[go: up one dir, main page]

JP2000012026A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP2000012026A
JP2000012026A JP10177502A JP17750298A JP2000012026A JP 2000012026 A JP2000012026 A JP 2000012026A JP 10177502 A JP10177502 A JP 10177502A JP 17750298 A JP17750298 A JP 17750298A JP 2000012026 A JP2000012026 A JP 2000012026A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
aqueous electrolyte
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10177502A
Other languages
Japanese (ja)
Inventor
Tomohiro Iguchi
智博 井口
Kenji Hara
賢二 原
Katsunori Suzuki
克典 鈴木
Nobukazu Tanaka
伸和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP10177502A priority Critical patent/JP2000012026A/en
Publication of JP2000012026A publication Critical patent/JP2000012026A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】 【課題】負極に炭素材量を用いた非水電解液を用いる二
次電池において、保存特性及びサイクル寿命特性を向上
させる。 【解決手段】負極の炭素材料の表面に金属酸化物をコー
ティングして使用する。負極の炭素材料として黒鉛系炭
素材を用いる。
(57) [Problem] To improve storage characteristics and cycle life characteristics of a secondary battery using a nonaqueous electrolyte using a carbon material amount for a negative electrode. A surface of a carbon material of a negative electrode is coated with a metal oxide for use. A graphite-based carbon material is used as the carbon material for the negative electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
に関し、保存特性及びサイクル寿命特性の改善を目的と
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and an object thereof is to improve storage characteristics and cycle life characteristics.

【0002】[0002]

【従来の技術】携帯用電話機、コードレス電話器、ビデ
オカメラなどの映像機器、パソコンなどの事務用機器、
家電機器、電気自動車などの主電源あるいはバックアッ
プ用電源として、長時間使用できるリチウムイオン二次
電池が強く要求されている。なお、これらのリチウムイ
オン二次電池に使用されている正極活物質としては、リ
チウムコバルト複合酸化物、リチウムニッケル複合酸化
物、リチウムマンガン複合酸化物などが用いられてお
り、その中でも資源的に豊富で安価なマンガンを主原料
としたリチウムマンガン複合酸化物が注目をされてい
る。
2. Description of the Related Art Mobile phones, cordless phones, video equipment such as video cameras, office equipment such as personal computers,
There is a strong demand for a lithium ion secondary battery that can be used for a long time as a main power supply or a backup power supply for home appliances and electric vehicles. As the positive electrode active material used in these lithium ion secondary batteries, lithium cobalt composite oxide, lithium nickel composite oxide, lithium manganese composite oxide and the like are used, and among them, resources are abundant in resources. Attention has been paid to lithium-manganese composite oxides using manganese as a main raw material, which is inexpensive.

【0003】このリチウムマンガン複合酸化物は、リチ
ウムが出入りしやすいスピネル構造をとっている。そし
て、リチウムマンガン複合酸化物を正極活物質に用いた
場合には、初期のサイクル特性や放置特性はある程度満
足できるものの、充放電サイクルの進行や放置期間の長
期化に伴い、正極活物質中のマンガンがイオンとなって
電解液中に溶出し、溶出したマンガンイオンが負極の活
物質表面で析出して不導体皮膜を生成し、充放電に関与
する反応場を減少させるため放電容量が劣化することが
明らかになっている。
[0003] The lithium manganese composite oxide has a spinel structure in which lithium can easily enter and exit. When the lithium manganese composite oxide is used for the positive electrode active material, although the initial cycle characteristics and the leaving characteristics can be satisfied to some extent, with the progress of the charge / discharge cycle and the prolonged leaving period, Manganese elutes into the electrolyte as ions, and the eluted manganese ions precipitate on the active material surface of the negative electrode to form a nonconductive film, which reduces the reaction field involved in charging and discharging, resulting in deterioration of discharge capacity. It is clear that

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、充放
電サイクルによる容量劣化が少なく、放置後の放電特性
が良好な非水電解液二次電池を提供することを目的する
ものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a non-aqueous electrolyte secondary battery which has a small capacity deterioration due to charge / discharge cycles and good discharge characteristics after being left.

【0005】[0005]

【発明が解決しようとする手段】上記した課題を解決す
るために、第一の発明ではリチウムの吸蔵・放出が可能
な正極及び負極を用いる非水電解液二次電池において、
前記負極用活物質の表面に金属酸化物をコーティングす
ることを特徴とし、第二の発明では前記負極活物質の表
面にコーティングする金属元素としてニッケル、コバル
ト、銅、金、モリブデン、タングステンから選ばれた少
なくとも1種類以上の金属元素を使用することを特徴と
し、第三の発明では前記負極用活物質として黒鉛系炭素
材を使用することを特徴とし、第四の発明ではリチウム
を吸蔵・放出が可能な正極及び負極を用いる非水電解液
二次電池において、前記正極の活物質がスピネル構造を
有したリチウムマンガン複合酸化物であることを特徴と
している。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a first invention relates to a non-aqueous electrolyte secondary battery using a positive electrode and a negative electrode capable of inserting and extracting lithium.
The surface of the negative electrode active material is coated with a metal oxide, and in the second invention, the metal element coated on the surface of the negative electrode active material is selected from nickel, cobalt, copper, gold, molybdenum, and tungsten. The third invention is characterized in that a graphite-based carbon material is used as the negative electrode active material, and the fourth invention is characterized in that lithium is occluded / released. In a nonaqueous electrolyte secondary battery using a possible positive electrode and negative electrode, the active material of the positive electrode is a lithium manganese composite oxide having a spinel structure.

【0006】[0006]

【発明の実施の形態】上記した課題を解決するために種
々努力した結果、負極の改良が有効であることがわかっ
た。以下において、発明の実施の形態を詳細に述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a result of various efforts to solve the above-mentioned problems, it has been found that improvement of a negative electrode is effective. Hereinafter, embodiments of the invention will be described in detail.

【0007】1.正極 正極活物質としては、平均粒径10μmのリチウムマン
ガン複合酸化物と導電助剤としては平均粒径3μmの炭
素粉末と結着剤として、ポリフッ化ビニリデン(以下、
PVdFと略す)とを82:10:8の重量%で混合す
る。そこに、N−メチル−2−ピロリドンを投入混合し
て、スラリー状の溶液を作製する。厚みが20μmのア
ルミニウム箔の両面に作製したスラリー状の溶液を塗布
し、溶剤を乾燥した後、ローラプレス機にて圧延して、
正極合剤電極を作製し、54mm幅で長さが450mm
に切断して短細状の正極を作製した。
[0007] 1. Positive electrode As a positive electrode active material, a lithium manganese composite oxide having an average particle diameter of 10 μm, a carbon powder having an average particle diameter of 3 μm as a conductive additive, and polyvinylidene fluoride (hereinafter, referred to as a binder)
PVdF) at 82: 10: 8% by weight. There, N-methyl-2-pyrrolidone is charged and mixed to prepare a slurry-like solution. A slurry-like solution prepared on both surfaces of an aluminum foil having a thickness of 20 μm was applied, and after the solvent was dried, it was rolled with a roller press.
Prepare a positive electrode mixture electrode, 54mm width and 450mm length
Into a short positive electrode.

【0008】2.負極 負極は負極活物質としては平均粒径20μmの炭素材料
(商品名:カーボトロンP、呉羽化学工業(株)製)を
無電解メッキ法にて酸化コバルトの皮膜をコーティング
した。この粉末の皮膜は粉末X線回折(XRD)ではリ
チウムマンガン複合酸化物によるピークが測定され、X
線光電子分析(以下、XPSと略す)で酸化コバルトに
よるCo(1s)ピークが測定された。この粉末をエッ
チングしたところ、XPSでは酸化コバルトのピークは
測定されないことから極表面にのみ存在し、活物質内部
には認められないことが明らかになった。この炭素材と
フッ化ビニリデン(PVdF)の結着剤を92:8の重
量%で混合し、N−メチル−2−ピロリドンを投入混合
して、スラリー状の溶液を作製する。厚み10μmの銅
箔の両面にこの混合溶液を塗布し、溶剤を乾燥した後、
ローラプレス機にて圧延して、負極合剤電極を作製し、
その後56mm幅で、長さが490mmに切断して短冊
状の負極を作製した。
[0008] 2. Negative Electrode The negative electrode was coated with a cobalt oxide film by an electroless plating method using a carbon material (trade name: CARBOTRON P, manufactured by Kureha Chemical Industry Co., Ltd.) having an average particle size of 20 μm as a negative electrode active material. In the powder coating, a peak due to a lithium manganese composite oxide was measured by powder X-ray diffraction (XRD).
A Co (1s) peak due to cobalt oxide was measured by linear photoelectron analysis (hereinafter abbreviated as XPS). When this powder was etched, it was clarified that the peak of cobalt oxide was not measured by XPS, so that it was present only on the very surface and was not recognized inside the active material. This carbon material and a binder of vinylidene fluoride (PVdF) are mixed at a weight ratio of 92: 8, and N-methyl-2-pyrrolidone is added and mixed to prepare a slurry-like solution. This mixed solution was applied to both sides of a copper foil having a thickness of 10 μm, and after the solvent was dried,
Rolled with a roller press to produce a negative electrode mixture electrode,
Thereafter, the strip was cut into a width of 56 mm and a length of 490 mm to prepare a strip-shaped negative electrode.

【0009】3.電池 上記した方法で作製した正極と負極とを厚さ40μm、
幅58mmのポリエチレン微多孔膜からなるセパレータ
を介して捲回し、スパイラル状の捲回群を作製する。こ
の捲回群を電池缶に挿入し、予め負極集電体の銅箔に溶
接しておいたニッケルタブ端子を電池缶底に溶接する。
次にエチレンカーボネートとジメチルカーボネートを
1:2の体積比で混合した溶液にLiPF6を1mol
/lの濃度で溶解した電解液を電池容器に5ml注入し
た。次に、予め正極集電体のアルミニウム箔に溶接した
アルミニウムタブ端子を蓋に溶接して、蓋を絶縁性のガ
スケットを介して電池缶の上部に配置させ、この部分を
かしめて密閉し、直径18mm、高さ65mmの円筒型
電池を作製した。
3. Battery The positive electrode and the negative electrode produced by the above-described method are 40 μm thick,
It is wound through a separator made of a microporous polyethylene film having a width of 58 mm to form a spiral wound group. The wound group is inserted into a battery can, and a nickel tab terminal previously welded to the copper foil of the negative electrode current collector is welded to the bottom of the battery can.
Next, 1 mol of LiPF 6 was added to a solution in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 2.
5 ml of the electrolytic solution dissolved at a concentration of / l was injected into the battery container. Next, an aluminum tab terminal previously welded to the aluminum foil of the positive electrode current collector was welded to the lid, and the lid was placed on the top of the battery can via an insulating gasket. A cylindrical battery having a size of 18 mm and a height of 65 mm was produced.

【0010】なお、非水溶媒としては、上記した以外に
エチレンカーボネイト、プロピレンカーボネイト、ブチ
レンカーボネイト、ジメチルカーボネイト、γ―ブチロ
ラクトン、アセトニトリル、スルホラン、1,2−ヂメ
トキシエタン、1,3−ジメトキシプロパン、ジメチル
エーテル、テトラヒドロプラン、2−メチルテトラヒド
ロプラン、炭酸ジメチル、炭酸ジエチル、及びエチルメ
チルカーボネイトから選べられる単独もしくは二種類以
上の混合溶媒が使用できる。電解質としては、たとえ
ば、過塩素酸リチウム(LiClO4)、六フッ化燐酸
リチウム(LiPF6)、ホウフッ化リチウム(LiB
4)六フッ化ヒ素リチウム(LiAsF6)、トリフル
オロメタンスルホン酸リチウム(LiCF3SO3)など
のリチウム塩が使用できる。
Examples of the non-aqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, γ-butyrolactone, acetonitrile, sulfolane, 1,2-dimethoxyethane, 1,3-dimethoxypropane, and the like. A single solvent or a mixed solvent of two or more selected from dimethyl ether, tetrahydroplan, 2-methyltetrahydroplan, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate can be used. Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), and lithium borofluoride (LiB
F 4 ) Lithium salts such as lithium arsenic hexafluoride (LiAsF 6 ) and lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) can be used.

【0011】4.初期充放電試験 作製した電池を25℃にて24時間放置後、初期の充放
電試験をした。すなわち、充放電条件として、充電電圧
4.2V(ただし、制限電流900mA)で4時間充電
した後、放電電流300mAで放電終止電圧2.7Vの
条件下で10サイクル行った。
4. Initial charge / discharge test After the produced battery was left at 25 ° C. for 24 hours, an initial charge / discharge test was performed. That is, as charging and discharging conditions, after charging for 4 hours at a charging voltage of 4.2 V (however, a limiting current of 900 mA), 10 cycles were performed under the conditions of a discharging current of 300 mA and a discharging end voltage of 2.7 V.

【0012】5.サイクル試験及びマンガン溶出量の測
定 初期充放電試験をした電池の一部は、50℃にて充電電
流900mAで充電終止電圧4.2V、放電電流300
mAにて放電終止電圧2.7Vの条件下で充放電サイク
ル試験を行った。100サイクル充放電後の電池を分解
し、電解液中へのマンガンの溶出量、負極合剤中のマン
ガン量をICPで測定した。
5. Cycle test and measurement of manganese elution amount A part of the battery subjected to the initial charge / discharge test was charged at 900 mA at 50 ° C. with a charge end voltage of 4.2 V and a discharge current of 300 mA.
A charge / discharge cycle test was performed under the condition of a discharge end voltage of 2.7 V at mA. The battery after 100 cycles of charge / discharge was disassembled, and the amount of manganese eluted into the electrolytic solution and the amount of manganese in the negative electrode mixture were measured by ICP.

【0013】6.放置試験及びマンガン溶出量の測定 初期充放電試験をした電池の一部は、充電状態で50
℃、14日間放置し、その後電池を分解し、電解液中へ
のマンガンの溶出量、負極合剤中のマンガン量をICP
で測定した。
6. Leaving test and measurement of manganese elution amount Some of the batteries that were subjected to the initial charge / discharge test were charged 50%.
At 14 ° C for 14 days, then disassemble the battery and measure the amount of manganese eluted in the electrolyte and the amount of manganese in the negative electrode mixture by ICP.
Was measured.

【0014】[0014]

【実施例】本発明を実施例及び比較例により、詳細に説
明する。但し、本発明はこれらに限定されるものではな
い。
The present invention will be described in detail with reference to examples and comparative examples. However, the present invention is not limited to these.

【0015】(実施例1)実施例1としては、前記した
負極活物質の表面にコバルト化合物をコーティングした
材料を用いた。それ以外の電極や電池の作製条件等は前
記したものである。
Example 1 In Example 1, a material in which the surface of the above-described negative electrode active material was coated with a cobalt compound was used. The other conditions for producing electrodes and batteries are as described above.

【0016】(比較例1)比較例1としては、負極に用
いる負極活物質として金属酸化物など何も表面にコーテ
ィングしていない材料を用いた。それ以外の電極や電池
の作製条件等は前記したものである。
Comparative Example 1 In Comparative Example 1, a material having no surface coated such as a metal oxide was used as a negative electrode active material used for a negative electrode. The other conditions for producing electrodes and batteries are as described above.

【0017】上記した、サイクル試験後の容量維持率
(100サイクル時の放電容量と初期の放電容量の比
率)及び電解液中へのマンガン溶出量と負極合剤中のマ
ンガン量を表1に示す。また放置後における、電解液中
へのマンガン溶出量と負極合剤中のマンガン量を表2に
示す。これらの結果から、本発明を用いると電解液中及
び負極合剤中に溶出するマンガン量を抑えることがで
き、充放電サイクル時の放電容量の劣化も改善された。
Table 1 shows the above-mentioned capacity retention rate after the cycle test (the ratio of the discharge capacity at 100 cycles to the initial discharge capacity), the amount of manganese eluted into the electrolyte and the amount of manganese in the negative electrode mixture. . Table 2 shows the amount of manganese eluted into the electrolyte and the amount of manganese in the negative electrode mixture after standing. From these results, when the present invention was used, the amount of manganese eluted in the electrolytic solution and the negative electrode mixture was able to be suppressed, and the deterioration of the discharge capacity during the charge / discharge cycle was also improved.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】(実施例2)黒鉛系炭素材(商品名:MA
G、日立化成工業(株)製)の表面にコバルト化合物を
コーティングした負極活物質を用いて円筒型電池を作製
してサイクル試験をし、試験後のマンガン溶出量及び充
放電サイクル時の放電容量の劣化を測定した結果を表3
に示す。黒鉛系炭素材を用いることにより、サイクル試
験特性が良好であり、電解液中へのマンガンの溶出量、
負極合剤中のマンガン量ともに実施例1よりも減少して
いることが確認された。
Example 2 Graphite-based carbon material (trade name: MA)
G, manufactured by Hitachi Chemical Co., Ltd.), using a negative electrode active material coated with a cobalt compound on the surface of a negative electrode active material, producing a cylindrical battery, performing a cycle test, and eluted manganese after the test and the discharge capacity during a charge / discharge cycle. Table 3 shows the results of measuring the deterioration of
Shown in By using a graphite-based carbon material, the cycle test characteristics are good, the amount of manganese eluted into the electrolyte,
It was confirmed that both the amounts of manganese in the negative electrode mixture were lower than in Example 1.

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【発明の効果】上記したように、本発明を用いると保存
特性及び充放電サイクルに優れた非水電解液二次電池を
提供することができる。なお、本実施例では円筒型電池
を例に記載しているが角型、コイン型等、種々の形状の
電池に適用できる。
As described above, by using the present invention, a non-aqueous electrolyte secondary battery having excellent storage characteristics and charge / discharge cycles can be provided. In this embodiment, a cylindrical battery is described as an example, but the present invention can be applied to batteries having various shapes such as a square battery and a coin battery.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 伸和 東京都中央区日本橋本町2丁目8番7号 新神戸電機株式会社内 Fターム(参考) 5H003 AA03 AA04 BA00 BB02 BB04 BB05 BC05 5H014 AA02 BB08 CC01 EE08 EE10 5H029 AJ04 AJ05 AK03 AL07 AM03 AM07 BJ02 BJ14  ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shinkazu Tanaka 2-8-7 Nihonbashi Honcho, Chuo-ku, Tokyo F-term in Shin-Kobe Electric Co., Ltd. 5H003 AA03 AA04 BA00 BB02 BB04 BB05 BC05 5H014 AA02 BB08 CC01 EE08 EE10 5H029 AJ04 AJ05 AK03 AL07 AM03 AM07 BJ02 BJ14

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】リチウムの吸蔵・放出が可能な正極及び負
極を用いる非水電解液二次電池において、前記負極用活
物質の表面に金属酸化物をコーティングすることを特徴
とする非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery using a positive electrode and a negative electrode capable of inserting and extracting lithium, wherein a metal oxide is coated on the surface of the active material for the negative electrode. Rechargeable battery.
【請求項2】前記負極活物質の表面にコーティングする
金属元素としてニッケル、コバルト、銅、金、モリブデ
ン、タングステンから選ばれた少なくとも1種類以上の
金属元素を使用することを特徴とする請求項1記載の非
水電解液二次電池。
2. The method according to claim 1, wherein at least one metal element selected from nickel, cobalt, copper, gold, molybdenum and tungsten is used as the metal element coated on the surface of the negative electrode active material. The non-aqueous electrolyte secondary battery according to the above.
【請求項3】前記負極用活物質として黒鉛系炭素材を使
用することを特徴とする請求項1又は2記載の非水電解
液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein a graphite-based carbon material is used as the negative electrode active material.
【請求項4】リチウムを吸蔵・放出が可能な正極及び負
極を用いる非水電解液二次電池において、前記正極の活
物質がスピネル構造を有したリチウムマンガン複合酸化
物であることを特徴とする請求項1、2又は3記載の非
水電解液二次電池。
4. A non-aqueous electrolyte secondary battery using a positive electrode and a negative electrode capable of inserting and extracting lithium, wherein the active material of the positive electrode is a lithium manganese composite oxide having a spinel structure. The non-aqueous electrolyte secondary battery according to claim 1.
JP10177502A 1998-06-24 1998-06-24 Non-aqueous electrolyte secondary battery Pending JP2000012026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10177502A JP2000012026A (en) 1998-06-24 1998-06-24 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10177502A JP2000012026A (en) 1998-06-24 1998-06-24 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2000012026A true JP2000012026A (en) 2000-01-14

Family

ID=16032036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10177502A Pending JP2000012026A (en) 1998-06-24 1998-06-24 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000012026A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352801A (en) * 2001-05-25 2002-12-06 Rikogaku Shinkokai Lithium secondary cell, negative electrode material for it, and improving method therefor
KR100433822B1 (en) * 2002-01-17 2004-06-04 한국과학기술연구원 Metal-coated carbon, preparation method thereof, and composite electrode and lithium secondary batteries comprising the same
WO2014081269A1 (en) 2012-11-26 2014-05-30 주식회사 엘지화학 Precursor of electrode active material coated with metal, and method for preparing same
WO2018135929A1 (en) * 2017-01-23 2018-07-26 주식회사 엘지화학 Negative electrode for lithium secondary battery, lithium secondary battery comprising same, and method for manufacturing same
US10062901B2 (en) 2013-12-10 2018-08-28 Samsung Sdi Co., Ltd. Negative active material, lithium battery including the material, and method of manufacturing the material
US11539039B2 (en) 2017-01-23 2022-12-27 Lg Energy Solution, Ltd. Negative electrode for lithium secondary battery, lithium secondary battery comprising the same, and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352801A (en) * 2001-05-25 2002-12-06 Rikogaku Shinkokai Lithium secondary cell, negative electrode material for it, and improving method therefor
KR100433822B1 (en) * 2002-01-17 2004-06-04 한국과학기술연구원 Metal-coated carbon, preparation method thereof, and composite electrode and lithium secondary batteries comprising the same
WO2014081269A1 (en) 2012-11-26 2014-05-30 주식회사 엘지화학 Precursor of electrode active material coated with metal, and method for preparing same
US10243208B2 (en) 2012-11-26 2019-03-26 Lg Chem, Ltd. Precursor of electrode active material coated with metal and method of preparing the same
US10062901B2 (en) 2013-12-10 2018-08-28 Samsung Sdi Co., Ltd. Negative active material, lithium battery including the material, and method of manufacturing the material
WO2018135929A1 (en) * 2017-01-23 2018-07-26 주식회사 엘지화학 Negative electrode for lithium secondary battery, lithium secondary battery comprising same, and method for manufacturing same
US11539039B2 (en) 2017-01-23 2022-12-27 Lg Energy Solution, Ltd. Negative electrode for lithium secondary battery, lithium secondary battery comprising the same, and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100802851B1 (en) Nonaqueous Electrolyte Secondary Battery
JP5232631B2 (en) Non-aqueous electrolyte battery
US20190013552A1 (en) Electrolyte system suppressing or minimizing metal contaminants and dendrite formation in lithium ion batteries
JP3535454B2 (en) Non-aqueous electrolyte secondary battery
JP3491529B2 (en) Non-aqueous electrolyte secondary battery
US5851696A (en) Rechargeable lithium battery
JPH09508490A (en) Water-based rechargeable battery
JPH08195220A (en) Manufacture of nonaqueous polymer battery and of polymer film for use in same
JP2000040526A (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
JP2002367602A (en) Non-aqueous electrolyte secondary battery
JP2000082471A (en) Lithium ion secondary battery and method of manufacturing the same
JP2009004357A (en) Non-aqueous electrolyte lithium ion secondary battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
JP4780361B2 (en) Lithium secondary battery
JP2000012079A (en) Non-aqueous electrolyte secondary battery
JP2000012026A (en) Non-aqueous electrolyte secondary battery
JPH06196170A (en) Nonaqueous electrolyte secondary battery
JPH06275268A (en) Nonaqueous electrolyte secondary battery
JP2000012029A (en) Non-aqueous electrolyte secondary battery
JPH113698A (en) Lithium ion secondary battery
JPH1154122A (en) Lithium ion secondary battery
JPH06275269A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2001015168A (en) Lithium secondary battery
JP2001202999A (en) Charge / discharge method for non-aqueous electrolyte secondary battery