[go: up one dir, main page]

JP3879666B2 - Lead wire for solar cell connection - Google Patents

Lead wire for solar cell connection Download PDF

Info

Publication number
JP3879666B2
JP3879666B2 JP2002371988A JP2002371988A JP3879666B2 JP 3879666 B2 JP3879666 B2 JP 3879666B2 JP 2002371988 A JP2002371988 A JP 2002371988A JP 2002371988 A JP2002371988 A JP 2002371988A JP 3879666 B2 JP3879666 B2 JP 3879666B2
Authority
JP
Japan
Prior art keywords
conductor
thermal expansion
lead wire
solar cell
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002371988A
Other languages
Japanese (ja)
Other versions
JP2004204256A (en
Inventor
量 松井
貴朗 市川
正義 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002371988A priority Critical patent/JP3879666B2/en
Publication of JP2004204256A publication Critical patent/JP2004204256A/en
Application granted granted Critical
Publication of JP3879666B2 publication Critical patent/JP3879666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低熱膨張平角導体に関し、特に、熱膨張が小さく、耐食性に優れ、太陽電池を構成するシリコンウェハの配線パターン部に接続するためのリード線用導体に適した低熱膨張平角導体に関する。
【0002】
【従来の技術】
太陽電池は、基板上にシリコン結晶を成長させた半導体チップを用いて構成されている。この種の太陽電池は、一般に、シリコン結晶ウェハの所定の領域に接続用リード線を接合し、この接続用リード線を通して負荷へ発電出力を供給する構成が採用されている。
【0003】
図2は、太陽電池の構成例を示す。
受光した太陽光を光電変換して電力を発生する太陽電池10は、シリコン(Si)ウェハ11と、このシリコンウェハ11の表面の所定の領域にできるだけ面積を制限して形成されたAgめっき部12,13とを備えて構成されている。Agめっき部12,13は発電出力を取り出すための配線パターンであり、このAgめっき部12,13のそれぞれには、その幅方向の範囲内に納まるようにして接続用リード線14,15が接続される。
【0004】
通常、接続用リード線14,15の外表面(外周面)には、ウェハ上のAgめっき部12,13に接続するためのはんだめっき層が形成される。はんだめっき層の構成材には、他の電気部品において従来より実績のあるSn−Pb合金系のはんだが使用されてきた。例えば、タフピッチ銅や無酸素銅などの純銅製の平角導体を導体(接続用リード線)に用い、そのはんだめっき層にSn−Pb共晶はんだを用いたものがある(例えば、特許文献1参照)。
【0005】
これまで多用されてきたSn−Pb系はんだは、リード線としての導電性や機械的強度等を保証しつつ、優れたはんだ濡れ性、高い接続強度、あるいは取扱性等によって特徴づけられた有用性の高いめっき材料として知られている。したがって、このSn−Pb系に代わるはんだめっき材としては、上記した様な諸特性を十分に満たしている必要がある。
【0006】
しかし、最近では、Pbによる環境への悪影響が懸念されるため、Pbを含まない他のめっき用はんだへの切り換えが検討されている。Sn−Pb系に代わるPbを含まないめっき材としては、Sn−Ag系、Sn−Bi系、あるいはSn−Cu系等のはんだが有力視されている。これらのはんだは、太陽電池における接続用リード線の接合のためのめっき層の構成材としてだけでなく、様々な電気部品における接続要素としての活用が期待されている。例えば、導体に銅条を用い、そのめっき層として、Snを主要な成分とすると共に所定のPを含む組成のフリーはんだを用いた接続用リード線がある(例えば、特許文献2参照)。
【0007】
ところで、太陽電池を構成する部材のうちで材料コストの大半を占めるのが、シリコンウェハである。そのため、シリコンウェハの薄板化が検討されている。しかし、シリコンウェハを薄板化した場合、接続用リード線の接合時の加熱プロセスや使用時の温度変化によって、シリコンウェハが破損することがある。これに対処するため、熱膨張の小さい接続用リード線のニーズが高まっている。
【0008】
熱膨張を考慮したリード線の構成例として、リード線をクラッド金属で形成したものがある。このリード線は、体積抵抗率が小さく熱膨張係数が大きい銅の層と、この銅層の両面に体積抵抗率が大きく熱膨張係数の小さいFe−Ni(鉄−ニッケル)合金の層を積層して「銅−インバー−銅」をクラッドした3層構造にし、リード線接合部に要求される応力緩衝の機能とリード線としての強度を備える平角導体としている(例えば、特許文献3参照)。
【0009】
【特許文献1】
特開平11−21660号公報
【特許文献2】
特開2002−263880号公報
【特許文献3】
特開2002−299009号公報
【0010】
【発明が解決しようとする課題】
しかし、従来の平角導体によると、クラッド材を適用した特許文献3の構成では、側面(積層状態が露出する面)の「銅−インバー−銅」接合部が水分に晒されることによって局部電池化し、これによって腐食する恐れがある。したがって、薄板化したシリコンウェハに接続するリード線は、熱膨張が小さく、かつ耐食性に優れる特性を備える必要がある。
【0011】
したがって、本発明の目的は、熱膨張が小さく、耐食性に優れた低熱膨張平角導体を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、上記の目的を達成するため、10×10-6/℃以下の熱膨張係数を有し、断面形状が平角形を成した鉄−ニッケル合金からなるコア導体と、5.0μΩ・cm以下の体積抵抗率を有し、前記コア導体の上下面及び両側面の全体を覆い、銅、銀、金、アルミニウム、又は前記いずれかの金属を主成分とする合金からなる被覆導体とを備える低熱膨張平角導体からなる太陽電池接続用リード線であって、前記コア導体と前記被覆導体との断面積比が被覆導体:コア導体=1:1〜4:1であることを特徴とする太陽電池接続用リード線を提供する。
【0013】
この構成によれば、コア導体は、シリコンの熱膨張係数と同等以下の熱膨張係数である10×10-6/℃以下の値にしたことにより、薄板化した太陽電池用のシリコンウェハの接続用リード線に用いても、シリコンウェハを破損する恐れはなくなる。そして、被覆導体の体積抵抗率を5.0μΩ・cm以下にしたことで十分な導電性が得られることにより太陽電池の効率低下が防止され、更に、コア導体の外表面に被覆導体が形成されることにより、水分に起因してコア導体の表面に局部電池が発生するのを防止することができる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本願発明の低熱膨張平角導体を示す。
本発明に係る低熱膨張平角導体1は、コア導体2(断面形状は角形を成している)と被覆導体3による複合平角導体の構造を有している。コア導体2と被覆導体3とは異なる組成であり、被覆導体3はコア導体2の外表面に被覆する如くに形成される。コア導体2の外表面に被覆導体3が設けられることにより、コア導体2の側面に水分が存在しても、局部電池化が生じないようにすることができる。
【0015】
コア導体2には熱膨張係数の小さい金属、具体的には鉄−ニッケル合金が用いられ、その熱膨張係数を10×10-6/℃以下にしている。その理由は、20℃のシリコン(図2のシリコンウェハ11)の熱膨張係数(9.6×10-6/℃)と同等以下にするためである。そして、シリコンウェハとの熱膨張係数の差が小さいもの、具体的には実施例で説明する様に、断面積比(Cu:Fe−36mass%Ni)が2:1のものが最適であり、また、断面積比率(Cu:Fe−36mass%Ni)は、20〜50%とするのが好ましい。特に、好ましくは30〜40%である。
【0016】
また、被覆導体3には、所望の導電特性が得られるように、体積抵抗率の小さい銅、銀、アルミニウム等の金属、又はこれら金属を主成分とする合金を用いる。被覆導体3の体積抵抗率は、具体的には5.0μΩ・cm以下とし、太陽電池の効率が低下しないようにしている。
【0017】
なお、被覆導体3には、その外周面(外表面)の一部又は全体に対し、予め「錫−鉛」はんだめっき、又は「錫−銀−銅」を主成分とする鉛フリーはんだめっきを施すことができる。このようにはんだめっきを用いることにより、シリコンウェハに接続するための作業性が良好になる。
【0018】
以上のように、本発明に係る実施の形態は、コア導体2に熱膨張係数の小さい合金(鉄−ニッケル合金等)を用い、その熱膨張係数を10×10-6/℃以下としたことにより熱膨張を小さくでき、熱膨張に起因するシリコンウェハの破損の発生を防止することができる。更に、被覆導体3に体積抵抗率の小さい金属又は合金(銅、銀、金、アルミニウム、又はそのいずれか1つ以上を含む合金)を用いたことにより、太陽電池の効率を低下させることなく、同時に耐食性を得ることができる。また、被覆導体3は、鉛を含まない金属又は合金を用いているため、環境汚染を招くことがない。
【0019】
【実施例】
次に、本発明の実施例について説明する。
〔実施例1〕
図1に示す構造の低熱膨張平角導体1において、コア導体2にFe−36mass%Niを用い、被覆導体3にCuを用い、表1に示す材料を作製した。なお、比較例(後述する表2、表3も同一値)は、平角導体を銅のみとした場合である。また、参考値(後述する表2、表3も同一値)は、Si及びFe−36mass%Niの熱膨張係数及び体積抵抗率である。
【0020】
【表1】

Figure 0003879666
【0021】
〔実施例2〕
図1に示す構造の複合平角導体において、コア導体2にFe−36mass%Ni、被覆導体3にAgを適用し、表2に示す構成の材料を作製した。
【0022】
【表2】
Figure 0003879666
【0023】
〔実施例3〕
図1に示す構造の複合平角導体において、コア導体2にFe−36mass%Ni、被覆導体3にAlを適用し、表3に示す構成の材料を作製した。
【0024】
【表3】
Figure 0003879666
【0025】
本発明の各実施例によれば、表1〜表3から明らかなように、被覆導体3の材料が代わっても、熱膨張係数は比較例に比べ、断面積比によらず小さい値が得られるが、断面積比が1:1のときに最も良い結果が得られる。また、体積抵抗率は、Cuの比率が高くなるほど小さくなり、断面積比(Cu:Fe−36mass%Ni)が大きくなるほど好結果が得られることがわかる。しかし、シリコンの熱膨張係数と同等以下の熱膨張係数が得られるか否かを考慮すると、断面積比を2:1としたときが最も好ましい結果であることがわかる。
【0026】
上記実施の形態においては、低熱膨張平角導体を太陽電池の接続用リード線に用いる用途を示したが、他の用途、例えば、1GHz以上の高周波信号を伝送するための導体として使用することも可能である。特に、熱膨張により伝送特性が著しく劣化するような無線LAN等への用途に適している。
【0027】
【発明の効果】
以上より明らかなように、本発明の低熱膨張平角導体によれば、10×10-6/℃以下の熱膨張係数を有し、断面形状が平角形を成した鉄−ニッケル合金からなるコア導体と、5.0μΩ・cm以下の体積抵抗率を有し、前記コア導体の上下面及び両側面の全体を覆い、銅、銀、金、アルミニウム、又は前記いずれかの金属を主成分とする合金からなる被覆導体とを備える低熱膨張平角導体からなる太陽電池接続用リード線であって、前記コア導体と前記被覆導体との断面積比が被覆導体:コア導体=1:1〜4:1である構成にしたので、熱膨張係数が小さく耐蝕性に優れる低熱膨張平角導体を得ることができ、薄板化されたシリコンウェハを破損する恐れはなくなる。
【図面の簡単な説明】
【図1】 本発明の低熱膨張平角導体を示す断面図である。
【図2】 太陽電池の概略構成例を示す斜視図である。
【符号の説明】
1 低熱膨張平角導体
2 コア導体
3 被覆導体
10 太陽電池
11 シリコンウェハ
12,13 Agめっき部
14,15 接続用リード線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low thermal expansion rectangular conductor, and more particularly, to a low thermal expansion rectangular conductor that has low thermal expansion, excellent corrosion resistance, and is suitable as a lead wire conductor for connection to a wiring pattern portion of a silicon wafer constituting a solar cell.
[0002]
[Prior art]
A solar cell is configured using a semiconductor chip in which a silicon crystal is grown on a substrate. In general, this type of solar cell employs a configuration in which a connecting lead wire is joined to a predetermined region of a silicon crystal wafer and a power generation output is supplied to a load through the connecting lead wire.
[0003]
FIG. 2 shows a configuration example of a solar cell.
A solar cell 10 that photoelectrically converts received sunlight to generate electric power includes a silicon (Si) wafer 11 and an Ag plating portion 12 that is formed with a limited area as much as possible on a predetermined region of the surface of the silicon wafer 11. , 13. The Ag plating parts 12 and 13 are wiring patterns for taking out the power generation output, and the lead wires 14 and 15 for connection are connected to the Ag plating parts 12 and 13 so as to be within the range in the width direction thereof. Is done.
[0004]
Usually, solder plating layers for connecting to the Ag plating portions 12 and 13 on the wafer are formed on the outer surfaces (outer peripheral surfaces) of the connecting lead wires 14 and 15. As a constituent material of the solder plating layer, Sn—Pb alloy-based solder that has been proven in other electric parts has been used. For example, a flat copper conductor made of pure copper such as tough pitch copper or oxygen-free copper is used as a conductor (connection lead wire), and Sn—Pb eutectic solder is used for the solder plating layer (for example, see Patent Document 1). ).
[0005]
Sn-Pb solder, which has been widely used so far, has the usefulness characterized by excellent solder wettability, high connection strength, or handleability while ensuring the electrical conductivity and mechanical strength as a lead wire. It is known as a high plating material. Therefore, as a solder plating material replacing the Sn—Pb system, it is necessary to sufficiently satisfy the various characteristics as described above.
[0006]
However, recently, since there is a concern about the adverse effects of Pb on the environment, switching to other plating solders not containing Pb has been studied. As a plating material that does not contain Pb instead of Sn—Pb, Sn—Ag, Sn—Bi, or Sn—Cu based solder is considered promising. These solders are expected to be used not only as components for plating layers for joining connection lead wires in solar cells but also as connection elements in various electrical components. For example, there is a connecting lead wire using a copper strip as a conductor and using a free solder having a composition containing Sn as a main component and Sn as a plating layer (see, for example, Patent Document 2).
[0007]
By the way, silicon wafers occupy most of the material cost among the members constituting the solar cell. Therefore, the thinning of the silicon wafer has been studied. However, when the silicon wafer is thinned, the silicon wafer may be damaged by a heating process at the time of joining the connecting lead wires and a temperature change at the time of use. In order to cope with this, the need for a connecting lead wire with low thermal expansion is increasing.
[0008]
As a configuration example of the lead wire in consideration of thermal expansion, there is one in which the lead wire is formed of a clad metal. This lead wire has a copper layer with a small volume resistivity and a large thermal expansion coefficient, and a Fe—Ni (iron-nickel) alloy layer with a large volume resistivity and a small thermal expansion coefficient on both sides of the copper layer. Thus, a three-layer structure in which “copper-invar-copper” is clad is used as a flat conductor having a stress buffering function required for a lead wire joint and strength as a lead wire (see, for example, Patent Document 3).
[0009]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-21660 [Patent Document 2]
JP 2002-263880 A [Patent Document 3]
Japanese Patent Laid-Open No. 2002-299909
[Problems to be solved by the invention]
However, according to the configuration of Patent Document 3 in which a clad material is applied according to a conventional rectangular conductor, a “copper-invar-copper” junction on the side surface (surface on which the laminated state is exposed) is exposed to moisture, thereby forming a local battery. This can cause corrosion. Therefore, the lead wire connected to the thinned silicon wafer needs to have a characteristic that the thermal expansion is small and the corrosion resistance is excellent.
[0011]
Accordingly, an object of the present invention is to provide a low thermal expansion rectangular conductor having a small thermal expansion and excellent corrosion resistance.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has a core conductor made of an iron-nickel alloy having a thermal expansion coefficient of 10 × 10 −6 / ° C. or less and a cross-sectional shape of a rectangular shape, and 5.0 μΩ · a coated conductor made of copper, silver, gold, aluminum, or an alloy containing any one of the above metals as a main component , having a volume resistivity of cm or less, covering the entire upper and lower surfaces and both side surfaces of the core conductor; a solar cell connecting lead wire made of a low thermal expansion flat conductor Ru wherein the core conductor and the coated conductor and the cross-sectional area ratio of coated conductor: core conductor = 1: 1 to 4: characterized in that one A solar cell connecting lead wire is provided.
[0013]
According to this configuration, the core conductor has a value of 10 × 10 −6 / ° C. or less, which is a thermal expansion coefficient equal to or less than that of silicon, thereby connecting the thinned silicon wafer for solar cells. Even if it is used as a lead wire, there is no possibility of damaging the silicon wafer. Further, by reducing the volume resistivity of the coated conductor to 5.0 μΩ · cm or less, sufficient conductivity is obtained, so that the efficiency of the solar cell is prevented from being lowered, and further, the coated conductor is formed on the outer surface of the core conductor. As a result, local batteries can be prevented from being generated on the surface of the core conductor due to moisture.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a low thermal expansion rectangular conductor of the present invention.
The low thermal expansion rectangular conductor 1 according to the present invention has a structure of a composite rectangular conductor composed of a core conductor 2 (the cross-sectional shape is a square) and a covered conductor 3. The core conductor 2 and the coated conductor 3 have different compositions, and the coated conductor 3 is formed so as to cover the outer surface of the core conductor 2. By providing the coated conductor 3 on the outer surface of the core conductor 2, even if moisture exists on the side surface of the core conductor 2, it is possible to prevent local battery formation.
[0015]
The core conductor 2 is made of a metal having a small thermal expansion coefficient, specifically, an iron-nickel alloy, and the thermal expansion coefficient is set to 10 × 10 −6 / ° C. or less. The reason is to make it equal to or less than the thermal expansion coefficient (9.6 × 10 −6 / ° C.) of 20 ° C. silicon (silicon wafer 11 in FIG. 2). And the thing with a small difference of a thermal expansion coefficient with a silicon wafer, specifically, a cross-sectional area ratio (Cu: Fe-36mass% Ni) of 2: 1 is optimal as demonstrated in an Example, The cross-sectional area ratio (Cu: Fe-36 mass% Ni) is preferably 20 to 50%. In particular, it is preferably 30 to 40%.
[0016]
The coated conductor 3 is made of a metal having a small volume resistivity, such as copper, silver, or aluminum, or an alloy containing these metals as a main component so that desired conductive characteristics can be obtained. Specifically, the volume resistivity of the coated conductor 3 is set to 5.0 μΩ · cm or less so that the efficiency of the solar cell is not lowered.
[0017]
The coated conductor 3 is preliminarily coated with “tin-lead” solder plating or lead-free solder plating mainly composed of “tin-silver-copper” on a part or the whole of the outer peripheral surface (outer surface). Can be applied. By using solder plating in this way, workability for connecting to a silicon wafer is improved.
[0018]
As described above, in the embodiment according to the present invention, an alloy (such as an iron-nickel alloy) having a small thermal expansion coefficient is used for the core conductor 2 and the thermal expansion coefficient is set to 10 × 10 −6 / ° C. or less. Thus, the thermal expansion can be reduced, and the occurrence of breakage of the silicon wafer due to the thermal expansion can be prevented. Furthermore, by using a metal or alloy having a small volume resistivity (copper, silver, gold, aluminum, or an alloy containing any one or more thereof) for the coated conductor 3, without reducing the efficiency of the solar cell, At the same time, corrosion resistance can be obtained. Further, since the coated conductor 3 uses a metal or alloy that does not contain lead, it does not cause environmental pollution.
[0019]
【Example】
Next, examples of the present invention will be described.
[Example 1]
In the low thermal expansion rectangular conductor 1 having the structure shown in FIG. 1, Fe-36 mass% Ni was used for the core conductor 2 and Cu was used for the coated conductor 3 to produce the materials shown in Table 1. In addition, the comparative example (Table 2 and Table 3 which will be described later have the same value) is a case where the rectangular conductor is only copper. Reference values (Tables 2 and 3 to be described later) are the thermal expansion coefficient and volume resistivity of Si and Fe-36 mass% Ni.
[0020]
[Table 1]
Figure 0003879666
[0021]
[Example 2]
In the composite rectangular conductor having the structure shown in FIG. 1, Fe-36 mass% Ni was applied to the core conductor 2 and Ag was applied to the coated conductor 3 to produce materials having the structure shown in Table 2.
[0022]
[Table 2]
Figure 0003879666
[0023]
Example 3
In the composite rectangular conductor having the structure shown in FIG. 1, Fe-36 mass% Ni was applied to the core conductor 2 and Al was applied to the coated conductor 3 to produce materials having the structures shown in Table 3.
[0024]
[Table 3]
Figure 0003879666
[0025]
According to each embodiment of the present invention, as is clear from Tables 1 to 3, even when the material of the covered conductor 3 is changed, the coefficient of thermal expansion is smaller than that of the comparative example regardless of the cross-sectional area ratio. However, the best results are obtained when the cross-sectional area ratio is 1: 1. In addition, it can be seen that the volume resistivity decreases as the Cu ratio increases, and that the better the cross-sectional area ratio (Cu: Fe-36 mass% Ni), the better the results. However, when considering whether or not a thermal expansion coefficient equal to or less than that of silicon can be obtained, it can be seen that the most preferable result is when the cross-sectional area ratio is 2: 1.
[0026]
In the above-described embodiment, the use of the low thermal expansion rectangular conductor for the solar cell connection lead wire has been shown. However, it can also be used as a conductor for transmitting a high-frequency signal of 1 GHz or more, for example. It is. In particular, it is suitable for applications such as wireless LAN in which transmission characteristics are significantly deteriorated due to thermal expansion.
[0027]
【The invention's effect】
As apparent from the above description, according to the low thermal expansion flat conductor of the present invention, have a thermal expansion coefficient of 10 × 10 -6 / ℃ less, iron sectional shape forms a flat rectangular - core conductor made of nickel alloy If, have a following volume resistivity 5.0μΩ · cm, to cover the entire upper and lower surfaces and both side surfaces of the core conductor, copper, silver, gold, aluminum, or mainly containing any of the metal alloy A lead wire for solar cell connection comprising a low-thermal-expansion rectangular conductor comprising a coated conductor comprising: a cross-sectional area ratio of the core conductor to the coated conductor is: coated conductor: core conductor = 1: 1 to 4: 1 since in some configurations, Ki out the thermal expansion coefficient to obtain a low thermal expansion flat conductor excellent in small corrosion resistance, it may damage the silicon wafers that are thin-board processing is eliminated.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a low thermal expansion rectangular conductor of the present invention.
FIG. 2 is a perspective view showing a schematic configuration example of a solar cell.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Low thermal expansion rectangular conductor 2 Core conductor 3 Coated conductor 10 Solar cell 11 Silicon wafer 12, 13 Ag plating part 14, 15 Lead wire for connection

Claims (2)

10×10-6/℃以下の熱膨張係数を有し、断面形状が平角形を成した鉄−ニッケル合金からなるコア導体と、
5.0μΩ・cm以下の体積抵抗率を有し、前記コア導体の上下面及び両側面の全体を覆い、銅、銀、金、アルミニウム、又は前記いずれかの金属を主成分とする合金からなる被覆導体とを備える低熱膨張平角導体からなる太陽電池接続用リード線であって、前記コア導体と前記被覆導体との断面積比が被覆導体:コア導体=1:1〜4:1であることを特徴とする太陽電池接続用リード線。
A core conductor made of an iron-nickel alloy having a thermal expansion coefficient of 10 × 10 −6 / ° C. or less and having a flat cross-sectional shape;
It has a volume resistivity of 5.0 μΩ · cm or less, covers the entire upper and lower surfaces and both side surfaces of the core conductor, and is made of copper, silver, gold, aluminum, or an alloy mainly containing any one of the above metals. a solar cell connecting lead wire made of that a coated conductor low thermal expansion flat conductor, said core conductor and the covered conductor to the cross-sectional area ratio coated conductor: core conductor = 1: 1 to 4: 1 A lead wire for connecting a solar cell, characterized in that:
前記被覆導体は、その外表面の全体又は一部が、予め錫−鉛はんだ、錫−銀−銅を主成分とする鉛フリーはんだ、又は他の鉛フリーはんだによりめっきされていることを特徴とする請求項記載の太陽電池接続用リード線。 The outer surface of the coated conductor is preliminarily plated with tin-lead solder, lead-free solder containing tin-silver-copper as a main component, or other lead-free solder. The solar cell connecting lead wire according to claim 1 .
JP2002371988A 2002-12-24 2002-12-24 Lead wire for solar cell connection Expired - Fee Related JP3879666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002371988A JP3879666B2 (en) 2002-12-24 2002-12-24 Lead wire for solar cell connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002371988A JP3879666B2 (en) 2002-12-24 2002-12-24 Lead wire for solar cell connection

Publications (2)

Publication Number Publication Date
JP2004204256A JP2004204256A (en) 2004-07-22
JP3879666B2 true JP3879666B2 (en) 2007-02-14

Family

ID=32810721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002371988A Expired - Fee Related JP3879666B2 (en) 2002-12-24 2002-12-24 Lead wire for solar cell connection

Country Status (1)

Country Link
JP (1) JP3879666B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193967A (en) * 2003-07-15 2009-08-27 Hitachi Cable Ltd Lead wire

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101072127B1 (en) * 2003-05-22 2011-10-10 가부시키가이샤 네오맥스 마테리아르 Electrode wire material and solar battery having connection lead formed of the wire material
KR101341232B1 (en) * 2004-05-21 2013-12-12 가부시키가이샤 네오맥스 마테리아르 Electrode wire for solar battery
JP4951856B2 (en) * 2005-01-06 2012-06-13 日立電線株式会社 Manufacturing method of flat conductor
WO2007037184A1 (en) * 2005-09-28 2007-04-05 Neomax Materials Co., Ltd. Process for producing electrode wire for solar battery
CN104087194B (en) 2006-04-26 2016-04-27 日立化成株式会社 Splicing tape and use its solar module
CN103068182B (en) 2006-08-29 2015-10-28 日立化成株式会社 Conductive adhesive film and solar module
US9123835B2 (en) 2006-10-10 2015-09-01 Hitachi Chemical Company, Ltd. Connected structure and method for manufacture thereof
JP4697194B2 (en) 2006-10-13 2011-06-08 日立化成工業株式会社 Solar cell connection method and solar cell module
WO2008139994A1 (en) 2007-05-09 2008-11-20 Hitachi Chemical Company, Ltd. Conductor connection member, connection structure, and solar cell module
EP2146404A1 (en) 2007-05-09 2010-01-20 Hitachi Chemical Company, Ltd. Method for connecting conductor, member for connecting conductor, connecting structure and solar cell module
WO2009063841A1 (en) 2007-11-15 2009-05-22 Hitachi Chemical Company, Ltd. Solar battery cell
KR101594973B1 (en) 2009-03-11 2016-02-17 신에쓰 가가꾸 고교 가부시끼가이샤 Connection sheet for solar battery cell electrode, process for manufacturing solar cell module, and solar cell module
CN102576766A (en) 2009-10-15 2012-07-11 日立化成工业株式会社 Conductive adhesive, solar cell, method for manufacturing solar cell, and solar cell module
JP5158238B2 (en) 2010-08-26 2013-03-06 日立化成株式会社 Adhesive film for solar cell electrode and method for producing solar cell module using the same
WO2012049984A1 (en) 2010-10-14 2012-04-19 日立化成工業株式会社 Solar cell module
EP2669346A4 (en) 2011-01-27 2015-05-20 Hitachi Chemical Co Ltd CONDUCTIVE BINDER COMPOSITION AND MANUFACTURING METHOD THEREOF, SOLDER UNIT, SOLAR CELL MODULE, AND MANUFACTURING METHOD THEREOF
WO2012102076A1 (en) 2011-01-27 2012-08-02 日立化成工業株式会社 Conductive binder composition, metal wire with conductive binder, bonded unit, and solar cell module
US9837572B2 (en) 2011-01-27 2017-12-05 Hitachi Chemical Company, Ltd. Solar cell module and method of manufacturing thereof
JPWO2012121348A1 (en) 2011-03-08 2014-07-17 日立化成株式会社 Solar cell, solar cell module, method for manufacturing solar cell, and method for manufacturing solar cell module
US9455359B2 (en) 2011-05-31 2016-09-27 Hitachi Chemical Company, Ltd. Solar battery cell, solar battery module and method of making solar battery module
CN102290125B (en) * 2011-07-13 2012-08-22 哈尔滨工业大学 Preparation method of composite solar photovoltaic confluence welding band
JP6221393B2 (en) 2012-07-26 2017-11-01 日立化成株式会社 Solar cell and solar cell module
CN103000265B (en) * 2012-11-22 2016-06-01 芜湖航天特种缆业股份有限公司 A kind of miniature hookup wire and manufacture method thereof
JP2015168803A (en) 2014-03-10 2015-09-28 日立化成株式会社 Conductive adhesive composition, connector, solar cell module and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193967A (en) * 2003-07-15 2009-08-27 Hitachi Cable Ltd Lead wire

Also Published As

Publication number Publication date
JP2004204256A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
JP3879666B2 (en) Lead wire for solar cell connection
JP5491682B2 (en) Flat conductor for solar cell, method for manufacturing the same, and lead wire for solar cell
JP6300236B2 (en) SEMICONDUCTOR DEVICE, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, AND POWER CONVERSION DEVICE
CN107251246B (en) Thermoelectric module and method of making the same
JP4329532B2 (en) Flat conductor, method for manufacturing the same, and lead wire
JP4226200B2 (en) Semiconductor device and manufacturing method thereof
JP4622375B2 (en) Flat rectangular conductor for solar cell and lead wire for solar cell
JP2003092435A (en) Thermoelectric module and its manufacturing method
CN102637662B (en) Semiconductor device using solder alloy
AU1687899A (en) Thermoelectric element
US10868230B2 (en) Thermoelectric conversion module and manufacturing method thereof
US20040244828A1 (en) Solar battery module and manufacturing method thereof
EP3940799A1 (en) Thermoelectric conversion module
JP2004204257A (en) Solder-plated composite rectangular conductor
JP4656100B2 (en) Solder-plated wire for solar cell and manufacturing method thereof
JP2643396B2 (en) Plate-shaped lead wire soldered to a ceramic capacitor
JPWO2002005609A1 (en) Connection structure and connection method between conductors
JP4699822B2 (en) Manufacturing method of semiconductor module
JP4557398B2 (en) Electronic element
JP2006140039A (en) Lead wire and solar cell using the same
JPH0997637A (en) Joint part of oxide superconductor and metal terminal, and its forming method
JP5565519B1 (en) Solar cell module
JP3155874B2 (en) Circuit board
JP2022156629A (en) Thermoelectric module and method for manufacturing thermoelectric module
JP5569642B2 (en) Flat conductor for solar cell, manufacturing method thereof, lead wire for solar cell, and solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees