[go: up one dir, main page]

JP2009193967A - Lead - Google Patents

Lead Download PDF

Info

Publication number
JP2009193967A
JP2009193967A JP2009105833A JP2009105833A JP2009193967A JP 2009193967 A JP2009193967 A JP 2009193967A JP 2009105833 A JP2009105833 A JP 2009105833A JP 2009105833 A JP2009105833 A JP 2009105833A JP 2009193967 A JP2009193967 A JP 2009193967A
Authority
JP
Japan
Prior art keywords
conductor
lead wire
thin plate
flat conductor
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009105833A
Other languages
Japanese (ja)
Other versions
JP5152091B2 (en
Inventor
Hirohisa Endo
裕寿 遠藤
Ryo Matsui
量 松井
Masayoshi Aoyama
正義 青山
Takao Ichikawa
貴朗 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2009105833A priority Critical patent/JP5152091B2/en
Publication of JP2009193967A publication Critical patent/JP2009193967A/en
Application granted granted Critical
Publication of JP5152091B2 publication Critical patent/JP5152091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Non-Insulated Conductors (AREA)
  • Photovoltaic Devices (AREA)
  • Coating With Molten Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead wire with small thermal expansion and low manufacturing cost. <P>SOLUTION: The lead wire, using a rectangular conductor structured of a clad material made by pinching the both-sides of a thin-plate material for a core with thin-plate materials for a conductor, includes a plated film covering at least side faces of an outer periphery of the rectangular conductor. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、熱膨張が小さい平角導体及びその製造方法並びにリード線に関するものである。   The present invention relates to a rectangular conductor having a small thermal expansion, a method for manufacturing the same, and a lead wire.

太陽電池として、基板上にシリコン結晶を成長させた半導体チップが使用されている。この半導体チップを切断、分割してなるシリコン結晶ウェハの所定の領域(接点領域)に、はんだ付けなどにより接続用リード線が接合され、この接続用リード線を通じて電力が伝送(出力)される。   As a solar cell, a semiconductor chip in which a silicon crystal is grown on a substrate is used. A connecting lead wire is joined by soldering or the like to a predetermined region (contact region) of the silicon crystal wafer obtained by cutting and dividing the semiconductor chip, and electric power is transmitted (output) through the connecting lead wire.

通常、接続用リード線として、導体の表面に、ウェハとの接続のためのはんだメッキ膜が形成される。例えば、導体としては、タフピッチ銅や無酸素銅などの純銅の平角導体を用い、はんだメッキ膜としては、Sn−Pb共晶はんだを用いたものがある(例えば、特許文献1参照)。また、近年、環境への配慮から、はんだメッキ膜の構成材として、Pbを含まないはんだ(Pbフリーはんだ)への切り替えが検討されている(例えば、特許文献2参照)。   Usually, as a lead wire for connection, a solder plating film for connection to a wafer is formed on the surface of a conductor. For example, a flat copper rectangular conductor such as tough pitch copper or oxygen-free copper is used as the conductor, and a Sn—Pb eutectic solder is used as the solder plating film (see, for example, Patent Document 1). In recent years, switching to solder containing no Pb (Pb-free solder) as a constituent material of the solder plating film has been studied in consideration of the environment (for example, see Patent Document 2).

ところで、太陽電池を構成する部材の内、シリコン結晶ウェハが材料コストの大半を占めていることから、製造コストの低減を図るべく、シリコン結晶ウェハの薄板化が検討されている。しかし、シリコン結晶ウェハを薄板化すると、接続用リード線のはんだ接合時における加熱プロセスや、太陽電池使用時における温度変化により、シリコン結晶ウェハに破損が生じるおそれがある。これに対処するため、接続用リード線として、熱膨張が小さいもの、また、接続用のはんだメッキ膜としては溶融温度の低いもののニーズが高まっている。   By the way, since the silicon crystal wafer occupies most of the material cost among the members constituting the solar cell, the thinning of the silicon crystal wafer is being studied in order to reduce the manufacturing cost. However, when the silicon crystal wafer is thinned, the silicon crystal wafer may be damaged due to a heating process at the time of soldering the connecting lead wires or a temperature change at the time of using the solar cell. In order to cope with this, there is an increasing need for a connection lead wire having a small thermal expansion and a connection solder plating film having a low melting temperature.

熱膨張が小さいリード線の一例として、インバー(登録商標)などの熱膨張が小さい材料を銅材でクラッドしてなる条(銅−インバー(登録商標)−銅)で、リードフレームを形成したものがある(例えば、特許文献3参照)。   As an example of a lead wire having a small thermal expansion, a lead frame is formed by a strip (copper-invar (registered trademark) -copper) obtained by cladding a material having a small thermal expansion such as Invar (registered trademark) with a copper material. (For example, refer to Patent Document 3).

特開平11−21660号公報Japanese Patent Laid-Open No. 11-21660 特開2002−263880号公報JP 2002-263880 A 特開2002−164560号公報JP 2002-164560 A

ところで、特許文献3記載のリードフレームは、回路形成時に打抜き加工を行うものであるため、無駄になる材料が大量に生じてしまい、製造コストの上昇を招くという問題があった。   However, since the lead frame described in Patent Document 3 performs punching at the time of circuit formation, there is a problem in that a large amount of wasted material is generated, resulting in an increase in manufacturing cost.

また、特許文献3記載のリードフレームなどのように、銅−インバー(登録商標)−銅をクラッドしてなるクラッド材で構成した平角導体を用いたリード線を、シリコン結晶ウェハの接点領域に対してはんだ付けし易いように、引っ張り応力を負荷して直線状に矯正しようとすると、リード線に反りが生じる場合があった。反りが生じたリード線は、シリコン結晶ウェハに対して、良好にはんだ付けを行うことができないという問題があった。   Further, as in the lead frame described in Patent Document 3, a lead wire using a rectangular conductor made of a clad material obtained by clad copper-invar (registered trademark) -copper is connected to a contact region of a silicon crystal wafer. In order to facilitate soldering, if a tensile stress is applied to correct straight lines, the lead wires may be warped. There is a problem in that the warped lead wire cannot be satisfactorily soldered to the silicon crystal wafer.

以上の事情を考慮して創案された本発明の一の目的は、熱膨張が小さく、製造コストが安価な平角導体及びその製造方法を提供することにある。   An object of the present invention, which was created in view of the above circumstances, is to provide a rectangular conductor having a low thermal expansion and a low manufacturing cost, and a method for manufacturing the same.

また、本発明の他の目的は、熱膨張が小さく、製造コストが安価な平角導体を用いたリード線を提供することにある。   Another object of the present invention is to provide a lead wire using a rectangular conductor with low thermal expansion and low manufacturing cost.

上記目的を達成すべく本発明に係るリード線は、コア用薄板材の両面を導体用薄板材で挟み込んでなるクラッド材で構成される平角導体を用いたリード線において、上記平角導体の外周の少なくとも側面を覆うめっき膜を備えたものである。   In order to achieve the above object, the lead wire according to the present invention is a lead wire using a flat conductor composed of a clad material in which both surfaces of a core thin plate material are sandwiched between conductor thin plate materials. A plating film covering at least the side surface is provided.

また、本発明に係るリード線は、上記コア用薄板材は熱膨張係数が10(×10-6/℃)以下であり、上記各導体用薄板材は体積抵抗率が5.0(μΩ・cm)以下であることが望ましい。 In the lead wire according to the present invention, the core thin plate material has a coefficient of thermal expansion of 10 (× 10 −6 / ° C.) or less, and each of the conductor thin plate materials has a volume resistivity of 5.0 (μΩ · cm) or less.

さらに、本発明に係るリード線は、上記導体用薄板材が、以下に示す(1)式を満足する結晶配向性を有することが望ましい。
R=I(111)/{I(200)+I(111)}≧0.15…(1)
ここで、I(111):面(111)のX線回折強度
I(200):面(200)のX線回折強度
Furthermore, in the lead wire according to the present invention, it is desirable that the thin sheet material for conductor has a crystal orientation satisfying the following expression (1).
I R = I (111) / {I (200) + I (111)} ≧ 0.15 (1)
Where I (111): X-ray diffraction intensity of surface (111)
I (200): X-ray diffraction intensity of surface (200)

本発明によれば、以下に示す効果を発揮する。
(1) 最外表面へのコア用薄板材の露出が全くない平角導体を得ることができる。
(2) 平角導体に引張応力を負荷した際に、反りが生じることがない。
According to the present invention, the following effects are exhibited.
(1) A rectangular conductor in which the core sheet material is not exposed to the outermost surface can be obtained.
(2) No warpage occurs when a tensile stress is applied to a flat conductor.

本発明の好適一実施の形態に係る平角導体の横断面図である。It is a cross-sectional view of a flat conductor according to a preferred embodiment of the present invention. 図1の平角導体を用いたリード線の横断面図である。It is a cross-sectional view of the lead wire using the flat conductor of FIG. 図1の平角導体の製造方法に用いる切断装置の斜視概略図である。It is a perspective schematic diagram of the cutting device used for the manufacturing method of the flat conductor of FIG. 図1の平角導体の製造方法に用いる切断装置の部分拡大横断面図である。It is the elements on larger scale of the cutting device used for the manufacturing method of the flat conductor of FIG. 本発明の別の好適一実施の形態に係る平角導体の横断面図である。It is a cross-sectional view of a flat conductor according to another preferred embodiment of the present invention. 図5の平角導体を用いたリード線の横断面図である。It is a cross-sectional view of a lead wire using the flat conductor of FIG. スリット法による切断方法に用いる切断装置の部分拡大横断面図である。It is the elements on larger scale of a cutting device used for the cutting method by a slit method. クラッド材で構成される平角導体の横断面図である。It is a cross-sectional view of a flat conductor composed of a clad material.

以下、本発明の好適一実施の形態を添付図面に基づいて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described with reference to the accompanying drawings.

(第1の実施の形態)
本発明者らは、以前、図8に示す銅材81a−インバー(登録商標)材82−銅材81bのクラッド材である平角導体80に関する特許出願を行った。この平角導体80は、クラッド材を、金属材料の裁断(切断)法として従来一般的に使われているスリット法を用いて裁断することで得られる。具体的には、図7に示すように、クラッド材70を、上下一対の回転刃71a,71bを2組(図7中では1組のみ図示)用いて図面と垂直な方向に連続的に切断することで、図8に示した平角導体80が得られる。
(First embodiment)
The inventors previously filed a patent application regarding a flat conductor 80 that is a clad material of a copper material 81a-Invar (registered trademark) material 82-copper material 81b shown in FIG. The flat conductor 80 can be obtained by cutting a clad material using a slit method that has been generally used as a method of cutting (cutting) a metal material. Specifically, as shown in FIG. 7, the clad material 70 is continuously cut in a direction perpendicular to the drawing using two pairs of upper and lower rotary blades 71a and 71b (only one set is shown in FIG. 7). Thus, the rectangular conductor 80 shown in FIG. 8 is obtained.

ここで、回転刃71a,71bの各エッジ部72は、研削等によって鋭利な状態、略直角に仕上げられている。よって、切断により得られる平角導体80の各切断端面(側端面)83は、上下面に対して略直角に形成され、各側端面83において銅材81a,81bとインバー(登録商標)材82とが完全に露出する。銅材81a,81bとインバー(登録商標)材82との各接合部は、異種材料接触部であることから、各接合部に水分が接触することによって局部電池化が起こる。その結果、各接合部において腐食が生じるおそれがあった。   Here, each edge part 72 of the rotary blades 71a and 71b is sharpened by grinding or the like and finished in a substantially right angle. Therefore, each cut end face (side end face) 83 of the flat conductor 80 obtained by cutting is formed substantially perpendicular to the upper and lower faces, and the copper materials 81a and 81b and the Invar (registered trademark) material 82 are formed on each side end face 83. Is completely exposed. Since each joining part of copper material 81a, 81b and Invar (registered trademark) material 82 is a different material contact part, local battery formation occurs when moisture contacts each joining part. As a result, there is a possibility that corrosion occurs at each joint.

そこで、本発明の好適一実施の形態に係る平角導体は、図1に示すように、コア用薄板材11の両面を導体用薄板材12a,12bで挟み込んでなるクラッド材で構成され、コア用薄板材11の両側端面(図1中の左右両端面)を各導体用薄板材12a,12bで覆設し(包み込み)、その最外表面におけるコア用薄板材11の露出を無くしたものである。導体用薄板材12a,12bの各両端は閉じ合わさり、迎合部(閉じ合わせ部)13が形成される。   Therefore, as shown in FIG. 1, the rectangular conductor according to a preferred embodiment of the present invention is composed of a clad material in which both surfaces of a core thin plate material 11 are sandwiched between conductor thin plate materials 12a and 12b. Both side end faces (left and right end faces in FIG. 1) of the thin plate material 11 are covered (wrapped) with the thin plate materials 12a and 12b for conductors, and the core thin plate material 11 is not exposed on the outermost surface. . Both ends of the conductor thin plates 12a and 12b are closed to form a reception portion (closing portion) 13.

平角導体10は、クラッド材をA,Bの位置で矢印D1の方向に切断してなるものである。平角導体10におけるコア用薄板材11及び導体用薄板材12a,12bは、幅方向(図1中では左右方向)の両端部が矢印D1の向きに緩やかに湾曲形成されているが、導体用薄板材12aの下面は幅方向全体に亘って平坦に形成されている。   The flat conductor 10 is obtained by cutting a clad material at the positions A and B in the direction of the arrow D1. The core thin plate material 11 and the conductor thin plate materials 12a and 12b in the flat conductor 10 are gently curved in the direction of the arrow D1 at both ends in the width direction (left and right direction in FIG. 1). The lower surface of the plate 12a is formed flat over the entire width direction.

コア用薄板材11は、熱膨張係数が10(×10-6/℃)以下の部材、例えば、Fe−Ni合金材で構成され、好ましくはインバー(登録商標)が挙げられる。また、導体用薄板材12a,12bは、体積抵抗率が5.0(μΩ・cm)以下の部材、例えば、Cu、Ag、Au、Al、又はそれらの金属を含む合金材で構成され、コストパフォーマンスを重視する場合はCu又はCu合金が好ましく、低体積抵抗率(高導電性)を重視する場合はAg又はAg合金が好ましい。さらに、コア用薄板材11は、ビッカース硬度が150Hv以下、導体用薄板材12a,12bは、ビッカース硬度が100Hv以下であることが好ましい。 The core thin plate material 11 is made of a member having a thermal expansion coefficient of 10 (× 10 −6 / ° C.) or less, for example, an Fe—Ni alloy material, preferably Invar (registered trademark). The conductor thin plates 12a and 12b are made of a member having a volume resistivity of 5.0 (μΩ · cm) or less, such as Cu, Ag, Au, Al, or an alloy material containing such a metal, and cost. Cu or Cu alloy is preferable when performance is important, and Ag or Ag alloy is preferable when low volume resistivity (high conductivity) is important. Furthermore, it is preferable that the core thin plate material 11 has a Vickers hardness of 150 Hv or less, and the conductor thin plate materials 12 a and 12 b have a Vickers hardness of 100 Hv or less.

最良の形態の平角導体10は、インバー(登録商標)で構成されるコア用薄板材11と、Ag又はAg合金で構成される導体用薄板材12a,12bとを組み合わせて形成したものである。   The flat rectangular conductor 10 in the best form is formed by combining a core thin plate 11 made of Invar (registered trademark) and conductor thin plates 12a, 12b made of Ag or an Ag alloy.

この図1に示した平角導体10の外周全体を、図2に示すようにはんだ膜21でメッキ被覆することで、リード線20が得られる。ここで、はんだ膜21による平角導体10のメッキ被覆は、平角導体10の外周の一部(例えば、平角導体10の上面及び下面)だけであってもよい。このリード線20を、シリコン結晶ウェハ(太陽電池モジュール(図示せず))におけるセル面の所定の接点領域(例えば、Agメッキ領域)及びフレーム部材(例えば、リードフレーム)の所定の接点領域に接続することで、太陽電池アセンブリが得られる。セル面及びリードフレームの所定の接点領域にも、接合用のはんだ膜を設けていてもよい。   The lead wire 20 is obtained by plating the entire outer periphery of the rectangular conductor 10 shown in FIG. 1 with a solder film 21 as shown in FIG. Here, the plating coating of the flat conductor 10 with the solder film 21 may be only a part of the outer periphery of the flat conductor 10 (for example, the upper surface and the lower surface of the flat conductor 10). The lead wire 20 is connected to a predetermined contact region (for example, an Ag plating region) on a cell surface in a silicon crystal wafer (solar cell module (not shown)) and a predetermined contact region on a frame member (for example, a lead frame). By doing so, a solar cell assembly is obtained. Solder films for bonding may also be provided in predetermined contact areas of the cell surface and the lead frame.

はんだ膜21は、Sn-Pb共晶はんだや、Pbフリーはんだで構成され、好ましくはSn-Ag-Cu系のPbフリーはんだが挙げられる。また、Sn-Ag-Cu系のPbフリーはんだは、更にIn及び/又はPを含んでいてもよい。Inの含有量は1〜10重量%、Pの含有量は0.005〜0.015重量%が好ましい。例えば、Sn-Ag-Cu系のPbフリーはんだとしては、
Sn-3(又は4)Ag-0.5Cu-0.01P、
Sn-3(又は4)Ag-0.5Cu-3In、
Sn-3(又は4)Ag-0.5Cu-3In-0.01P、
Sn-3(又は4)Ag-0.5Cu-5In、
Sn-3(又は4)Ag-0.5Cu-5In-0.01P、
Sn-3(又は4)Ag-0.5Cu-8In、
Sn-3(又は4)Ag-0.5Cu-8In-0.01P、
等が挙げられる(単位はいずれも重量%)。
The solder film 21 is composed of Sn—Pb eutectic solder or Pb free solder, and preferably Sn—Ag—Cu Pb free solder. The Sn—Ag—Cu-based Pb-free solder may further contain In and / or P. The In content is preferably 1 to 10% by weight, and the P content is preferably 0.005 to 0.015% by weight. For example, Sn-Ag-Cu Pb-free solder
Sn-3 (or 4) Ag-0.5Cu-0.01P,
Sn-3 (or 4) Ag-0.5Cu-3In,
Sn-3 (or 4) Ag-0.5Cu-3In-0.01P,
Sn-3 (or 4) Ag-0.5Cu-5In,
Sn-3 (or 4) Ag-0.5Cu-5In-0.01P,
Sn-3 (or 4) Ag-0.5Cu-8In,
Sn-3 (or 4) Ag-0.5Cu-8In-0.01P,
(The unit is weight%).

一般に、Pbフリーはんだは、Sn-Pb共晶はんだに比べて溶融温度が高いため、はんだ接合により、接続部材(セル面及びリードフレームの接点領域)へのダメージが懸念される。しかし、Pbフリーはんだの中で、Sn-3Ag-0.5Cu系はんだ及びSn-4Ag-0.5Cu系はんだ(単位はいずれも重量%)は、溶融温度が低いという特長を有している。また、これらのはんだに更にIn及び/又はPを含ませることによって、はんだの溶融温度を更に低くすることができる。   In general, Pb-free solder has a higher melting temperature than Sn—Pb eutectic solder, so there is a concern about damage to the connection member (cell surface and lead frame contact area) due to solder bonding. However, among Pb-free solders, Sn-3Ag-0.5Cu solder and Sn-4Ag-0.5Cu solder (both units are weight%) have a feature that the melting temperature is low. Moreover, by further including In and / or P in these solders, the melting temperature of the solder can be further lowered.

このため、これらのSn-Ag-Cu系のPbフリーはんだを用いることで、はんだ接合時におけるシリコンセルの変形や破損のおそれを低減させることができる。ここで、Inの含有量を1〜10重量%としたのは、10重量%を超えて含有させると、溶融はんだの粘性が高くなり、はんだ付け作業性が低下するためである。また、Pの含有量を0.005〜0.015重量%とすることで、はんだ付け作業時におけるはんだの酸化変色を防止することができるため、接続(はんだ付け)の信頼性を向上させることができる。   For this reason, by using these Sn-Ag-Cu Pb-free solders, it is possible to reduce the risk of deformation or breakage of the silicon cell during solder bonding. Here, the reason why the content of In is set to 1 to 10% by weight is that when the content exceeds 10% by weight, the viscosity of the molten solder becomes high and the soldering workability decreases. Further, by setting the P content to 0.005 to 0.015% by weight, it is possible to prevent oxidative discoloration of the solder during the soldering operation, so that the reliability of connection (soldering) can be improved.

はんだ膜21の膜厚は、平角導体10の厚さの1/30〜1/3、好ましくは1/10〜1/3である。   The film thickness of the solder film 21 is 1/30 to 1/3, preferably 1/10 to 1/3, of the thickness of the flat conductor 10.

最良の形態のリード線20は、インバー(登録商標)で構成されるコア用薄板材11と、Ag又はAg合金で構成される導体用薄板材12a,12bとを組み合わせて形成した平角導体10の外周に、平角導体10の厚さの1/5の膜厚でSn-Ag-Cu系のはんだ膜21をメッキ被覆したものである。   The lead wire 20 of the best form is a flat conductor 10 formed by combining a thin sheet material for core 11 made of Invar (registered trademark) and thin sheet materials for conductor 12a, 12b made of Ag or an Ag alloy. A Sn—Ag—Cu-based solder film 21 is plated on the outer periphery to a thickness of 1/5 of the thickness of the flat conductor 10.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

本実施の形態に係る平角導体10においては、コア用薄板材11の外周全体を導体用薄板材12a,12bで覆っていることから、クラッド材であるにも関わらず、その最外表面に異種材料接触部は全く露出していない。その結果、平角導体10が水分と接触したとしても、平角導体10の最外表面において局部電池化が起こることはなく、延いては腐食が生じることもない。よって、耐食性が良好な平角導体10となる。   In the rectangular conductor 10 according to the present embodiment, since the entire outer periphery of the core thin plate material 11 is covered with the conductor thin plate materials 12a and 12b, the outermost surface of the core thin plate material 11 is dissimilar to the clad material. The material contact is not exposed at all. As a result, even if the flat conductor 10 comes into contact with moisture, local battery formation does not occur on the outermost surface of the flat conductor 10, and corrosion does not occur. Therefore, the flat conductor 10 having good corrosion resistance is obtained.

また、本実施の形態に係る平角導体10においては、その最外表面において局部電池化が起こることはないことから、平角導体10の外周全体をはんだ膜21でメッキ被覆しなくてもリード線として使用可能である。よって、はんだ膜21による平角導体10のメッキ被覆は、平角導体10の一部(各接点領域との接触部近傍)だけで十分である。その結果、リード線20のコストダウンを図ることができる。更に、セル面及びリードフレームの所定の接点領域に、接合用のはんだ膜が設けてある場合、平角導体10をそのまま、耐食性が良好なリード線として適用することもできる。   In addition, in the flat conductor 10 according to the present embodiment, since a local battery does not occur on the outermost surface, the lead conductor can be formed without plating the entire outer periphery of the flat conductor 10 with the solder film 21. It can be used. Therefore, the plating coating of the flat conductor 10 with the solder film 21 is sufficient for only a part of the flat conductor 10 (in the vicinity of the contact portion with each contact region). As a result, the cost of the lead wire 20 can be reduced. Furthermore, when a solder film for bonding is provided in a predetermined contact area of the cell surface and the lead frame, the rectangular conductor 10 can be applied as it is as a lead wire having good corrosion resistance.

さらに、本実施の形態に係る平角導体10を用いたリード線20は、耐食性が良好であるため、このリード線20を用いて太陽電池アセンブリを構成することで、太陽電池アセンブリを長期間使用した際に、発電効率の低下が生じるおそれもなく、長期信頼性の向上を図ることができる。   Furthermore, since the lead wire 20 using the flat conductor 10 according to the present embodiment has good corrosion resistance, the solar cell assembly is used for a long time by configuring the solar cell assembly using the lead wire 20. In this case, the long-term reliability can be improved without fear of causing a decrease in power generation efficiency.

次に、本実施の形態に係る平角導体の製造方法を、添付図面に基づいて説明する。   Next, the manufacturing method of the flat conductor which concerns on this Embodiment is demonstrated based on an accompanying drawing.

本実施の形態に係る平角導体10の製造方法は、コア用薄板材の両面を導体用薄板材で挟み込んでなるクラッド材を、スリット法を用いて切断するものである。   The manufacturing method of the flat conductor 10 according to the present embodiment cuts a clad material formed by sandwiching both surfaces of a core thin plate material with a conductor thin plate material using a slit method.

具体的には、先ず、コア用薄板材の両面を導体用薄板材で挟み込んだ後、冷間での圧延加工及び熱処理を適宜繰り返し、図3に示すように、所望の厚さのクラッド材30を得る。この時、コア用薄板材としてはビッカース硬度が150Hv以下のものを、導体用薄板材としてはビッカース硬度が100Hv以下のものを用いる。また、コア用薄板材としては熱膨張係数が10(×10-6/℃)以下のものを、導体用薄板材としては体積抵抗率が5.0(μΩ・cm)以下のものを用いる。 Specifically, first, the both sides of the core thin plate material are sandwiched between the conductor thin plate materials, and then cold rolling and heat treatment are repeated as appropriate, and as shown in FIG. Get. At this time, a Vickers hardness of 150 Hv or less is used as the core thin plate material, and a Vickers hardness of 100 Hv or less is used as the conductor thin plate material. In addition, as the thin plate material for the core, one having a thermal expansion coefficient of 10 (× 10 −6 / ° C.) or less is used, and as the thin plate material for the conductor, one having a volume resistivity of 5.0 (μΩ · cm) or less is used.

次に、図3,図4に示すように、得られたクラッド材30を、上下一対の回転刃31a,31bを2組有する切断装置31を用い、一方の回転刃31a,31aを、他方の回転刃31b,31bの方向(図3中では矢印D2の方向)に向かって移動させると共に、矢印D3の方向に走行させる。この時、少なくとも一方の回転刃31a,31b(図4中では回転刃31aのみ)の各エッジ部32には、半径rの曲面加工(R加工)が施されており、各エッジ部32は曲面状に面取りされる。半径rは、クラッド材30における板厚tの1/50以上(r≧t/50)とされる。移動させる回転刃は、曲面加工を施した方の回転刃とし、回転刃31a,31bの両方にR加工が施されている場合、両方の回転刃31a,31bを互いに近付く方向に移動させてもよい。   Next, as shown in FIGS. 3 and 4, the obtained clad material 30 is cut using a cutting device 31 having two pairs of upper and lower rotary blades 31a and 31b, and one rotary blade 31a and 31a is connected to the other. While moving in the direction of the rotary blades 31b, 31b (the direction of the arrow D2 in FIG. 3), it is caused to travel in the direction of the arrow D3. At this time, each edge portion 32 of at least one of the rotary blades 31a and 31b (only the rotary blade 31a in FIG. 4) is subjected to curved surface processing (R processing) with a radius r, and each edge portion 32 is curved. Chamfered into a shape. The radius r is 1/50 or more (r ≧ t / 50) of the plate thickness t of the clad material 30. The rotating blade to be moved is the one that has been subjected to curved surface processing. When both of the rotating blades 31a and 31b are subjected to R machining, even if both the rotating blades 31a and 31b are moved toward each other, Good.

この切断装置31を用いて、硬度を調整したクラッド材30を切断することによって、切断部35において切断ダレ41が生じる。この切断ダレ41によって、クラッド材30における導体用薄板材(図1中では導体用薄板材12b)及びコア用薄板材(図1中ではコア用薄板材11)は、回転刃31bの方に向かって移動する回転刃31aのエッジ部32に引きずられるように(巻き込まれるように)変形する。各板材の変形の際、変形量は、コア用薄板材よりも軟質な導体用薄板材の方が大きい。その結果、コア用薄板材の側面を覆うように導体用薄板材が変形し、図1に示した平角導体10が得られる。   By using the cutting device 31 to cut the clad material 30 with adjusted hardness, a cutting sag 41 is generated in the cutting part 35. By this cutting sag 41, the conductor thin plate material (conductor thin plate material 12b in FIG. 1) and the core thin plate material (core thin plate material 11 in FIG. 1) in the clad material 30 face toward the rotary blade 31b. It is deformed so as to be dragged (entrained) by the edge part 32 of the rotary blade 31a that moves. When each plate material is deformed, the amount of deformation is greater in the soft conductor thin plate material than in the core thin plate material. As a result, the conductor thin plate is deformed so as to cover the side surface of the core thin plate, and the flat conductor 10 shown in FIG. 1 is obtained.

ここで、コア用薄板材11のビッカース硬度を150Hv以下、導体用薄板材12a,12bのビッカース硬度を100Hv以下とそれぞれ規定した理由を、以下に述べる。各々のビッカース硬度を規定値以下とすることで、クラッド材30に柔軟性が付与され、靭性が向上することから、切断時、切断部35において粘りが生じ、切断ダレ41が生じ易くなる。各々のビッカース硬度が規定値を超えると、クラッド材30の剛性が高くなりすぎて、切断部35において切断ダレ41が生じにくくなってしまい、図1に示した閉じ合わせ部13が得られなくなる。   The reason why the Vickers hardness of the core thin plate material 11 is defined as 150 Hv or less and the Vickers hardness of the conductor thin plate materials 12 a and 12 b is defined as 100 Hv or less will be described below. By setting each Vickers hardness to a specified value or less, flexibility is imparted to the clad material 30 and toughness is improved, so that at the time of cutting, the cut portion 35 becomes sticky and the cutting sag 41 tends to occur. If each Vickers hardness exceeds a specified value, the rigidity of the clad material 30 becomes too high, and the cutting sag 41 hardly occurs in the cutting part 35, and the closing part 13 shown in FIG. 1 cannot be obtained.

また、少なくとも一方の回転刃31a,31b(図4中では回転刃31aのみ)の各エッジ部32に、クラッド材30の板厚tの1/50以上、好ましくは1/30〜1/10の大きさを有する半径rの曲面加工を施すことによって、クラッド材30の切断部35における切り口の角度が鈍角となる。よって、切断部35に十分な切断ダレ41を生じさせることができる。その結果、切断ダレ41した導体用薄板材が、図1に示したように、コア用薄板材11の全体、特に側端面を覆うことが可能となる。半径rの大きさが、板厚tの1/50未満だと、切断部35において切断ダレ41が生じにくくなってしまい、図1に示した閉じ合わせ部13が得られなくなる。   Moreover, at each edge part 32 of at least one rotary blade 31a, 31b (only the rotary blade 31a in FIG. 4), it is 1/50 or more of the plate | board thickness t of the clad material 30, Preferably it is 1 / 30-1 / 10. By performing curved surface processing with a radius r having a size, the angle of the cut edge in the cut portion 35 of the clad material 30 becomes an obtuse angle. Therefore, a sufficient cutting sag 41 can be generated in the cutting part 35. As a result, as shown in FIG. 1, the conductor thin plate material that has been cut and sag 41 can cover the entire core thin plate material 11, particularly the side end surfaces. When the size of the radius r is less than 1/50 of the plate thickness t, the cutting sag 41 hardly occurs in the cutting part 35, and the closing part 13 shown in FIG. 1 cannot be obtained.

切断装置(又は裁断装置)としては、スリット法を用いた回転刃31a,31bに特に限定するものではなく、上下の金型を用いた打抜き加工機など、一対の切断刃(又は裁断刃)を用いて切断、裁断を行う方法であれば、同様の効果が得られる。打抜き加工機の場合、上下の各金型の内、少なくとも一方の金型の縁に、クラッド材30の板厚tの1/50以上の大きさを有する半径rの曲面加工を施す。   The cutting device (or cutting device) is not particularly limited to the rotary blades 31a and 31b using the slit method, and a pair of cutting blades (or cutting blades) such as a punching machine using upper and lower molds. The same effect can be obtained if the method is used for cutting and cutting. In the case of a punching machine, a curved surface with a radius r having a size of 1/50 or more of the plate thickness t of the clad material 30 is applied to the edge of at least one of the upper and lower molds.

最良の形態の平角導体10の製造方法は、少なくとも一方の回転刃31a,31bの各エッジ部32に、クラッド材30の板厚tの1/30〜1/10の大きさを有する半径rの曲面加工を施してなる図3に示す切断装置31を用い、ビッカース硬度が110〜130Hvのコア用薄板材11と、ビッカース硬度が60〜80Hvの導体用薄板材12a,12bとを組み合わせて形成したクラッド材30を切断するものである。   The manufacturing method of the flat conductor 10 of the best mode is that each edge portion 32 of at least one of the rotary blades 31a and 31b has a radius r having a size of 1/30 to 1/10 of the plate thickness t of the clad material 30. Using the cutting device 31 shown in FIG. 3 formed by curved surface processing, the core thin plate material 11 having a Vickers hardness of 110 to 130 Hv and the conductive thin plate materials 12 a and 12 b having a Vickers hardness of 60 to 80 Hv are formed in combination. The clad material 30 is cut.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

本実施の形態に係る平角導体10の製造方法においては、クラッド材30に対して切断加工を施すだけで、同時に、コア用薄板材の切断端面を導体用薄板材で覆うことができる。つまり、切断加工以外に特別な加工を施すことなく、図1に示したコア用薄板材11の両側端面が各導体用薄板材12a,12bで包み込まれた閉じ合わせ部13を有する平角導体10を得ることができる。よって、熱膨張が小さく、耐食性が良好な平角導体10を、安価に製造することが可能となる。   In the manufacturing method of the flat conductor 10 according to the present embodiment, the cut end surface of the core thin plate material can be covered with the conductor thin plate material at the same time by merely cutting the clad material 30. That is, the rectangular conductor 10 having the closing portion 13 in which both side end surfaces of the core thin plate material 11 shown in FIG. 1 are wrapped with the respective conductive thin plate materials 12a and 12b without performing special processing other than the cutting processing. Obtainable. Therefore, it becomes possible to manufacture the flat conductor 10 with low thermal expansion and good corrosion resistance at low cost.

次に、本発明の他の実施の形態を添付図面に基づいて説明する。   Next, another embodiment of the present invention will be described with reference to the accompanying drawings.

(第2の実施の形態)
本発明の別の好適一実施の形態に係る平角導体の横断面図を図5に示す。
(Second Embodiment)
A cross-sectional view of a flat conductor according to another preferred embodiment of the present invention is shown in FIG.

図5に示すように、本実施の形態に係る平角導体50は、熱膨張係数が10(×10-6/℃)以下のコア用薄板材51の両面を、体積抵抗率が5.0(μΩ・cm)以下の導体用薄板材52a,52bで挟み込んでなるクラッド材で構成されるものである。また、導体用薄板材52a,52bがランダムで等方的な結晶配向性を有しており、以下の(1)式に示すIRの値が0.15以上、好ましくは0.20〜0.70、特に好ましくは0.35〜0.70のものである。 As shown in FIG. 5, the flat conductor 50 according to the present embodiment has both sides of a core thin plate 51 having a thermal expansion coefficient of 10 (× 10 −6 / ° C.) or less and a volume resistivity of 5.0 ( [mu] [Omega] .cm) or less, it is composed of a clad material sandwiched between thin conductor plates 52a and 52b. The conductor thin plate member 52a, 52b has a isotropic crystal orientation at random, the following (1) the value of I R shown in the expression is 0.15 or more, preferably 0.20 to 0 70, particularly preferably 0.35 to 0.70.

R=I(111)/{I(200)+I(111)}≧0.15…(1)
ここで、I(111):面(111)のX線回折強度
I(200):面(200)のX線回折強度
コア用薄板材51及び導体用薄板材52a,52bとしては、前実施の形態に係る平角導体10のコア用薄板材11及び導体用薄板材12a,12bと同様のものを適用することができる。
I R = I (111) / {I (200) + I (111)} ≧ 0.15 (1)
Where I (111): X-ray diffraction intensity of surface (111)
I (200): X-ray diffraction intensity of the surface (200) As the core thin plate material 51 and the conductor thin plate materials 52a and 52b, the core thin plate material 11 and the conductor thin plate material of the flat conductor 10 according to the previous embodiment. The same thing as 12a, 12b is applicable.

本実施の形態に係る平角導体50は、図8に示した平角導体80と同様の製造方法(スリット法)、打ち抜き加工法などにより製造されるものであって、特に限定するものではない。   The rectangular conductor 50 according to the present embodiment is manufactured by the same manufacturing method (slit method) and punching method as the rectangular conductor 80 shown in FIG. 8, and is not particularly limited.

最良の形態の平角導体50は、インバー(登録商標)で構成されるコア用薄板材51と、Ag又はAg合金で構成され、かつ、IR値が0.35〜0.70の導体用薄板材52a,52bとを組み合わせて形成したものである。 Rectangular conductor 50 of the best mode comprises a core sheet material 51 composed of invar (registered trademark), consists of Ag or an Ag alloy, and, I R value is thin conductors of 0.35 to 0.70 It is formed by combining the plate materials 52a and 52b.

この図5に示した平角導体50の外周全体を、図2に示したはんだ膜21でメッキ被覆することで、図6に示すようにリード線60が得られる。ここで、はんだ膜21による平角導体50のメッキ被覆は、平角導体50の外周の一部(例えば、平角導体50の上面及び下面)だけであってもよい。このリード線60を、シリコン結晶ウェハ(太陽電池モジュール(図示せず))におけるセル面の所定の接点領域(例えば、Agメッキ領域)及びフレーム部材の所定の接点領域に接続することで、太陽電池アセンブリが得られる。   A lead wire 60 is obtained as shown in FIG. 6 by plating the entire outer periphery of the flat conductor 50 shown in FIG. 5 with the solder film 21 shown in FIG. Here, the plating coating of the flat conductor 50 with the solder film 21 may be only a part of the outer periphery of the flat conductor 50 (for example, the upper surface and the lower surface of the flat conductor 50). The lead wire 60 is connected to a predetermined contact region (for example, an Ag plating region) on the cell surface of the silicon crystal wafer (solar cell module (not shown)) and a predetermined contact region of the frame member, so that the solar cell An assembly is obtained.

最良の形態のリード線60は、インバー(登録商標)で構成されるコア用薄板材51と、Ag又はAg合金で構成され、かつ、IR値が0.35〜0.70の導体用薄板材52a,52bとを組み合わせて形成した平角導体50の外周に、平角導体50の厚さの1/5の膜厚でSn-Ag-Cu系のはんだ膜21をメッキ被覆したものである。 BEST MODE lead 60 includes a core sheet material 51 composed of invar (registered trademark), consists of Ag or an Ag alloy, and, I R value is thin conductors of 0.35 to 0.70 The Sn—Ag—Cu-based solder film 21 is plated on the outer periphery of the flat conductor 50 formed by combining the plate materials 52 a and 52 b with a film thickness that is 1/5 of the thickness of the flat conductor 50.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

導体用薄板材52a,52bのIR値を0.15以上に規定している理由を以下に述べる。導体用薄板材52a,52bの結晶粒の面内配向(クラッド材表面の法線方向配向)は、主として面(111)及び面(200)が支配的となっている。前実施の形態において述べたように、クラッド材は、コア用薄板材51を導体用薄板材52a,52bで挟み込んでなるものに、冷間での圧延加工及び熱処理を適宜繰り返すことで得られるものである。 Conductor thin plate material 52a, the reason for defining the I R value of 52b to 0.15 or more will be described below. The in-plane orientation (normal orientation of the clad material surface) of the crystal grains of the conductor thin plates 52a and 52b is mainly dominated by the plane (111) and the plane (200). As described in the previous embodiment, the clad material is obtained by appropriately repeating the cold rolling and heat treatment on the core thin plate material 51 sandwiched between the conductor thin plate materials 52a and 52b. It is.

このクラッド材の製造時、導体用薄板材52a,52bにおける再結晶粒の集合組織の面内配向で、面(200)が支配的になると、言い換えるとIRが0.15未満になると、再結晶粒が粗大化してしまう。その結果、図5に示した平角導体50を用いたリード線60を、シリコン結晶ウェハの接点領域に対してはんだ付けし易いように、引っ張り応力を負荷して直線状に矯正しようとすると、リード線60に反りが生じ易くなってしまう。   When the clad material is manufactured, if the plane (200) becomes dominant due to the in-plane orientation of the texture of recrystallized grains in the conductor thin plate materials 52a and 52b, in other words, if IR becomes less than 0.15, recrystallization will occur. The grains become coarse. As a result, if the lead wire 60 using the flat conductor 50 shown in FIG. 5 is to be soldered to the contact region of the silicon crystal wafer and applied with a tensile stress, the lead wire 60 is straightened. The line 60 is likely to be warped.

本実施の形態に係る平角導体50においては、導体用薄板材52a,52bのIR値を0.15以上に規定していることで、引っ張り応力を負荷して直線状に矯正する際に反りが生じることはない。よって、この平角導体50を用いたリード線60は、はんだ付け性が良好となる。 In the rectangular conductor 50 of the present embodiment, by defining the conductive thin plate material 52a, 52 b I R value of 0.15 or more, warpage when correcting linearly by the tensile stress load Will not occur. Therefore, the lead wire 60 using this flat conductor 50 has good solderability.

また、本実施の形態に係る平角導体50は、中心部が熱膨張が小さいコア用薄板材51で、外周部が体積抵抗率の低い(導電率が良好な)導体用薄板材52a,52bで構成されている。このため、太陽電池アセンブリを構成するシリコン結晶ウェハを薄板化したとしても、シリコン結晶ウェハと平角導体50を用いたリード線60とのはんだ接合時に、シリコン結晶ウェハに破損が生じるおそれはなく、かつ、太陽電池アセンブリで得られた電力を殆ど損失させることなく出力することができる。   Further, the flat conductor 50 according to the present embodiment is a core thin plate material 51 having a small thermal expansion at the center and a thin plate for conductors 52a and 52b having a low volume resistivity (good conductivity) at the outer peripheral portion. It is configured. For this reason, even if the silicon crystal wafer constituting the solar cell assembly is thinned, there is no possibility that the silicon crystal wafer is damaged at the time of solder bonding between the silicon crystal wafer and the lead wire 60 using the flat conductor 50, and The power obtained by the solar cell assembly can be output with almost no loss.

さらに、本実施の形態に係る平角導体50においては、その最外表面に、コア用薄板材51と導体用薄板材52a,52bとの異種材料接触部が存在することから、平角導体50が水分に接触すると、局部電池化による腐食が生じるおそれがある。このため、本実施の形態に係る平角導体50を用いたリード線60においては、局部電池化による腐食が特に問題とならない場合を除き、平角導体50の外周全体を、はんだ膜21によりメッキ被覆することが好ましい。これによって、リード線60においては、局部電池化による腐食が生じるおそれはなくなる。   Further, in the flat conductor 50 according to the present embodiment, since the dissimilar material contact portion between the core thin plate material 51 and the conductor thin plate materials 52a and 52b exists on the outermost surface thereof, the flat conductor 50 has a moisture content. If contact is made, corrosion due to the use of local batteries may occur. For this reason, in the lead wire 60 using the flat conductor 50 according to the present embodiment, the entire outer periphery of the flat conductor 50 is plated with the solder film 21 unless corrosion due to local battery formation is not particularly problematic. It is preferable. As a result, there is no possibility that the lead wire 60 is corroded due to the local battery.

また、本実施の形態に係る平角導体50を用いたリード線60は、シリコン結晶ウェハとのはんだ付け性が良好であることから、太陽電池アセンブリの生産性向上を図ることができる。   Moreover, since the lead wire 60 using the flat conductor 50 according to the present embodiment has good solderability with the silicon crystal wafer, the productivity of the solar cell assembly can be improved.

(第3の実施の形態)
本発明の更に別の好適一実施の形態に係る平角導体を、図1を参照して説明する。
(Third embodiment)
A flat conductor according to still another preferred embodiment of the present invention will be described with reference to FIG.

本実施の形態に係る平角導体(図示せず)の基本的な構成は、図1に示した平角導体10と同様であり、導体用薄板材12a,12bが、更に、ランダムで等方的な結晶配向性を有しており、以下の(1)式に示すIRの値が0.15以上、好ましくは0.20〜0.70、特に好ましくは0.35〜0.70のものである。 The basic configuration of a flat conductor (not shown) according to the present embodiment is the same as that of the flat conductor 10 shown in FIG. 1, and the conductor thin plates 12a and 12b are further random and isotropic. has a crystal orientation, the following (1) the value of I R shown in the expression is 0.15 or more, preferably from 0.20 to 0.70, particularly preferably those of from 0.35 to 0.70 is there.

R=I(111)/{I(200)+I(111)}≧0.15…(1)
ここで、I(111):面(111)のX線回折強度
I(200):面(200)のX線回折強度
本実施の形態に係る平角導体は、前述した第1の実施の形態に係る平角導体10と同様の製造方法により製造される。
I R = I (111) / {I (200) + I (111)} ≧ 0.15 (1)
Where I (111): X-ray diffraction intensity of surface (111)
I (200): X-ray diffraction intensity of surface (200) The rectangular conductor according to the present embodiment is manufactured by the same manufacturing method as the rectangular conductor 10 according to the first embodiment described above.

最良の形態の平角導体は、インバー(登録商標)で構成され、ビッカース硬度が110〜130Hvのコア用薄板材11と、Ag又はAg合金で構成され、ビッカース硬度が60〜80Hvで、かつ、IR値が0.35〜0.70の導体用薄板材12a,12bとを組み合わせて形成したものである。また、最良の形態のリード線(図示せず)は、前述した最良の形態の平角導体の外周に、平角導体の厚さの1/5の膜厚でSn-Ag-Cu系のはんだ膜21(図1参照)をメッキ被覆したものである。 The flat conductor of the best form is composed of Invar (registered trademark), is composed of a core thin plate 11 having a Vickers hardness of 110 to 130 Hv, Ag or an Ag alloy, has a Vickers hardness of 60 to 80 Hv, and I It is formed by combining conductor thin plates 12a and 12b having R values of 0.35 to 0.70. The lead wire (not shown) in the best form is Sn-Ag-Cu-based solder film 21 with a thickness of 1/5 of the thickness of the flat conductor on the outer periphery of the flat conductor in the best form described above. (See FIG. 1) is plated.

本実施の形態に係る平角導体においても、前述した第1及び第2の実施の形態に係る平角導体10,50と同様の作用効果が得られる。具体的には、耐食性が良好で、かつ、引張応力を負荷して直線状に矯正しようとした際に反りが生じにくい平角導体となる。   Also in the flat conductor according to the present embodiment, the same effects as those of the flat conductors 10 and 50 according to the first and second embodiments described above can be obtained. Specifically, it is a flat conductor that has good corrosion resistance and is unlikely to warp when it is attempted to straighten by applying a tensile stress.

また、本実施の形態に係る平角導体を用いたリード線においても、前述した第1及び第2の実施の形態に係る平角導体10,50を用いたリード線20,60と同様の作用効果が得られる。具体的には、はんだ膜21は、平角導体の一部(各所定の接点領域との接触部近傍)だけに被覆すれば十分であるため低コストであり、かつ、反りが生じにくいためはんだ付け性が良好なリード線となる。   Also, the lead wire using the flat conductor according to the present embodiment has the same effects as the lead wires 20 and 60 using the flat conductor 10, 50 according to the first and second embodiments described above. can get. Specifically, the solder film 21 is low in cost because it is sufficient to cover only a part of the rectangular conductor (in the vicinity of the contact portion with each predetermined contact region), and soldering is performed because warpage hardly occurs. Leads to good lead.

以上、本発明は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。   As described above, the present invention is not limited to the above-described embodiment, and it goes without saying that various other things are assumed.

また、本発明の平角導体は、太陽電池アセンブリのリード線として適用することができる他に、1GHz以上の高周波信号を伝送するための導体として使用することも可能である。特に、本発明の平角導体は、熱膨張により伝送特性が著しく劣化するような無線LAN等への適用が期待できる。   Further, the rectangular conductor of the present invention can be used as a lead for a solar cell assembly, and can also be used as a conductor for transmitting a high frequency signal of 1 GHz or more. In particular, the rectangular conductor of the present invention can be expected to be applied to a wireless LAN or the like whose transmission characteristics are significantly deteriorated due to thermal expansion.

次に、本発明について、実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。   Next, although this invention is demonstrated based on an Example, this invention is not limited to this Example.

(実施例1)
インバー(登録商標)製で、幅が2.0mm、板厚が0.030mmのコア用薄板材と、Cu製で、幅が2.0mm、板厚が0.060mm、IRが0.60の導体用薄板材とを用い、幅が2.0mm、板厚が0.150mmで、図1に示した構造の平角導体を作製した。
(Example 1)
Made Invar (registered trademark), a width of 2.0 mm, and the thin core plate thickness is 0.030mm material, made of Cu, a width of 2.0 mm, the plate thickness of 0.060 mm, I R 0.60 A flat conductor having a width of 2.0 mm and a plate thickness of 0.150 mm and having the structure shown in FIG. 1 was prepared.

この平角導体の周りに膜厚0.035mmのはんだ膜を形成し、図2に示した構造のリード線を作製した。   A solder film having a film thickness of 0.035 mm was formed around the flat conductor to produce a lead wire having the structure shown in FIG.

(実施例2)
導体用薄板材のIRが0.40である以外は、実施例1と同様にして平角導体を作製し、その後、リード線を作製した。
(Example 2)
Except I R of the conductor-sheet metal is 0.40, the same procedure as in Example 1 to prepare a flat conductor, then to produce a lead.

(比較例1)
導体用薄板材のIRが0.12である以外は、実施例1と同様にして平角導体を作製し、その後、リード線を作製した。
(Comparative Example 1)
Except I R of the conductor-sheet metal is 0.12, the same procedure as in Example 1 to prepare a flat conductor, then to produce a lead.

(比較例2)
導体用薄板材のIRが0.03である以外は、実施例1と同様にして平角導体を作製し、その後、リード線を作製した。
(Comparative Example 2)
Except I R of the conductor-sheet metal is 0.03, the same procedure as in Example 1 to prepare a flat conductor, then to produce a lead.

実施例1,2及び比較例1,2の各リード線を、シリコン結晶ウェハにおけるセル面の接点領域にはんだ付けするために、各リード線に210MPaの引張応力を負荷した。応力負荷時の結果を表1に示す。   In order to solder the lead wires of Examples 1 and 2 and Comparative Examples 1 and 2 to the contact area on the cell surface of the silicon crystal wafer, a tensile stress of 210 MPa was applied to each lead wire. The results at the time of stress loading are shown in Table 1.

Figure 2009193967
Figure 2009193967

表1に示すように、実施例1,2のリード線は、導体用薄板材のIRが0.15以上(0.60,0.40)であるため、応力負荷によってリード線は直線状に矯正され、反りは生じなかった(平坦となった)。その結果、実施例1,2のリード線は、シリコン結晶ウェハに対して、良好にはんだ付けを行うことができた。 As shown in Table 1, the leads of Examples 1 and 2, because I R of the conductor-sheet metal is 0.15 or more (0.60,0.40), lead by the stress load straight It was corrected and no warping occurred (becomes flat). As a result, the lead wires of Examples 1 and 2 could be satisfactorily soldered to the silicon crystal wafer.

これに対して、比較例1,2のリード線は、導体用薄板材のIRが0.15未満(0.12,0.03)であるため、応力負荷によってリード線を直線状に矯正しようとしても、大きな反りが生じてしまった。その結果、比較例1,2のリード線は、シリコン結晶ウェハに対して、良好にはんだ付けを行うことができなかった。 Straightening contrast, leads of Comparative Examples 1 and 2, because I R of the conductor-sheet metal is less than 0.15 (0.12,0.03), in a straight line leads by stress loads Attempting to do so caused a big warp. As a result, the lead wires of Comparative Examples 1 and 2 could not be well soldered to the silicon crystal wafer.

10 平角導体
11 コア用薄板材
12a,12b 導体用薄板材
10 Flat conductor 11 Thin plate material for core 12a, 12b Thin plate material for conductor

Claims (9)

コア用薄板材の両面を導体用薄板材で挟み込んでなるクラッド材で構成される平角導体を用いたリード線において、上記平角導体の外周の少なくとも側面を覆うめっき膜を備えたことを特徴とするリード線。   In a lead wire using a flat conductor composed of a clad material in which both surfaces of a core thin plate material are sandwiched between conductor thin plate materials, a plating film covering at least the side surface of the outer periphery of the flat conductor is provided. Lead. 上記コア用薄板材は熱膨張係数が10(×10-6/℃)以下であり、上記各導体用薄板材は体積抵抗率が5.0(μΩ・cm)以下であることを特徴とする請求項1に記載のリード線。 The core sheet material has a thermal expansion coefficient of 10 (× 10 −6 / ° C.) or less, and each conductor sheet material has a volume resistivity of 5.0 (μΩ · cm) or less. The lead wire according to claim 1. 上記導体用薄板材が、以下に示す(1)式を満足する結晶配向性を有する請求項1又は2いずれかに記載のリード線。
R=I(111)/{I(200)+I(111)}≧0.15…(1)
ここで、I(111):面(111)のX線回折強度
I(200):面(200)のX線回折強度
The lead wire according to claim 1, wherein the thin sheet material for conductor has crystal orientation satisfying the following expression (1).
I R = I (111) / {I (200) + I (111)} ≧ 0.15 (1)
Where I (111): X-ray diffraction intensity of surface (111)
I (200): X-ray diffraction intensity of surface (200)
上記コア用薄板材のビッカース硬度が150Hv以下、上記導体用薄板材のビッカース硬度が100Hv以下である請求項1乃至3に記載のリード線。   The lead wire according to any one of claims 1 to 3, wherein the core sheet material has a Vickers hardness of 150 Hv or less, and the conductor sheet material has a Vickers hardness of 100 Hv or less. 上記コア用薄板材をFe−Ni合金材、上記導体用薄板材をCu、Ag、Au、Al、又はそれらの金属を含む合金材で構成した請求項1から4いずれかに記載のリード線。   The lead wire according to any one of claims 1 to 4, wherein the core thin plate material is made of an Fe-Ni alloy material, and the conductor thin plate material is made of Cu, Ag, Au, Al, or an alloy material containing a metal thereof. 請求項1から5いずれかに記載のリード線において、上記めっき膜は、Sn−Pbはんだ膜であることを特徴とするリード線。   The lead wire according to any one of claims 1 to 5, wherein the plating film is a Sn-Pb solder film. 請求項1から5いずれかに記載のリード線において、上記めっき膜は、Pbフリーはんだ膜であることを特徴とするリード線。   6. The lead wire according to claim 1, wherein the plating film is a Pb-free solder film. 上記Pbフリーはんだ膜がSn-Ag-Cu系合金で構成される請求項7記載のリード線。   The lead wire according to claim 7, wherein the Pb-free solder film is composed of a Sn-Ag-Cu alloy. 上記Sn-Ag-Cu系合金が、更にIn及び/又はPを含む請求項8記載のリード線。   The lead wire according to claim 8, wherein the Sn-Ag-Cu alloy further contains In and / or P.
JP2009105833A 2003-07-15 2009-04-24 Lead Expired - Fee Related JP5152091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009105833A JP5152091B2 (en) 2003-07-15 2009-04-24 Lead

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003197242 2003-07-15
JP2003197242 2003-07-15
JP2009105833A JP5152091B2 (en) 2003-07-15 2009-04-24 Lead

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003427591A Division JP4329532B2 (en) 2003-07-15 2003-12-24 Flat conductor, method for manufacturing the same, and lead wire

Publications (2)

Publication Number Publication Date
JP2009193967A true JP2009193967A (en) 2009-08-27
JP5152091B2 JP5152091B2 (en) 2013-02-27

Family

ID=41075778

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009105833A Expired - Fee Related JP5152091B2 (en) 2003-07-15 2009-04-24 Lead
JP2009105832A Expired - Fee Related JP5029650B2 (en) 2003-07-15 2009-04-24 Flat conductor and lead wire using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009105832A Expired - Fee Related JP5029650B2 (en) 2003-07-15 2009-04-24 Flat conductor and lead wire using the same

Country Status (1)

Country Link
JP (2) JP5152091B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019967A1 (en) * 2013-08-05 2015-02-12 千住金属工業株式会社 Lead-free solder alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101425930B1 (en) * 2012-04-24 2014-08-06 경북대학교 산학협력단 Manufacturing method for photovoltaic ribbon reduced plating solution and the photovoltaic ribbon

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301546A (en) * 1989-05-15 1990-12-13 Furukawa Electric Co Ltd:The Sn or sn alloy coating material
JP3879666B2 (en) * 2002-12-24 2007-02-14 日立電線株式会社 Lead wire for solar cell connection

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3964659B2 (en) * 2001-11-30 2007-08-22 松下電器産業株式会社 Chargeable particles, method for producing the same, and electronic circuit board
JP2003217352A (en) * 2002-01-18 2003-07-31 Hitachi Cable Ltd Spliced wire conductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301546A (en) * 1989-05-15 1990-12-13 Furukawa Electric Co Ltd:The Sn or sn alloy coating material
JP3879666B2 (en) * 2002-12-24 2007-02-14 日立電線株式会社 Lead wire for solar cell connection

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019967A1 (en) * 2013-08-05 2015-02-12 千住金属工業株式会社 Lead-free solder alloy
CN105592972A (en) * 2013-08-05 2016-05-18 千住金属工业株式会社 Lead-free solder alloy
JPWO2015019967A1 (en) * 2013-08-05 2017-03-02 千住金属工業株式会社 Lead-free solder alloy
US10076808B2 (en) 2013-08-05 2018-09-18 Senju Metal Industry Co., Ltd. Lead-free solder alloy

Also Published As

Publication number Publication date
JP2009193966A (en) 2009-08-27
JP5152091B2 (en) 2013-02-27
JP5029650B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP4329532B2 (en) Flat conductor, method for manufacturing the same, and lead wire
JP5491682B2 (en) Flat conductor for solar cell, method for manufacturing the same, and lead wire for solar cell
JP5616853B2 (en) Solar cell electrode wire
JP4780008B2 (en) Plating wire for solar cell and manufacturing method thereof
JP3879666B2 (en) Lead wire for solar cell connection
JP4565650B2 (en) ELECTRODE WIRE, ITS MANUFACTURING METHOD, AND SOLAR CELL HAVING CONNECTION LEAD FORMED BY THE ELECTRODE WIRE
EP3922391B1 (en) Production method for copper/ceramic joined body, production method for insulated circuit board, copper/ceramic joined body, and insulated circuit board
JP2008098607A (en) Connection lead wire for solar cell, method for manufacturing the same, and solar cell
EP2991105A1 (en) Composite laminate and electronic device
KR101986557B1 (en) Sn-Cu-BASED LEAD-FREE SOLDER ALLOY
JP4622375B2 (en) Flat rectangular conductor for solar cell and lead wire for solar cell
JP5152091B2 (en) Lead
JP2010141050A (en) Lead wire for solar cell and method of manufacturing the same
US20040244828A1 (en) Solar battery module and manufacturing method thereof
JP4656100B2 (en) Solder-plated wire for solar cell and manufacturing method thereof
JP4701716B2 (en) Flat rectangular conductor for solar cell and lead wire for solar cell
JP3192911B2 (en) Ceramic circuit board
JP5047315B2 (en) Ceramic circuit board
JP2004204257A (en) Solder-plated composite rectangular conductor
JP4557398B2 (en) Electronic element
JP2005353549A (en) Lead wire, manufacturing method thereof, and solar cell assembly
JP4951856B2 (en) Manufacturing method of flat conductor
JP4617884B2 (en) Connecting lead wire and manufacturing method thereof
JP5565519B1 (en) Solar cell module
JP2005286240A (en) Semiconductor device component, manufacturing method thereof, and semiconductor device using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees