JP3582823B2 - Positive electrode for non-aqueous secondary battery and non-aqueous secondary battery - Google Patents
Positive electrode for non-aqueous secondary battery and non-aqueous secondary battery Download PDFInfo
- Publication number
- JP3582823B2 JP3582823B2 JP2000310765A JP2000310765A JP3582823B2 JP 3582823 B2 JP3582823 B2 JP 3582823B2 JP 2000310765 A JP2000310765 A JP 2000310765A JP 2000310765 A JP2000310765 A JP 2000310765A JP 3582823 B2 JP3582823 B2 JP 3582823B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- weight
- secondary battery
- parts
- binder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、リチウムおよび遷移金属を含む複合酸化物を正極活物質として有する非水系二次電池用正極およびそれを具備した高容量および長寿命の非水系二次電池に関する。
【0002】
【従来の技術】
近年、民生用電子機器のポータブル化、コードレス化が急激に進んでいる。現在、これら電子機器の駆動用電源を担う小型かつ軽量で高エネルギー密度を有する電池への要望が高まっている。このような観点から非水系二次電池、とりわけリチウムイオン二次電池は高電圧かつ高エネルギー密度を有する電池として、ノートパソコン、携帯電話、AV機器などに使用されている。
非水系二次電池は、上述の機器に使用されることから、良好な寿命特性を有すことが求められる。そこで、正極板の電子伝導性を向上させることによる寿命特性の改善が検討されている。
【0003】
正極の電子伝導性を向上させる具体的手段として、活物質であるリチウムおよび遷移金属を含む複合酸化物に対し、導電剤を添加する方法が挙げられる。導電剤としては、アセチレンブラックやケッチェンブラックに代表されるカーボンブラックまたはグラファイトなどが用いられる。また、正極は、極板構造を保持するために必要な結着剤や、必要であれば合剤ペーストの粘度を調整するための増粘剤などを含んでいる。前記結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどが用いられる。
すなわち、一般に正極は、活物質、導電剤、結着剤および増粘剤を分散媒と混合して合剤ペーストを得、合剤ペーストを芯材である金属箔に塗布し、乾燥して製造される。前記分散媒としては、N−メチル−2−ピロリドン、水などが用いられる。
【0004】
従来の結着剤には、2つのタイプがある。一方は、一旦合剤ペーストの分散媒に溶解し、芯材上に合剤ペーストを塗布し、乾燥する際に分散媒の揮発に伴って析出し、その結着機能を発現する。例えば、結着剤がポリフッ化ビニリデンであり、分散媒がN−メチル−2−ピロリドンである場合がこれに該当する。このような結着剤は、活物質や導電剤を被覆して析出する。そのため正極内において活物質と導電剤との間隙に結着剤が有効に配置されず、極板構造を保持するためには多量の結着剤を要する。
【0005】
もう一方は、ポリテトラフルオロエチレンのように分散媒に溶解せずに合剤ペースト中で粒子状を維持する。この結着剤は合剤と芯材からなる正極板の圧延時にかかるせん断応力により、微細繊維(フィブリル)を発生する。そして、微細繊維が活物質や導電剤と絡み合うことで結着作用が発現する。この場合も、活物質や導電剤に多量の微細繊維を絡ませる必要があるため、多量の結着剤を要する。
【0006】
多量の結着剤を用いる場合、正極の電子伝導性を確保するためには多量の導電剤が必要となる。例えば、結着剤としてホルムアルデヒドに溶解させたポリアクリロニトリルを用いる場合、活物質100重量部あたり4重量部以上の導電剤を添加しなければ、良好なサイクル寿命を有する電池を得ることができない(特許第3046055号)。
【0007】
【発明が解決しようとする課題】
多量の導電剤と結着剤を含む正極は、体積あたりの正極合剤に含まれる活物質重量(以下活物質密度という、単位はg/ml)が低いため、その正極を有する電池容量も小さくなる。
本発明は、導電剤および結着剤の量を減らして正極の活物質密度を向上させることにより、高容量かつ良好な寿命特性を有する非水系二次電池を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、リチウムおよび遷移金属を含む複合酸化物からなる活物質、グラファイト(A)およびカーボンブラック(B)からなる導電剤ならびに有機重合体からなる粒子状結着剤を有する非水系二次電池用正極であって、前記活物質100重量部あたり0.4重量部以上2重量部以下の前記結着剤および2重量部以上4重量部未満の前記導電剤を含み、前記導電剤におけるグラファイト(A)とカーボンブラック(B)との重量比(A/B)が20/80〜80/20であることを特徴とする非水系二次電池用正極に関する。
【0009】
本発明は、また、前記正極、リチウムを吸蔵、放出可能な材料からなる負極およびリチウムイオン伝導性の非水電解質を有する非水系二次電池に関する。
【0010】
【発明の実施の形態】
本発明の非水系二次電池用正極は、リチウムおよび遷移金属を含む複合酸化物を活物質として含んでいる。前記活物質としては、一般式:LiMO2(ただし、M=Co、NiまたはMn)またはLi〔LixMn2−x 〕O4(ただし、0≦x≦0.18)で示されるものが好ましく用いられる。具体的には、LiCoO2、LiNiO2、LiMn2O4などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0011】
本発明の非水系二次電池用正極は、グラファイト(A)およびカーボンブラック(B)からなる導電剤を含んでいる。グラファイト(A)は、その粒子径が比較的大きいことから、正極内において主として活物質と金属箔の芯材との間のマクロな電気的接続経路を形成していると考えられる。一方、カーボンブラック(B)は、その粒子径が比較的小さいことから、正極内において主として活物質粒子間のミクロな電気的接続経路を形成していると考えられる。したがって、グラファイトとカーボンブラックのどちらか一方しか含まない正極内には緻密な集電経路が形成されず、電子伝導性が不充分となる。
【0012】
上記のようなグラファイト(A)とカーボンブラック(B)との相違点を活用し、緻密な集電経路を正極内に形成するには、正極に含まれるグラファイト(A)とカーボンブラック(B)との重量比を(A/B)=20/80〜80/20の範囲とする必要がある。(A)および(B)の一方が多すぎても、少なすぎても、緻密な集電経路を形成することはできない。
【0013】
グラファイトの平均粒子径は、特に限定されるものではないが0.1〜10μmであることが、良好な集電経路を形成するうえで好ましい。また、カーボンブラックの平均粒子径も、特に限定されるものではないが0.01〜0.1μmであることが、良好な集電経路を形成するうえで好ましい。また、カーボンブラックの平均粒子径に対するグラファイトの平均粒子径の比は2〜1000であることが好ましい。
【0014】
グラファイトの種類に特に限定はないが、例えば膨張黒鉛などの人造黒鉛、鱗片状黒鉛などの天然黒鉛などを用いることができる。また、カーボンブラックの種類に特に限定はないが、例えばアセチレンブラック、ファーネスブラックなどを用いることができる。
【0015】
本発明の非水系二次電池用正極は、少量の粒子状結着剤を含んでいる。粒子状結着剤は、正極内で粒子状を維持する必要がある。従って、粒子状結着剤は、合剤ペーストの分散媒に溶解しないことが必要である。粒子状結着剤は、粒子形状を維持したまま正極内に含まれるため、活物質粒子や導電剤粒子の表面を被覆することがない。粒子状結着剤は、活物質−活物質間、活物質−導電剤間および導電剤−導電剤間に有効に配置される。従って、少量の結着剤を用いるだけで極板形状を維持するための充分な効果を得ることができる。正極に含まれる結着剤量が少ないため、導電剤の必要量も少なくなる。結果として、寿命特性を損じることなく正極の活物質密度を向上させることができる。
【0016】
粒子状結着剤の平均粒子径は、特に限定されるものではないが0.05〜0.5μmであることが好ましい。平均粒子径が0.05μm未満の場合、結着剤で被覆される活物質表面積が大きくなり、電池反応が阻害され易くなる。一方、0.5μmを超える場合、活物質粒子間の距離が広くなり、正極の電子伝導性が低下する傾向がある。
【0017】
粒子状結着剤としては、例えばN−メチル−2−ピロリドンに分散させたアクリルゴム粒子、水に分散させたテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(以下FEPという)などが入手可能である。ただし、FEPが結着の効果を発現するためにはFEPを約250℃で加熱する必要があるのに対し、アクリルゴム粒子は加熱する必要がないため、アクリルゴム粒子の方が好ましい。
【0018】
アクリルゴム粒子のなかでも、アクリロニトリル単位を含むコア部とアクリル酸エステル単位、2−エチルヘキシルアクリレート単位等を含む柔軟なシェル部とからなるコアシェル型のゴム粒子が特に好ましい。この場合、アクリロニトリル単位を含む強固なコア部が正極内で粒子形状を保持する機能を有し、シェル部が結着の効果を発現する。
【0019】
本発明の非水系二次電池用正極に含まれる導電剤の量は、活物質100重量部あたり2重量部以上4重量部未満に限定される。導電剤の量が2重量部未満の場合、正極の電子伝導性が乏しくなって電池の寿命特性が低下する。一方、4重量部以上の場合、正極の活物質密度を向上させることができず、高容量な電池を得ることができない。
【0020】
一方、本発明の非水系二次電池用正極に含まれる結着剤の量は、活物質100重量部あたり0.4重量部以上2重量部以下に限定される。結着剤の量が0.4重量部未満では少なすぎるため、正極の製造工程で合剤が芯材から剥がれ、製造が困難になる。一方、2重量部を超える場合、正極の電子伝導性が低下するため、電池の寿命特性が低下する。
【0021】
粒子状結着剤は合剤ペーストの分散媒に溶解しないため、合剤ペーストの粘度を調整することができない。そこで、増粘剤を添加して分散媒の粘度を上げて、合剤ペーストを芯材への塗工に適した性状にする必要がある。増粘剤は、結着剤が溶解しない分散媒に溶解する必要がある。
【0022】
例えば結着剤として前記アクリルゴム粒子を用いる場合、分散媒としてはN−メチル−2−ピロリドンが好適である。従って、増粘剤としてはN−メチル−2−ピロリドンに溶解し得る変性ポリエチレンなどの樹脂が好ましい。また、変性ポリエチレンとしては、ポリエチレンの構造にビニルアルコール単位等の極性基を含ませたものが好ましい。
【0023】
結着剤としてFEPを用いる場合、分散媒としては水が好適である。従って、増粘剤としては水に溶解し得るカルボキシメチルセルロースなどが好ましい。
【0024】
合剤ペーストに含まれる増粘剤の量は、特に限定されるものではないが、活物質100重量部あたり0.1〜1重量部であることが好ましい。増粘剤量が0.1重量部未満の場合、合剤ペーストを芯材への塗工に適した性状にすることが困難になり、1重量部を超える場合、増粘剤で被覆される活物質表面積が大きくなり、電池反応が阻害される。
【0025】
本発明の非水系二次電池用正極は、例えば、上記活物質、導電剤、結着剤および増粘剤を所定の分散媒とともに練合し、合剤ペーストを得、これをアルミニウムなどの金属箔または穿孔板(ラスメタル板)の両面に塗布し、圧延し、切断する工程などにより作製される。電池を小型軽量にする観点から、芯材の厚さは金属箔であれば10〜25μm、穿孔板であれば10〜50μmとするのが一般的であり、正極の厚さは80〜200μmとするのが一般的である。
【0026】
一方、負極は、例えば、リチウムイオンを吸蔵・放出できる炭素を活物質として含む合剤ペーストを銅などの金属箔または穿孔板(ラスメタル板)の両面に塗布し、圧延し、切断する工程などにより作製される。電池を小型軽量にする観点から、芯材の厚さは金属箔であれば8〜20μm、穿孔板であれば10〜50μmとするのが一般的であり、負極の厚さは80〜200μmとするのが一般的である。
【0027】
得られた正極および負極を、両者の間にセパレータを介在させて積層し、横断面が略楕円形になるように捲回すれば角形電池用の極板群が、横断面が円形になるように捲回すれば円筒形電池用の極板群がそれぞれ得られる。セパレータとしては、ポリエチレンやポリプロピレンなどのポリオレフィン製微多孔膜などが用いられる。その厚さは一般的に10〜40μmである。
【0028】
極板群を角形または円筒形の金属製電池ケースに収容し、リチウムイオン伝導性の非水電解質を注入すれば本発明の非水系二次電池を得ることができる。電池ケース内に注入される非水電解質は、従来からリチウム二次電池に用いられているものを特に制限なく用いることができる。一般的には、リチウム塩および非水溶媒からなる電解質が用いられる。リチウム塩としては、例えばLiPF6、LiBF4などが挙げられる。これらは単独で用いてもよく、2種以上を組合せて用いてもよい。また、非水溶媒としては、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、プロピレンカーボネートなどが挙げられる。これらは単独で用いてもよく、2種以上を組合せて用いてもよい。
【0029】
本発明の非水系二次電池の一例である角形電池の横断図面を図1に示す。図中、1は角形の電池ケースを示し、その内部に極板群が挿入されている。極板群は、正極2および負極3を、両者の間にセパレータ4を介在させて積層し、横断面が略楕円形になるように捲回することにより構成されている。
【0030】
【実施例】
以下、本発明を実施例に基づいて具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。
【0031】
《実施例1》
100重量部のLiCoO2に対し、結着剤としてN−メチル−2−ピロリドンに分散させたアクリルゴム粒子(日本ゼオン(株)製のBM500B(商品名)、平均粒子径0.2μm)を固形分で0.4重量部、増粘剤としてN−メチル−2−ピロリドンに溶解させた変性ポリエチレン(日本ゼオン(株)製のBM700H(商品名))を樹脂成分で0.3重量部、ならびに導電剤として平均粒子径0.3μmのグラファイト1.5重量部および平均粒子径0.03μmのアセチレンブラック1.5重量部を混合し、N−メチル−2−ピロリドンを分散媒とし、固形分濃度28重量%の合剤ペーストを得た。なお、上記結着剤は、アクリロニトリル単位を含むコア部を有するコアシェル型のアクリルゴム粒子である。
【0032】
この合剤ペーストを、厚さ20μmのアルミニウム箔の両面に塗布し、乾燥し、合剤部分における活物質密度が3.6g/mlとなるように圧延し、幅40mm、長さ460mmに切断して正極を得た。
【0033】
一方、人造黒鉛粉末100重量部に対し、結着剤としてスチレンブタジエンゴム3重量部を混合し、これらをカルボキシメチルセルロース水溶液に懸濁させて合剤ペーストにした。このペーストを厚さ15μmの銅箔の両面に塗布し、乾燥し、圧延後、所定の寸法に切断して負極を得た。
得られた正極と負極との間にセパレータを介在させて横断面が略楕円形になるように捲回し、極板群を得た。セパレータとしては、厚さ27μmのポリエチレン製微多孔膜を用いた。
【0034】
前記極板群は、その上部および底部に絶縁リングを配して所定のアルミニウム製ケース内に3.2gの非水電解質とともに収容した。非水電解質としては、等体積のエチレンカーボネートとエチルメチルカーボネートとの混合物に1モル/リットルの濃度になるようにLiPF6を溶解したものを用いた。
そして、負極板に取り付けたリードと正極板に取り付けたリードを所定の箇所に接続した後、ケースの開口部を封口板で封口し、本発明の非水系二次電池を完成した。この電池は、幅30mm、高さ48mm、厚さ5mmの角形であり、電池の公称容量は600mAhである。
【0035】
《実施例2〜4および比較例1〜2》
正極に含まれる結着剤の量を表1に示すように変化させたこと以外、実施例1と同様に正極および非水系二次電池を作製した。
【0036】
《実施例5〜6および比較例3〜4》
正極に含まれる導電剤の総量は変えずにグラファイトとアセチレンブラックとの重量比率を表1に示すように変化させたこと以外、実施例2と同様に正極および非水系二次電池を作製した。
【0037】
《実施例7〜8および比較例5〜7》
正極に含まれる導電剤におけるグラファイトとアセチレンブラックとの重量比率は変えずに導電剤の総量を表1に示すように変化させたこと以外、実施例2と同様に正極および非水系二次電池を作製した。
【0038】
《実施例9》
正極に含まれる結着剤をFEPに代え、増粘剤をカルボキシメチルセルロースに代えるとともにその量を活物質100重量部に対し1重量部としたこと以外、実施例4と同様に正極および非水系二次電池を作製した。
【0039】
《比較例8》
正極に含まれる結着剤をポリフッ化ビニリデン(PVDF)に代え、その量を活物質100重量部に対し4重量部とし、増粘剤は用いなかったこと以外、実施例1と同様に正極および非水系二次電池を作製した。
【0040】
次に、前記実施例および比較例の正極および電池の評価を行った。
(i)正極の評価
正極合剤ペーストをアルミニウム箔上に塗布し、乾燥した後、アルミニウム箔からの合剤の脱落の有無を目視した。そして、不具合のない正極のみ電池の作製に用いた。結果を表1に示す。
次いで、極板群構成後の正極表面を目視し、同じく不具合のない正極のみ電池の作製に用いた。結果を表1に示す。
【0041】
(ii)電池の評価
得られた電池のサイクル寿命特性を評価した。具体的には、600mAで電池電圧が4.2Vになるまで充電し、600mAで電池電圧が3Vになるまで放電する操作を200回繰り返した。そして、1回目の放電容量に対する200回目の放電容量の比を求めた。結果を容量維持率として百分率で表1に示す。
【0042】
(iii)評価結果
【0043】
【表1】
【0044】
正極の結着剤として分散媒(N−メチル−2−ピロリドン)に溶解するポリフッ化ビニリデンを用いた比較例8の正極は、極板群構成後に略楕円形に捲回された極板群を目視したところ、最も曲率が高い箇所に折り目状の亀裂が発生していることが確認された。比較例8の正極は多量のポリフッ化ビニリデンを結着剤として含んでいるため、極板内の空隙体積が少なくなり、極板の柔軟性が著しく損なわれたものと考えられる。正極の活物質密度を3.3g/mlまで減らせば亀裂が発生しないことが確認されたが、活物質密度を減らすと極板の厚さは増加することになる。従って、金属ケースに挿入するには正極の長さを減ずる(すなわち容量を低下させる)必要がある。
【0045】
一方、正極の結着剤として分散媒(N−メチル−2−ピロリドン)に溶解しないBM500Bを用いた実施例1の正極は、少量でも結着効果を発現するため、充分な空隙を確保しつつ活物質密度3.6g/mlとすることができた。また、実施例1の正極に不具合は一切生じなかった。実施例1の電池のサイクル寿命特性も良好であった。結着剤としてFEPを用いた実施例9の正極でも同様の効果が得られた。ただし、比較例1のように結着剤の量が少なすぎると、合剤が極板から脱落し、比較例2のように結着剤の量が多すぎると、正極内の電子伝導性が不足するためサイクル寿命特性が低下した。このことから、結着剤量の最適範囲は、活物質100重量部あたり0.4重量部以上2重量部以下であることがわかる。
【0046】
導電剤の総量は変化させず、グラファイト(A)とアセチレンブラック(B)との重量比率を変化させた場合、比較例3((A/B)=10/90)、比較例4((A/B)=90/10)の電池は、いずれもサイクル寿命特性が低下した。この理由として、比較例3の正極はグラファイトが不足しているため、また、比較例4の電池はアセチレンブラックが不足しているため、緻密な集電経路を形成することができず、いずれも正極の電子伝導性が低下したためと考えられる。このことから、グラファイト(A)とアセチレンブラック(B)との重量比率の最適範囲は、(A/B)=20/80〜80/20であることがわかる。
【0047】
グラファイト(A)とアセチレンブラック(B)との重量比率は変化させず、導電剤の総量を変化させた場合、活物質100重量部あたり1.6重量部しか導電剤を含まない比較例5の正極は、電子伝導性不足のため電池のサイクル寿命特性が低下した。また、物質100重量部あたり4重量部の導電剤を含む比較例6の正極は、極板群を略楕円形に捲回した際に亀裂が発生していることが確認された。比較例6の場合、極板群の亀裂が微細であったため、電池を構成するうえで影響がないと判断してサイクル寿命特性を評価したところ、実施例1と同等の結果であった。しかし、活物質100重量部あたり4.6重量部の結着剤を含む比較例7の正極には、比較例8と同程度の亀裂が確認された。このことから、導電剤量の最適範囲は、活物質100重量部あたり2重量部以上4重量部未満であることがわかる。
【0048】
【発明の効果】
本発明によれば、正極の活物質密度を向上することができ、高容量かつ良好な寿命特性を有する非水系二次電池用正極および非水系二次電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の非水系二次電池の一例の横断面図である。
【符号の説明】
1 電池ケース
2 正極板
3 負極板
4 セパレータ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a positive electrode for a non-aqueous secondary battery having a composite oxide containing lithium and a transition metal as a positive electrode active material, and a high capacity and long life non-aqueous secondary battery including the same.
[0002]
[Prior art]
In recent years, portable and cordless consumer electronic devices have been rapidly advancing. At present, there is an increasing demand for a small and lightweight battery having a high energy density, which serves as a power supply for driving these electronic devices. From such a viewpoint, a non-aqueous secondary battery, particularly a lithium ion secondary battery, is used as a battery having a high voltage and a high energy density in notebook computers, mobile phones, AV equipment, and the like.
Since the non-aqueous secondary battery is used in the above-described devices, it is required to have good life characteristics. Therefore, improvement of the life characteristics by improving the electron conductivity of the positive electrode plate has been studied.
[0003]
As a specific means for improving the electron conductivity of the positive electrode, there is a method of adding a conductive agent to a composite oxide containing lithium and a transition metal as active materials. As the conductive agent, carbon black represented by acetylene black or Ketjen black, graphite, or the like is used. Further, the positive electrode contains a binder necessary for maintaining the electrode plate structure, and, if necessary, a thickener for adjusting the viscosity of the mixture paste. As the binder, polyvinylidene fluoride, polytetrafluoroethylene, or the like is used.
That is, in general, a positive electrode is manufactured by mixing an active material, a conductive agent, a binder, and a thickener with a dispersion medium to obtain a mixture paste, applying the mixture paste to a metal foil as a core material, and drying the mixture. Is done. As the dispersion medium, N-methyl-2-pyrrolidone, water and the like are used.
[0004]
There are two types of conventional binders. One is once dissolved in the dispersion medium of the mixture paste, applied to the mixture paste on the core material, and when the dispersion medium is dried, it precipitates with the volatilization of the dispersion medium to exhibit its binding function. For example, this corresponds to a case where the binder is polyvinylidene fluoride and the dispersion medium is N-methyl-2-pyrrolidone. Such a binder is deposited by coating the active material and the conductive agent. Therefore, the binder is not effectively disposed in the gap between the active material and the conductive agent in the positive electrode, and a large amount of the binder is required to maintain the electrode plate structure.
[0005]
The other one does not dissolve in the dispersion medium like polytetrafluoroethylene and maintains the particulate state in the mixture paste. The binder generates fine fibers (fibrils) due to shear stress applied during rolling of the positive electrode plate composed of the mixture and the core material. Then, the binding action is exhibited by the fine fibers entangled with the active material and the conductive agent. Also in this case, a large amount of fine fibers need to be entangled with the active material and the conductive agent, and thus a large amount of binder is required.
[0006]
When a large amount of a binder is used, a large amount of a conductive agent is required to secure the electron conductivity of the positive electrode. For example, when using polyacrylonitrile dissolved in formaldehyde as a binder, a battery having a good cycle life cannot be obtained unless 4 parts by weight or more of a conductive agent is added per 100 parts by weight of the active material. No. 3046055).
[0007]
[Problems to be solved by the invention]
Since the positive electrode containing a large amount of the conductive agent and the binder has a low active material weight per volume (hereinafter, referred to as an active material density, the unit is g / ml), the battery capacity having the positive electrode is also small. Become.
An object of the present invention is to provide a non-aqueous secondary battery having high capacity and good life characteristics by reducing the amounts of a conductive agent and a binder to increase the active material density of a positive electrode.
[0008]
[Means for Solving the Problems]
The present invention relates to a non-aqueous secondary battery having an active material composed of a composite oxide containing lithium and a transition metal, a conductive agent composed of graphite (A) and carbon black (B), and a particulate binder composed of an organic polymer. A positive electrode, comprising 0.4 to 2 parts by weight of the binder and 2 to 4 parts by weight of the conductive agent per 100 parts by weight of the active material; The present invention relates to a positive electrode for a non-aqueous secondary battery, wherein the weight ratio (A / B) of A) to carbon black (B) is 20/80 to 80/20.
[0009]
The present invention also relates to a non-aqueous secondary battery including the positive electrode, a negative electrode made of a material capable of occluding and releasing lithium, and a non-aqueous electrolyte having lithium ion conductivity.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The positive electrode for a non-aqueous secondary battery of the present invention contains a composite oxide containing lithium and a transition metal as an active material. Examples of the active material include those represented by the general formula: LiMO 2 (where M = Co, Ni or Mn) or Li [Li x Mn 2-x ] O 4 (where 0 ≦ x ≦ 0.18). It is preferably used. Specific examples include LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 . These may be used alone or in combination of two or more.
[0011]
The positive electrode for a non-aqueous secondary battery of the present invention contains a conductive agent composed of graphite (A) and carbon black (B). Since the graphite (A) has a relatively large particle diameter, it is considered that the graphite (A) mainly forms a macro electrical connection path between the active material and the core material of the metal foil in the positive electrode. On the other hand, since carbon black (B) has a relatively small particle diameter, it is considered that mainly a micro electrical connection path between active material particles is formed in the positive electrode. Therefore, a dense current collecting path is not formed in the positive electrode containing only one of graphite and carbon black, and the electron conductivity becomes insufficient.
[0012]
In order to utilize the above-mentioned difference between graphite (A) and carbon black (B) to form a dense current collection path in the positive electrode, graphite (A) and carbon black (B) contained in the positive electrode must be used. Must be in the range of (A / B) = 20/80 to 80/20. If one of (A) and (B) is too large or too small, a dense current collecting path cannot be formed.
[0013]
The average particle size of graphite is not particularly limited, but is preferably 0.1 to 10 μm in order to form a favorable current collecting path. The average particle size of the carbon black is not particularly limited, but is preferably 0.01 to 0.1 μm in order to form a favorable current collecting path. Further, the ratio of the average particle diameter of graphite to the average particle diameter of carbon black is preferably from 2 to 1,000.
[0014]
Although the type of graphite is not particularly limited, for example, artificial graphite such as expanded graphite and natural graphite such as flake graphite can be used. The type of carbon black is not particularly limited, and for example, acetylene black, furnace black, and the like can be used.
[0015]
The positive electrode for a non-aqueous secondary battery of the present invention contains a small amount of a particulate binder. The particulate binder needs to maintain a particulate state in the positive electrode. Therefore, it is necessary that the particulate binder does not dissolve in the dispersion medium of the mixture paste. Since the particulate binder is contained in the positive electrode while maintaining the particle shape, it does not cover the surfaces of the active material particles and the conductive agent particles. The particulate binder is effectively disposed between the active material and the active material, between the active material and the conductive agent, and between the conductive agent and the conductive agent. Therefore, a sufficient effect for maintaining the electrode plate shape can be obtained only by using a small amount of the binder. Since the amount of the binder contained in the positive electrode is small, the required amount of the conductive agent is also reduced. As a result, the active material density of the positive electrode can be improved without impairing the life characteristics.
[0016]
The average particle diameter of the particulate binder is not particularly limited, but is preferably 0.05 to 0.5 μm. When the average particle diameter is less than 0.05 μm, the surface area of the active material covered with the binder becomes large, and the battery reaction is easily inhibited. On the other hand, if it exceeds 0.5 μm, the distance between the active material particles is increased, and the electron conductivity of the positive electrode tends to decrease.
[0017]
As the particulate binder, for example, acrylic rubber particles dispersed in N-methyl-2-pyrrolidone, tetrafluoroethylene-hexafluoropropylene copolymer (hereinafter referred to as FEP) dispersed in water, and the like are available. . However, in order for FEP to exhibit the binding effect, it is necessary to heat FEP at about 250 ° C., whereas acrylic rubber particles do not need to be heated, so acrylic rubber particles are preferred.
[0018]
Among the acrylic rubber particles, core-shell type rubber particles comprising a core portion containing an acrylonitrile unit and a flexible shell portion containing an acrylate unit, a 2-ethylhexyl acrylate unit and the like are particularly preferable. In this case, the strong core containing acrylonitrile units has a function of maintaining the particle shape in the positive electrode, and the shell exerts a binding effect.
[0019]
The amount of the conductive agent contained in the positive electrode for a non-aqueous secondary battery of the present invention is limited to 2 parts by weight or more and less than 4 parts by weight per 100 parts by weight of the active material. When the amount of the conductive agent is less than 2 parts by weight, the electron conductivity of the positive electrode becomes poor, and the life characteristics of the battery deteriorate. On the other hand, when the amount is 4 parts by weight or more, the active material density of the positive electrode cannot be improved, and a high-capacity battery cannot be obtained.
[0020]
On the other hand, the amount of the binder contained in the positive electrode for a non-aqueous secondary battery of the present invention is limited to 0.4 parts by weight or more and 2 parts by weight or less per 100 parts by weight of the active material. When the amount of the binder is less than 0.4 parts by weight, the amount is too small, so that the mixture is peeled off from the core material in the positive electrode production process, and the production becomes difficult. On the other hand, if it exceeds 2 parts by weight, the electron conductivity of the positive electrode decreases, and the battery life characteristics deteriorate.
[0021]
Since the particulate binder does not dissolve in the dispersion medium of the mixture paste, the viscosity of the mixture paste cannot be adjusted. Therefore, it is necessary to increase the viscosity of the dispersion medium by adding a thickener to make the mixture paste a property suitable for coating on the core material. The thickener must be dissolved in a dispersion medium in which the binder does not dissolve.
[0022]
For example, when the acrylic rubber particles are used as a binder, N-methyl-2-pyrrolidone is suitable as a dispersion medium. Therefore, as the thickener, a resin such as a modified polyethylene that can be dissolved in N-methyl-2-pyrrolidone is preferable. Further, as the modified polyethylene, those in which a polar group such as a vinyl alcohol unit is included in the structure of the polyethylene are preferable.
[0023]
When FEP is used as the binder, water is suitable as the dispersion medium. Therefore, carboxymethyl cellulose or the like which is soluble in water is preferable as the thickener.
[0024]
The amount of the thickener contained in the mixture paste is not particularly limited, but is preferably 0.1 to 1 part by weight per 100 parts by weight of the active material. When the amount of the thickener is less than 0.1 part by weight, it is difficult to make the mixture paste suitable for coating on the core material. When the amount exceeds 1 part by weight, the paste is coated with the thickener. The active material surface area is increased, and the battery reaction is hindered.
[0025]
The positive electrode for a non-aqueous secondary battery of the present invention is, for example, the above-mentioned active material, conductive agent, binder and thickener are kneaded together with a predetermined dispersion medium to obtain a mixture paste, which is made of a metal such as aluminum. It is produced by a process such as coating on both sides of a foil or a perforated plate (lath metal plate), rolling and cutting. From the viewpoint of reducing the size and weight of the battery, the thickness of the core material is generally 10 to 25 μm for a metal foil and 10 to 50 μm for a perforated plate, and the thickness of the positive electrode is 80 to 200 μm. It is common to do.
[0026]
On the other hand, for the negative electrode, for example, a mixture paste containing carbon capable of occluding and releasing lithium ions as an active material is applied to both surfaces of a metal foil such as copper or a perforated plate (lass metal plate), rolled, and cut. It is made. From the viewpoint of reducing the size and weight of the battery, the thickness of the core material is generally 8 to 20 μm for a metal foil and 10 to 50 μm for a perforated plate, and the thickness of the negative electrode is 80 to 200 μm. It is common to do.
[0027]
The obtained positive electrode and negative electrode are laminated with a separator interposed therebetween, and if wound so that the cross section becomes substantially elliptical, the electrode group for a rectangular battery will have a circular cross section. To form electrode groups for a cylindrical battery. As the separator, a microporous film made of polyolefin such as polyethylene or polypropylene is used. Its thickness is generally between 10 and 40 μm.
[0028]
The non-aqueous secondary battery of the present invention can be obtained by storing the electrode group in a square or cylindrical metal battery case and injecting a lithium ion conductive non-aqueous electrolyte. As the non-aqueous electrolyte injected into the battery case, those conventionally used for lithium secondary batteries can be used without any particular limitation. Generally, an electrolyte composed of a lithium salt and a non-aqueous solvent is used. Examples of the lithium salt include LiPF 6 and LiBF 4 . These may be used alone or in combination of two or more. Examples of the non-aqueous solvent include ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, propylene carbonate, and the like. These may be used alone or in combination of two or more.
[0029]
FIG. 1 is a cross-sectional view of a prismatic battery as an example of the non-aqueous secondary battery of the present invention. In the drawing, reference numeral 1 denotes a rectangular battery case, into which an electrode plate group is inserted. The electrode plate group is configured by laminating the positive electrode 2 and the negative electrode 3 with the
[0030]
【Example】
Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited to these examples.
[0031]
<< Example 1 >>
Acrylic rubber particles (BM500B (trade name, manufactured by Zeon Corporation), average particle size: 0.2 μm) dispersed in N-methyl-2-pyrrolidone as a binder were added to 100 parts by weight of LiCoO 2. 0.3 parts by weight of a modified polyethylene (BM700H (trade name) manufactured by Zeon Corporation) dissolved in N-methyl-2-pyrrolidone as a thickener, As a conductive agent, 1.5 parts by weight of graphite having an average particle diameter of 0.3 μm and 1.5 parts by weight of acetylene black having an average particle diameter of 0.03 μm were mixed, and N-methyl-2-pyrrolidone was used as a dispersion medium. A mixture paste of 28% by weight was obtained. The binder is core-shell type acrylic rubber particles having a core containing acrylonitrile units.
[0032]
This mixture paste is applied to both sides of a 20 μm-thick aluminum foil, dried, rolled so that the active material density in the mixture portion becomes 3.6 g / ml, and cut into a width of 40 mm and a length of 460 mm. Thus, a positive electrode was obtained.
[0033]
On the other hand, 100 parts by weight of artificial graphite powder was mixed with 3 parts by weight of styrene butadiene rubber as a binder, and these were suspended in an aqueous solution of carboxymethyl cellulose to form a mixture paste. This paste was applied to both sides of a copper foil having a thickness of 15 μm, dried, rolled, and cut into a predetermined size to obtain a negative electrode.
A separator was interposed between the obtained positive electrode and negative electrode and wound so that the cross section became substantially elliptical, to obtain an electrode plate group. As the separator, a polyethylene microporous film having a thickness of 27 μm was used.
[0034]
The electrode group was housed together with 3.2 g of a non-aqueous electrolyte in a predetermined aluminum case with insulating rings arranged on the top and bottom thereof. As the non-aqueous electrolyte, one obtained by dissolving LiPF 6 in a mixture of equal volumes of ethylene carbonate and ethyl methyl carbonate at a concentration of 1 mol / liter was used.
Then, the lead attached to the negative electrode plate and the lead attached to the positive electrode plate were connected to predetermined positions, and then the opening of the case was sealed with a sealing plate to complete the non-aqueous secondary battery of the present invention. This battery has a rectangular shape with a width of 30 mm, a height of 48 mm, and a thickness of 5 mm, and has a nominal capacity of 600 mAh.
[0035]
<< Examples 2-4 and Comparative Examples 1-2 >>
A positive electrode and a non-aqueous secondary battery were produced in the same manner as in Example 1, except that the amount of the binder contained in the positive electrode was changed as shown in Table 1.
[0036]
<< Examples 5-6 and Comparative Examples 3-4 >>
A positive electrode and a non-aqueous secondary battery were produced in the same manner as in Example 2, except that the weight ratio of graphite and acetylene black was changed as shown in Table 1 without changing the total amount of the conductive agent contained in the positive electrode.
[0037]
<< Examples 7 to 8 and Comparative Examples 5 to 7 >>
A positive electrode and a nonaqueous secondary battery were prepared in the same manner as in Example 2, except that the weight ratio of graphite and acetylene black in the conductive agent contained in the positive electrode was not changed and the total amount of the conductive agent was changed as shown in Table 1. Produced.
[0038]
<< Example 9 >>
The same procedure as in Example 4 was repeated except that the binder contained in the positive electrode was replaced by FEP, the thickener was replaced by carboxymethylcellulose, and the amount was 1 part by weight based on 100 parts by weight of the active material. A secondary battery was manufactured.
[0039]
<< Comparative Example 8 >>
Except that the binder contained in the positive electrode was replaced with polyvinylidene fluoride (PVDF), the amount was 4 parts by weight with respect to 100 parts by weight of the active material, and no thickener was used in the same manner as in Example 1 except that the thickener was not used. A non-aqueous secondary battery was manufactured.
[0040]
Next, the positive electrodes and batteries of the above Examples and Comparative Examples were evaluated.
(I) Evaluation of Positive Electrode The positive electrode mixture paste was applied on an aluminum foil and dried, and then the presence or absence of the mixture from the aluminum foil was visually observed. Then, only the positive electrode having no defect was used for producing the battery. Table 1 shows the results.
Next, the surface of the positive electrode after the formation of the electrode plate group was visually observed, and only the positive electrode having no defect was used for producing a battery. Table 1 shows the results.
[0041]
(Ii) Evaluation of Battery The cycle life characteristics of the obtained battery were evaluated. Specifically, an operation of charging the battery at 600 mA until the battery voltage becomes 4.2 V and discharging the battery at 600 mA until the battery voltage becomes 3 V was repeated 200 times. Then, the ratio of the 200th discharge capacity to the first discharge capacity was determined. The results are shown in Table 1 as percentages as the capacity retention rate.
[0042]
(Iii) Evaluation result
[Table 1]
[0044]
The positive electrode of Comparative Example 8 using polyvinylidene fluoride dissolved in a dispersion medium (N-methyl-2-pyrrolidone) as a binder for the positive electrode was obtained by forming an electrode group that was wound into an approximately elliptical shape after the electrode group was formed. Upon visual inspection, it was confirmed that a fold-like crack was generated at the portion having the highest curvature. It is considered that since the positive electrode of Comparative Example 8 contained a large amount of polyvinylidene fluoride as a binder, the void volume in the electrode plate was reduced, and the flexibility of the electrode plate was significantly impaired. It was confirmed that cracking did not occur when the active material density of the positive electrode was reduced to 3.3 g / ml, but when the active material density was reduced, the thickness of the electrode plate increased. Therefore, it is necessary to reduce the length of the positive electrode (that is, reduce the capacity) in order to insert the positive electrode into the metal case.
[0045]
On the other hand, the positive electrode of Example 1 using BM500B, which does not dissolve in the dispersion medium (N-methyl-2-pyrrolidone), as a binder for the positive electrode, exhibits a binding effect even in a small amount. The active material density was able to be 3.6 g / ml. Also, no problem occurred in the positive electrode of Example 1. The cycle life characteristics of the battery of Example 1 were also good. Similar effects were obtained with the positive electrode of Example 9 using FEP as the binder. However, if the amount of the binder is too small as in Comparative Example 1, the mixture will fall off the electrode plate, and if the amount of the binder is too large as in Comparative Example 2, the electron conductivity in the positive electrode will decrease. Insufficient cycle life characteristics decreased. This indicates that the optimum range of the amount of the binder is 0.4 parts by weight or more and 2 parts by weight or less per 100 parts by weight of the active material.
[0046]
When the weight ratio of graphite (A) and acetylene black (B) was changed without changing the total amount of the conductive agent, Comparative Example 3 ((A / B) = 10/90) and Comparative Example 4 ((A The batteries of / B) = 90/10) all had reduced cycle life characteristics. The reason is that the positive electrode of Comparative Example 3 lacks graphite, and the battery of Comparative Example 4 lacks acetylene black, so that a dense current collecting path cannot be formed. It is considered that the electron conductivity of the positive electrode decreased. This indicates that the optimal range of the weight ratio of graphite (A) to acetylene black (B) is (A / B) = 20/80 to 80/20.
[0047]
When the weight ratio of graphite (A) and acetylene black (B) was not changed and the total amount of the conductive agent was changed, only 1.6 parts by weight per 100 parts by weight of the active material in Comparative Example 5 containing the conductive agent was used. In the positive electrode, the cycle life characteristics of the battery decreased due to insufficient electron conductivity. In addition, it was confirmed that the positive electrode of Comparative Example 6, which contained 4 parts by weight of the conductive agent per 100 parts by weight of the substance, had cracks when the electrode group was wound into an approximately elliptical shape. In the case of Comparative Example 6, since the electrode plate group had minute cracks, it was determined that there was no effect on the construction of the battery, and the cycle life characteristics were evaluated. The result was equivalent to that of Example 1. However, in the positive electrode of Comparative Example 7 containing 4.6 parts by weight of the binder per 100 parts by weight of the active material, cracks similar to those in Comparative Example 8 were confirmed. This indicates that the optimal range of the amount of the conductive agent is 2 parts by weight or more and less than 4 parts by weight per 100 parts by weight of the active material.
[0048]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the active material density of a positive electrode can be improved, and the positive electrode for nonaqueous secondary batteries and a nonaqueous secondary battery which have high capacity and favorable life characteristics can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an example of a non-aqueous secondary battery of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Battery case 2 Positive electrode plate 3
Claims (4)
前記活物質100重量部あたり0.4重量部以上2重量部以下の前記結着剤および2重量部以上4重量部未満の前記導電剤を含み、
前記導電剤におけるグラファイト(A)とカーボンブラック(B)との重量比(A/B)が20/80〜80/20であることを特徴とする非水系二次電池用正極。A positive electrode for a non-aqueous secondary battery having an active material composed of a composite oxide containing lithium and a transition metal, a conductive agent composed of graphite (A) and carbon black (B), and a particulate binder composed of an organic polymer. So,
Containing 0.4 to 2 parts by weight of the binder and 2 to 4 parts by weight of the conductive agent per 100 parts by weight of the active material,
A positive electrode for a non-aqueous secondary battery, wherein the weight ratio (A / B) of graphite (A) to carbon black (B) in the conductive agent is 20/80 to 80/20.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000310765A JP3582823B2 (en) | 2000-10-11 | 2000-10-11 | Positive electrode for non-aqueous secondary battery and non-aqueous secondary battery |
TW090117687A TW508861B (en) | 2000-08-08 | 2001-07-19 | Non-aqueous electrolyte secondary battery and positive electrode for the same |
US09/915,946 US6869724B2 (en) | 2000-08-08 | 2001-07-26 | Non-aqueous electrolyte secondary battery and positive electrode for the same |
KR10-2001-0046908A KR100414720B1 (en) | 2000-08-08 | 2001-08-03 | Non-aqueous electrolyte secondary battery and positive electrode for the same |
EP01119035A EP1179869B1 (en) | 2000-08-08 | 2001-08-07 | Non-aqueous electrolyte secondary battery and positive electrode for the same |
DE60137001T DE60137001D1 (en) | 2000-08-08 | 2001-08-07 | Non-aqueous secondary battery and positive electrode for it |
DE60142371T DE60142371D1 (en) | 2000-08-08 | 2001-08-07 | Non-aqueous electrolyte secondary battery and positive electrode therefor |
EP07113920A EP1858095B1 (en) | 2000-08-08 | 2001-08-07 | Non-aqueous electrolyte secondary battery and positive electrode for the same |
CNB011249919A CN1167161C (en) | 2000-08-08 | 2001-08-08 | Positive electrode for non-aqueous electrolyte secondary battery and battery using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000310765A JP3582823B2 (en) | 2000-10-11 | 2000-10-11 | Positive electrode for non-aqueous secondary battery and non-aqueous secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002117834A JP2002117834A (en) | 2002-04-19 |
JP3582823B2 true JP3582823B2 (en) | 2004-10-27 |
Family
ID=18790659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000310765A Expired - Fee Related JP3582823B2 (en) | 2000-08-08 | 2000-10-11 | Positive electrode for non-aqueous secondary battery and non-aqueous secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3582823B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2394056A1 (en) * | 2002-07-12 | 2004-01-12 | Hydro-Quebec | Particles with a non-conductive or semi-conductive core covered by a conductive layer, the processes for obtaining these particles and their use in electrochemical devices |
JP5315595B2 (en) * | 2005-09-15 | 2013-10-16 | 日産自動車株式会社 | Battery electrode and manufacturing method thereof |
JP5364500B2 (en) * | 2009-08-20 | 2013-12-11 | 古河電池株式会社 | Method for producing positive electrode plate for non-aqueous electrolyte secondary battery |
CN102640329B (en) | 2009-09-30 | 2015-11-25 | 日本瑞翁株式会社 | Secondary cell perforated membrane and secondary cell |
JP4849286B1 (en) | 2011-06-06 | 2012-01-11 | Jsr株式会社 | Positive electrode binder composition |
JP6400391B2 (en) * | 2013-09-18 | 2018-10-03 | 株式会社東芝 | Non-aqueous electrolyte battery |
JP6629402B2 (en) * | 2013-09-18 | 2020-01-15 | 株式会社東芝 | Positive electrode |
KR101773698B1 (en) * | 2015-01-13 | 2017-08-31 | 주식회사 엘지화학 | Method for preparing positive electrode composition of lithium secondary battery, and positive electrode and lithium secondary battery prepared by using the same |
-
2000
- 2000-10-11 JP JP2000310765A patent/JP3582823B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002117834A (en) | 2002-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3585122B2 (en) | Non-aqueous secondary battery and its manufacturing method | |
JP5219387B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3844733B2 (en) | Nonaqueous electrolyte secondary battery | |
CN101243565B (en) | Electrochemical device with high capacity and method for preparing the same | |
JP2020077611A (en) | Positive electrode active material for lithium secondary battery and lithium secondary battery including the same | |
CN117393710A (en) | Negative electrode active material for lithium secondary batteries, negative electrode for lithium secondary batteries and lithium secondary battery containing the same | |
JP2007273183A (en) | Negative electrode and secondary battery | |
JP3983601B2 (en) | Non-aqueous secondary battery | |
JP7177277B2 (en) | Electrodes for lithium secondary batteries | |
JP5103961B2 (en) | Lithium ion secondary battery | |
JP2020510980A (en) | Strip type electrode used for cylindrical jelly roll and lithium secondary battery including the same | |
JP5279567B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3582823B2 (en) | Positive electrode for non-aqueous secondary battery and non-aqueous secondary battery | |
JPH11204145A (en) | Lithium secondary battery | |
JP2005294139A (en) | Lithium ion secondary battery and manufacturing method thereof | |
CN115380407A (en) | Negative electrode active material for lithium secondary battery, negative electrode, and lithium secondary battery | |
JP2017103139A (en) | Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery | |
CN113784916B (en) | Method for preparing negative electrode active material | |
JP6607388B2 (en) | Positive electrode for lithium ion secondary battery and method for producing the same | |
KR20140008957A (en) | Anode having enhanced adhesive force and rate capability, and lithium secondary battery comprising the same | |
JPH1173969A (en) | Lithium secondary battery | |
JPH0696801A (en) | Thin non-aqueous electrolyte battery | |
JP2005071712A (en) | Manufacturing method of positive electrode | |
JP2005190786A (en) | Non-aqueous electrolyte secondary battery | |
JP2000188095A (en) | Lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040409 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040415 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040609 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040722 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040726 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070806 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080806 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080806 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090806 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090806 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100806 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110806 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110806 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120806 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130806 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |