JP3595554B2 - 圧力フィードバック、動的補正、および診断機能を備えたバルブ位置制御装置 - Google Patents
圧力フィードバック、動的補正、および診断機能を備えたバルブ位置制御装置 Download PDFInfo
- Publication number
- JP3595554B2 JP3595554B2 JP50756595A JP50756595A JP3595554B2 JP 3595554 B2 JP3595554 B2 JP 3595554B2 JP 50756595 A JP50756595 A JP 50756595A JP 50756595 A JP50756595 A JP 50756595A JP 3595554 B2 JP3595554 B2 JP 3595554B2
- Authority
- JP
- Japan
- Prior art keywords
- valve
- valve position
- control pressure
- control device
- function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 claims description 31
- 230000008569 process Effects 0.000 claims description 24
- 239000012530 fluid Substances 0.000 claims description 19
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 238000001514 detection method Methods 0.000 claims description 15
- 238000012937 correction Methods 0.000 claims description 14
- 238000004891 communication Methods 0.000 claims description 13
- 230000036316 preload Effects 0.000 claims description 9
- 230000009021 linear effect Effects 0.000 claims description 8
- 230000003068 static effect Effects 0.000 claims description 4
- 230000003044 adaptive effect Effects 0.000 claims description 2
- 230000006870 function Effects 0.000 description 21
- 238000012423 maintenance Methods 0.000 description 14
- 230000005540 biological transmission Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000012856 packing Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000004886 process control Methods 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 1
- 230000005355 Hall effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000001564 chemical vapour infiltration Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001595 flow curve Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 230000003121 nonmonotonic effect Effects 0.000 description 1
- 238000012354 overpressurization Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- FEPMHVLSLDOMQC-UHFFFAOYSA-N virginiamycin-S1 Natural products CC1OC(=O)C(C=2C=CC=CC=2)NC(=O)C2CC(=O)CCN2C(=O)C(CC=2C=CC=CC=2)N(C)C(=O)C2CCCN2C(=O)C(CC)NC(=O)C1NC(=O)C1=NC=CC=C1O FEPMHVLSLDOMQC-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D7/00—Control of flow
- G05D7/005—Control of flow characterised by the use of auxiliary non-electric power combined with the use of electric means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/12—Actuating devices; Operating means; Releasing devices actuated by fluid
- F16K31/126—Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a diaphragm, bellows, or the like
- F16K31/1262—Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a diaphragm, bellows, or the like one side of the diaphragm being spring loaded
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K37/00—Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
- F16K37/0075—For recording or indicating the functioning of a valve in combination with test equipment
- F16K37/0083—For recording or indicating the functioning of a valve in combination with test equipment by measuring valve parameters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/2278—Pressure modulating relays or followers
- Y10T137/2409—With counter-balancing pressure feedback to the modulating device
- Y10T137/2452—With counter-counter balancing pressure feedback
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/7722—Line condition change responsive valves
- Y10T137/7758—Pilot or servo controlled
- Y10T137/7759—Responsive to change in rate of fluid flow
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/7722—Line condition change responsive valves
- Y10T137/7758—Pilot or servo controlled
- Y10T137/7761—Electrically actuated valve
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Servomotors (AREA)
- Control Of Fluid Pressure (AREA)
- Control Of Position Or Direction (AREA)
- Feedback Control In General (AREA)
- Indication Of The Valve Opening Or Closing Status (AREA)
Description
発明の背景
本発明は、プロセス変数に影響を及ぼすバルブを制御するためのバルブ位置制御装置に係り、特に、マイクロプロセッサを備えたバルブ位置制御装置に関する。
品質検査の必要性から、バルブ位置制御装置が動作する際の精度、動的性能および安定性を改善すると当時に、リアルタイムで診断結果を制御室へ提供することにより、事故による休業や、不必要に計画されたバルブ保守に煩わされることなく、保守やプラント停止の時期を予測できるようにしたいという要望がある。
プロセス制御産業では種々のタイプの位置制御装置が利用されている。ある種の位置制御装置はアクチュエータと機械的に連結されているが、他の装置はアクチュエータを内蔵している。アクチュエータはバルブを物理的に位置決めするための手段であり、それは電気式、油(流体)圧式または空気(気体)圧式のいずれであっても良い。電気式アクチュエータは、バルブを位置決めするためのモータを制御する電流信号を有する。油圧式アクチュエータはバルブを位置決めするために、油の充填された手段を有する。
プロセス制御産業では特に周知なように、空気圧式アクチュエータはピストンまたはスプリングとダイアフラムとを組み合わせて構成されている。用途次第で、また制御の統合レベルに応じて、位置制御装置は所望のバルブ位置を表す各種型式の入力を制御装置から受入れる。第1の型式は4〜20mAまたは10〜50mAの電流入力であり、第2の型式は電流信号に重畳されるデジタル信号であり、第3の型式は“フィールドバス(Fieldbus)”あるいは“モッドバス(Modbus:登録商標)”などの完全なデジタル入力である。これとは別に、位置制御装置は所望のバルブ位置を表す3〜15PSI(ポンド/平方インチ)の空気圧入力を受け取るかもしれない。
同様に、統合レベルや用途に応じて、位置制御装置は異なる型式の出力を有する。ある種の位置制御装置はモータへ電流出力を供給するが、他の位置制御装置は応答の早い油圧信号を出力する。最も標準的な位置制御装置の出力は0〜200PSIの空気圧である。本明細書で用いられる位置制御装置という文言には、適用できるならば、これら全ての分野の装置に搭載されるものや、各種の入力および出力や、これらに関連したバルブ位置決め用の手段を含んでいる。
バネとダイアフラムで構成された最も標準的はアクチュエータでは、ダイアフラムは位置制御装置から出力された圧力で撓み、その結果、バルブ位置を変化させるための制御弁棒や回転部材に力やトルクがそれぞれ作用する。ほとんど全ての位置制御装置は、位置信号を出力するために機械式または電子式の位置センサを具備し、一部の位置制御装置は、位置信号をマイクロプロセッサで構成された自身の制御部へフィードバックする。バルブを位置決めするための力を提供する固有の手段が何であるかにかかわらず、マイクロプロセッサで用いられる制御アルゴリズムを有する位置制御装置は公知である。現存の位置制御装置はループの動的応答性は改善するが、帯域幅は制限されている。このために、それらの用途は、タンク内のレベル(液面)や反応装置内の温度を制御するような、低速制御ループに制限されてしまう。
バルブの理想的な動的位置制御を実現する上での障害の一つは、バブル特性(本明細書中では、流量と弁棒位置または角度との関係を定義される)が公表されたバルブ特性から5%程度外れることである。このような理想的ではない特性として代表的なものは、制御バルブの3つの主要な特性、すなわち直線性、同一割合、および急速開弁である。さらに、回転式あるいはスライド式の弁棒を用いるバルブでは、アクチュエータによってバルブに与えられる力とバルブを通過する流量とが非直線関係を示すことがあり、本来的に直線性を有する位置制御装置で制御することは、たとえ本発明の弁棒に関する帰還技術を用いたとしても難しい。
実際、ロータリバルブではバルブ内のボール/バタフライ部分に、流れによって誘起される動的トルクが作用するので、流量対トルク関数が単調でなくなる。バルブ部材は日毎に摩耗するので、これによっても同様に制御ループが理想的ではなくなる。実際には、ループがあらゆる状態で安定状態を保つように摩耗を補償するために、新たに設置されるループは“脱調”させられるか、あるいは故意に理想的ではない制御定数が割り当てられる。静的および動的制御の精度に関するこれらの問題が組み合わさるので、バルブに関連したループの動作停止は産業にとって好ましくなく、かつ費用もかさむ。
電力研究所では、各制御バルブの寿命がわずか1週間でも伸びれば、電力事業体は毎年4憶米ドルを節約できると試算している。大部分のプラントは、費用がさらにかさむ上に危険な緊急停止を避けるために、定期点検でバルブを監視して修理したり、摩耗したパッキングやバルブの部品を交換するための操業停止を計画する。バルブの正常(完全)性を監視する診断システムが知られているが、これは一般的に、プロセスから切り離されたバルブの問題点を診断するように構成されている。リアルタイムで制御する1つのバルブが診断能力を制限してきた。
位置制御装置、制御バルブ、およびアクチュエータは、ベンチセッティングと呼ばれる、時間を浪費する行程で組み立てられて装置内に適正に組み込まれる。ベンチセットの間中、オペレータはバルブの最大移動位置(ストローク位置と呼ばれる)、最小移動位置(ゼロと呼ばれる)、限界停止、およびスティフネス・パラメータを手動で設定する。各設定は相互に独立していないので、上記工程は繰り返し的になる。
したがって、帯域幅が向上し、動的位置決め精度が改善され、かつバルブやアクチュエータの完全性に関する情報を提供するリアルタイムでの診断も可能な、マイクロプロセッサで制御されてベンチセットを簡単に行なえるバルブ位置制御装置が必要である。
発明の要約
本発明では、バルブ位置制御装置は、バルブに機械的に連結されたバルブアクチュエータへ、バルブの位置を表す信号、コントローラから受信した所望の位置のセットポイント、および検出された制御圧力の時間微分値の関数として制御圧力を供給する。位置制御装置は、セットポイントを受け取るために電流ループに接続された受信手段と、バルブ位置および制御圧力を検出する検出手段と、供給された空気圧源を、位置制御装置内で制御回路から受け取ったコマンド出力の関数として、制御圧力に変換する変換手段とを含んでいる。本発明の他の実施形態では、バルブ位置制御装置は、バルブの性能に関する状態変数一式を検出する検出回路を含む位置フィードバック装置を含む制御回路を有している。位置制御装置は、バルブの特性を格納し、この格納されたバルブ特性および選択された状態変数の一つの関数として出力を提供する診断回路を含んでいる。格納されるバルブ特性の例としては、位置と流量との関係、トルクと位置との関係、およびトルクと流量との関係曲線がある。
本発明のさらに他の実施形態では、位置制御装置は、アクチュエータのバネに加える適切なバネ予荷重力を示す出力を提供するために、特定の制御圧力およびこれらに相応した位置をサンプリングしている間に、制御圧力を初期の制御圧力と最終の制御圧力との間で変化させ、さらに初期の制御圧力へ戻すベンチセット制御回路を含んでいる。本発明のさらに他の実施形態では、バルブ位置制御装置は、コマンド出力の関数として制御圧力を出力する変換回路へコマンド出力を提供する位置フィードバックを実行する制御回路を有している。位置制御装置は、バルブの性能に関する状態変数一式を検出する検出回路を含んでいる。位置制御装置は、物理的パラメータの一つによって影響されるバルブ特性を格納し、検出された物理的パラメータおよび格納されたバルブ特性の関数としてコマンド出力を動的に補償する補正回路を含んでいる。
【図面の簡単な説明】
図1は、従来技術のバルブ位置制御装置を含む制御ループの制御フローチャートである。
図2は、マスタおよび、バルブと機械的に連結されたアクチュエータに接続された、本発明によるバルブ位置制御装置のブロック図である。
図3は、マスタおよび、バルブと機械的に連結されたアクチュエータに接続された、本発明によるバルブ位置制御装置のブロック図である。
図4は、急速開弁され、流量変化が直線的かつ同一割合である弁の弁棒位置を流量の関数としてプロットした図である。
図5Aは、バタフライ弁の単位トルクを角度位置の関数としてプロットした図であり、5Bは、パイプ内でのバタフライ弁の平面図である。
図6は、マスタおよび、バルブと機械的に連結されたアクチュエータに接続された、本発明によるバルブ位置制御装置のブロック図である。
図7は、バルブ位置と流量との関係を、弁座の摩耗具合の関数としてプロットした図である。
図8は、アクチュエータのトルクと移動角距離との関係を、弁座の摩耗具合の関数としてプロットした図である。
図9は、携帯型通信機および、バルブと機械的に連結されたアクチュエータと通信する、本発明によるバルブ位置制御装置のブロック図である。
好ましい実施例の詳細な説明
一般的に、位置制御装置はレベル(液面、水面)や温度のような比較的低速のプロセス制御ループ内で当該ループの性能を改善するために利用される。従来技術の典型的な電気空気式位置制御装置の制御ブロックでは、図1に示したように、内側カスケード(縦続)ループ20は、制御器のセットポイント24と位置センサのフィードバック26との差を発生する誤差発生器22、電流/圧力変換器28、バルブ30に接続されたアクチュエータ、および位置センサ32を具備している。符号34で一括して示した外側ループ34は、所望のセットポイント38とプロセス42の状態を代表する測定結果40との差を演算する誤差発生器36、ならびにカスケードループ20およびプロセス42に直列接続された制御器44を具備している。
図1に示した全体のシステムは、通常、カスケードループ20として示した位置制御装置の帯域幅が、外側ループ34の帯域幅の少なくとも4倍以上であれば安定する。調整の難しいループでは、その率を高く設定しなければならない。従来技術のループは、動作を広い条件範囲で安定させるために、故意に脱調されるか、あるいは理論上(理想的)とは異なるように調整される。さらに、このような調整はオーバーシュートを最小限に抑えるためにも好ましい。しかしながら、一般的な弱減衰システムの比例帰還を備えた2次のシステムでは、帯域幅が広がるとオーバーシュートも増える。
図2に示したような、本発明に基づいて作成されたバルブ位置制御装置50では、圧力帰還信号52の導関数は、帯域幅に影響を及ぼすことなくオーバーシュートを減少させるために必要なレート帰還を供給する。すなわち、プロセスループ内でのダンピング量によって良好に制御されたオーバーシュート量は、図1に示したループとは異なり、バルブ位置制御装置50の帯域幅を狭めることなく減ぜられる。図2において、符号60で代表して示したプロセスループは、制御室内に設けられて所望のバルブ位置信号をバルブ位置制御装置50へ2線式電流ループで送出するマスタ62を含んでいる。なお、電流ループは2線式に限らず、3線式あるいは4線式電流ループ等の他の伝達ループであっても良い。
位置制御装置50は、圧縮ガス61の供給を受けると、制御圧力64を、マスタ62から送出される所望のセットポイントおよび2つの変量、すなわち制御圧力信号52の導関数と検知された位置信号68の関数として出力する。制御圧力64は、弁棒の直線動作によって制御されるバルブ72と機械的に連結されたアクチュエータ70へ圧縮空気を供給する。なお、本発明ではバルブ72の代わりにロータリーバルブを用いても良い。アクチュエータ70は、制御圧力用の圧縮空気によって押されると弁棒76を下方へ推進させるように撓むダイアフラム71を具備している。弁棒76は弁プラグ78に固着され、弁プラグ78が完全に閉じられると第1通路80と第2通路82との間の流れが止まる。バルブ72は流量Qが流れるパイプ86とフランジ84を介して連結されている。送信機88は流量Qを測定し、流量を表す信号をマスタ62へ送信する。
位置制御装置50内では、受信回路92が4〜20mAの信号をマスタ62から受け取るが、携帯用通信機からその信号を受け取るようにしても良い。電流の大きさは所望のバルブ位置を表すが、センサ選択コマンドおよびデータを含むデジタル情報が、例えば“HART"(登録商標)のようなプロトコルに従って、あるいは“DE",“BRAIN"(登録商標),“Infinity"、または“Modbus"(登録商標)等のデジタルプロトコルを用いて電流上に重畳されるようにしても良い。臨界制御のために、位置信号68はマイクロプロセッサ内で温度補償される。代案として、マスタ62は、例えば“フィールドバス(Fieilbus)”のような完全なデジタルプロトコルを位置制御装置50との通信に利用する。
このような構成によれば、他の構成よりも柔軟性が向上し、かつ接続の簡便化が達成される。なぜならば、マスタは変量の必要性を認識する必要がなく、またプロセス変量を要求する必要もなく、その結果、変量を要求している現場装置に当該変量を送信する必要がなくなるからである。このように、プロセス変量が送信機88と位置制御装置50との間で直接的に伝送されるようにすれば、ループ60内での遅延が大幅に減少し、位置制御装置50を例えば流量制御のような高速制御ループへ適用できるようになる。
制御回路94はコマンド出力97を、回路92から出力された所望のセットポイント、位置信号68、および圧力信号52の関数として出力する。回路94内の時間微分回路96はレイト帰還信号、換言すれば圧力信号52を時間で微分した導関数を、回路94内の制御アルゴリズムのために出力する。本発明の他の実施例では、圧力信号は診断および/または動的な誤差補正信号として有用なので、圧力信号をレイト帰還信号として用いることは好ましが、力あるいはトルク信号でも足りる。制御回路94は、低消費電力のCMOSマイクロプロセッサ、あるいはその他の、PID定数を精密に調整するために圧力、位置、力、パッキング、および弁座の摩耗などに関する検出された有効信号を利用する、適応性のある制御アルゴリズムを利用することによって、電力消費や帯域幅が改善された適宜の技術で構成することが望ましく、これによりループ脱調が除去される。
位置制御装置50は、もっぱら直流10〜15V、4〜20mA(フィールドバス用では9V、9mA)をマスタ62から供給されて動作するので、本発明の全ての実施例において電力消費が関心事となる。このため、位置制御装置内のデジタル回路が動作する箇所での静電容量および周波数は最小にされなければならない。静電容量および周波数に関する懸念の他にも、位置制御装置50は、共に4〜20mAで動作する圧力変換器および空気位置制御装置へ電流を供給するための電流を最小にする。この結果、従来は最大で40mAを消費していたバルブ制御が、今では最大でも20mAを消費するに過ぎない。変換回路/気体圧力装置100は0〜200PSIの圧縮ガス61を供給され、本発明と同一の譲渡人が所有しているブラウン(Brown)の米国特許第4534376号に開示されたローズマウント社製の電流/圧力変換装置3311のような、相互に直線的な磁気式アクチュエータおよび偏向ジェットパイロットステージを利用して、回路94から出力される制御信号の関数として制御圧力64を供給する。検出手段102は、圧力センサ54および機械式位置センサ55から出力される各信号を検出し、これをデジタル信号に変換して制御回路94へ出力する。
非減衰の固有周波数(したがって、帯域幅)に影響を与えることなくオーバーシュートを減少させるという第1の効果に加えて、レイト帰還がもう一つの効果をもたらす。各アクチュエータは、広範囲の空気コンプライアンスを有する、符号98で代表して示した可変の内蔵型の負荷ボリュームを有している。このように低流量バルブと共に利用され、直径の比較的小さいアクチュエータは、大型の制御弁と共に用いられるアクチュエータよりもコンプライアンスが小さい。従来技術の位置制御装置では、変動する負荷ボリュームに適合してその安全性を保証するために、制御アルゴリズムにおけるゲインは手動で調整されなければならない。しかしながら、本発明では、大きなアクチュエータのコンプライアンスに合わせてゲインが予め調整されており、小さなコンプライアンスに対してはゲイン調整が不要である。その理由は、小さなアクチュエータではレイト帰還量が必然的に小さいからである。
位置制御装置が小さい負荷ボリュームを介してアクチュエータと連結されていると圧力の変化率が大きくなるので、位置制御装置の実効ループゲインは、過度のオーバーシュートやリンギング(過度的振動)、そしてリミットサイクリングを防止するために過度期間中は減ぜられる。位置制御装置が大型の負荷ボリュームでアクチュエータと連結されていると圧力の変換比率は小さくなるので、位置制御装置の実効ループゲインは、過度期間中高いままである。圧力のレイト帰還量を制御アルゴリズムの比例ゲインおよび積分動作と適正にバランスさせることにより、アクチュエータの負荷ボリュームはオーバーシュートを最小に保って帯域幅を最小にしながら、広い範囲で調節される。
図3において、制御ループ200はパイプ202内の流量Qを制御する。送信機204は流量を検出し、この信号を一対の撚線ワイヤでマスタ制御器206へ伝送する。制御器206は、信号を他の一対の撚線ワイヤ208でバルブ位置制御装置210へ伝送する。位置制御装置210は、アクチュエータ216を介して制御圧力212をバルブ214へ供給する。アクチュエータ216内のダイアフラム220は制御圧力によって撓み、流れQ内に設けられた弁プラグ224に固着された摺動弁棒222にバネ力を作用させる。この結果、プラグ224が更に推進されて通路を塞ぎ、流量Qが減ぜられる。流量を増やすためには、バネ力によってプラグ224が上昇して再設定されるように制御圧力が排気される。
位置制御装置210は受信回路228、制御回路230、変換回路/気体圧力装置232、検出回路234、ならびに補正回路236を含んでいる。検出回路234は、制御圧力を検出するための圧力センサ238、バルブ位置を検出するために弁棒222と結合された機構部分240、および力またはトルクを検出するためのロードセル242にそれぞれ適当に接続されている。しかしながら、力あるいはトルクは、コストおよび電力消費を低減させると共に、ロードセル242に関連する構成を簡素化するために、好ましくはアクチュエータのダイアフラム面積で圧力センサ238の出力を除算することによって検出される。精密制御の要求に応じるため、力に関する検出信号はダイアフラムとケースとの間の空気の体積によって得られる空気バネ効果によって修正される。本発明の全ての実施例においては、可動連結部を有せずに連続的な信号出力が得られる非接触位置センサ、例えばLVDTセンサ、RVDTセンサ、あるいはホール効果センサが最も好ましい。マルチプレクサ回路246は、受信回路228から受け取ったコマンドに基づいて、入力されたセンサ信号のいずれか1つを選択的に補正回路236へ供給する。
受信回路228はマスタ206から4〜20mAの信号を受け取るが、携帯用通信機から信号を受け取るようにしても良い。回路228は、実質的に回路92と同様に動作する。制御回路230は、所望のバルブ位置を代表するデジタル信号を回路228から受け取ると共に、バルブ位置を代表する、検出された位置信号229を受け取ると、電気制御信号231を、回路230内にセットされた適宜のPID定数の関数として供給する。変換回路/気体圧力装置232は、0〜200PSIで供給される空気を受け入れ、標準的な電流−圧力変換技術、例えば前記ローズマウント社製の電流/圧力変換装置3311を用いて、位置制御装置のノズルに制御圧力212を発生させる。
補正回路236は、低消費電力のCMOSマイクロプロセッサで構成され、バルブ214の特性を記憶するための不揮発性記憶手段250を内蔵していることが望ましい。第1のモードでは、バルブ214に固有の一般的な情報として、例えば全開状態の位置や全閉状態の位置、あるいは制御圧力212の許容最高および最低圧力が記憶手段250に格納される。前者のデータはバルブの過剰駆動あるいは駆動不足を補正し、後者のデータは、過度の高加圧または加圧不足を補正する。
第2のモードでは、バルブ214に関して実験室でテストされた流量およびトルクの測定値が補正され、受信回路228を介してマスタ206から記憶手段250へ転送保存される。あるいは、測定された特性をEEPROMのような不揮発性のメモリに記憶し、その後、これを位置制御装置210に読み込ませるようにしても良い。このようにして、位置決めはプロセスで使用されるバルブの特種な非線形特性に適合される。
非常に精密な位置制御で利用される第3の動作モードでは、最初に流量およびトルク特性が記憶手段250に記憶され、その後、バルブが作動している間に動的に更新される。このモードでは、データが各動作ポイントでサンプリングされるのにつれて、測定された特性(データ)は各ポイントごとに記憶手段250に保存され、その後に更新される。これら全てのモードにおいて、補正回路236は、記憶されている特性を検出手段234によって実際に検出された物理的パラメータと比較し、比較結果に応じてコマンド出力231を補償する。記憶された諸特性は、バルブが作動している間、動的に更新される。
このように格納される特性の一つは、位置の関数としてバルブ214を通過する流量である。この流量は次式で与えられる。
Q=C・(DP/SG)1/2
ここでQは流量、CVはバルブ係数、DPはバルブの両側での圧力差であり、またSGはパイプ内の流体の比重である。図4の符号A,B,Cは、それぞれ急速開放弁、直線開放弁、および等パーセント弁の、3種類の弁の一般的な流量と弁棒位置との関係を示した図である。比重の関数である一組の特性曲線が記憶手段250に記憶される。
補正回路236は、検出された流量を代表する信号を送信機204から受け取り、検出された流量に対応する、格納されている位置を、検出された位置と比較する。補正回路は、演算増幅器加算点技術を利用して、実際に検出された位置と、検出された流量に基づいて予測された位置との偏差に応じてコマンド出力231を補正する。このモードでは、プロセス変数を要求したり受け取ったりするために必要な時間が位置制御装置の空気圧のための応答時間に比べて長くなると、位置制御装置の有効帯域幅は少なくなるかもしれない。例えば600msというような、非常に長い伝送遅延を招く装置では、位置制御装置の帯域幅は必然的に狭くなる。しかしながら、フィールドバス(Fieldbus)のような通信プロトコルでは、要求および検索時間として1msしか必要としないので、目標位置制御装置の帯域幅としては、12〜20Hzが確保される。
格納される2番目の特性はバルブ214の位置対トルクの関係である。位置制御装置は本質的に非線形素子であるので、トルクと位置との関係が直線的とならない領域ではバルブ位置の制御が難しい。いくつかのロータリーバルブでは、トルクと位置との関係は非直線的というよりも、むしろ非単調的である。図5Aは、図5Bに示したような、パイプ402内に装備された回転バルブ400の、トルクと移動角距離との関係例を示した図であり、曲線404はバルブを開く際のトルクを移動角距離の関数として表しており、曲線406はバルブを閉じる際の特性を表している。この特徴によって得られる精度は、特に中心動作点のまわりを回転する制御弁に有用である。なぜなら、これらのバルブは、バラバラで相互に関係のない動作特性の間で連続的に切り替えられ、制御に関して特別の問題を抱えているからである。
このモードでは、補正回路236は単位距離(弁棒式バルブの場合)または単位角度(ロータリーバルブの場合)だけバルブを動かすのに必要とされるトルク信号を受信し、これを、現在の検知位置または角度において必要とされる、格納されている力と比較される。補正回路236は、実際に検出された位置に対する、検出された力に基づく予測位置の偏差に基づいてコマンド出力231を補正する。格納される3番目の特徴は、測定されたトルクとバルブ214の流量特性との関係である。このモードでは、補正回路236は、ロードセル242から伝送された検出トルクを、所望の流量Qにおける格納済のトルクと比較し、両者の偏差に基づいてコマンド出力231を補償する。
時間が経過してバルブパッキング244が劣化し、弁座246からリークを始めると、これらによって、位置の関数としてのバルブ流量が変化する。このモードでは、初期の流量対位置の特性曲線が前記したように記憶手段250に記憶されているが、これらは動的に更新される。例えば、位置と流量曲線との関係が選択されたとき、前記特性曲線上の前の動作位置を更新するために、送信機204から通知された、それぞれの新しい動作位置での検出流量が格納される。更新された曲線の大きな不連続部分間を補間するために、標準的な補間アルゴリズムが利用される。流量とこれに対応する検出位置出力が時間経過にともなって格納されるので、位置制御装置の動的な流量対位置特性を反映した新しい特性曲線が形成される。これらの特性曲線の、時を追った変更修正は、動的補正を格納されているトルク特性のリアルタイムでの更新と関連付けられたものとし、かつ正確な静的位置決めに必須のものとする。前述の例は流量制御のループを表しているが、温度、pH、上流および下流側のプロセス圧力、並びに動作限界でのバルブ位置(例えば、リミットスイッチ)のような、他の種々の物理変量の制御にも同様の手法がに適用できることは明らかである。
図6において、制御ループ300は、送信機304、マスタ306、位置制御装置310、アクチュエータ314、およびバルブ316によって構成され、前に図3に関して説明した方法と実質的に同じ方法でパイプ302内の流量Qを制御する。位置制御装置310は、受信回路330、送信回路358、制御回路332、変換回路/気体圧力装置334、検出回路336および診断回路338によって構成されている。受信回路330は、前記受信回路228と実質的に同じ方法で通信する。受信回路330は、バルブ特性を格納するために記憶手段354へ1つの出力信号を提供すると共に、診断回路338で利用する検出信号を選択するために、選択用マルチプレクサ352へ他の出力信号を提供する。制御回路332は、バルブ位置を表す位置信号333および受信回路330から出力された所望のバルブ位置信号の両方を受け取ると、電気的コマンド出力335を、回路332に記憶されているPID定数の関数として出力する。
変換回路/気体圧力装置334は、0〜200PSIで供給される空気を受け入れ、標準的な電流−圧力変換技術を利用して、制御圧力312を位置制御装置ノズルから提供する。検出回路336は、位置制御装置310のノズル出口における制御圧力312を検出するための圧力センサ340、バルブの位置を検出するために弁棒344と連結された機構部材342、力を検出するロードセル346、キャビテーションやバルブパッキングのノイズを検出する音響センサ348、およびパイプ302内の有機化学物質から発散される気化物質を検出するフューギティブエミッション(fugitiveemission)センサ350と接続されている。バルブの能力に関連した物理的パラメータを検出する他のセンサとして、例えば、上流側および下流側の温度やプロセス圧力を検出するセンサや、過度の開位置および閉位置を検出するリミットスイッチや、プロセス変量を直列制御ループへ供給するセンサなどの他のセンサも付加することもできる。マルチプレクサ回路352は、回路330から受け取ったコマンドに応じて、各センサからの入力信号のいずれかを選択的に診断回路338へ出力する。送信回路358は、警報および診断データをマスタ306へ送信する。
診断回路338は、CMOS構造の低消費電力のマイクロプロセッサで構成し、バルブに関する物理的パラメータを格納する不揮発性の記憶手段354を内蔵していることが望ましい。特性は、ある範囲の許容値あるいは上限に関連した唯一の期待値の形である。期待値は、2線ループ308を介してマスタ306から記憶手段354へ書き込まれる。マスタ306は、典型的には制御室内に配置されたループ制御装置であるが、“HART"(登録商標)やフィールドバス(Fieldbus)といった通信プロトコルによって通信する携帯用の通信機であっても良い。比較器356は、期待される物理的パラメータを検出された物理的パラメータと比較し、送信回路358へ診断出力を提供する。
診断出力は、バルブ314が臨界制御ループ内で不適正に位置決めされた場合のように、素早く応答するための、回路358を介してマスタ306へ送信される警報や警告であっても良いが、通常状態でマスタ306へ伝送されたり、あるいは保守整備が要求されたときに評価するためのポーリングに有効な値であっても良い。弁座の摩耗もバルブ漏れの一因となるので保守整備を計画する上で重要である。例えば、バルブ弁座での漏れは、急速開放バルブやバルブ位置を少し調整しただけで流量が大きく変化してしまうようなバルブにとって特に重大である。図4の曲線Aは急速開放バルブの特徴を表しており、漏れ量に相当する定数分だけ上方へ移動されている(鎖線曲線D)。弁座漏れは、プラグ356が弁座360に完全に着座している状態で、液体が通路353a,353b間を流れときに生じる。
漏れを評価する一つの方法は、製造時において完全に着座したバルブに対応する位置の値、あるいは最後の保守整備時における着座位置の値を記憶しておくことである。弁座360が摩耗するにしたがって、プラグ356は次第に低い位置で着座することになる。診断回路は、バルブが着座した状態で検出された位置値を、記憶されているバルブ着座位置の値と比較する。両者の差が、予め記憶されている限界値を超えていると、弁座の摩耗量がマスタ306へ伝送される。漏れを評価するもう一つの方法は、製造時におけるバルブ316のバルブ特性を、摩耗して漏れの生じた後に収集された他のバルブ特性と比較することである。図7において、最初の製造時、または最後の保守整備時に収集されたバルブ316についての位置対流量特性が符号Aの曲線で示されている。破線の曲線Bは、使用後のある時期に収集された同じ特性を表している。特性は動的に収集され、バルブが動作する各位置ごとに求められる。X軸方向における両者の差は漏れ量を表し、これは回路358を介してマスタ306へ通知される。
バルブのパッキングに関する不良診断も、好ましいバルブ保守のために重要である。この診断モードでは、パッキングが締め直されなければならない累積距離を表す値が記憶手段354内に格納される。格納された値は、移動された累積距離(ロータリーバルブの場合は、移動角度)と比較され、移動した累積距離が締め直しを必要とする距離を越えた時、回路358がマスタ306に対して診断出力を送信する。
パッキングや弁座の腐食に関する他の測定尺度は、バルブを開くために要する力の、時間経過に伴う低下である。図8において、曲線Aは、新品または最終のメンテナンス時のバルブのアクチュエータトルク対角距の関係を表しており、曲線Bは、その後の時期でのバルブについて同じ関係を表している。X軸方向における両者の差は、バルブを開く際に必要な力の差を表している。両者の差が、予め記憶されている限界値よりも大きいと、アクチュエータの力に関する値がマスタ306へ送信される。
バルブトリム(すなわち、弁棒とケージ組立体)の“かじり”や焼付きの発生を検知することも保守整備のスケジュールを立てる上で重要である。このモードでは、力の信号が診断回路338で利用されるために選択され、力が過度であることを表す基準値と比較される。検出された力信号が、格納されている力の基準値を上回ると、力の値が回路358を介してマスタ306へ通知される。格納されている他の特性は、完全に開放または閉塞されているソレノイド弁に関するものである。これらは、ループを安全状態へ移すような臨界制御の用途においては、普通のことである。ソレノイドバルブは長期間使用しないと動かなくなってしまう傾向にある。このモードでは、制御回路332が開位置コマンドおよび閉位置コマンドを、プロセスが応答できるレートよりも早いレートで交互に送出する。この結果、ソレノイドバルブは必要なときに動作できるようになる。検出回路336内で検出された位置信号によりソレノイドが非応答であることが判明すると、診断メッセージがマスタ306へ送信される。
格納されている他の特性は、製造直後または前回のバルブ使用期間中に測定された化学エミッションの濃度レベルである。このケースでは、診断回路338はエミッションセンサ350からの出力信号を受信し、有機化学物質の濃度が、格納されている上限値を越えると、この濃度値がマスタ306へ送出される。その代わりに、化学的濃度を表す値がマスタ306へ送出されても良い。弁棒およびケージ組立体(すなわち、バルブトリム)のキャビテーションや完全性をも本発明によって診断することができる。音響センサ348によって検出された周波数スペクトルが、パイプ302内でのキャビテーションノイズまたはバルブトリムからのノイズを表す、格納された周波数スペクトルと一致したとき、キャビテーション値またはトリムの摩耗値が回路358を介してマスタ306へ通知される。トリムの振動が5〜200Hzの範囲で発生するのに対し、キャビテーションノイズは10MHz以上の周波数で発生するので、より低い周波数で他のパイプから発生しているノイズと容易に区別することができる。
アクチュエータの部品の破損も診断することができる。このモードでは、コマンド出力335が変化したときに検出されている位置信号が一定になる場合に、アクチュエータのダイアフラムの破裂、弁棒の損傷または供給圧力の閉塞が認識される。診断回路338は、コマンド出力335が予定時間以上にわたって予め設定された量だけ変化しているにもかかわらず、検出された位置信号が一定であるときに、警報または警告を送る。
温度(熱的)履歴も、例えば位置制御装置内の電子部品のように、しばしば故障したり修理に時間を要するようなバルブの部品の予防的な保守整備の計画立案の手助けとなる。このモードでは、診断回路338は異なったカテゴリの熱的事象を記憶手段354に記録し、このデータを回路358を介してマスタ306へ提供する。例えば、ある位置制御装置の部品では、相対湿度100%、華氏150゜Fの環境で動作させたときに“故障が発生する平均時間”(MTBF)として1.9年が予測されている。保守整備は、前回の保守整備からMTBFの1.9年が経過する前に計画されることができる。
データは、記憶手段354のほんの一部分のみしか利用しないように計算された特定の時間間隔で格納されて転送(upload)されるので、記憶手段354の僅かな部分だけがこの機能に専有されるに過ぎない。新たに格納されるデータは前のデータに上書される。位置制御装置310も現場装置上での記録装置(データロガー)として機能する。このモードでは、プロセスの動特性および位置制御装置の応答を記録するために、回路338は短い期間だけの関連プロセス変数を取り込む。記録された情報は、プロセスのモデル構築およびプロセスの異常収集のために回路358を介してマスタ306へ転送される。プロセスと位置制御装置の動特性はいずれも類似した記録モードにあるので精密なモデル構築が可能である。バルブの保守整備時における状態変数は、転送および保守整備の計画のために記録される。
位置制御装置内での適当なバネ予荷重力を設定するためにベンチセット動作が実行される。通常の動作では、バルブが制御対象のプロセスに合わせて精密に構成されるように、ストローク位置(すなわち、100%の位置)、ゼロ位置(0%の位置)、限界停止およびアクチュエータバネのスティフネスに関しては初期設定が必要である。このプロセスは、検出された弁棒の位置および検出された制御圧力がオペレータにとって利用できないので、反復的であって時間を浪費し、従来技術の位置制御装置では、通常完了するまでに1ないし4時間を要した。
本発明では、ベンチセット動作は従来技術よりも更に効率が良く精密である。図9では、位置制御装置500はベンチセットモードで動作し、このとき位置制御装置500は、アクチュエータ504とは機械的に接続されているがプロセスからは切り離されたバルブ筐体502と機械的に連結されている。位置制御装置500はベンチセットコマンドを携帯用通信機508から受信し、ベンチセットするパラメータを携帯用通信機508へ転送するが、携帯用通信機508の代わりに適正に構成されたパソコンを用いても良い。
2線ケーブル522に接続された受信回路520は、通信機508から受け取ったコマンドを解釈し、これを、ベンチセット制御回路526および送信回路528に接続された共通バス524へ送出し、ベンチセットデータをマスタ508に通信可能なフォーマットに変換する。制御回路526は、アナログ回路でも実現可能であるが、不揮発性の記憶手段530を内蔵したCMOSマイクロプロセッサで構成されるのが望ましい。制御回路526は、既知のI/P技術を利用して制御圧力を発生する変換回路/気体圧力装置542へ電気的なコマンド出力を提供する。検出回路532は、位置センサ536を介してバルブ502内での弁棒534の位置を検出し、圧力センサ538は制御圧力540を検出する。
ベンチセッチ動作の最初の段階では、アクチュエータ504を切り離して摩擦力の影響を取り除いた状態で、バネ506のバネ定数が演算される。オペレータは、バルブ502のみに位置制御装置500が接続された状態で、ベンチセットコマンドを受信回路520を介して回路526へ送出する。次いで、オペレータは、受信回路520を経由して制御回路526で使用される所望の初期制御圧力P0および最終制御圧力P100をマスタ508から入力する。制御回路526は、検出された位置信号を表示させるために、この位置信号を送信回路528を介してマスタ508へ送る間に、気体圧力装置542に指示して圧力をP0とP100との間で変化させる。制御回路526は、圧力P0およびP100に対応した検出位置を格納し、これらを記憶手段530へ格納する。バネ定数Ksは次式に基づいて回路526で演算される。
KS={(PS−PR)AE−FS−FD}/(YS−Y0)
ここで、YSは100%ストローク時のバルブ位置、Y0は0%ストローク時のバルブ位置、AEはダイアフラムの実効面積、PSは100%ストローク時の制御圧力、PRは0%ストローク時の制御圧力である。精細な制御が要求される場合には、バネ定数は空気バネ定数を用いて同様に演算される。バルブ502をアクチュエータ504へ接続した後、摩擦力およびバネ506の予荷重力が測定される。オペレータは、0%および100%の行程(Y0およびY100)に対応する弁棒の位置、装置内のライン圧力PL、および弁プラグが着座した後でバルブ502に加えなければならない圧力の大きさに関連した弁座圧力の安全係数SMを入力する。
位置制御装置500を0%の行程から100%の行程まで変化させ、さらに0%の工程に戻すための制御信号を、回路526が気体圧力装置542へ送信している間に、検出された制御圧力は各位置ごとに記憶手段530へ格納される。PMは弁棒が摩擦力に打ち勝って動き始める直前の制御圧力、PRは弁棒が動いた直後の制御圧力、PDは閉位置方向に移動する弁棒の25%のスパン位置における制御圧力、PUは完全に開いた位置方向に移動する弁棒の75%のスパン位置における制御圧力、Fiは0%位置でサンプリングされたバネの予荷重である。圧力センサ538の出力をアクチュエータダイアフラムの面積AEで除算することによって、力信号AEは最もコスト上有利に、かつ効率的に収集されるが、その代わりに、図示しないロードセルから出力されるようにしても良い。
次に、回路526が次式で表される静止摩擦力FSおよび弁棒の動きに逆らう運動摩擦力FDを演算して格納する。
FS=(PM−PR)AE−FD
FD=(PD−PU)AE/2
従来技術の位置制御装置のベンチセット動作のなかで最も時間を要し、繰り返しの多い部分は、バネ506の力を変化させる弁棒上のナット544を手動で調節することによってバネ予荷重を設定するオペレータの作業である。アクチュエータおよび弁に接続されている位置制御装置の力バランスの等式は導き出すことができ、また、所望の位置に対する解Ysを求めることができる。回路526内で演算される等式は以下の通りである。
YS={Ff+Fi+PLAV−AA(P0−P100)}/KS+Y0−Y100
ここで、AA(アクチュエータダイアフラムの実効面積)以外の全符号は前に定義された通りである。量YSは、特定の制御圧力およびこれに相応する弁棒の位置で必要な予荷重を得るためにナット544が位置決めされなければならない所望の弁棒位置である。ナット544を手動調整している間中、検出された位置信号は送信回路528を介して通信機508へ送信され、要求されている弁棒の移動行程調整のパーセンテージとして表示される。
本発明は好ましい実施例を参照して説明されたが、当業者は本発明の精神および範囲から逸脱することなく形式や詳細の変更ができることを認識できるであろう。
Claims (15)
- バルブと機械的に連結されたバルブアクチュエータへ流体制御圧力を供給するバルブ位置制御装置において、
所望のバルブ位置を表す入力を受信するために通信ループに接続された受信手段と、
プロセスを表す複数の状態変数であって、その一つはバルブ位置を表し、他の一つは前記流体制御圧力を表す状態変数を出力する検出手段と、
前記検出手段および受信手段と接続され、所望のバルブ位置、検出されたバルブ位置、および検出された前記流 体制御圧力の時間微分値の関数としてコマンド出力を提供する制御手段と、
加圧された空気源および前記コマンド出力を受入れ、コマンド出力の関数として前記流体制御圧力を発生する変換手段とを具備したバルブ位置制御装置。 - 前記変換手段は、直線磁気アクチュエータおよび偏向ジェットパイロットステージを有する気体圧力変換手段を具備したことを特徴とする請求項1に記載のバルブ位置制御装置。
- 前記制御手段は、検出された状態変数の関数として変化する少なくとも一つのPID定数を有する、適応制御アルゴリズムを利用することを特徴とする請求項1に記載のバルブ位置制御装置。
- バルブ位置を表す前記状態変数は温度補正されることを特徴とする請求項1に記載のバルブ位置制御装置。
- 前記検出手段は、力を検出するセンサをさらに具備したことを特徴とする請求項4に記載のバルブ位置制御装置。
- 検出手段に接続されてバルブの特性を格納し、格納したバルブ特性および少なくとも一つの状態変数の関数として診断出力を提供する診断手段をさらに具備したことを特徴とする請求項1に記載のバルブ位置制御装置。
- バルブと機械的に連結されたバルブアクチュエータへ流体制御圧力を供給するバルブ位置制御装置において、
所望のバルブ位置を表す入力を受信するために通信ループに接続された受信手段と、
プロセスを表す複数の状態変数であって、その一つはバルブ位置を表し、他の一つはバルブを駆動するために必要な力を表す状態変数を出力する検出手段と、
前記検出手段および受信手段と接続され、所望のバルブ位置、検出された力の時間微分値、およびバルブ検出位置の関数としてコマンド出力を提供する制御手段と、
加圧された空気源および前記コマンド出力を受入れ、コマンド出力の関数として前記流体制御圧力を発生する変換手段とを具備したバルブ位置制御装置。 - バルブと機械的に連結されたバルブアクチュエータへ流体制御圧力を供給し、通信ループを利用してマスタと通信するバルブ位置制御装置において、
所望のバルブ位置を表す入力を受信するために通信ループに接続された受信手段と、
バルブに影響を及ぼす物理的パラメータとして、バルブ位置、流体制御圧力およびバルブを動かすのに必要とさ れる力を含む物理的パラメータ一式を検出する検出手段と、
前記検出手段および受信手段と接続され、所望のバルブ位置および検出されたバルブ位置の関数としてコマンド出力を提供する制御手段と、
加圧された空気源および前記コマンド出力を受入れ、コマンド出力の関数として前記流体制御圧力を発生する変換手段と、
前記物理的パラメータの一つに関連するバルブ特性を格納し、かつ検出された物理的パラメータ一式のうちの選択された一つを受信し、検出された物理的パラメータおよび格納されたバルブ特性の関数として前記コマンド出力を補正する補正手段とを具備したバルブ位置制御装置。 - 前記受信手段はループを介してバルブ特性を受信するように適合され、格納されるバルブ特性はバルブ位置の関数としてバルブを流れる流量であり、補正手段は検出された流量および格納された流量特性の関数としてコマンド出力を補正することを特徴とする請求項8に記載のバルブ位置制御装置。
- 前記検出手段はバルブを駆動させるために必要な力を検出するセンサを有し、格納される特性は位置の関数であるバルブの力特性であり、前記補正手段は検出された力および格納された力特性の関数としてコマンド出力を補正することを特徴とする請求項8に記載のバルブ位置制御装置。
- 検出された位置に関する値は温度の影響を補償されることを特徴とする請求項8に記載のバルブ位置制御装置。
- 前記検出された物理的パラメータ一式の一つは制御圧力であり、この制御圧力は空気バネの影響を補償されることを特徴とする請求項8に記載のバルブ位置制御装置。
- バルブのバネと機械的に連結されたアクチュエータのダイアフラムへ制御圧力を出力するバルブ位置制御装置であって、前記バルブ位置制御装置が弁棒を第1の制御圧力およびこれに相応する第1の弁棒位置と第2の制御圧力およびこれに相応する第2の弁棒位置との間で駆動するためにバルブのバネが予荷重を必要とするような、バルブ位置制御装置において、
第1および第2の制御圧力、並びにこれらに相応した弁棒位置を表す情報を受信する手段と、
バルブ位置および流体制御圧力を検出する手段と、
空気源を供給され、コマンド出力の関数として該流体制御圧力を発生する変換手段と、
検出されたバルブおよび位置該流体制御圧力を受信し、第1および第2の流体制御圧力、ならびにこれらの流体制御圧力の間の値に相応するコマンド出力を供給し、予定の弁棒位置において検出された流体制御圧力を格納し、格納された流体制御圧力、第1および第2の流体制御圧力、並びにこれらに相応した位置の関数として予荷重力を供給するベンチセッティング手段と、
マスタへ予荷重力を送信する手段とを具備したことを特徴とするバルブ位置制御装置。 - 前記ベンチセッティング手段は、次式にしたがってバネ定数を演算することを特徴とする請求項13に記載のバルブ位置制御装置。
Ks={(PS−PR)AE−FD}/(YS−Y0)
但し、Ysはストローク量が100%のときのバルブ位置、Y0はストローク量が0%のときのバルブ位置、AEはダイアフラムの実効面積、PSはストローク量が100%のときの流体制御圧力、PRはストローク量が0%のときの流 体制御圧力、FSは静止摩擦力、FDは運動摩擦力である。 - 前記バネ定数はアクチュエータ内の空気バネの影響を補償されることを特徴とする請求項14に記載のバルブ位置制御装置。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/112,694 | 1993-08-25 | ||
US08/112,694 US5549137A (en) | 1993-08-25 | 1993-08-25 | Valve positioner with pressure feedback, dynamic correction and diagnostics |
PCT/US1994/007914 WO1995006276A1 (en) | 1993-08-25 | 1994-07-14 | Valve positioner with pressure feedback, dynamic correction and diagnostics |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09502292A JPH09502292A (ja) | 1997-03-04 |
JP3595554B2 true JP3595554B2 (ja) | 2004-12-02 |
Family
ID=22345360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50756595A Expired - Fee Related JP3595554B2 (ja) | 1993-08-25 | 1994-07-14 | 圧力フィードバック、動的補正、および診断機能を備えたバルブ位置制御装置 |
Country Status (9)
Country | Link |
---|---|
US (3) | US5549137A (ja) |
EP (2) | EP0739503B1 (ja) |
JP (1) | JP3595554B2 (ja) |
CN (1) | CN1072816C (ja) |
BR (1) | BR9407585A (ja) |
CA (1) | CA2166867C (ja) |
DE (2) | DE69427487T2 (ja) |
SG (1) | SG44472A1 (ja) |
WO (1) | WO1995006276A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013254447A (ja) * | 2012-06-08 | 2013-12-19 | Azbil Corp | ポジショナ |
JP2013254448A (ja) * | 2012-06-08 | 2013-12-19 | Azbil Corp | ポジショナ |
US11274685B2 (en) | 2016-09-21 | 2022-03-15 | Neles Finland Oy | Actuator of a process device having a controller configured to operate in a measured position feedback mode and a simulated position feedback mode |
Families Citing this family (337)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4431463C2 (de) * | 1994-09-03 | 1997-10-16 | Honeywell Ag | Kompaktregler für ein Regelventil |
US5706007A (en) * | 1995-01-03 | 1998-01-06 | Smar Research Corporation | Analog current / digital bus protocol converter circuit |
DE19540441A1 (de) * | 1995-10-27 | 1997-04-30 | Schubert & Salzer Control Syst | Mikroprozessorgesteuerter Stellungsregler |
US5992229A (en) * | 1996-02-05 | 1999-11-30 | Neles-Jamesbury Oy | Method and equipment for determining the performance of control valve |
US5764891A (en) * | 1996-02-15 | 1998-06-09 | Rosemount Inc. | Process I/O to fieldbus interface circuit |
US6017143A (en) | 1996-03-28 | 2000-01-25 | Rosemount Inc. | Device in a process system for detecting events |
US7630861B2 (en) | 1996-03-28 | 2009-12-08 | Rosemount Inc. | Dedicated process diagnostic device |
DE19612370C1 (de) * | 1996-03-28 | 1997-11-20 | Samson Ag | Verfahren und Vorrichtung zur Durchflußbestimmung eines Prozeßmediums an einem Stellgerät |
US6539267B1 (en) | 1996-03-28 | 2003-03-25 | Rosemount Inc. | Device in a process system for determining statistical parameter |
US7949495B2 (en) | 1996-03-28 | 2011-05-24 | Rosemount, Inc. | Process variable transmitter with diagnostics |
US6654697B1 (en) | 1996-03-28 | 2003-11-25 | Rosemount Inc. | Flow measurement with diagnostics |
US7085610B2 (en) | 1996-03-28 | 2006-08-01 | Fisher-Rosemount Systems, Inc. | Root cause diagnostics |
US7623932B2 (en) | 1996-03-28 | 2009-11-24 | Fisher-Rosemount Systems, Inc. | Rule set for root cause diagnostics |
US8290721B2 (en) | 1996-03-28 | 2012-10-16 | Rosemount Inc. | Flow measurement diagnostics |
US6907383B2 (en) | 1996-03-28 | 2005-06-14 | Rosemount Inc. | Flow diagnostic system |
US7254518B2 (en) | 1996-03-28 | 2007-08-07 | Rosemount Inc. | Pressure transmitter with diagnostics |
US5940294A (en) * | 1996-04-12 | 1999-08-17 | Fisher-Rosemont Systems, Inc. | System for assisting configuring a process control environment |
US5995916A (en) * | 1996-04-12 | 1999-11-30 | Fisher-Rosemount Systems, Inc. | Process control system for monitoring and displaying diagnostic information of multiple distributed devices |
US5768119A (en) * | 1996-04-12 | 1998-06-16 | Fisher-Rosemount Systems, Inc. | Process control system including alarm priority adjustment |
US6098116A (en) * | 1996-04-12 | 2000-08-01 | Fisher-Rosemont Systems, Inc. | Process control system including a method and apparatus for automatically sensing the connection of devices to a network |
US5909368A (en) | 1996-04-12 | 1999-06-01 | Fisher-Rosemount Systems, Inc. | Process control system using a process control strategy distributed among multiple control elements |
US5862052A (en) * | 1996-04-12 | 1999-01-19 | Fisher-Rosemount Systems, Inc. | Process control system using a control strategy implemented in a layered hierarchy of control modules |
US5838563A (en) * | 1996-04-12 | 1998-11-17 | Fisher-Rosemont Systems, Inc. | System for configuring a process control environment |
US6032208A (en) * | 1996-04-12 | 2000-02-29 | Fisher-Rosemount Systems, Inc. | Process control system for versatile control of multiple process devices of various device types |
US5828851A (en) * | 1996-04-12 | 1998-10-27 | Fisher-Rosemount Systems, Inc. | Process control system using standard protocol control of standard devices and nonstandard devices |
US6868538B1 (en) | 1996-04-12 | 2005-03-15 | Fisher-Rosemount Systems, Inc. | Object-oriented programmable controller |
EP0900329B1 (en) * | 1996-05-20 | 2004-07-14 | BorgWarner Inc. | Automotive fluid control system with pressure balanced solenoid valve |
US5720313A (en) * | 1996-05-24 | 1998-02-24 | Weiss Construction Co. | Flow rate control system |
FI104129B (fi) * | 1996-06-11 | 1999-11-15 | Neles Jamesbury Oy | Menetelmä säätöventtiilin kunnon valvomiseksi |
EP0825506B1 (en) | 1996-08-20 | 2013-03-06 | Invensys Systems, Inc. | Methods and apparatus for remote process control |
JP3993243B2 (ja) | 1996-10-04 | 2007-10-17 | フィッシャー コントロールズ インターナショナル リミテッド ライアビリティー カンパニー | プロセス制御ネットワーク用のネットワークアクセス可能なインタフェース |
US6044305A (en) * | 1996-10-04 | 2000-03-28 | Fisher Controls International, Inc. | Method and apparatus for debugging and tuning a process control network having distributed control functions |
JP2001501760A (ja) | 1996-10-04 | 2001-02-06 | フィッシャー コントロールズ インターナショナル,インコーポレイテッド | プロセス制御ネットワークで使用するための保守インタフェースデバイス |
US5970430A (en) * | 1996-10-04 | 1999-10-19 | Fisher Controls International, Inc. | Local device and process diagnostics in a process control network having distributed control functions |
US6047222A (en) * | 1996-10-04 | 2000-04-04 | Fisher Controls International, Inc. | Process control network with redundant field devices and buses |
DE19643297C1 (de) * | 1996-10-21 | 1998-03-12 | Samson Ag | Verfahren und Vorrichtung zur Überwachung von Stellgeräten |
US6449574B1 (en) | 1996-11-07 | 2002-09-10 | Micro Motion, Inc. | Resistance based process control device diagnostics |
US6434504B1 (en) | 1996-11-07 | 2002-08-13 | Rosemount Inc. | Resistance based process control device diagnostics |
US6754601B1 (en) | 1996-11-07 | 2004-06-22 | Rosemount Inc. | Diagnostics for resistive elements of process devices |
US6601005B1 (en) | 1996-11-07 | 2003-07-29 | Rosemount Inc. | Process device diagnostics using process variable sensor signal |
US6519546B1 (en) | 1996-11-07 | 2003-02-11 | Rosemount Inc. | Auto correcting temperature transmitter with resistance based sensor |
US5848609A (en) * | 1996-11-26 | 1998-12-15 | Worcester Control Licenseco Inc. | Digital valve positioner |
US5980078A (en) * | 1997-02-14 | 1999-11-09 | Fisher-Rosemount Systems, Inc. | Process control system including automatic sensing and automatic configuration of devices |
DE19713668A1 (de) * | 1997-04-02 | 1998-10-08 | Wagner Int | Vorrichtung und Verfahren zum Messen und zum Regeln des Durchflusses eines Fluids |
US5913183A (en) * | 1997-04-07 | 1999-06-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Check device for air activated pressure valve |
JPH10306801A (ja) * | 1997-05-01 | 1998-11-17 | Smc Corp | 自動制御空気圧装置の制御方法 |
US6272401B1 (en) * | 1997-07-23 | 2001-08-07 | Dresser Industries, Inc. | Valve positioner system |
EP1445676B1 (en) * | 1997-07-23 | 2008-05-21 | Dresser, Inc. | Valve positioner system |
US6056008A (en) * | 1997-09-22 | 2000-05-02 | Fisher Controls International, Inc. | Intelligent pressure regulator |
US6035878A (en) * | 1997-09-22 | 2000-03-14 | Fisher Controls International, Inc. | Diagnostic device and method for pressure regulator |
US6014612A (en) * | 1997-10-02 | 2000-01-11 | Fisher Controls International, Inc. | Remote diagnostics in a process control network having distributed control functions |
US6370448B1 (en) | 1997-10-13 | 2002-04-09 | Rosemount Inc. | Communication technique for field devices in industrial processes |
US6128541A (en) * | 1997-10-15 | 2000-10-03 | Fisher Controls International, Inc. | Optimal auto-tuner for use in a process control network |
FR2770276B1 (fr) * | 1997-10-24 | 2000-01-07 | Framatome Sa | Procede et dispositif de controle d'une vanne a commande pneumatique tout ou rien |
US6088665A (en) * | 1997-11-03 | 2000-07-11 | Fisher Controls International, Inc. | Schematic generator for use in a process control network having distributed control functions |
US5997280A (en) * | 1997-11-07 | 1999-12-07 | Maxon Corporation | Intelligent burner control system |
US6283138B1 (en) | 1998-04-24 | 2001-09-04 | Anderson, Greenwood Lp | Pressure relief valve monitoring device |
FR2779227B1 (fr) * | 1998-05-28 | 2000-08-18 | Snecma | Mesure de debit de fluide |
JP2000035003A (ja) * | 1998-07-16 | 2000-02-02 | Smc Corp | ポジショナおよびその設定方法 |
US6341238B1 (en) * | 1998-10-01 | 2002-01-22 | United Technologies Corporation | Robust engine variable vane monitor logic |
AU1445000A (en) * | 1998-10-17 | 2000-05-08 | Rosemount Analytical Inc | Power positioner with digital communication |
US6611775B1 (en) | 1998-12-10 | 2003-08-26 | Rosemount Inc. | Electrode leakage diagnostics in a magnetic flow meter |
US6615149B1 (en) | 1998-12-10 | 2003-09-02 | Rosemount Inc. | Spectral diagnostics in a magnetic flow meter |
JP3924386B2 (ja) * | 1998-12-28 | 2007-06-06 | 日本エム・ケー・エス株式会社 | 流量制御システム |
JP2002535122A (ja) * | 1999-01-20 | 2002-10-22 | マイクロリス・コーポレーション | 流れコントローラ |
US6490493B1 (en) | 1999-01-21 | 2002-12-03 | Rosemount Inc. | Industrial process device management software |
FI111106B (fi) * | 1999-02-19 | 2003-05-30 | Neles Controls Oy | Menetelmä prosessinsäätösilmukan virittämiseksi teollisuusprosessissa |
US6510351B1 (en) | 1999-03-15 | 2003-01-21 | Fisher-Rosemount Systems, Inc. | Modifier function blocks in a process control system |
DE19921828C2 (de) * | 1999-05-11 | 2001-06-07 | Samson Ag | Verfahren zum Betreiben eines Stellungsreglers und dieses Verfahren anwendender Stellungsregler |
US6754885B1 (en) | 1999-05-17 | 2004-06-22 | Invensys Systems, Inc. | Methods and apparatus for controlling object appearance in a process control configuration system |
US7089530B1 (en) | 1999-05-17 | 2006-08-08 | Invensys Systems, Inc. | Process control configuration system with connection validation and configuration |
AU5273100A (en) | 1999-05-17 | 2000-12-05 | Foxboro Company, The | Methods and apparatus for control configuration with versioning, security, composite blocks, edit selection, object swapping, formulaic values and other aspects |
US7272815B1 (en) | 1999-05-17 | 2007-09-18 | Invensys Systems, Inc. | Methods and apparatus for control configuration with versioning, security, composite blocks, edit selection, object swapping, formulaic values and other aspects |
US6788980B1 (en) | 1999-06-11 | 2004-09-07 | Invensys Systems, Inc. | Methods and apparatus for control using control devices that provide a virtual machine environment and that communicate via an IP network |
US6356191B1 (en) | 1999-06-17 | 2002-03-12 | Rosemount Inc. | Error compensation for a process fluid temperature transmitter |
US7010459B2 (en) | 1999-06-25 | 2006-03-07 | Rosemount Inc. | Process device diagnostics using process variable sensor signal |
AU5780300A (en) | 1999-07-01 | 2001-01-22 | Rosemount Inc. | Low power two-wire self validating temperature transmitter |
US6505517B1 (en) | 1999-07-23 | 2003-01-14 | Rosemount Inc. | High accuracy signal processing for magnetic flowmeter |
WO2001009690A1 (en) | 1999-07-29 | 2001-02-08 | The Foxboro Company | Methods and apparatus for object-based process control |
US6701274B1 (en) | 1999-08-27 | 2004-03-02 | Rosemount Inc. | Prediction of error magnitude in a pressure transmitter |
US6618745B2 (en) | 1999-09-10 | 2003-09-09 | Fisher Rosemount Systems, Inc. | Linking device in a process control system that allows the formation of a control loop having function blocks in a controller and in field devices |
US6556145B1 (en) | 1999-09-24 | 2003-04-29 | Rosemount Inc. | Two-wire fluid temperature transmitter with thermocouple diagnostics |
US6711629B1 (en) | 1999-10-18 | 2004-03-23 | Fisher-Rosemount Systems, Inc. | Transparent support of remote I/O in a process control system |
US6535827B1 (en) | 1999-10-28 | 2003-03-18 | Mpr Associates, Inc. | Method and apparatus for detecting and isolating a rupture in fluid distribution system |
US6357335B1 (en) | 1999-12-23 | 2002-03-19 | Sox Corporation | Pneumatic volume booster for valve positioner |
DE20115473U1 (de) * | 2001-09-19 | 2003-02-20 | Biester, Klaus, 29342 Wienhausen | Universelles Energieversorgungssystem |
DE20018560U1 (de) * | 2000-10-30 | 2002-03-21 | CAMERON GmbH, 29227 Celle | Steuer- und Versorgungssystem |
DE20115474U1 (de) * | 2001-09-19 | 2003-02-20 | Biester, Klaus, 29342 Wienhausen | Gleichspannungs-Wandlervorrichtung |
DE20115471U1 (de) | 2001-09-19 | 2003-02-20 | Biester, Klaus, 29342 Wienhausen | Universelles Energieversorgungssystem |
US7615893B2 (en) * | 2000-05-11 | 2009-11-10 | Cameron International Corporation | Electric control and supply system |
US6745107B1 (en) * | 2000-06-30 | 2004-06-01 | Honeywell Inc. | System and method for non-invasive diagnostic testing of control valves |
US6735484B1 (en) | 2000-09-20 | 2004-05-11 | Fargo Electronics, Inc. | Printer with a process diagnostics system for detecting events |
DE10054288A1 (de) * | 2000-11-02 | 2002-05-16 | Festo Ag & Co | Sensoranordnung zur Erfassung wenigstens eines Meßwerts |
US20040063710A1 (en) * | 2000-11-22 | 2004-04-01 | Tomiya Mano | Ophthalmological preparations |
US6814096B2 (en) * | 2000-12-15 | 2004-11-09 | Nor-Cal Products, Inc. | Pressure controller and method |
US6644332B1 (en) * | 2001-01-25 | 2003-11-11 | Fisher Controls International Inc. | Method and apparatus for multiple-input-multiple-output control of a valve/actuator plant |
US6954713B2 (en) * | 2001-03-01 | 2005-10-11 | Fisher-Rosemount Systems, Inc. | Cavitation detection in a process plant |
US6970003B2 (en) | 2001-03-05 | 2005-11-29 | Rosemount Inc. | Electronics board life prediction of microprocessor-based transmitters |
US7621293B2 (en) | 2001-04-05 | 2009-11-24 | Fisher Controls International Llc | Versatile emergency shutdown device controller implementing a pneumatic test for a system instrument device |
US7079021B2 (en) * | 2001-04-05 | 2006-07-18 | Fisher Controls International Llc. | System to manually initiate an emergency shutdown test and collect diagnostic data in a process control environment |
US6382226B1 (en) | 2001-04-17 | 2002-05-07 | Fisher Controls International, Inc. | Method for detecting broken valve stem |
US6629059B2 (en) | 2001-05-14 | 2003-09-30 | Fisher-Rosemount Systems, Inc. | Hand held diagnostic and communication device with automatic bus detection |
DE10128448B4 (de) * | 2001-06-12 | 2008-01-24 | Abb Patent Gmbh | Verfahren zur Diagnose eines Prozessventils |
FR2827674B1 (fr) * | 2001-07-20 | 2003-10-03 | Chpolansky Ets | Procede et appareillage pour tester une soupape avec une mise en liquide,sans ouverture prealable de son obturateur |
EP1288757A1 (de) * | 2001-08-07 | 2003-03-05 | Siemens Aktiengesellschaft | Verfahren und Prozessleitsystem zum Betrieb einer technischen Anlage |
US6772036B2 (en) | 2001-08-30 | 2004-08-03 | Fisher-Rosemount Systems, Inc. | Control system using process model |
US6655151B2 (en) † | 2001-09-07 | 2003-12-02 | Honeywell International, Inc. | Method for controlling fuel flow to a gas turbine engine |
DE20115475U1 (de) * | 2001-09-19 | 2003-02-20 | Biester, Klaus, 29342 Wienhausen | Gleichspannungs-Wandlervorrichtung |
US7020271B2 (en) * | 2003-06-12 | 2006-03-28 | Barbara Isabel Hummel | Ring control device |
US6725876B2 (en) * | 2001-10-15 | 2004-04-27 | Woodward Governor Company | Control valve with integrated electro-hydraulic actuator |
DE50108787D1 (de) | 2001-11-23 | 2006-04-13 | Siemens Ag | Verfahren zur kontinuierlichen Regelung einer Stellung eines Stellventils |
TW571182B (en) | 2001-12-04 | 2004-01-11 | Smc Kk | Flow rate control apparatus |
JP3568930B2 (ja) * | 2001-12-04 | 2004-09-22 | Smc株式会社 | 流量制御装置 |
US20030204373A1 (en) * | 2001-12-06 | 2003-10-30 | Fisher-Rosemount Systems, Inc. | Wireless communication method between handheld field maintenance tools |
US20030229472A1 (en) * | 2001-12-06 | 2003-12-11 | Kantzes Christopher P. | Field maintenance tool with improved device description communication and storage |
BRPI0214729B1 (pt) | 2001-12-06 | 2015-09-22 | Fisher Rosemount Systems Inc | ferramenta de manutenção de campo intrinsecamente segura |
US7426452B2 (en) | 2001-12-06 | 2008-09-16 | Fisher-Rosemount Systems. Inc. | Dual protocol handheld field maintenance tool with radio-frequency communication |
US7039744B2 (en) * | 2002-03-12 | 2006-05-02 | Fisher-Rosemount Systems, Inc. | Movable lead access member for handheld field maintenance tool |
US7027952B2 (en) * | 2002-03-12 | 2006-04-11 | Fisher-Rosemount Systems, Inc. | Data transmission method for a multi-protocol handheld field maintenance tool |
US20040002950A1 (en) | 2002-04-15 | 2004-01-01 | Brennan Sean F. | Methods and apparatus for process, factory-floor, environmental, computer aided manufacturing-based or other control system using hierarchically enumerated data set |
US6678584B2 (en) * | 2002-05-03 | 2004-01-13 | Fisher Controls International Llc | Method and apparatus for performing diagnostics in a control loop of a control valve |
US6999853B2 (en) * | 2002-05-03 | 2006-02-14 | Fisher Controls International Llc. | Methods and apparatus for operating and performing diagnostics in a control loop of a control valve |
DE10221088A1 (de) * | 2002-05-11 | 2003-11-27 | Braun Gmbh | Elektronische Schaltung mit mindestens einem Eingang zum Wählen eines Zustands der elektronischen Schaltung |
JP4035585B2 (ja) * | 2002-06-13 | 2008-01-23 | 株式会社山武 | 異常診断装置 |
CN101109470A (zh) | 2002-07-19 | 2008-01-23 | 诚实公司 | 液体流动控制器和精密分配设备及系统 |
US7240906B2 (en) | 2002-12-04 | 2007-07-10 | Daimlerchrysler Corporation | Hydro-pneumatic suspension system |
US10261506B2 (en) * | 2002-12-05 | 2019-04-16 | Fisher-Rosemount Systems, Inc. | Method of adding software to a field maintenance tool |
CN101922566B (zh) | 2002-12-19 | 2013-01-23 | 株式会社富士金 | 流体通路的无水击关闭装置及关闭方法 |
DE602004012980T2 (de) * | 2003-02-14 | 2009-05-07 | Dresser, Inc., Addison | Verfahren, system und speichermedium zur durchführung von online-ventildiagnose |
WO2004081686A2 (en) | 2003-03-06 | 2004-09-23 | Fisher-Rosemount Systems, Inc. | Heat flow regulating cover for an electrical storage cell |
US6904476B2 (en) | 2003-04-04 | 2005-06-07 | Rosemount Inc. | Transmitter with dual protocol interface |
US7512521B2 (en) | 2003-04-30 | 2009-03-31 | Fisher-Rosemount Systems, Inc. | Intrinsically safe field maintenance tool with power islands |
US7054695B2 (en) | 2003-05-15 | 2006-05-30 | Fisher-Rosemount Systems, Inc. | Field maintenance tool with enhanced scripts |
US7199784B2 (en) * | 2003-05-16 | 2007-04-03 | Fisher Rosemount Systems, Inc. | One-handed operation of a handheld field maintenance tool |
US6925419B2 (en) | 2003-05-16 | 2005-08-02 | Fisher-Rosemount Systems, Inc. | Intrinsically safe field maintenance tool with removable battery pack |
US7526802B2 (en) | 2003-05-16 | 2009-04-28 | Fisher-Rosemount Systems, Inc. | Memory authentication for intrinsically safe field maintenance tools |
US8874402B2 (en) | 2003-05-16 | 2014-10-28 | Fisher-Rosemount Systems, Inc. | Physical memory handling for handheld field maintenance tools |
US7036386B2 (en) * | 2003-05-16 | 2006-05-02 | Fisher-Rosemount Systems, Inc. | Multipurpose utility mounting assembly for handheld field maintenance tool |
JP4624351B2 (ja) | 2003-07-18 | 2011-02-02 | ローズマウント インコーポレイテッド | プロセス診断法 |
US7018800B2 (en) | 2003-08-07 | 2006-03-28 | Rosemount Inc. | Process device with quiescent current diagnostics |
US7280048B2 (en) * | 2003-08-07 | 2007-10-09 | Rosemount Inc. | Process control loop current verification |
US6917858B2 (en) * | 2003-08-29 | 2005-07-12 | Dresser, Inc. | Fluid regulation |
US7627441B2 (en) | 2003-09-30 | 2009-12-01 | Rosemount Inc. | Process device with vibration based diagnostics |
US8180466B2 (en) * | 2003-11-21 | 2012-05-15 | Rosemount Inc. | Process device with supervisory overlayer |
US7523667B2 (en) | 2003-12-23 | 2009-04-28 | Rosemount Inc. | Diagnostics of impulse piping in an industrial process |
US20050150552A1 (en) * | 2004-01-06 | 2005-07-14 | Randy Forshey | Device, method, and system for controlling fluid flow |
JP4406292B2 (ja) * | 2004-01-20 | 2010-01-27 | 株式会社フジキン | 流体通路のウォータハンマーレス開放方法及びこれを用いたウォータハンマーレス開放装置 |
US7761923B2 (en) | 2004-03-01 | 2010-07-20 | Invensys Systems, Inc. | Process control methods and apparatus for intrusion detection, protection and network hardening |
EP1733161A4 (en) * | 2004-04-05 | 2009-02-04 | Westlock Controls Corp | DEVICE AND METHOD FOR CONTROLLING A PNEUMATIC VALVE |
US6920799B1 (en) | 2004-04-15 | 2005-07-26 | Rosemount Inc. | Magnetic flow meter with reference electrode |
US7046180B2 (en) | 2004-04-21 | 2006-05-16 | Rosemount Inc. | Analog-to-digital converter with range error detection |
DE102004022453B4 (de) * | 2004-05-06 | 2007-01-25 | Helmut Bälz GmbH | Ventilsteuereinrichtung mit Leckratenberücksichtigung |
US7464721B2 (en) * | 2004-06-14 | 2008-12-16 | Rosemount Inc. | Process equipment validation |
CN1304760C (zh) * | 2004-06-16 | 2007-03-14 | 陈城书 | 一种电液芯片用电液管 |
US8636021B2 (en) * | 2004-07-08 | 2014-01-28 | Carleton Technologies, Inc. | Non-magnetic latching servo actuated valve |
US7637970B1 (en) | 2004-07-14 | 2009-12-29 | Marathon Ashland Petroleum Llc | Method and apparatus for recovery and recycling of hydrogen |
JP2006070946A (ja) | 2004-08-31 | 2006-03-16 | Asahi Organic Chem Ind Co Ltd | 調節弁 |
JP4461329B2 (ja) * | 2004-08-31 | 2010-05-12 | 旭有機材工業株式会社 | 流体制御装置 |
KR101124447B1 (ko) * | 2004-08-31 | 2012-03-21 | 아사히 유키자이 고교 가부시키가이샤 | 유체제어장치 |
US9493936B2 (en) * | 2004-10-08 | 2016-11-15 | Sdb Ip Holdings, Llc | System, method, and apparatus for monitoring wear in a flush valve using pressure detection |
CN101103322B (zh) * | 2004-11-03 | 2011-06-08 | 第四层联合公司 | 电控释压阀 |
US7504961B2 (en) * | 2005-03-31 | 2009-03-17 | Saudi Arabian Oil Company | Emergency isolation valve controller with integral fault indicator |
US8072343B2 (en) * | 2005-03-31 | 2011-12-06 | Saudi Arabian Oil Company | Local emergency isolation valve controller with diagnostic testing and trouble indicator |
US7493195B2 (en) * | 2005-05-20 | 2009-02-17 | Dresser, Inc. | Fluid regulation control |
US8112565B2 (en) | 2005-06-08 | 2012-02-07 | Fisher-Rosemount Systems, Inc. | Multi-protocol field device interface with automatic bus detection |
US7835295B2 (en) * | 2005-07-19 | 2010-11-16 | Rosemount Inc. | Interface module with power over Ethernet function |
US20070068225A1 (en) | 2005-09-29 | 2007-03-29 | Brown Gregory C | Leak detector for process valve |
EP1772673A1 (de) * | 2005-10-06 | 2007-04-11 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zur Überwachung sich bildender Ablagerungen von Feststoffteilchen, insbesondere in einer Brennstoffleitung einer Gasturbine |
US7814936B2 (en) * | 2005-11-16 | 2010-10-19 | Fisher Controls International Llc | Sound pressure level feedback control |
DE102005062421A1 (de) * | 2005-12-27 | 2007-06-28 | Vega Grieshaber Kg | Heizeinrichtung für ein Feldgerätedisplay |
US7818092B2 (en) * | 2006-01-20 | 2010-10-19 | Fisher Controls International Llc | In situ emission measurement for process control equipment |
US7283894B2 (en) | 2006-02-10 | 2007-10-16 | Dresser, Inc. | System and method for fluid regulation |
US7860857B2 (en) | 2006-03-30 | 2010-12-28 | Invensys Systems, Inc. | Digital data processing apparatus and methods for improving plant performance |
US9411769B2 (en) | 2006-09-19 | 2016-08-09 | Fisher-Rosemount Systems, Inc. | Apparatus and methods to communicatively couple field devices to controllers in a process control system |
US8332567B2 (en) | 2006-09-19 | 2012-12-11 | Fisher-Rosemount Systems, Inc. | Apparatus and methods to communicatively couple field devices to controllers in a process control system |
US7953501B2 (en) * | 2006-09-25 | 2011-05-31 | Fisher-Rosemount Systems, Inc. | Industrial process control loop monitor |
US8788070B2 (en) * | 2006-09-26 | 2014-07-22 | Rosemount Inc. | Automatic field device service adviser |
EP2074385B2 (en) | 2006-09-29 | 2022-07-06 | Rosemount Inc. | Magnetic flowmeter with verification |
US8761196B2 (en) * | 2006-09-29 | 2014-06-24 | Fisher-Rosemount Systems, Inc. | Flexible input/output devices for use in process control systems |
US7321846B1 (en) | 2006-10-05 | 2008-01-22 | Rosemount Inc. | Two-wire process control loop diagnostics |
US20080099705A1 (en) * | 2006-10-25 | 2008-05-01 | Enfield Technologies, Llc | Retaining element for a mechanical component |
DE102006055747B4 (de) * | 2006-11-25 | 2021-08-26 | Abb Ag | Verfahren und Anordnung zur Diagnose eines Stellorgans |
DE202006020516U1 (de) * | 2006-12-21 | 2008-10-16 | Abb Ag | Regeleinrichtung für einen druckmittelbetriebenen Stellantrieb |
US7539560B2 (en) * | 2007-01-05 | 2009-05-26 | Dresser, Inc. | Control valve and positioner diagnostics |
DE102007016817A1 (de) * | 2007-04-05 | 2008-10-09 | Siemens Ag | Verfahren zur Überprüfung der Funktionsfähigkeit eines Stellgerätes |
DE102007020597A1 (de) * | 2007-05-02 | 2009-01-02 | Siemens Ag | Verfahren zur Überprüfung der Funktionsfähigkeit eines Stellgerätes |
US8898036B2 (en) | 2007-08-06 | 2014-11-25 | Rosemount Inc. | Process variable transmitter with acceleration sensor |
US7590511B2 (en) | 2007-09-25 | 2009-09-15 | Rosemount Inc. | Field device for digital process control loop diagnostics |
US20090116969A1 (en) * | 2007-11-02 | 2009-05-07 | Mcvicker R Vance | Rail tank car evacuation and transfer system and method |
DE102007058517B4 (de) * | 2007-12-05 | 2018-07-26 | Abb Ag | Digitaler Stellungsgeber |
US8036837B2 (en) | 2008-02-29 | 2011-10-11 | Fisher Controls International Llc | Diagnostic method for detecting control valve component failure |
DE102008028192A1 (de) * | 2008-06-12 | 2009-12-17 | Abb Technology Ag | Elektropneumatisches Ventil |
DE102008028190A1 (de) * | 2008-06-12 | 2009-12-17 | Abb Technology Ag | Verfahren zum Betrieb eines elektropneumatischen Ventils |
EP2304536A4 (en) | 2008-06-20 | 2012-08-15 | Invensys Sys Inc | SYSTEMS AND METHOD FOR IMMERSIBLE INTERACTION WITH ACTUAL AND / OR SIMULATED DEVICES FOR PROCESS, ENVIRONMENTAL AND INDUSTRIAL CONTROL |
PT2307938E (pt) | 2008-06-26 | 2013-12-17 | Belparts | Sistema de controlo de fluxo |
EP2304325B1 (de) * | 2008-07-25 | 2017-04-05 | Belimo Holding AG | Verfahren für den hydraulischen abgleich und regelung einer heizungs- oder kühlanlage und abgleich- und regelventil dafür |
DE102008038723B3 (de) * | 2008-08-12 | 2010-04-15 | Abb Technology Ag | Verfahren und Einrichtung zur Ansteuerung eines elektropneumatischen Ventils eines druckmittelbetätigten Stellungsreglers |
US20100051110A1 (en) * | 2008-09-04 | 2010-03-04 | Ch2M Hill, Inc. | Gas actuated valve |
CN101676824B (zh) * | 2008-09-16 | 2013-06-19 | 宝元数控精密股份有限公司 | 油压设备的输出校正方法 |
CA2745428C (en) | 2008-12-05 | 2018-06-26 | Fisher Controls International Llc | Method and apparatus for operating field devices via a portable communicator |
DE102008062289A1 (de) | 2008-12-15 | 2010-06-24 | Abb Technology Ag | Verfahren zur weg- und drucksensorischen Verschleißzustandsermittlung einer Ventilmechanik sowie eine solche nutzende Ventilanordnung |
DE102008062290A1 (de) | 2008-12-15 | 2010-06-24 | Abb Technology Ag | Verfahren zur Diagnose des Verschleißzustandes einer Ventilanordnung zur Steuerung eines Prozessmediumflusses |
DE102008064359A1 (de) | 2008-12-22 | 2010-07-01 | Abb Technology Ag | Verfahren zur positionsabhängigen elektronischen Verschleißzustandsermittlung einer Ventilmechanik sowie pneumatisches Ventil |
US8290631B2 (en) * | 2009-03-12 | 2012-10-16 | Emerson Process Management Power & Water Solutions, Inc. | Methods and apparatus to arbitrate valve position sensor redundancy |
WO2010117361A1 (en) * | 2009-04-07 | 2010-10-14 | Flowserve Management Company | Fluid control valve |
US7921734B2 (en) | 2009-05-12 | 2011-04-12 | Rosemount Inc. | System to detect poor process ground connections |
US8463964B2 (en) | 2009-05-29 | 2013-06-11 | Invensys Systems, Inc. | Methods and apparatus for control configuration with enhanced change-tracking |
US8127060B2 (en) | 2009-05-29 | 2012-02-28 | Invensys Systems, Inc | Methods and apparatus for control configuration with control objects that are fieldbus protocol-aware |
US8312892B2 (en) * | 2009-07-02 | 2012-11-20 | Fisher Controls International Llc | Device and method for determining a failure mode of a pneumatic control valve assembly |
US8286652B2 (en) * | 2009-09-22 | 2012-10-16 | Eaton Corporation | Configurable active jerk control |
US20110083746A1 (en) * | 2009-10-09 | 2011-04-14 | Cameron International Corporation | Smart valve utilizing a force sensor |
GB2510519B (en) * | 2009-10-09 | 2014-09-24 | Cameron Int Corp | Valve utilizing a force sensor |
US8996328B2 (en) * | 2009-12-29 | 2015-03-31 | Fisher Controls International Llc | Methods, apparatus and articles of manufacture to test safety instrumented system solenoids |
US8967590B2 (en) * | 2010-03-02 | 2015-03-03 | Westlock Controls Corporation | Micro-power generator for valve control applications |
JP5426452B2 (ja) * | 2010-03-30 | 2014-02-26 | アズビル株式会社 | ポジショナ |
JP5457249B2 (ja) * | 2010-03-30 | 2014-04-02 | アズビル株式会社 | ポジショナ |
JP5466068B2 (ja) * | 2010-03-31 | 2014-04-09 | アズビル株式会社 | 電空ポジショナおよび電空変換器 |
EP2439602A1 (de) * | 2010-10-05 | 2012-04-11 | Siemens Aktiengesellschaft | Verfahren zum Entwurf eines Prozessreglers |
US8587320B2 (en) | 2010-11-09 | 2013-11-19 | Honeywell International Inc. | System and method for testing a secondary servo control circuit in a redundant control configuration |
US20120167996A1 (en) * | 2011-01-05 | 2012-07-05 | Fisher Controls International Llc | Valve Controller Automatic Calibration Without User Interface |
CN102072489B (zh) * | 2011-02-25 | 2012-07-04 | 凯明企业有限公司 | 燃烧器 |
EP2500550A1 (en) | 2011-03-16 | 2012-09-19 | Siemens Aktiengesellschaft | Stroke transmitter for gas turbine |
US9207670B2 (en) | 2011-03-21 | 2015-12-08 | Rosemount Inc. | Degrading sensor detection implemented within a transmitter |
US10851621B2 (en) * | 2011-04-06 | 2020-12-01 | MRC Solberg & Andersen AS | Instrumentation system for determining risk factors |
NO332570B1 (no) * | 2011-04-06 | 2012-11-05 | Bjorge Solberg & Andersen As | Instrumenteringssystem for bestemmelse av risikofaktorer |
US8905371B2 (en) * | 2011-06-30 | 2014-12-09 | General Equipment And Manufacturing Company, Inc. | Valve signature diagnosis and leak test device |
US9020768B2 (en) | 2011-08-16 | 2015-04-28 | Rosemount Inc. | Two-wire process control loop current diagnostics |
JP5803552B2 (ja) * | 2011-10-14 | 2015-11-04 | 東京エレクトロン株式会社 | 処理装置 |
JP5843669B2 (ja) * | 2012-03-14 | 2016-01-13 | アズビル株式会社 | 整備対象バルブ選定装置および選定方法 |
US20130327403A1 (en) * | 2012-06-08 | 2013-12-12 | Kurtis Kevin Jensen | Methods and apparatus to control and/or monitor a pneumatic actuator |
AR091524A1 (es) * | 2012-06-20 | 2015-02-11 | Fisher Controls Int | Metodos y sistemas para respaldo de retroalimentacion de bucle menor |
US9528629B2 (en) * | 2012-06-27 | 2016-12-27 | Fisher Controls International Llc | Methods and apparatus to use vibration data to determine a condition of a process control device |
US9052240B2 (en) | 2012-06-29 | 2015-06-09 | Rosemount Inc. | Industrial process temperature transmitter with sensor stress diagnostics |
US9207129B2 (en) | 2012-09-27 | 2015-12-08 | Rosemount Inc. | Process variable transmitter with EMF detection and correction |
US9602122B2 (en) | 2012-09-28 | 2017-03-21 | Rosemount Inc. | Process variable measurement noise diagnostic |
US9534795B2 (en) * | 2012-10-05 | 2017-01-03 | Schneider Electric Buildings, Llc | Advanced valve actuator with remote location flow reset |
CN103777651A (zh) * | 2012-10-22 | 2014-05-07 | 费希尔控制国际公司 | 用来校准阀安装仪器的设备、方法和制品 |
GB201219184D0 (en) * | 2012-10-25 | 2012-12-12 | Buhler Sortex Ltd | Adaptive ejector valve array |
US10295080B2 (en) | 2012-12-11 | 2019-05-21 | Schneider Electric Buildings, Llc | Fast attachment open end direct mount damper and valve actuator |
DE102013001979A1 (de) * | 2013-02-05 | 2014-08-07 | Eisenmann Ag | Druckregler |
AR095272A1 (es) * | 2013-03-14 | 2015-09-30 | Fisher Controls Int Llc | Pronóstico de válvula en función de análisis de laboratorio |
US9464422B2 (en) * | 2013-03-15 | 2016-10-11 | Sdb Ip Holdings, Llc | System and method for a diaphragm valve controlled through measurement of water pressure and solenoid opening time |
US10007239B2 (en) | 2013-03-15 | 2018-06-26 | Schneider Electric Buildings Llc | Advanced valve actuator with integral energy metering |
SI2971883T1 (sl) * | 2013-03-15 | 2020-09-30 | Schneider Electric Buildings, Llc | Napredni aktuator ventila s pravo povratno zvezo pretoka |
US9423050B2 (en) * | 2013-04-09 | 2016-08-23 | Fisher Controls International Llc | Intelligent actuator and method of monitoring actuator health and integrity |
US9695956B2 (en) | 2013-07-29 | 2017-07-04 | Dresser, Inc. | Spectral analysis based detector for a control valve |
US9304053B2 (en) | 2013-08-07 | 2016-04-05 | Dresser, Inc. | System to monitor performance of packing material in a seal |
US9423334B2 (en) | 2013-08-27 | 2016-08-23 | Fisher Controls International Llc | Method of cavitation/flashing detection in or near a process control valve |
CN103472761B (zh) * | 2013-09-10 | 2015-10-07 | 上海大众汽车有限公司 | 气动力加载闭环控制装置及方法 |
US9638344B2 (en) * | 2013-11-19 | 2017-05-02 | Dresser, Inc. | System and method to monitor characteristics of an operating fluid in a process line |
EP3702873A1 (en) | 2013-12-20 | 2020-09-02 | IMI Hydronic Engineering International SA | A valve and a method of operating a valve |
AR100120A1 (es) * | 2014-04-04 | 2016-09-14 | Fisher Controls Int Llc | Sistema y método para controlar una válvula |
CN105339713B (zh) * | 2014-04-16 | 2017-05-24 | 常州瑞择微电子科技有限公司 | 一种基于步进电机的流量控制阀伺服机构及其控制方法 |
CN105302169B (zh) * | 2014-07-29 | 2021-02-12 | 盛美半导体设备(上海)股份有限公司 | 流量控制方法 |
CN104265990A (zh) * | 2014-09-13 | 2015-01-07 | 国家电网公司 | 一种防震动自动阀门位置反馈装置 |
US10337647B2 (en) * | 2014-12-15 | 2019-07-02 | General Electric Company | Obstruction detection for a control valve |
ES2809553T3 (es) * | 2015-03-02 | 2021-03-04 | Ampo S Coop | Sistema para el mantenimiento predictivo de válvulas y procedimiento para llevar a cabo dicho mantenimiento |
US10684030B2 (en) | 2015-03-05 | 2020-06-16 | Honeywell International Inc. | Wireless actuator service |
US10378994B2 (en) * | 2015-03-05 | 2019-08-13 | Ai Alpine Us Bidco Inc. | Wireless vibration monitoring of movable engine parts |
FI126989B (fi) * | 2015-03-16 | 2017-09-15 | Metso Flow Control Oy | Virtaavan aineen venttiilikokoonpano, prosessiventtiilin asennoitin sekä virtaavan aineen venttiilikokoonpanon käyttö prosessiventtiilin ohjauksessa |
JP6295221B2 (ja) * | 2015-03-17 | 2018-03-14 | アズビル株式会社 | ポジショナ |
WO2016149584A1 (en) * | 2015-03-19 | 2016-09-22 | Fisher Controls International Llc | Pressure control for calibrating process control devices |
US10845781B2 (en) * | 2015-03-23 | 2020-11-24 | Fisher Controls International Llc | Integrated process controller with loop and valve control capability |
US9739682B2 (en) * | 2015-05-04 | 2017-08-22 | Dresser, Inc. | Valve assembly calibration |
CN104832698B (zh) * | 2015-05-22 | 2018-02-16 | 北方民族大学 | 一种新型气动智能定位器及其使用方法 |
DE102015210208A1 (de) | 2015-06-02 | 2016-12-08 | Gemü Gebr. Müller Apparatebau Gmbh & Co. Kommanditgesellschaft | Verfahren zum Ermitteln einer Zustandsgröße einer Ventilmembran eines elektronisch gesteuerten und motorisch angetriebenen Membranventils, sowie Membranventilsystem |
JP2017020631A (ja) * | 2015-07-15 | 2017-01-26 | アズビル株式会社 | ポジショナ |
JP6542052B2 (ja) * | 2015-07-15 | 2019-07-10 | アズビル株式会社 | ポジショナ |
CN105000391A (zh) * | 2015-07-29 | 2015-10-28 | 衡阳中微科技开发有限公司 | 通过压力自动稳定装置来稳定气力输送系统压力的方法 |
US10367612B2 (en) | 2015-09-30 | 2019-07-30 | Rosemount Inc. | Process variable transmitter with self-learning loop diagnostics |
US10371285B2 (en) * | 2015-10-27 | 2019-08-06 | Dresser, Llc | Predicting maintenance requirements for a valve assembly |
KR102374493B1 (ko) * | 2015-10-29 | 2022-03-14 | 페스토 에스이 운트 코. 카게 | 유체 제어 디바이스 및 유체 제어 디바이스의 작동 방법 |
US9665099B1 (en) * | 2015-12-31 | 2017-05-30 | Google Inc. | Integrated valve for a legged robot |
US10503181B2 (en) * | 2016-01-13 | 2019-12-10 | Honeywell International Inc. | Pressure regulator |
JP6576841B2 (ja) * | 2016-01-19 | 2019-09-18 | アズビル株式会社 | ポジショナ |
EP3200041A1 (en) * | 2016-01-20 | 2017-08-02 | Danfoss A/S | Commisioning flow system with flow verification procedure |
EP3430296B1 (en) * | 2016-03-16 | 2022-05-04 | Dresser, LLC | Expanding functions of a process device |
JP6671202B2 (ja) * | 2016-03-23 | 2020-03-25 | アズビル株式会社 | ポジショナ |
FI128617B (en) | 2016-03-30 | 2020-08-31 | Metso Flow Control Oy | Fluid valve arrangement, use of process valve positioning and fluid valve arrangement in process valve control |
JP2017194122A (ja) * | 2016-04-21 | 2017-10-26 | アズビル株式会社 | ポジショナおよびバルブ制御システム |
US10557736B2 (en) | 2016-05-10 | 2020-02-11 | Mks Instruments, Inc. | Predictive diagnostics systems and methods using vacuum pressure control valves |
DE102016108832A1 (de) * | 2016-05-12 | 2017-11-16 | Bürkert Werke GmbH | Verfahren zum Steuern eines Ventils sowie Ventil |
US10203704B2 (en) * | 2016-06-16 | 2019-02-12 | Moog Inc. | Fluid metering valve |
US9953474B2 (en) | 2016-09-02 | 2018-04-24 | Honeywell International Inc. | Multi-level security mechanism for accessing a panel |
US10041610B2 (en) * | 2016-10-20 | 2018-08-07 | Fisher Controls International Llc | Methods and apparatus of stabilizing a valve positioner when testing a solenoid valve |
US10240687B2 (en) | 2016-10-20 | 2019-03-26 | Fisher Controls International Llc | Methods and apparatus of testing a solenoid valve of an emergency valve via a positioner |
US10234058B2 (en) * | 2016-10-20 | 2019-03-19 | Fisher Controls International Llc | Methods and apparatus of assessing a test of a solenoid valve via a positioner |
DE102016125643B3 (de) * | 2016-12-23 | 2018-06-14 | Samson Aktiengesellschaft | Regelungs- und/oder Steuerungsverfahren für ein elektropneumatisches Feldgerät |
DE112018002360T5 (de) | 2017-05-08 | 2020-01-16 | Idex Health & Science Llc | Durchflussregelanordnung mit lokalisiertem nichtflüchtigem Speicher |
US10792697B2 (en) * | 2017-05-17 | 2020-10-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Drippage prevention system and method of operating same |
US11071266B2 (en) * | 2017-06-14 | 2021-07-27 | Grow Solutions Tech Llc | Devices, systems, and methods for providing and using one or more pressure valves in an assembly line grow pod |
US10696906B2 (en) | 2017-09-29 | 2020-06-30 | Marathon Petroleum Company Lp | Tower bottoms coke catching device |
US10670054B2 (en) | 2017-10-25 | 2020-06-02 | Dresser, Llc | Constructing valve positioners for hazardous areas |
US11306748B2 (en) | 2017-10-25 | 2022-04-19 | Dresser, Llc | Constructing valve positioners for hazardous areas |
CN109826991B (zh) * | 2017-11-23 | 2020-12-04 | 西门子瑞士有限公司 | 执行机构、控制阀及阀门控制系统 |
WO2019126095A1 (en) | 2017-12-21 | 2019-06-27 | Swagelok Company | Systems and methods for control and monitoring of actuated valves |
DE102018116048B4 (de) * | 2018-07-03 | 2020-10-01 | Samson Aktiengesellschaft | Diagnose von möglichen Ursachen für Veränderungen an einem Stellventil |
US11608840B2 (en) * | 2018-08-21 | 2023-03-21 | Michael Yuan | Piezoelectric ring bender servo valve assembly for aircraft flight control actuation and fuel control systems |
DE102018214295A1 (de) * | 2018-08-23 | 2020-02-27 | Stabilus Gmbh | Messung von Betriebsparametern an Stellenantrieben |
FI128783B (en) | 2018-09-03 | 2020-12-15 | Metso Flow Control Oy | Valve positioner and diagnostic method |
US12000720B2 (en) | 2018-09-10 | 2024-06-04 | Marathon Petroleum Company Lp | Product inventory monitoring |
AU2019356593A1 (en) | 2018-10-12 | 2021-05-13 | Bray International, Inc. | Smart valve with integrated electronics |
EP3647899A1 (de) * | 2018-10-29 | 2020-05-06 | Siemens Schweiz AG | Verfahren zum betreiben eines ventils, zugehörige elektronische ansteuereinheit und ventilantrieb |
US11347463B2 (en) | 2018-10-31 | 2022-05-31 | Honeywell International Inc. | Correlative display system with decluttered displays for aircraft |
DE102018130579A1 (de) * | 2018-11-30 | 2020-06-04 | Gemü Gebr. Müller Apparatebau Gmbh & Co. Kommanditgesellschaft | Absperrorgan, Komponente für ein Absperrorgan, Steuereinheit für ein Absperrorgan und Verfahren zum Betreiben eines Absperrorgans |
BR112021010776A2 (pt) | 2018-12-06 | 2021-08-31 | Bray International, Inc. | Adaptador de válvula inteligente com componentes eletrônicos integrados |
CN109491273B (zh) * | 2018-12-25 | 2021-11-16 | 航天科工哈尔滨风华有限公司电站设备分公司 | 一种综合信号控制装置及其控制方法 |
JP7238461B2 (ja) * | 2019-02-25 | 2023-03-14 | 株式会社島津製作所 | バルブ制御装置および真空バルブ |
US11143328B2 (en) * | 2019-03-06 | 2021-10-12 | Honeywell International Inc. | Health monitoring for proportional actuators |
CN113544424A (zh) * | 2019-03-18 | 2021-10-22 | 贝利莫控股公司 | 用于操作控制阀的方法 |
US12031676B2 (en) | 2019-03-25 | 2024-07-09 | Marathon Petroleum Company Lp | Insulation securement system and associated methods |
US12259739B2 (en) * | 2019-04-30 | 2025-03-25 | Illinois Tool Works Inc. | Advanced pressure based mass flow controllers and diagnostics |
US11975316B2 (en) | 2019-05-09 | 2024-05-07 | Marathon Petroleum Company Lp | Methods and reforming systems for re-dispersing platinum on reforming catalyst |
US10789800B1 (en) | 2019-05-24 | 2020-09-29 | Ademco Inc. | Systems and methods for authorizing transmission of commands and signals to an access control device or a control panel device |
US10832509B1 (en) | 2019-05-24 | 2020-11-10 | Ademco Inc. | Systems and methods of a doorbell device initiating a state change of an access control device and/or a control panel responsive to two-factor authentication |
CN110597104A (zh) * | 2019-08-11 | 2019-12-20 | 潘琳琳 | 一种智能电气阀门定位器 |
CN110720656B (zh) * | 2019-10-09 | 2021-12-24 | 河南卷烟工业烟草薄片有限公司 | 一种造纸法再造烟叶干燥箱的加热控制装置及方法 |
CN110715174B (zh) * | 2019-10-17 | 2021-09-14 | 重庆川仪自动化股份有限公司 | 智能阀门定位器的阀位累积方法、装置、存储介质及电子终端 |
CN111022735A (zh) * | 2019-12-18 | 2020-04-17 | 中国空气动力研究与发展中心低速空气动力研究所 | 一种tps试验用大流量气体快速稳压装置 |
CN114901980A (zh) | 2020-01-03 | 2022-08-12 | 布雷国际有限公司 | 具有测力计的阀件 |
US11384301B2 (en) | 2020-02-19 | 2022-07-12 | Marathon Petroleum Company Lp | Low sulfur fuel oil blends for stability enhancement and associated methods |
US11788934B2 (en) | 2020-07-01 | 2023-10-17 | Saudi Arabian Oil Company | In-line fluid and solid sampling within flowlines |
IT202000017689A1 (it) * | 2020-07-22 | 2022-01-22 | Sti S R L | Sistema per la diagnostica delle perdite per trafilamento tra sede e otturatore di una valvola |
US11692903B2 (en) | 2020-10-01 | 2023-07-04 | Saudi Arabian Oil Company | Valve diagnostic and performance system |
US11441697B2 (en) | 2020-10-01 | 2022-09-13 | Saudi Arabian Oil Company | Valve diagnostic and performance system |
US11702600B2 (en) | 2021-02-25 | 2023-07-18 | Marathon Petroleum Company Lp | Assemblies and methods for enhancing fluid catalytic cracking (FCC) processes during the FCC process using spectroscopic analyzers |
US11905468B2 (en) | 2021-02-25 | 2024-02-20 | Marathon Petroleum Company Lp | Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers |
US20220268694A1 (en) | 2021-02-25 | 2022-08-25 | Marathon Petroleum Company Lp | Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers |
US11898109B2 (en) | 2021-02-25 | 2024-02-13 | Marathon Petroleum Company Lp | Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers |
US20220356961A1 (en) * | 2021-05-05 | 2022-11-10 | Saudi Arabian Oil Company | Monitoring spring return actuators |
US11976771B2 (en) | 2021-10-05 | 2024-05-07 | Saudi Arabian Oil Company | Sealing pig launcher doors |
US11692141B2 (en) | 2021-10-10 | 2023-07-04 | Marathon Petroleum Company Lp | Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive |
US11865928B2 (en) | 2021-11-24 | 2024-01-09 | Saudi Arabian Oil Company | Generating power with a conduit inspection tool |
CA3188122A1 (en) | 2022-01-31 | 2023-07-31 | Marathon Petroleum Company Lp | Systems and methods for reducing rendered fats pour point |
US12078263B2 (en) | 2022-04-29 | 2024-09-03 | Dresser, Llc | Monitoring energy use on flow controls |
EP4390198A1 (de) * | 2022-12-19 | 2024-06-26 | Asco Numatics GmbH | Vorrichtung und verfahren zur durchflussregelung eines fluids |
DE102023208309A1 (de) * | 2023-08-30 | 2025-03-06 | Siemens Aktiengesellschaft | Mobile Diagnosevorrichtung und Diagnoseverfahren für ein Stellgerät |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2769943A (en) * | 1953-04-20 | 1956-11-06 | Milwaukee Gas Specialty Co | Electromagnetic control device |
US3575209A (en) * | 1969-02-24 | 1971-04-20 | Gen Electric | Fluidic position limit control |
DE2439030A1 (de) * | 1973-09-26 | 1975-03-27 | Sanders Associates Inc | Zweistufige stroemungsmengen-steuerventileinrichtung |
GB1518720A (en) * | 1975-11-21 | 1978-07-26 | Ishikawajima Harima Heavy Ind | Hydraulic servomechanism |
US4492246A (en) * | 1983-03-28 | 1985-01-08 | Mcgraw-Edison Company | Solid state current-to-pressure and current-to-motion transducer |
GB8404169D0 (en) * | 1984-02-17 | 1984-03-21 | Dowty Hydraulic Units Ltd | Electrohydraulic servo valve |
US4712173A (en) * | 1984-10-01 | 1987-12-08 | Yamatake Honeywell | Multicontrol process control system |
US4672997A (en) * | 1984-10-29 | 1987-06-16 | Btu Engineering Corporation | Modular, self-diagnostic mass-flow controller and system |
US4665938A (en) * | 1986-09-30 | 1987-05-19 | Rosemount Inc. | Frequency feedback on a current loop of a current-to-pressure converter |
US4845416A (en) * | 1987-02-13 | 1989-07-04 | Caterpillar Inc. | Electronic valve actuator |
US5197328A (en) * | 1988-08-25 | 1993-03-30 | Fisher Controls International, Inc. | Diagnostic apparatus and method for fluid control valves |
US4976144A (en) * | 1988-08-25 | 1990-12-11 | Fisher Controls International, Inc. | Diagnostic apparatus and method for fluid control valves |
US5251148A (en) * | 1990-06-01 | 1993-10-05 | Valtek, Inc. | Integrated process control valve |
US5193568A (en) * | 1991-06-20 | 1993-03-16 | Martin Marietta Energy Systems, Inc. | Noninvasive valve monitor using alternating electromagnetic field |
US5325884A (en) * | 1991-07-10 | 1994-07-05 | Conservair Technologies | Compressed air control system |
US5146941A (en) * | 1991-09-12 | 1992-09-15 | Unitech Development Corp. | High turndown mass flow control system for regulating gas flow to a variable pressure system |
-
1993
- 1993-08-25 US US08/112,694 patent/US5549137A/en not_active Expired - Lifetime
-
1994
- 1994-07-14 CN CN94193113.7A patent/CN1072816C/zh not_active Expired - Fee Related
- 1994-07-14 DE DE69427487T patent/DE69427487T2/de not_active Expired - Lifetime
- 1994-07-14 EP EP94923482A patent/EP0739503B1/en not_active Expired - Lifetime
- 1994-07-14 CA CA002166867A patent/CA2166867C/en not_active Expired - Fee Related
- 1994-07-14 WO PCT/US1994/007914 patent/WO1995006276A1/en active IP Right Grant
- 1994-07-14 DE DE69432029T patent/DE69432029T2/de not_active Expired - Lifetime
- 1994-07-14 SG SG1996000693A patent/SG44472A1/en unknown
- 1994-07-14 EP EP99202230A patent/EP0957418B1/en not_active Expired - Lifetime
- 1994-07-14 BR BR9407585A patent/BR9407585A/pt not_active IP Right Cessation
- 1994-07-14 JP JP50756595A patent/JP3595554B2/ja not_active Expired - Fee Related
-
1995
- 1995-06-07 US US08/481,085 patent/US5558115A/en not_active Expired - Lifetime
- 1995-06-07 US US08/478,506 patent/US5573032A/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013254447A (ja) * | 2012-06-08 | 2013-12-19 | Azbil Corp | ポジショナ |
JP2013254448A (ja) * | 2012-06-08 | 2013-12-19 | Azbil Corp | ポジショナ |
CN103488184A (zh) * | 2012-06-08 | 2014-01-01 | 阿自倍尔株式会社 | 定位器 |
US8925896B2 (en) | 2012-06-08 | 2015-01-06 | Azbil Corporation | Positioner |
US8979064B2 (en) | 2012-06-08 | 2015-03-17 | Azbil Corporation | Positioner |
US11274685B2 (en) | 2016-09-21 | 2022-03-15 | Neles Finland Oy | Actuator of a process device having a controller configured to operate in a measured position feedback mode and a simulated position feedback mode |
Also Published As
Publication number | Publication date |
---|---|
DE69432029T2 (de) | 2003-11-20 |
US5558115A (en) | 1996-09-24 |
EP0957418A2 (en) | 1999-11-17 |
BR9407585A (pt) | 1997-01-07 |
WO1995006276A1 (en) | 1995-03-02 |
EP0739503A1 (en) | 1996-10-30 |
JPH09502292A (ja) | 1997-03-04 |
SG44472A1 (en) | 1997-12-19 |
EP0957418B1 (en) | 2003-01-15 |
US5573032A (en) | 1996-11-12 |
EP0739503B1 (en) | 2001-06-13 |
DE69432029D1 (de) | 2003-02-20 |
DE69427487D1 (de) | 2001-07-19 |
EP0957418A3 (en) | 2000-05-10 |
DE69427487T2 (de) | 2002-04-25 |
CA2166867C (en) | 2004-06-01 |
CN1129480A (zh) | 1996-08-21 |
US5549137A (en) | 1996-08-27 |
CN1072816C (zh) | 2001-10-10 |
CA2166867A1 (en) | 1995-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3595554B2 (ja) | 圧力フィードバック、動的補正、および診断機能を備えたバルブ位置制御装置 | |
US7283894B2 (en) | System and method for fluid regulation | |
JP4740218B2 (ja) | 圧力レギュレータの不感帯を決定する方法 | |
CA2568912C (en) | Feedback control methods and apparatus for electro-pneumatic control systems | |
CA2447001C (en) | Method for detecting broken valve stem | |
CA2668315C (en) | Intelligent pressure regulator | |
EP2843280B1 (en) | Diagnostic method for detecting control valve component failure | |
CN109891352B (zh) | 用于致动器的方法和控制器 | |
CN101900152A (zh) | 以电子方式确定阀门系统的磨损状态的方法及阀门系统 | |
CN101205940A (zh) | 用于压力介质驱动的执行机构的调节装置 | |
US20220260177A1 (en) | Diagnostic System for a Valve that can be Actuated by a Control Pressure | |
Tlisov et al. | Adaptive control system for pipeline valve pneumatic actuator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20040218 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20040405 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040413 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040817 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040906 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080910 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080910 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090910 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100910 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100910 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110910 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120910 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130910 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |