JP2004204256A - Low thermal expansion rectangular conductor - Google Patents
Low thermal expansion rectangular conductor Download PDFInfo
- Publication number
- JP2004204256A JP2004204256A JP2002371988A JP2002371988A JP2004204256A JP 2004204256 A JP2004204256 A JP 2004204256A JP 2002371988 A JP2002371988 A JP 2002371988A JP 2002371988 A JP2002371988 A JP 2002371988A JP 2004204256 A JP2004204256 A JP 2004204256A
- Authority
- JP
- Japan
- Prior art keywords
- conductor
- thermal expansion
- core conductor
- rectangular
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004020 conductor Substances 0.000 title claims abstract description 79
- 229910000679 solder Inorganic materials 0.000 claims description 19
- 239000010949 copper Substances 0.000 claims description 17
- 229910052802 copper Inorganic materials 0.000 claims description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- 229910000969 tin-silver-copper Inorganic materials 0.000 claims description 2
- PQIJHIWFHSVPMH-UHFFFAOYSA-N [Cu].[Ag].[Sn] Chemical compound [Cu].[Ag].[Sn] PQIJHIWFHSVPMH-UHFFFAOYSA-N 0.000 claims 1
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 abstract description 25
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 24
- 239000010703 silicon Substances 0.000 abstract description 24
- 230000007797 corrosion Effects 0.000 abstract description 7
- 238000005260 corrosion Methods 0.000 abstract description 7
- 230000007423 decrease Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 20
- 238000007747 plating Methods 0.000 description 17
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 16
- 239000000463 material Substances 0.000 description 12
- 229910052759 nickel Inorganic materials 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 229910020816 Sn Pb Inorganic materials 0.000 description 5
- 229910020922 Sn-Pb Inorganic materials 0.000 description 5
- 229910008783 Sn—Pb Inorganic materials 0.000 description 5
- 239000002131 composite material Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 229910020836 Sn-Ag Inorganic materials 0.000 description 1
- 229910020830 Sn-Bi Inorganic materials 0.000 description 1
- 229910020888 Sn-Cu Inorganic materials 0.000 description 1
- 229910020988 Sn—Ag Inorganic materials 0.000 description 1
- 229910018728 Sn—Bi Inorganic materials 0.000 description 1
- 229910019204 Sn—Cu Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
- Non-Insulated Conductors (AREA)
Abstract
【課題】熱膨張が小さく、耐食性に優れた低熱膨張コア導体を提供する。
【解決手段】低熱膨張平角導体1は、断面形状が平角形を成したコア導体2と、このコア導体2の外表面に形成される被覆導体3を備えて構成される。コア導体2は、シリコンウェハの熱膨張係数と同等以下の10×10-6/℃以下の熱膨張係数を有する。被覆導体3は5.0μΩ・cm以下の体積抵抗率を有するために導電性の低下が防止されることにより太陽電池の効率低下が防止され、更に、コア導体2に被覆されることにより、水分に起因してコア導体2の表面に局部電池が発生するのを防止することができる。
【選択図】 図1A low-thermal-expansion core conductor having low thermal expansion and excellent corrosion resistance is provided.
A low-thermal-expansion rectangular conductor (1) includes a core conductor (2) having a rectangular cross section and a coated conductor (3) formed on the outer surface of the core conductor (2). The core conductor 2 has a coefficient of thermal expansion of 10 × 10 −6 / ° C. or less, which is equal to or less than the coefficient of thermal expansion of the silicon wafer. Since the coated conductor 3 has a volume resistivity of 5.0 μΩ · cm or less, a decrease in conductivity is prevented, thereby preventing a decrease in efficiency of the solar cell. Therefore, it is possible to prevent a local battery from being generated on the surface of the core conductor 2 due to the above.
[Selection diagram] Fig. 1
Description
【0001】
【発明の属する技術分野】
本発明は、低熱膨張平角導体に関し、特に、熱膨張が小さく、耐食性に優れ、太陽電池を構成するシリコンウェハの配線パターン部に接続するためのリード線用導体に適した低熱膨張平角導体に関する。
【0002】
【従来の技術】
太陽電池は、基板上にシリコン結晶を成長させた半導体チップを用いて構成されている。この種の太陽電池は、一般に、シリコン結晶ウェハの所定の領域に接続用リード線を接合し、この接続用リード線を通して負荷へ発電出力を供給する構成が採用されている。
【0003】
図2は、太陽電池の構成例を示す。
受光した太陽光を光電変換して電力を発生する太陽電池10は、シリコン(Si)ウェハ11と、このシリコンウェハ11の表面の所定の領域にできるだけ面積を制限して形成されたAgめっき部12,13とを備えて構成されている。Agめっき部12,13は発電出力を取り出すための配線パターンであり、このAgめっき部12,13のそれぞれには、その幅方向の範囲内に納まるようにして接続用リード線14,15が接続される。
【0004】
通常、接続用リード線14,15の外表面(外周面)には、ウェハ上のAgめっき部12,13に接続するためのはんだめっき層が形成される。はんだめっき層の構成材には、他の電気部品において従来より実績のあるSn−Pb合金系のはんだが使用されてきた。例えば、タフピッチ銅や無酸素銅などの純銅製の平角導体を導体(接続用リード線)に用い、そのはんだめっき層にSn−Pb共晶はんだを用いたものがある(例えば、特許文献1参照)。
【0005】
これまで多用されてきたSn−Pb系はんだは、リード線としての導電性や機械的強度等を保証しつつ、優れたはんだ濡れ性、高い接続強度、あるいは取扱性等によって特徴づけられた有用性の高いめっき材料として知られている。したがって、このSn−Pb系に代わるはんだめっき材としては、上記した様な諸特性を十分に満たしている必要がある。
【0006】
しかし、最近では、Pbによる環境への悪影響が懸念されるため、Pbを含まない他のめっき用はんだへの切り換えが検討されている。Sn−Pb系に代わるPbを含まないめっき材としては、Sn−Ag系、Sn−Bi系、あるいはSn−Cu系等のはんだが有力視されている。これらのはんだは、太陽電池における接続用リード線の接合のためのめっき層の構成材としてだけでなく、様々な電気部品における接続要素としての活用が期待されている。例えば、導体に銅条を用い、そのめっき層として、Snを主要な成分とすると共に所定のPを含む組成のフリーはんだを用いた接続用リード線がある(例えば、特許文献2参照)。
【0007】
ところで、太陽電池を構成する部材のうちで材料コストの大半を占めるのが、シリコンウェハである。そのため、シリコンウェハの薄板化が検討されている。
しかし、シリコンウェハを薄板化した場合、接続用リード線の接合時の加熱プロセスや使用時の温度変化によって、シリコンウェハが破損することがある。これに対処するため、熱膨張の小さい接続用リード線のニーズが高まっている。
【0008】
熱膨張を考慮したリード線の構成例として、リード線をクラッド金属で形成したものがある。このリード線は、体積抵抗率が小さく熱膨張係数が大きい銅の層と、この銅層の両面に体積抵抗率が大きく熱膨張係数の小さいFe−Ni(鉄−ニッケル)合金の層を積層して「銅−インバー−銅」をクラッドした3層構造にし、リード線接合部に要求される応力緩衝の機能とリード線としての強度を備える平角導体としている(例えば、特許文献3参照)。
【0009】
【特許文献1】
特開平11−21660号公報
【特許文献2】
特開2002−263880号公報
【特許文献3】
特開2002−299009号公報
【0010】
【発明が解決しようとする課題】
しかし、従来の平角導体によると、クラッド材を適用した特許文献3の構成では、側面(積層状態が露出する面)の「銅−インバー−銅」接合部が水分に晒されることによって局部電池化し、これによって腐食する恐れがある。したがって、薄板化したシリコンウェハに接続するリード線は、熱膨張が小さく、かつ耐食性に優れる特性を備える必要がある。
【0011】
したがって、本発明の目的は、熱膨張が小さく、耐食性に優れた低熱膨張平角導体を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、上記の目的を達成するため、10×10-6/℃以下の熱膨張係数を有し、断面形状が平角形を成したコア導体と、5.0μΩ・cm以下の体積抵抗率を有し、前記コア導体の外表面に形成される被覆導体とを備えることを特徴とする低熱膨張平角導体を提供する。
【0013】
この構成によれば、コア導体は、シリコンの熱膨張係数と同等以下の熱膨張係数である10×10-6/℃以下の値にしたことにより、薄板化した太陽電池用のシリコンウェハの接続用リード線に用いても、シリコンウェハを破損する恐れはなくなる。そして、被覆導体の体積抵抗率を5.0μΩ・cm以下にしたことで十分な導電性が得られることにより太陽電池の効率低下が防止され、更に、コア導体の外表面に被覆導体が形成されることにより、水分に起因してコア導体の表面に局部電池が発生するのを防止することができる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本願発明の低熱膨張平角導体を示す。
本発明に係る低熱膨張平角導体1は、コア導体2(断面形状は角形を成している)と被覆導体3による複合平角導体の構造を有している。コア導体2と被覆導体3とは異なる組成であり、被覆導体3はコア導体2の外表面に被覆する如くに形成される。コア導体2の外表面に被覆導体3が設けられることにより、コア導体2の側面に水分が存在しても、局部電池化が生じないようにすることができる。
【0015】
コア導体2には熱膨張係数の小さい金属、具体的には鉄−ニッケル合金が用いられ、その熱膨張係数を10×10-6/℃以下にしている。その理由は、20℃のシリコン(図2のシリコンウェハ11)の熱膨張係数(9.6×10-6/℃)と同等以下にするためである。そして、シリコンウェハとの熱膨張係数の差が小さいもの、具体的には実施例で説明する様に、断面積比(Cu:Fe−36mass%Ni)が2:1のものが最適であり、また、断面積比率(Cu:Fe−36mass%Ni)は、20〜50%とするのが好ましい。特に、好ましくは30〜40%である。
【0016】
また、被覆導体3には、所望の導電特性が得られるように、体積抵抗率の小さい銅、銀、アルミニウム等の金属、又はこれら金属を主成分とする合金を用いる。被覆導体3の体積抵抗率は、具体的には5.0μΩ・cm以下とし、太陽電池の効率が低下しないようにしている。
【0017】
なお、被覆導体3には、その外周面(外表面)の一部又は全体に対し、予め「錫−鉛」はんだめっき、又は「錫−銀−銅」を主成分とする鉛フリーはんだめっきを施すことができる。このようにはんだめっきを用いることにより、シリコンウェハに接続するための作業性が良好になる。
【0018】
以上のように、本発明に係る実施の形態は、コア導体2に熱膨張係数の小さい合金(鉄−ニッケル合金等)を用い、その熱膨張係数を10×10-6/℃以下としたことにより熱膨張を小さくでき、熱膨張に起因するシリコンウェハの破損の発生を防止することができる。更に、被覆導体3に体積抵抗率の小さい金属又は合金(銅、銀、金、アルミニウム、又はそのいずれか1つ以上を含む合金)を用いたことにより、太陽電池の効率を低下させることなく、同時に耐食性を得ることができる。また、被覆導体3は、鉛を含まない金属又は合金を用いているため、環境汚染を招くことがない。
【0019】
【実施例】
次に、本発明の実施例について説明する。
〔実施例1〕
図1に示す構造の低熱膨張平角導体1において、コア導体2にFe−36mass%Niを用い、被覆導体3にCuを用い、表1に示す材料を作製した。なお、比較例(後述する表2、表3も同一値)は、平角導体を銅のみとした場合である。また、参考値(後述する表2、表3も同一値)は、Si及びFe−36mass%Niの熱膨張係数及び体積抵抗率である。
【0020】
【表1】
【0021】
〔実施例2〕
図1に示す構造の複合平角導体において、コア導体2にFe−36mass%Ni、被覆導体3にAgを適用し、表2に示す構成の材料を作製した。
【0022】
【表2】
【0023】
〔実施例3〕
図1に示す構造の複合平角導体において、コア導体2にFe−36mass%Ni、被覆導体3にAlを適用し、表3に示す構成の材料を作製した。
【0024】
【表3】
【0025】
本発明の各実施例によれば、表1〜表3から明らかなように、被覆導体3の材料が代わっても、熱膨張係数は比較例に比べ、断面積比によらず小さい値が得られるが、断面積比が1:1のときに最も良い結果が得られる。また、体積抵抗率は、Cuの比率が高くなるほど小さくなり、断面積比(Cu:Fe−36mass%Ni)が大きくなるほど好結果が得られることがわかる。しかし、シリコンの熱膨張係数と同等以下の熱膨張係数が得られるか否かを考慮すると、断面積比を2:1としたときが最も好ましい結果であることがわかる。
【0026】
上記実施の形態においては、低熱膨張平角導体を太陽電池の接続用リード線に用いる用途を示したが、他の用途、例えば、1GHz以上の高周波信号を伝送するための導体として使用することも可能である。特に、熱膨張により伝送特性が著しく劣化するような無線LAN等への用途に適している。
【0027】
【発明の効果】
以上より明らかなように、本発明の低熱膨張平角導体によれば、10×10-6/℃以下の熱膨張係数を有する平角形のコア導体と、このコア導体の外表面に形成されると共に5.0μΩ・cm以下の体積抵抗率を有する被覆導体とを備える構成にしたので、熱膨張係数が小さく耐蝕性に優れる低熱膨張平角導体を得ることができる。したがって、太陽電池の接続用リード線に用いた場合でも、薄板化されたシリコンウェハを破損する恐れはなくなる。
【図面の簡単な説明】
【図1】本発明の低熱膨張平角導体を示す断面図である。
【図2】太陽電池の概略構成例を示す斜視図である。
【符号の説明】
1 低熱膨張平角導体
2 コア導体
3 被覆導体
10 太陽電池
11 シリコンウェハ
12,13 Agめっき部
14,15 接続用リード線[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a low-thermal-expansion rectangular conductor, particularly to a low-thermal-expansion rectangular conductor having low thermal expansion, excellent corrosion resistance, and suitable for a lead wire conductor for connecting to a wiring pattern portion of a silicon wafer constituting a solar cell.
[0002]
[Prior art]
A solar cell is configured using a semiconductor chip in which a silicon crystal is grown on a substrate. In general, this type of solar cell employs a configuration in which a connection lead wire is bonded to a predetermined region of a silicon crystal wafer, and power generation output is supplied to a load through the connection lead wire.
[0003]
FIG. 2 shows a configuration example of a solar cell.
A solar cell 10 that generates electric power by photoelectrically converting received sunlight includes a silicon (Si)
[0004]
Normally, solder plating layers for connecting to the
[0005]
Sn-Pb-based solders, which have been widely used, have usefulness characterized by excellent solder wettability, high connection strength, and easy handling while guaranteeing the conductivity and mechanical strength of the lead wires. It is known as a high plating material. Therefore, it is necessary for the solder plating material to replace the Sn-Pb-based material to sufficiently satisfy the above-described various characteristics.
[0006]
However, recently, since there is a concern that Pb may have an adverse effect on the environment, switching to another plating solder containing no Pb is being studied. As a plating material containing no Pb instead of the Sn-Pb-based solder, a Sn-Ag-based, Sn-Bi-based, or Sn-Cu-based solder is considered to be promising. These solders are expected to be used not only as a constituent material of a plating layer for joining a connecting lead wire in a solar cell but also as a connecting element in various electric components. For example, there is a connection lead wire using a copper strip as a conductor and using a free solder having a composition containing Sn as a main component and a predetermined P as a plating layer (for example, see Patent Document 2).
[0007]
By the way, silicon wafers occupy most of the material cost among the members constituting the solar cell. Therefore, thinning of a silicon wafer is being studied.
However, when the silicon wafer is thinned, the silicon wafer may be damaged due to a heating process at the time of joining the connection lead wires or a temperature change at the time of use. In order to cope with this, there is an increasing need for connection lead wires having small thermal expansion.
[0008]
As a configuration example of a lead wire in consideration of thermal expansion, there is a lead wire formed of a clad metal. This lead wire is formed by laminating a copper layer having a small volume resistivity and a large thermal expansion coefficient, and a Fe-Ni (iron-nickel) alloy layer having a large volume resistivity and a small thermal expansion coefficient on both surfaces of the copper layer. To form a three-layer structure in which "copper-invar-copper" is clad to provide a rectangular conductor having a function of buffering stress required for a lead wire joint and the strength as a lead wire (for example, see Patent Document 3).
[0009]
[Patent Document 1]
JP-A-11-21660 [Patent Document 2]
JP 2002-263880 A [Patent Document 3]
JP 2002-29909 A
[Problems to be solved by the invention]
However, according to the conventional rectangular conductor, in the configuration of Patent Document 3 to which the clad material is applied, the “copper-invar-copper” joint on the side surface (the surface where the laminated state is exposed) is exposed to moisture, thereby forming a local battery. , Which can cause corrosion. Therefore, a lead wire connected to a thinned silicon wafer needs to have characteristics of low thermal expansion and excellent corrosion resistance.
[0011]
Therefore, an object of the present invention is to provide a low-thermal-expansion rectangular conductor having small thermal expansion and excellent corrosion resistance.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a core conductor having a coefficient of thermal expansion of 10 × 10 −6 / ° C. or less and a rectangular cross section, and a volume resistivity of 5.0 μΩ · cm or less. And a covered conductor formed on the outer surface of the core conductor.
[0013]
According to this configuration, the core conductor has a coefficient of thermal expansion equal to or less than 10 × 10 −6 / ° C. which is equal to or less than the coefficient of thermal expansion of silicon, thereby connecting a thinned silicon wafer for a solar cell. Even if it is used for a lead wire for use, there is no risk of damaging the silicon wafer. Further, by setting the volume resistivity of the coated conductor to 5.0 μΩ · cm or less, sufficient conductivity is obtained, thereby preventing the efficiency of the solar cell from lowering. Further, the coated conductor is formed on the outer surface of the core conductor. This can prevent a local battery from being generated on the surface of the core conductor due to moisture.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a low thermal expansion rectangular conductor of the present invention.
The low thermal expansion rectangular conductor 1 according to the present invention has a composite rectangular conductor structure including a core conductor 2 (having a rectangular cross section) and a covering conductor 3. The core conductor 2 and the coated conductor 3 have different compositions, and the coated conductor 3 is formed so as to cover the outer surface of the core conductor 2. By providing the covering conductor 3 on the outer surface of the core conductor 2, even if moisture is present on the side surface of the core conductor 2, it is possible to prevent a local battery from being generated.
[0015]
The core conductor 2 is made of a metal having a small coefficient of thermal expansion, specifically, an iron-nickel alloy, and has a coefficient of thermal expansion of 10 × 10 −6 / ° C. or less. The reason is to make the thermal expansion coefficient (9.6 × 10 −6 / ° C.) of silicon at 20 ° C. (
[0016]
In addition, a metal such as copper, silver, or aluminum having a small volume resistivity or an alloy containing these metals as a main component is used for the coated conductor 3 so that desired conductive characteristics can be obtained. The volume resistivity of the coated conductor 3 is specifically set to 5.0 μΩ · cm or less so that the efficiency of the solar cell does not decrease.
[0017]
The coated conductor 3 is preliminarily plated with “tin-lead” solder plating or “tin-silver-copper” lead-free solder plating on a part or the entire outer peripheral surface (outer surface) thereof. Can be applied. By using solder plating in this manner, workability for connecting to a silicon wafer is improved.
[0018]
As described above, in the embodiment according to the present invention, the core conductor 2 is made of an alloy having a small coefficient of thermal expansion (such as an iron-nickel alloy) and the coefficient of thermal expansion is set to 10 × 10 −6 / ° C. or less. Thus, thermal expansion can be reduced, and damage to the silicon wafer due to thermal expansion can be prevented. Furthermore, by using a metal or an alloy (copper, silver, gold, aluminum, or an alloy containing at least one of them) having a small volume resistivity for the coated conductor 3, without lowering the efficiency of the solar cell, At the same time, corrosion resistance can be obtained. Further, since the covered conductor 3 is made of a metal or alloy containing no lead, it does not cause environmental pollution.
[0019]
【Example】
Next, examples of the present invention will be described.
[Example 1]
In the low thermal expansion rectangular conductor 1 having the structure shown in FIG. 1, materials shown in Table 1 were produced by using Fe-36 mass% Ni for the core conductor 2 and Cu for the covering conductor 3. In addition, the comparative example (Tables 2 and 3 described later also have the same value) is a case where the rectangular conductor is only copper. Reference values (the same values in Tables 2 and 3 described later) are the thermal expansion coefficient and volume resistivity of Si and Fe-36 mass% Ni.
[0020]
[Table 1]
[0021]
[Example 2]
In the composite rectangular conductor having the structure shown in FIG. 1, Fe-36 mass% Ni was applied to the core conductor 2 and Ag was applied to the coated conductor 3, and materials having the configurations shown in Table 2 were produced.
[0022]
[Table 2]
[0023]
[Example 3]
In the composite rectangular conductor having the structure shown in FIG. 1, Fe-36 mass% Ni was applied to the core conductor 2 and Al was applied to the coated conductor 3, and materials having the configurations shown in Table 3 were produced.
[0024]
[Table 3]
[0025]
According to each embodiment of the present invention, as is clear from Tables 1 to 3, even when the material of the coated conductor 3 is changed, a small value of the thermal expansion coefficient is obtained irrespective of the cross-sectional area ratio as compared with the comparative example. However, the best results are obtained when the cross-sectional area ratio is 1: 1. In addition, it can be seen that the volume resistivity decreases as the Cu ratio increases, and that a better result can be obtained as the cross-sectional area ratio (Cu: Fe-36 mass% Ni) increases. However, considering whether or not a thermal expansion coefficient equal to or less than the thermal expansion coefficient of silicon is obtained, it is understood that the most preferable result is obtained when the cross-sectional area ratio is 2: 1.
[0026]
In the above embodiment, the use of the low-thermal-expansion rectangular conductor for the connection lead wire of the solar cell has been described. However, other uses, such as a conductor for transmitting a high-frequency signal of 1 GHz or more, can be used. It is. In particular, it is suitable for use in wireless LANs and the like in which transmission characteristics are significantly deteriorated due to thermal expansion.
[0027]
【The invention's effect】
As is clear from the above, according to the low thermal expansion rectangular conductor of the present invention, a rectangular core conductor having a thermal expansion coefficient of 10 × 10 −6 / ° C. or less and a rectangular core conductor formed on the outer surface of the core conductor With the configuration including the coated conductor having a volume resistivity of 5.0 μΩ · cm or less, a low thermal expansion rectangular conductor having a small thermal expansion coefficient and excellent corrosion resistance can be obtained. Therefore, even when the thinned silicon wafer is used as a connection lead wire for a solar cell, there is no possibility of damaging the thinned silicon wafer.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a low thermal expansion rectangular conductor of the present invention.
FIG. 2 is a perspective view showing a schematic configuration example of a solar cell.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Low thermal expansion rectangular conductor 2 Core conductor 3 Coated conductor 10
Claims (4)
5.0μΩ・cm以下の体積抵抗率を有し、前記コア導体の外表面に形成される被覆導体とを備えることを特徴とする低熱膨張平角導体。A core conductor having a coefficient of thermal expansion of 10 × 10 −6 / ° C. or less and having a rectangular cross section;
A low thermal expansion rectangular conductor having a volume resistivity of 5.0 μΩ · cm or less, and a coated conductor formed on an outer surface of the core conductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002371988A JP3879666B2 (en) | 2002-12-24 | 2002-12-24 | Lead wire for solar cell connection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002371988A JP3879666B2 (en) | 2002-12-24 | 2002-12-24 | Lead wire for solar cell connection |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004204256A true JP2004204256A (en) | 2004-07-22 |
JP3879666B2 JP3879666B2 (en) | 2007-02-14 |
Family
ID=32810721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002371988A Expired - Fee Related JP3879666B2 (en) | 2002-12-24 | 2002-12-24 | Lead wire for solar cell connection |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3879666B2 (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005114751A1 (en) * | 2004-05-21 | 2005-12-01 | Neomax Materials Co., Ltd. | Electrode wire for solar battery |
JP2006190575A (en) * | 2005-01-06 | 2006-07-20 | Hitachi Cable Ltd | Flat conductor and method for manufacturing the same |
JPWO2004105141A1 (en) * | 2003-05-22 | 2006-07-20 | 株式会社Neomaxマテリアル | ELECTRODE WIRE AND SOLAR CELL HAVING CONNECTION LEAD FORMED BY THE WIRE |
WO2007037184A1 (en) * | 2005-09-28 | 2007-04-05 | Neomax Materials Co., Ltd. | Process for producing electrode wire for solar battery |
WO2007125903A1 (en) | 2006-04-26 | 2007-11-08 | Hitachi Chemical Company, Ltd. | Adhesive tape and solar cell module using the same |
WO2008026356A1 (en) | 2006-08-29 | 2008-03-06 | Hitachi Chemical Company, Ltd. | Conductive adhesive film and solar cell module |
WO2008044357A1 (en) | 2006-10-10 | 2008-04-17 | Hitachi Chemical Company, Ltd. | Connected structure and method for manufacture thereof |
WO2008044696A1 (en) | 2006-10-13 | 2008-04-17 | Hitachi Chemical Company, Ltd. | Solar battery cell connection method and solar battery module |
WO2008139995A1 (en) | 2007-05-09 | 2008-11-20 | Hitachi Chemical Company, Ltd. | Method for connecting conductor, member for connecting conductor, connecting structure and solar cell module |
WO2008139994A1 (en) | 2007-05-09 | 2008-11-20 | Hitachi Chemical Company, Ltd. | Conductor connection member, connection structure, and solar cell module |
WO2009063841A1 (en) | 2007-11-15 | 2009-05-22 | Hitachi Chemical Company, Ltd. | Solar battery cell |
WO2010103998A1 (en) | 2009-03-11 | 2010-09-16 | 信越化学工業株式会社 | Connection sheet for solar battery cell electrode, process for manufacturing solar cell module, and solar cell module |
WO2011046176A1 (en) | 2009-10-15 | 2011-04-21 | 日立化成工業株式会社 | Conductive adhesive, solar cell, method for manufacturing solar cell, and solar cell module |
CN102290125A (en) * | 2011-07-13 | 2011-12-21 | 哈尔滨工业大学 | Composite solar photovoltaic confluence welding band and preparation method thereof |
DE102011081551A1 (en) | 2010-08-26 | 2012-03-01 | Hitachi Chemical Co., Ltd. | Adhesive film for solar cell electrode and method of manufacturing a solar cell module with its use |
WO2012049984A1 (en) | 2010-10-14 | 2012-04-19 | 日立化成工業株式会社 | Solar cell module |
WO2012101869A1 (en) | 2011-01-27 | 2012-08-02 | 日立化成工業株式会社 | Conductive binder composition and method for producing the same, bonded unit, and solar cell module and method for producing the same |
WO2012102080A1 (en) | 2011-01-27 | 2012-08-02 | 日立化成工業株式会社 | Solar cell module and method of manufacturing thereof |
WO2012102076A1 (en) | 2011-01-27 | 2012-08-02 | 日立化成工業株式会社 | Conductive binder composition, metal wire with conductive binder, bonded unit, and solar cell module |
CN103000265A (en) * | 2012-11-22 | 2013-03-27 | 芜湖航天特种缆业股份有限公司 | Miniature installing line and manufacture method thereof |
US9443995B2 (en) | 2012-07-26 | 2016-09-13 | Hitachi Chemical Company, Ltd. | Solar battery cell and solar battery module |
US9455359B2 (en) | 2011-05-31 | 2016-09-27 | Hitachi Chemical Company, Ltd. | Solar battery cell, solar battery module and method of making solar battery module |
US9837560B2 (en) | 2011-03-08 | 2017-12-05 | Hitachi Chemical Company, Ltd. | Solar battery cell, solar battery module, method of making solar battery cell and method of making solar battery module |
US9862866B2 (en) | 2014-03-10 | 2018-01-09 | Hitachi Chemical Company, Ltd. | Electrically conductive adhesive composition, connection structure, solar battery module, and method for producing same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5152091B2 (en) * | 2003-07-15 | 2013-02-27 | 日立電線株式会社 | Lead |
-
2002
- 2002-12-24 JP JP2002371988A patent/JP3879666B2/en not_active Expired - Fee Related
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4565650B2 (en) * | 2003-05-22 | 2010-10-20 | 株式会社Neomaxマテリアル | ELECTRODE WIRE, ITS MANUFACTURING METHOD, AND SOLAR CELL HAVING CONNECTION LEAD FORMED BY THE ELECTRODE WIRE |
JPWO2004105141A1 (en) * | 2003-05-22 | 2006-07-20 | 株式会社Neomaxマテリアル | ELECTRODE WIRE AND SOLAR CELL HAVING CONNECTION LEAD FORMED BY THE WIRE |
US7754973B2 (en) | 2004-05-21 | 2010-07-13 | Neomax Materials Co., Ltd. | Electrode wire for solar cell |
WO2005114751A1 (en) * | 2004-05-21 | 2005-12-01 | Neomax Materials Co., Ltd. | Electrode wire for solar battery |
JP2006190575A (en) * | 2005-01-06 | 2006-07-20 | Hitachi Cable Ltd | Flat conductor and method for manufacturing the same |
WO2007037184A1 (en) * | 2005-09-28 | 2007-04-05 | Neomax Materials Co., Ltd. | Process for producing electrode wire for solar battery |
US8969706B2 (en) | 2006-04-26 | 2015-03-03 | Hitachi Chemical Company, Ltd. | Adhesive tape and solar cell module using the same |
US8969707B2 (en) | 2006-04-26 | 2015-03-03 | Hitachi Chemical Company, Ltd. | Adhesive tape and solar cell module using the same |
EP2421054A1 (en) | 2006-04-26 | 2012-02-22 | Hitachi Chemical Co., Ltd. | Adhesive tape and solar cell module using the same |
EP2251910A2 (en) | 2006-04-26 | 2010-11-17 | Hitachi Chemical Company, Ltd. | Adhesive tape and solar cell module using the same |
WO2007125903A1 (en) | 2006-04-26 | 2007-11-08 | Hitachi Chemical Company, Ltd. | Adhesive tape and solar cell module using the same |
US9173302B2 (en) | 2006-08-29 | 2015-10-27 | Hitachi Chemical Company, Ltd. | Conductive adhesive film and solar cell module |
WO2008026356A1 (en) | 2006-08-29 | 2008-03-06 | Hitachi Chemical Company, Ltd. | Conductive adhesive film and solar cell module |
WO2008044357A1 (en) | 2006-10-10 | 2008-04-17 | Hitachi Chemical Company, Ltd. | Connected structure and method for manufacture thereof |
US9123835B2 (en) | 2006-10-10 | 2015-09-01 | Hitachi Chemical Company, Ltd. | Connected structure and method for manufacture thereof |
WO2008044696A1 (en) | 2006-10-13 | 2008-04-17 | Hitachi Chemical Company, Ltd. | Solar battery cell connection method and solar battery module |
US8809102B2 (en) | 2006-10-13 | 2014-08-19 | Hitachi Chemical Company, Ltd. | Solar battery cell connection method and solar battery module |
US10186627B2 (en) | 2007-05-09 | 2019-01-22 | Hitachi Chemical Company, Ltd. | Conductor connection member, connection structure, and solar cell module |
CN101669258A (en) * | 2007-05-09 | 2010-03-10 | 日立化成工业株式会社 | Conductor connection method, conductor connection member, connection structure, and solar cell module |
US10032952B2 (en) | 2007-05-09 | 2018-07-24 | Hitachi Chemical Company, Ltd. | Connecting structure and solar cell module |
US9660131B2 (en) | 2007-05-09 | 2017-05-23 | Hitachi Chemical Company, Ltd. | Method for connecting conductor, member for connecting conductor, connecting structure and solar cell module |
CN105826418A (en) * | 2007-05-09 | 2016-08-03 | 日立化成株式会社 | Manufacturing method for connecting and manufacturing method for solar cell module |
WO2008139994A1 (en) | 2007-05-09 | 2008-11-20 | Hitachi Chemical Company, Ltd. | Conductor connection member, connection structure, and solar cell module |
CN101669258B (en) * | 2007-05-09 | 2016-04-13 | 日立化成株式会社 | The method of attachment of electric conductor, conductor connection member, syndeton and solar module |
WO2008139995A1 (en) | 2007-05-09 | 2008-11-20 | Hitachi Chemical Company, Ltd. | Method for connecting conductor, member for connecting conductor, connecting structure and solar cell module |
WO2009063841A1 (en) | 2007-11-15 | 2009-05-22 | Hitachi Chemical Company, Ltd. | Solar battery cell |
KR20110133605A (en) | 2009-03-11 | 2011-12-13 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Sheet for connecting solar cell electrodes, manufacturing method of solar cell module and solar cell module |
WO2010103998A1 (en) | 2009-03-11 | 2010-09-16 | 信越化学工業株式会社 | Connection sheet for solar battery cell electrode, process for manufacturing solar cell module, and solar cell module |
US8962986B2 (en) | 2009-10-15 | 2015-02-24 | Hitachi Chemical Company, Ltd. | Conductive adhesive, solar cell, method for manufacturing solar cell, and solar cell module |
WO2011046176A1 (en) | 2009-10-15 | 2011-04-21 | 日立化成工業株式会社 | Conductive adhesive, solar cell, method for manufacturing solar cell, and solar cell module |
DE202011110111U1 (en) | 2010-08-26 | 2013-01-10 | Hitachi Chemical Company, Ltd. | Adhesive film for solar cell electrode |
DE102011081551A1 (en) | 2010-08-26 | 2012-03-01 | Hitachi Chemical Co., Ltd. | Adhesive film for solar cell electrode and method of manufacturing a solar cell module with its use |
WO2012049984A1 (en) | 2010-10-14 | 2012-04-19 | 日立化成工業株式会社 | Solar cell module |
WO2012102076A1 (en) | 2011-01-27 | 2012-08-02 | 日立化成工業株式会社 | Conductive binder composition, metal wire with conductive binder, bonded unit, and solar cell module |
WO2012102080A1 (en) | 2011-01-27 | 2012-08-02 | 日立化成工業株式会社 | Solar cell module and method of manufacturing thereof |
WO2012101869A1 (en) | 2011-01-27 | 2012-08-02 | 日立化成工業株式会社 | Conductive binder composition and method for producing the same, bonded unit, and solar cell module and method for producing the same |
US9837572B2 (en) | 2011-01-27 | 2017-12-05 | Hitachi Chemical Company, Ltd. | Solar cell module and method of manufacturing thereof |
US9837560B2 (en) | 2011-03-08 | 2017-12-05 | Hitachi Chemical Company, Ltd. | Solar battery cell, solar battery module, method of making solar battery cell and method of making solar battery module |
US9455359B2 (en) | 2011-05-31 | 2016-09-27 | Hitachi Chemical Company, Ltd. | Solar battery cell, solar battery module and method of making solar battery module |
CN102290125A (en) * | 2011-07-13 | 2011-12-21 | 哈尔滨工业大学 | Composite solar photovoltaic confluence welding band and preparation method thereof |
US9443995B2 (en) | 2012-07-26 | 2016-09-13 | Hitachi Chemical Company, Ltd. | Solar battery cell and solar battery module |
CN103000265A (en) * | 2012-11-22 | 2013-03-27 | 芜湖航天特种缆业股份有限公司 | Miniature installing line and manufacture method thereof |
US9862866B2 (en) | 2014-03-10 | 2018-01-09 | Hitachi Chemical Company, Ltd. | Electrically conductive adhesive composition, connection structure, solar battery module, and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP3879666B2 (en) | 2007-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3879666B2 (en) | Lead wire for solar cell connection | |
JP5491682B2 (en) | Flat conductor for solar cell, method for manufacturing the same, and lead wire for solar cell | |
JP4329532B2 (en) | Flat conductor, method for manufacturing the same, and lead wire | |
CN107251246B (en) | Thermoelectric module and method of making the same | |
JP2010179336A (en) | Joint product, semiconductor module, and method for manufacturing the joint product | |
JP4226200B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2003092435A (en) | Thermoelectric module and its manufacturing method | |
RU2196683C2 (en) | Substrate, method for its production (versions) and metallic compound of articles | |
JP2566341B2 (en) | Semiconductor device | |
US10868230B2 (en) | Thermoelectric conversion module and manufacturing method thereof | |
US20040244828A1 (en) | Solar battery module and manufacturing method thereof | |
CN102637662A (en) | Sn-sb-ge solder alloy | |
KR100740642B1 (en) | Connection structure and connection method between conductors | |
JP2004204257A (en) | Solder-plated composite rectangular conductor | |
JP2643396B2 (en) | Plate-shaped lead wire soldered to a ceramic capacitor | |
US5146313A (en) | Metallized ceramic structure comprising aluminum nitride and tungsten layers | |
JP4699822B2 (en) | Manufacturing method of semiconductor module | |
JP4557398B2 (en) | Electronic element | |
JP2008028295A (en) | Power semiconductor module and manufacturing method thereof | |
JP2006140039A (en) | Lead wire and solar cell using the same | |
JPH08102570A (en) | Ceramic circuit board | |
JP3155874B2 (en) | Circuit board | |
JPH0997637A (en) | Joint part of oxide superconductor and metal terminal, and its forming method | |
JP3167796B2 (en) | Ceramic circuit board | |
JP2022156629A (en) | Thermoelectric module and method for manufacturing thermoelectric module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060706 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060711 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060908 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061017 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061030 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131117 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |