Method and system for controlling temperatures of exhaust gases emitted from internal combustion engine to facilitate regeneration of a particulate filter |
US7076945B2 (en) * | 2004-12-22 | 2006-07-18 | Detroit Diesel Corporation | Method and system for controlling temperatures of exhaust gases emitted from an internal combustion engine to facilitate regeneration of a particulate filter |
US7434388B2 (en) | 2004-12-22 | 2008-10-14 | Detroit Diesel Corporation | Method and system for regeneration of a particulate filter |
US20060130465A1 (en) * | 2004-12-22 | 2006-06-22 | Detroit Diesel Corporation | Method and system for controlling exhaust gases emitted from an internal combustion engine |
JP4367335B2 (ja) * | 2004-12-27 | 2009-11-18 | 日産自動車株式会社 | エンジンの制御装置。 |
JP4713147B2 (ja) * | 2004-12-27 | 2011-06-29 | 日産自動車株式会社 | エンジンの制御装置 |
US7328577B2 (en) * | 2004-12-29 | 2008-02-12 | Honeywell International Inc. | Multivariable control for an engine |
US7412822B2 (en) * | 2005-01-27 | 2008-08-19 | Southwest Research Institute | Regeneration control for diesel particulate filter for treating diesel engine exhaust |
US7343735B2 (en) * | 2005-05-02 | 2008-03-18 | Cummins, Inc. | Apparatus and method for regenerating an exhaust gas aftertreatment component of an internal combustion engine |
US7380396B2 (en) * | 2005-05-25 | 2008-06-03 | General Motors Corporation | Method for protecting an exhaust aftertreatment system |
JP4665633B2 (ja) | 2005-07-12 | 2011-04-06 | 株式会社デンソー | 内燃機関の排気浄化装置 |
US7546762B2 (en) | 2005-09-01 | 2009-06-16 | International Engine Intellectual Property Company, Llc | Acute angle pressure sensor probe and method |
GB0518421D0 (en) * | 2005-09-09 | 2005-10-19 | Delphi Tech Inc | Process for the regeneration of a particulate filter |
US7677032B2 (en) * | 2005-09-15 | 2010-03-16 | Cummins, Inc. | Apparatus, system, and method for determining the distribution of particulate matter on a particulate filter |
KR100680792B1 (ko) * | 2005-12-09 | 2007-02-08 | 현대자동차주식회사 | 질소산화물 제거 촉매와 촉매 여과 장치를 구비한NOx-PM 동시 저감 장치의 재생 제어 방법 및 장치 |
US7677030B2 (en) * | 2005-12-13 | 2010-03-16 | Cummins, Inc. | Apparatus, system, and method for determining a regeneration availability profile |
US7587892B2 (en) * | 2005-12-13 | 2009-09-15 | Cummins Ip, Inc | Apparatus, system, and method for adapting a filter regeneration profile |
DE102006002640B4 (de) * | 2006-01-19 | 2019-12-19 | Robert Bosch Gmbh | Verfahren zum Betreiben eines in einem Abgasbereich einer Brennkraftmaschine angeordneten Partikelfilters und Vorrichtung zur Durchführung des Verfahrens |
US20070193258A1 (en) * | 2006-02-21 | 2007-08-23 | Berke Paul L | Controlling engine operation during diesel particulate filter regeneration to avoid runaway |
US7677028B2 (en) * | 2006-02-28 | 2010-03-16 | Caterpillar Inc. | Particulate trap regeneration temperature control system |
US20070271906A1 (en) * | 2006-03-09 | 2007-11-29 | Berke Paul L | System and method for inhibiting regeneration of a diesel particulate filter |
US20080016856A1 (en) * | 2006-07-21 | 2008-01-24 | Cummins Filtration Inc. | Control of filter regeneration |
US20080047257A1 (en) * | 2006-08-24 | 2008-02-28 | Frank Ament | Method for detecting steady-state and transient air flow conditions for cam-phased engines |
DE102006041478A1 (de) * | 2006-09-05 | 2008-03-06 | Robert Bosch Gmbh | Verfahren zur Ermittlung einer Rußkonzentration im Abgas einer Brennkraftmaschine |
JP2008064368A (ja) * | 2006-09-06 | 2008-03-21 | Yurikai Co Ltd | 循環式温調装置の送り側と戻り側の両方に設ける温度センサーを利用する温調効果の制御方法 |
US8539759B2 (en) * | 2006-09-13 | 2013-09-24 | GM Global Technology Operations LLC | Regeneration control system for a particulate filter |
ATE438792T1 (de) * | 2006-09-15 | 2009-08-15 | Gm Global Tech Operations Inc | Verfahren zur regeneration eines partikelfilters |
US7895827B2 (en) * | 2006-09-28 | 2011-03-01 | GM Global Technology Operations LLC | Method and apparatus for controlling engine operation during regeneration of an exhaust aftertreatment system |
JP4905303B2 (ja) * | 2006-10-02 | 2012-03-28 | 日産自動車株式会社 | 内燃機関の排出ガス温度制御方法及び装置並びに内燃機関システム |
JP2008150955A (ja) * | 2006-12-14 | 2008-07-03 | Denso Corp | 排気還流装置 |
US7631492B2 (en) * | 2006-12-20 | 2009-12-15 | Suresh Arvind S | System and method for inhibiting uncontrolled regeneration of a particulate filter for an internal combustion engine |
DE102007010189A1 (de) * | 2007-03-02 | 2008-09-04 | Robert Bosch Gmbh | Verfahren zur Regelung der Regeneration eines Partikelfilters |
US7958723B2 (en) * | 2007-05-15 | 2011-06-14 | GM Global Technology Operations LLC | Electrically heated particulate filter propagation support methods and systems |
US8104270B2 (en) | 2007-05-15 | 2012-01-31 | GL Global Technology Operations LLC | Electrically heated particulate filter preparation methods and systems |
FR2917457A1 (fr) * | 2007-06-13 | 2008-12-19 | Renault Sas | Systeme et procede de regeneration de moyens de depollution de vehicule automobile. |
US7484503B2 (en) * | 2007-06-25 | 2009-02-03 | International Engine Intellectual Property Company, Llc | System and method for diesel particulate filter regeneration |
JP4274270B2 (ja) * | 2007-06-26 | 2009-06-03 | いすゞ自動車株式会社 | NOx浄化システム及びNOx浄化システムの制御方法 |
US8024919B2 (en) * | 2007-07-31 | 2011-09-27 | Caterpillar Inc. | Engine system, operating method and control strategy for aftertreatment thermal management |
WO2009025657A1 (en) * | 2007-08-23 | 2009-02-26 | International Engine Intellectual Property Company, Llc | Controlling engine operation during diesel particulate filter regeneration to avoid runaway |
US8105417B2 (en) * | 2007-09-14 | 2012-01-31 | GM Global Technology Operations LLC | Face crack reduction strategy for particulate filters |
JP4428443B2 (ja) * | 2007-12-18 | 2010-03-10 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
DE102008004209A1 (de) * | 2008-01-14 | 2009-07-16 | Robert Bosch Gmbh | Verfahren zum Betreiben eines Antriebsstrangs eines Fahrzeugs und Vorrichtung zur Durchführung des Verfahrens |
US7835847B2 (en) * | 2008-02-28 | 2010-11-16 | Cummins Ip, Inc | Apparatus, system, and method for determining a regeneration availability profile |
US8146349B2 (en) * | 2008-03-31 | 2012-04-03 | Caterpiller Inc. | Exhaust system implementing temperature-constraining regeneration strategy |
US8499550B2 (en) * | 2008-05-20 | 2013-08-06 | Cummins Ip, Inc. | Apparatus, system, and method for controlling particulate accumulation on an engine filter during engine idling |
JP4883104B2 (ja) * | 2009-02-09 | 2012-02-22 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
US9388771B2 (en) * | 2010-03-01 | 2016-07-12 | Komatsu Ltd. | Intake controller and method of intake controlling for internal combustion engine |
JP5569690B2 (ja) * | 2010-10-18 | 2014-08-13 | 三菱自動車工業株式会社 | 内燃機関の排気浄化装置 |
KR101241216B1 (ko) * | 2010-11-30 | 2013-03-13 | 현대자동차주식회사 | 배기가스 후처리 방법 |
KR101360047B1 (ko) * | 2012-04-04 | 2014-02-10 | 현대자동차주식회사 | 백연 저감 시스템 및 그 방법 |
EP2685056B1 (en) * | 2012-07-11 | 2016-01-06 | Ford Global Technologies, LLC | Soot burning method for particulate filters |
FR3020411B1 (fr) * | 2014-04-29 | 2016-05-06 | Peugeot Citroen Automobiles Sa | Procede de regeneration d'un filtre a particules impregne par paliers de temperature |
DE102015211151B4 (de) * | 2015-06-17 | 2021-08-12 | Vitesco Technologies GmbH | Verfahren und Vorrichtung zur Ermittlung des Beladungszustands eines Abgaspartikelfilters |
ES2828028T3 (es) * | 2015-09-29 | 2021-05-25 | Carrier Corp | Sistema de refrigeración de transporte que comprende una unidad de refrigeración y un motor diésel |
GB2528602A (en) * | 2015-10-20 | 2016-01-27 | Gm Global Tech Operations Inc | A method of cleaning up a particulate filter of an internal combustion engine |
JP6658211B2 (ja) * | 2016-03-30 | 2020-03-04 | 三菱自動車工業株式会社 | 排気浄化装置 |
JP6233492B1 (ja) * | 2016-11-14 | 2017-11-22 | マツダ株式会社 | 排気浄化装置の再生制御装置 |
GB2560758A (en) * | 2017-03-24 | 2018-09-26 | Gm Global Tech Operations Llc | A method of thermal protecting a particulate filter of an internal combustion engine |
DE102018209530A1 (de) * | 2018-06-14 | 2019-12-19 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0826782B2 (ja) * | 1983-10-24 | 1996-03-21 | 三菱自動車工業株式会社 | デイ−ゼルエンジンの安全装置 |
EP0158887B1 (en) * | 1984-03-31 | 1990-11-22 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Diesel particulate oxidizer regeneration system |
JPS62162762A (ja) * | 1986-01-10 | 1987-07-18 | Toyota Motor Corp | デイ−ゼル機関の排気ガス浄化装置 |
US4835963A (en) * | 1986-08-28 | 1989-06-06 | Allied-Signal Inc. | Diesel engine particulate trap regeneration system |
GB2239407B (en) * | 1989-12-27 | 1994-10-12 | Nissan Motor | Exhaust gas purifying device for an internal combustion engine |
US5716586A (en) * | 1993-06-03 | 1998-02-10 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Exhaust gas purifier |
JP3454351B2 (ja) | 1998-12-11 | 2003-10-06 | トヨタ自動車株式会社 | パティキュレートフィルタの再生処理制御装置 |
DE19957715C2 (de) * | 1998-12-01 | 2002-01-17 | Toyota Motor Co Ltd | Abgasausstoß-Steuerungsvorrichtung für eine Brennkraftmaschine |
JP3558022B2 (ja) * | 2000-01-11 | 2004-08-25 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
US6405528B1 (en) * | 2000-11-20 | 2002-06-18 | Ford Global Technologies, Inc. | Method for determining load on particulate filter for engine exhaust, including estimation of ash content |
JP3838339B2 (ja) * | 2001-03-27 | 2006-10-25 | 三菱ふそうトラック・バス株式会社 | 内燃機関の排気浄化装置 |
JP3812362B2 (ja) * | 2001-04-19 | 2006-08-23 | 日産自動車株式会社 | 内燃機関の排気浄化装置 |
-
2002
- 2002-06-28 JP JP2002189206A patent/JP4092464B2/ja not_active Expired - Fee Related
-
2003
- 2003-06-02 EP EP03012547A patent/EP1375877B1/en not_active Expired - Lifetime
- 2003-06-03 US US10/452,378 patent/US6851258B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
EP1375877A2 (en) | 2004-01-02 |
EP1375877B1 (en) | 2012-09-26 |
US6851258B2 (en) | 2005-02-08 |
US20040000139A1 (en) | 2004-01-01 |
EP1375877A3 (en) | 2009-02-18 |
JP2004028045A (ja) | 2004-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4092464B2 (ja) | 排気浄化装置 | |
KR100504422B1 (ko) | 엔진의 배기 정화 장치 | |
US7054734B2 (en) | Combustion control system of internal combustion engine | |
US7322340B2 (en) | Engine fuel injection control method and engine fuel injection control apparatus | |
US20050022505A1 (en) | Regeneration control system | |
JP2006183557A (ja) | エンジンの制御装置。 | |
JP2004232496A (ja) | 内燃機関の排気浄化装置 | |
US7007462B2 (en) | Combustion control apparatus for internal combustion engine | |
JP2004353529A (ja) | 排気ガス浄化システム | |
KR100689921B1 (ko) | 엔진 연소 제어 | |
JP2005264785A (ja) | ディーゼルエンジンの排気後処理装置 | |
US6990801B2 (en) | Combustion control apparatus for internal combustion engine | |
JP4178928B2 (ja) | 排気浄化装置 | |
US7121083B2 (en) | Combustion control apparatus and method for internal combustion engine | |
KR20030022043A (ko) | 엔진의 배기 정화 장치 | |
JP2004232544A (ja) | エンジンの燃料噴射制御装置 | |
JP4182770B2 (ja) | ディーゼルエンジン | |
JP4161887B2 (ja) | 排気浄化装置 | |
US20050022513A1 (en) | Combustion control system of internal combustion engine | |
JP3885604B2 (ja) | 排気浄化装置 | |
US20060144038A1 (en) | Internal combustion engine having an exhaust particulate filter | |
JP3975680B2 (ja) | 内燃機関の制御装置 | |
JP5024129B2 (ja) | 内燃機関の制御装置及び燃料性状判定装置 | |
JP4366940B2 (ja) | 排気浄化装置 | |
JP3915671B2 (ja) | エンジンの排気浄化装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071016 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080218 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110314 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110314 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120314 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130314 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130314 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |