JP3204358B2 - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary batteryInfo
- Publication number
- JP3204358B2 JP3204358B2 JP04907595A JP4907595A JP3204358B2 JP 3204358 B2 JP3204358 B2 JP 3204358B2 JP 04907595 A JP04907595 A JP 04907595A JP 4907595 A JP4907595 A JP 4907595A JP 3204358 B2 JP3204358 B2 JP 3204358B2
- Authority
- JP
- Japan
- Prior art keywords
- active material
- positive electrode
- secondary battery
- battery
- aqueous electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】この発明は、リチウム二次電池等
の非水電解液電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery such as a lithium secondary battery.
【0002】[0002]
【従来の技術】近年、携帯用無線電話、携帯用パソコ
ン、携帯用ビデオカメラ等の電子機器が開発され、各種
電子機器が携帯可能な程度に小型化されている。それに
伴って、内蔵される電池としても、高エネルギー密度を
有し、且つ軽量なものが採用されている。そのような要
求を満たす典型的な電池は、リチウム金属、リチウム合
金、リチウムイオンを保持させた炭素等のリチウム系を
負極活物質とし、LiClO4、LiPF6等のリチウム
塩を溶解した非プロトン性の有機溶媒を電解液とするリ
チウム二次電池である。2. Description of the Related Art In recent years, electronic devices such as a portable radio telephone, a portable personal computer, and a portable video camera have been developed, and various electronic devices have been reduced in size to be portable. Along with this, a battery having a high energy density and a light weight is also adopted as a built-in battery. A typical battery that satisfies such demands is an aprotic solution in which a lithium metal such as lithium metal, lithium alloy, or lithium ion is used as a negative electrode active material and a lithium salt such as LiClO 4 or LiPF 6 is dissolved. And a lithium secondary battery using the organic solvent as an electrolyte.
【0003】リチウム二次電池は、上記の負極活物質を
その支持体である負極集電体に保持してなる負極板、リ
チウムコバルト複合酸化物のようにリチウムイオンと可
逆的に電気化学反応をする正極活物質をその支持体であ
る正極集電体に保持してなる正極板、電解液を保持する
とともに負極板と正極板との間に介在して両極の短絡を
防止するセパレータからなっている。[0003] A lithium secondary battery has a negative electrode plate in which the above-mentioned negative electrode active material is held by a negative electrode current collector as a support, and a reversible electrochemical reaction with lithium ions like a lithium-cobalt composite oxide. A positive electrode plate holding the positive electrode active material to be supported on a positive electrode current collector as a support, and a separator that holds an electrolyte and intervenes between the negative electrode plate and the positive electrode plate to prevent a short circuit between the two electrodes. I have.
【0004】ところで、このリチウム二次電池の充放電
電圧及びエネルギー密度を高めるために正極活物質の平
均粒径を特定する技術が提案されている(特開平1−3
04664号,特開平4−162357号)。Meanwhile, in order to increase the charge / discharge voltage and energy density of this lithium secondary battery, a technique for specifying the average particle size of the positive electrode active material has been proposed (Japanese Patent Laid-Open No. 1-3).
04664, JP-A-4-162357).
【0005】[0005]
【発明が解決しようとする課題】しかし、この出願の発
明者が研究したところ、平均粒径が同じであっても粒径
分布によって電池性能に大きな差が生じることが判っ
た。それ故、この発明の目的は、平均粒径を特定する従
来技術とは異なる観点から正極活物質を特定し、電池性
能に優れた非水電解液二次電池を提供することにある。However, a study by the inventor of the present application has revealed that even if the average particle size is the same, a large difference occurs in battery performance depending on the particle size distribution. Therefore, an object of the present invention is to provide a non-aqueous electrolyte secondary battery having excellent battery performance by specifying a positive electrode active material from a viewpoint different from the prior art for specifying an average particle diameter.
【0006】[0006]
【課題を解決するための手段】その目的を達成するため
に、この発明の非水電解液二次電池は、LiMxCo1-x
O2(MはCoを除く遷移金属の少なくとも1種を表
し、0≦x≦1.0である。)を活物質とし、活物質の
他に導電剤及び結着剤を含有する正極と、負極と、正負
極間に介在するセパレータと、セパレータに保持された
非水電解液とを備えた二次電池において、正極活物質の
比表面積が0.35〜2.0m2/gであることを特徴
とする。In order to achieve the object, a non-aqueous electrolyte secondary battery according to the present invention comprises a LiM x Co 1-x
A positive electrode containing O 2 (M represents at least one transition metal other than Co, and 0 ≦ x ≦ 1.0) as an active material, and containing a conductive agent and a binder in addition to the active material; In a secondary battery including a negative electrode, a separator interposed between the positive and negative electrodes, and a non-aqueous electrolyte held by the separator, the specific surface area of the positive electrode active material is 0.35 to 2.0 m 2 / g. It is characterized by.
【0007】ここで、LiMxCo1-xO2の具体例とし
ては、LiCoO2、LiMn0.15Co0.85O2、LiN
i0.10Co0.90O2、LiNi0.37Co0.63O2等が挙げ
られる。Here, specific examples of LiM x Co 1-x O 2 include LiCoO 2 , LiMn 0.15 Co 0.85 O 2 , LiN
i 0.10 Co 0.90 O 2 , LiNi 0.37 Co 0.63 O 2 and the like.
【0008】また、この非水電解液二次電池において
は、正極活物質のX線回折図形における(003)面ピ
ーク及び(104)面ピークの半価幅がともに0.10
〜0.20であることを特徴とする。 Further, in this nonaqueous electrolyte secondary battery, both the (003) plane peak and the (104) plane peak in the X-ray diffraction pattern of the positive electrode active material are 0.10.
0.20.20 .
【0009】[0009]
【作用】極板は、活物質間を電気的に接続するための導
電剤と活物質を集電体に保持させるための結着剤を含ん
でいる。従って、導電剤及び結着剤の含有量だけ相対的
に活物質の含有量が減じられることとなり、導電剤や結
着剤を含まない同一体積の理論上の電池に比べて電池容
量が少なくなっている。The electrode plate contains a conductive agent for electrically connecting the active materials and a binder for holding the active material on the current collector. Therefore, the content of the active material is relatively reduced by the content of the conductive agent and the binder, and the battery capacity is reduced as compared with a theoretical battery of the same volume that does not include the conductive agent and the binder. ing.
【0010】そこで、この発明では、導電剤や結着剤は
活物質の表面を被覆すれば足りることに着目し、正極活
物質の比表面積を2.0m2/g以下とすることで、正
極活物質の表面と接触する導電剤及び結着剤の含有量を
必要最小量、特に導電剤にあっては8重量%以下とし、
相対的に活物質の含有量を多く確保できるようにしたの
である。Therefore, the present invention focuses on the fact that it is sufficient that the conductive agent and the binder cover the surface of the active material, and the specific surface area of the positive electrode active material is set to 2.0 m 2 / g or less. The content of the conductive agent and the binder in contact with the surface of the active material is set to the necessary minimum amount, particularly 8% by weight or less for the conductive agent,
The relatively high content of the active material can be secured.
【0011】一方、正極活物質の比表面積が小さすぎる
と、活物質と電解液との反応面積が小さくなり、電流密
度が過大となって、大電流を放電するときに電圧が低下
したり、容量が低くなったりする。そこで、この発明で
は、正極活物質の比表面積を0.35m2/g以上とし
た。On the other hand, if the specific surface area of the positive electrode active material is too small, the reaction area between the active material and the electrolytic solution becomes small, the current density becomes excessive, and the voltage decreases when discharging a large current. The capacity may be low. Therefore, in the present invention, the specific surface area of the positive electrode active material is set to 0.35 m 2 / g or more.
【0012】すなわち、この発明では、正極活物質の比
表面積を0.35〜2.0m2/gの範囲に限定するこ
とにより、必要な反応面積を確保しつつ、活物質の含有
量も多くし、電池容量及び寿命を向上させたのである。That is, in the present invention, by limiting the specific surface area of the positive electrode active material to the range of 0.35 to 2.0 m 2 / g, the content of the active material is increased while securing the required reaction area. Thus, the battery capacity and life were improved.
【0013】加えて、X線回折ピークの半価幅を上記の
ように限定することで、さらに電池容量及び寿命を向上
させた。すなわち、半価幅は、結晶化度を表し、半価幅
が小さいと結晶化度が高く、半価幅が大きいと結晶化度
が低いことが知られている。そこで、半価幅を最適の範
囲に限定することで、活物質の結晶化度を適切にし、活
物質粒子の充填密度を高く維持しつつ、Liイオンを移
動しやすくし、その結果、大容量及び大電流放電を可能
ならしめたのである。従って、半価幅が0.50より大
きくなると、結晶化度が低すぎるため、活物質粒子の比
重が軽くて充填密度が低くなり、容量が小さくなる。か
といって、半価幅が限りなく0に近くなると、結晶化度
が高すぎて隙間が無いため、Liイオンが移動しにく
く、大電流を放電できないか又は放電したときの電圧低
下が著しく大きくなる。In addition, by limiting the half width of the X-ray diffraction peak as described above, the battery capacity and the service life are further improved. That is, it is known that the half width represents the degree of crystallinity, and that the smaller the half width, the higher the crystallinity, and the larger the half width, the lower the crystallinity. Therefore, by limiting the half width to the optimum range, the crystallinity of the active material is made appropriate, the packing density of the active material particles is maintained high, and the Li ions are easily moved, and as a result, a large capacity is obtained. And a large current discharge was made possible. Therefore, when the half width is larger than 0.50, the crystallinity is too low, so that the specific gravity of the active material particles is low, the packing density is low, and the capacity is small. On the other hand, when the half width is infinitely close to 0, the crystallinity is too high and there are no gaps, so that Li ions are difficult to move, and a large current cannot be discharged or the voltage drop when discharged is significantly large. Become.
【0014】[0014]
−実施例1− この発明を角形リチウムイオン二次電池に適用した実施
例で説明する。正極板用の支持体として、厚み20μm
のアルミニウム箔を準備した。そして、重量基準で、活
物質としてのリチウムコバルト複合酸化物LiCoO2
87%、導電剤としてのアセチレンブラック粉末5%及
び結着剤であるポリフッ化ビニリデンPVDF8%をn
−メチルピロリドン44%とともに混合してペースト状
に調製した。用いた活物質の比表面積及びX線回折ピー
クの半価幅は、表1の通りである。-Example 1-An example in which the present invention is applied to a prismatic lithium ion secondary battery will be described. 20 μm thick as support for positive electrode plate
Was prepared. And, on a weight basis, a lithium cobalt composite oxide LiCoO 2 as an active material
87%, 5% acetylene black powder as a conductive agent and 8% polyvinylidene fluoride PVDF as a binder
-Methylpyrrolidone was mixed with 44% to prepare a paste. Table 1 shows the specific surface area of the active material used and the half width of the X-ray diffraction peak.
【0015】[0015]
【表1】 次に、ペーストを支持体の両面に250μm程度の厚さ
に塗布し、乾燥した。続いて、150μmの間隔をあけ
て平行に配置された2本の熱ロールを送り速度1m/分
となるように回転させ、それら熱ロール間に、ペースト
を塗布した支持体を通して圧延した。熱ロールの心棒に
はヒーターが内蔵されており、圧延中のロール表面が1
50℃となるように予め条件設定をおこなっておいた。
圧延後、ペーストと支持体との積層体を幅30mmに切
断することによって、活物質の比表面積及び結晶化度が
異なる以外は同形同質の3種類の正極板を製造した。[Table 1] Next, the paste was applied to both sides of the support to a thickness of about 250 μm and dried. Subsequently, two hot rolls arranged in parallel at a spacing of 150 μm were rotated at a feed rate of 1 m / min, and the hot rolls were rolled through a support coated with a paste. The mandrel of the hot roll has a built-in heater, and the roll surface during rolling is 1
Conditions were set in advance so as to be 50 ° C.
After the rolling, the laminate of the paste and the support was cut into a width of 30 mm to produce three types of positive electrode plates of the same shape and the same shape except that the specific surface area and the crystallinity of the active material were different.
【0016】別途、負極板用の支持体として、厚み20
μmの銅箔を準備した。そして、重量基準で、活物質と
しての黒鉛90%及び結着剤としてのPVDF10%を
n−メチルピロリドン56%とともに混合してペースト
状に調製した。正極板の製造方法と同様にペーストを支
持体の両面に塗布し、乾燥し、圧延し、幅31mmに切
断することによって、負極板を製造した。Separately, a support having a thickness of 20
A μm copper foil was prepared. Then, on a weight basis, 90% of graphite as an active material and 10% of PVDF as a binder were mixed together with 56% of n-methylpyrrolidone to prepare a paste. The paste was applied to both sides of the support, dried, rolled, and cut to a width of 31 mm in the same manner as in the method for producing the positive electrode plate, to produce a negative electrode plate.
【0017】電解液としては、LiPF6を1mol/
l含むエチレンカーボネート:ジエチルカーボネート:
ジメチルカーボネート=2:1:2(体積比)の混合液
を用いた。セパレータとしては、厚さ25μm、幅3
2.5mmのポリエチレン微多孔膜からなるものを用い
た。As an electrolytic solution, LiPF 6 was 1 mol / mol.
l containing ethylene carbonate: diethyl carbonate:
A mixed solution of dimethyl carbonate = 2: 1: 2 (volume ratio) was used. The separator has a thickness of 25 μm and a width of 3
What consisted of a 2.5 mm polyethylene microporous membrane was used.
【0018】そして、正極板、セパレータ及び負極板
を、順に重ね合わせてポリエチレンの巻芯を中心とし
て、その周囲に長円渦状に巻いた後、正極リード又は負
極リードと電気的に接続して電池ケースに収納し、電解
液を注入した後、必要な個所を溶接し蓋をすることによ
って二次電池を製造した。Then, the positive electrode plate, the separator and the negative electrode plate are superimposed one after another and wound in an elliptical shape around the polyethylene core, and then electrically connected to the positive electrode lead or the negative electrode lead to form a battery. After being housed in a case and injecting the electrolytic solution, necessary parts were welded and covered, thereby producing a secondary battery.
【0019】得られた電池に200mA−4.1Vの定
電流定電圧充電を25℃で3時間おこなった後、400
mAで2.75Vまでの定電流放電を25℃でおこなう
サイクルを繰り返し、50サイクル毎に電池容量を測定
した。The obtained battery was charged at a constant current and a constant voltage of 200 mA-4.1 V at 25 ° C. for 3 hours.
A cycle in which constant current discharging at 2.75 V at mA was performed at 25 ° C. was repeated, and the battery capacity was measured every 50 cycles.
【0020】図1に充放電サイクル数に対する電池容量
の関係を打点したグラフを示す。図中、△印、●印及び
○印は、それぞれNo.1、No.2及びNo.3の正
極活物質を用いたデータを示す。FIG. 1 is a graph showing the relationship between the number of charge / discharge cycles and the battery capacity. In the figure, the symbols △, ● and ○ indicate No. 1, No. 2 and No. 3 shows data using the positive electrode active material of Example 3.
【0021】図から判るように、本発明範囲よりも比表
面積が小さく、半価幅の大きいNo.3の活物質を用い
た電池は、サイクル数を重ねる毎に容量低下が著しいの
に対し、本発明に属するNo.2の活物質を用いた電池
は、容量低下が緩やかであり、さらに比表面積が大きく
半価幅の小さいNo.1の活物質を用いた電池は、高い
容量を維持する傾向が認められた。As can be seen from the figure, No. 1 having a smaller specific surface area and a larger half width than the range of the present invention. In the battery using the active material of No. 3, the capacity was significantly reduced as the number of cycles was increased. The battery using the active material of No. 2 has a gradual decrease in capacity and has a large specific surface area and a small half-value width. The battery using the active material of No. 1 had a tendency to maintain a high capacity.
【0022】−実施例2− この例では、正極活物質として比表面積1.4m2/
g、(003)面の半価幅0.20、(104)面の半
価幅0.20のリチウムニッケルコバルト複合酸化物L
iNi0.10Co0.90O2を用いた。また、その他の条件
は、実施例1と同一にして電池を製造し、充放電サイク
ルを繰り返した。その結果、300サイクルめの放電容
量は、400mAhであり、実施例1のNo.1のLi
CoO2を用いた電池とほぼ同等の性能が得られた。Example 2 In this example, a specific surface area of 1.4 m 2 /
g, a lithium-nickel-cobalt composite oxide L having a half width of 0.20 on (003) plane and 0.20 on (104) plane
iNi 0.10 Co 0.90 O 2 was used. A battery was manufactured under the same conditions as in Example 1, and the charge / discharge cycle was repeated. As a result, the discharge capacity at the 300th cycle was 400 mAh. 1 Li
Almost the same performance as that of the battery using CoO 2 was obtained.
【0023】−実施例3− この例では、正極活物質として比表面積1.8m2/
g、(003)面の半価幅0.105、(104)面の
半価幅0.120のリチウムコバルト複合酸化物LiC
oO2を用いた。また、正極合剤の組成をLiCoO28
5%、アセチレンブラック粉末7%及びPVDF8%と
した。その他の条件は、実施例1と同一にして電池を製
造し、充放電サイクルを繰り返した。その結果、300
サイクルめの放電容量は、390mAhであり、実施例
1のNo.1のLiCoO2を用いた電池とほぼ同等の
性能が得られた。Example 3 In this example, a specific surface area of 1.8 m 2 /
g, Lithium-cobalt composite oxide LiC having a (003) plane half width of 0.105 and a (104) plane half width of 0.120
oO 2 was used. Moreover, LiCoO 2 8 The composition of the positive electrode mixture
5%, acetylene black powder 7% and PVDF 8%. The other conditions were the same as in Example 1 to produce a battery, and the charge / discharge cycle was repeated. As a result, 300
The discharge capacity at the second cycle was 390 mAh. Almost the same performance as that of the battery using LiCoO 2 was obtained.
【0024】−比較例1− この例では、正極活物質として比表面積2.2m2/
g、(003)面の半価幅0.220、(104)面の
半価幅0.215のリチウムニッケルコバルト複合酸化
物LiNi0.37Co0.63O2を用いた。その他の条件
は、実施例1と同一にして電池を製造し、充放電サイク
ルを繰り返した。その結果、1サイクルめの放電容量
が、410mAhであり、実施例1のLiCoO2を用
いたいずれの電池よりも性能的に劣っていた。Comparative Example 1 In this example, a specific surface area of 2.2 m 2 /
g, a lithium-nickel-cobalt composite oxide LiNi 0.37 Co 0.63 O 2 having a half-width of (003) plane of 0.220 and a half-width of (104) plane of 0.215 was used. The other conditions were the same as in Example 1 to produce a battery, and the charge / discharge cycle was repeated. As a result, the discharge capacity in the first cycle was 410 mAh, which was inferior in performance to any of the batteries using LiCoO 2 of Example 1.
【0025】−比較例2− この例では、正極活物質として比表面積0.28m2/
g、(003)面の半価幅0.097、(104)面の
半価幅0.100のリチウムニッケルコバルト複合酸化
物LiNi0.37Co0.63O2を用いた。その他の条件
は、実施例1と同一にして電池を製造し、充放電サイク
ルを繰り返した。その結果、1サイクルめの放電時よ
り、電圧が2.20Vまでしか上がらなかった。Comparative Example 2 In this example, the specific surface area was 0.28 m 2 /
g, a lithium nickel cobalt composite oxide LiNi 0.37 Co 0.63 O 2 having a half-width of 0.097 on the (003) plane and 0.100 on the (104) plane. The other conditions were the same as in Example 1 to produce a battery, and the charge / discharge cycle was repeated. As a result, the voltage increased only to 2.20 V from the time of the first cycle discharge.
【0026】−比較例3− この例では、正極活物質として比表面積2.3m2/
g、(003)面の半価幅0.51、(104)面の半
価幅0.52のリチウムニッケルコバルト複合酸化物L
iNi0.37Co0.63O2を用いた。その他の条件は、実
施例1と同一にして電池を製造しようとしたが、ペース
ト調整時に正極活物質が飛散したうえ、ペースト中で正
極活物質が凝集したために、ペーストを支持体に均一に
塗布できなかった。Comparative Example 3 In this example, a specific surface area of 2.3 m 2 /
g, a lithium-nickel-cobalt composite oxide L having a half width at (003) plane of 0.51 and a half width at (104) plane of 0.52
iNi 0.37 Co 0.63 O 2 was used. The other conditions were the same as in Example 1 to manufacture the battery. However, the cathode active material was scattered during the preparation of the paste, and the cathode active material was aggregated in the paste. Therefore, the paste was uniformly applied to the support. could not.
【0027】[0027]
【発明の効果】以上のように、この発明の非水電解液二
次電池は、長寿命である。As described above, the non-aqueous electrolyte secondary battery of the present invention has a long life.
【図1】充放電サイクルと電池容量との関係を打点した
グラフである。FIG. 1 is a graph plotting a relationship between a charge / discharge cycle and a battery capacity.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/36 - 4/62 H01M 10/40 ──────────────────────────────────────────────────の Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/36-4/62 H01M 10/40
Claims (2)
く遷移金属の少なくとも1種を表し、0≦x≦1.0で
ある。)を活物質とし、活物質の他に導電剤及び結着剤
を含有する正極と、負極と、正負極間に介在するセパレ
ータと、セパレータに保持された非水電解液とを備えた
二次電池において、正極活物質の比表面積が0.35〜
2.0m2/gであり、正極活物質のX線回折図形にお
ける(003)面ピーク及び(104)面ピークの半価
幅がともに0.10〜0.20であることを特徴とする
非水電解液二次電池。1. An active material comprising LiM x Co 1-x O 2 (M represents at least one transition metal other than Co, and 0 ≦ x ≦ 1.0), and a conductive material other than the active material. In a secondary battery including a positive electrode containing an agent and a binder, a negative electrode, a separator interposed between the positive and negative electrodes, and a non-aqueous electrolyte held by the separator, the specific surface area of the positive electrode active material is about 0.1. 35 ~
2.0 m 2 / g, and the half widths of the (003) plane peak and the (104) plane peak in the X-ray diffraction pattern of the positive electrode active material are both 0.10 to 0.20. Water electrolyte secondary battery.
る固形物質全体に対して8重量%以下である請求項1に
記載の非水電解液二次電池。2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the content of the conductive agent in the positive electrode is 8% by weight or less based on the whole solid substance constituting the positive electrode.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04907595A JP3204358B2 (en) | 1995-02-13 | 1995-02-13 | Non-aqueous electrolyte secondary battery |
DE69530166T DE69530166T2 (en) | 1994-12-09 | 1995-12-08 | Secondary cell with organic electrolyte |
EP99112055A EP0959514A3 (en) | 1994-12-09 | 1995-12-08 | Organic electrolyte secondary cell |
EP95119392A EP0718902B1 (en) | 1994-12-09 | 1995-12-08 | Organic electrolyte secondary cell |
US08/569,293 US5672445A (en) | 1994-12-09 | 1995-12-08 | Organic elecrolyte secondary cell |
CN95117571A CN1076883C (en) | 1994-12-09 | 1995-12-08 | Organic electrolyte secondary cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04907595A JP3204358B2 (en) | 1995-02-13 | 1995-02-13 | Non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08222223A JPH08222223A (en) | 1996-08-30 |
JP3204358B2 true JP3204358B2 (en) | 2001-09-04 |
Family
ID=12820973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04907595A Ceased JP3204358B2 (en) | 1994-12-09 | 1995-02-13 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3204358B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101918064B1 (en) * | 2017-03-14 | 2018-11-13 | 엘지전자 주식회사 | Variable flux motor |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6040090A (en) * | 1997-04-15 | 2000-03-21 | Sanyo Electric Co., Ltd. | Positive electrode material for use in non-aqueous electrolyte battery, process for preparing the same, and non-aqueous electrolyte battery |
WO1998054773A1 (en) * | 1997-05-27 | 1998-12-03 | Tdk Corporation | Method of producing electrode for non-aqueous electrolytic cells |
JP4836311B2 (en) * | 2000-07-18 | 2011-12-14 | 株式会社東芝 | Nonaqueous electrolyte secondary battery and method for producing the same, positive electrode active material and method for producing the same |
JP5050302B2 (en) * | 2001-06-13 | 2012-10-17 | 三菱化学株式会社 | Layered lithium nickel manganese composite oxide |
WO2009021651A1 (en) | 2007-08-10 | 2009-02-19 | Umicore | Doped lithium transition metal oxides containing sulfur |
JP5601337B2 (en) * | 2012-03-27 | 2014-10-08 | Tdk株式会社 | Active material and lithium ion secondary battery |
JP6094797B2 (en) * | 2012-08-03 | 2017-03-15 | 株式会社Gsユアサ | Positive electrode active material for lithium secondary battery, method for producing the same, electrode for lithium secondary battery, lithium secondary battery |
JP2015005426A (en) * | 2013-06-21 | 2015-01-08 | 株式会社東芝 | Nonaqueous electrolyte battery |
-
1995
- 1995-02-13 JP JP04907595A patent/JP3204358B2/en not_active Ceased
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101918064B1 (en) * | 2017-03-14 | 2018-11-13 | 엘지전자 주식회사 | Variable flux motor |
US11165322B2 (en) | 2017-03-14 | 2021-11-02 | Lg Electronics Inc. | Variable flux motor |
Also Published As
Publication number | Publication date |
---|---|
JPH08222223A (en) | 1996-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3024636B2 (en) | Non-aqueous electrolyte secondary battery | |
US6713217B2 (en) | Nonaqueous electrolyte secondary battery with a polyolefin microporous membrane separator | |
CN101436659A (en) | Positive electrode for lithium-ion secondary battery, manufacturing method thereof, and lithium-ion secondary battery | |
JPH0982361A (en) | Square nonaqueous electrolyte secondary battery | |
JP2014532955A (en) | Secondary battery | |
JPH1186853A (en) | Lithium secondary battery | |
JP2004134207A (en) | Positive electrode active material and non-aqueous electrolyte secondary battery | |
JPH09293536A (en) | Nonaqueous electrolyte secondary battery | |
JP3204358B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH06196169A (en) | Nonaqueous electrolyte secondary battery | |
JPH01204361A (en) | Secondary battery | |
JP2001143708A (en) | Non-aqueous electrolyte secondary battery | |
JP2006221935A (en) | Negative electrode and battery using it | |
JPH09289022A (en) | Nonaqueous electrolyte secondary battery | |
JP3582823B2 (en) | Positive electrode for non-aqueous secondary battery and non-aqueous secondary battery | |
JPH1154120A (en) | Lithium ion secondary battery | |
JP2000012029A (en) | Non-aqueous electrolyte secondary battery | |
JP3132504B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH113698A (en) | Lithium ion secondary battery | |
JP3383454B2 (en) | Lithium secondary battery | |
JP2007172879A (en) | Battery and its manufacturing method | |
JPH1154122A (en) | Lithium ion secondary battery | |
JP2001015168A (en) | Lithium secondary battery | |
JP2000012026A (en) | Non-aqueous electrolyte secondary battery | |
JP3448494B2 (en) | Non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RVOP | Cancellation by post-grant opposition |