[go: up one dir, main page]

JPH09293536A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH09293536A
JPH09293536A JP8105901A JP10590196A JPH09293536A JP H09293536 A JPH09293536 A JP H09293536A JP 8105901 A JP8105901 A JP 8105901A JP 10590196 A JP10590196 A JP 10590196A JP H09293536 A JPH09293536 A JP H09293536A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
lithium
active material
reversible capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8105901A
Other languages
Japanese (ja)
Inventor
Hideo Sakamoto
秀夫 坂本
Tsugio Sakai
次夫 酒井
Kensuke Tawara
謙介 田原
Fumiharu Iwasaki
文晴 岩崎
Shinichi Takasugi
信一 高杉
Tsuneaki Tamachi
恒昭 玉地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP8105901A priority Critical patent/JPH09293536A/en
Publication of JPH09293536A publication Critical patent/JPH09293536A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance charging/discharging cycle performance by regulating the balance of the reversible capacities of a positive electrode and a negative electrode in the specified range. SOLUTION: A positive electrode and a negative electrode of a battery use a material capable of absorbing/releasing lithium as an active material. The balance of reversible capacities of the positive electrode and the negative electrode is specified to 1.05 < negative electrode/positive electrode <=1.30 so that the reversible capacity of the negative electrode is larger than that of the positive electrode. Therefore, lithium ions are sufficiently absorbed in the negative electrode in overcharge, and lithium is hardly deposited. Heat generation and rupture are reduced and safety is enhanced. Deterioration attendant on repeated charge/discharge cycles is reduced and good cycle characteristics are obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムを吸蔵放
出可能な物質を活物質とする正極と、リチウムを吸蔵放
出可能な物質を活物質とする負極と、リチウムイオン電
導性の非水電解質とから少なくとも成る非水電解質二次
電池に関するものであり、特に充放電サイクル性能に優
れる信頼性の高い正負極の電極構成に関するものであ
る。
TECHNICAL FIELD The present invention relates to a positive electrode using a substance capable of occluding and releasing lithium as an active material, a negative electrode using a substance capable of occluding and releasing lithium as an active material, and a lithium ion conductive non-aqueous electrolyte. The present invention relates to a non-aqueous electrolyte secondary battery comprising at least, and particularly to a highly reliable positive and negative electrode configuration having excellent charge and discharge cycle performance.

【0002】[0002]

【従来の技術】負極活物質としてリチウムを用いる非水
電解質電池は、高電圧、高エネルギー密度で、かつ自己
放電が小さく長期信頼性に優れる等の利点により、一次
電池としてはメモリーバックアップ用、カメラ等の電源
として既に広く用いられている。しかしながら近年、携
帯型の電子機器、通信機器の著しい発展に伴い、電源と
しての電池に対し大電流出力を要求する機器が多種多様
に出現し、経済性と機器の小型軽量化の観点から、高エ
ネルギー密度の二次電池が強く要望されている。このた
め、高電圧、高エネルギー密度を有する非水電解質二次
電池の研究開発が活発に行われ、一部実用化もされてい
る。
Non-aqueous electrolyte batteries using lithium as a negative electrode active material have advantages of high voltage, high energy density, small self-discharge and excellent long-term reliability. It has already been widely used as a power source for such devices. However, in recent years, with the remarkable development of portable electronic devices and communication devices, a wide variety of devices that require a large current output for a battery as a power source have emerged, and from the viewpoint of economy and reduction in size and weight of the device, high cost is achieved. There is a strong demand for secondary batteries with energy density. Therefore, non-aqueous electrolyte secondary batteries having high voltage and high energy density have been actively researched and developed, and have been partially put into practical use.

【0003】従来、この種の二次電池の正極を構成する
正極活物質としては充放電反応の形態により以下の3種
のものが見いだされている。第1のタイプは、Ti
2,MoS2,NbSe3等の金属カルコゲン化物や、
MnO2,MoO3,V2O5,LixCoO2,LixNiO
2,LixMnO4等の金属酸化物等々のように、結晶の
層間や格子位置または格子間隙間にリチウムイオン(カ
チオン)のみがインターカレーション、デインターカレ
ーション反応等により出入りするタイプ。第2のタイプ
は、ポリアニリン、ポリピロール、ポリパラフェニレン
等の導電性高分子の様な、主としてアニオンのみが安定
にドープ、脱ドープ反応より出入りするタイプ。第3の
タイプは、グラファイト層間化合物やポリアセン等の導
電性高分子等々の様な、リチウムカチオンとアニオンが
共に出入り可能なタイプ(インターカレーション、デイ
ンターカレーション又はドープ、脱ドープ反応等)であ
る。
Conventionally, the following three types of positive electrode active materials constituting the positive electrode of this type of secondary battery have been found depending on the form of charge / discharge reaction. The first type is Ti
Metal chalcogenides such as S 2 , MoS 2 and NbSe 3 ,
MnO 2 , MoO 3 , V 2 O 5 , Li x CoO 2 , Li x NiO
2 , such as Li x MnO 4 and other metal oxides, a type in which only lithium ions (cations) enter and leave by intercalation, deintercalation reactions, etc. between crystal layers or between lattice positions or gaps. The second type is a type such as a conductive polymer such as polyaniline, polypyrrole, polyparaphenylene, etc., in which mainly anions are stably doped and desorbed by the reaction. The third type is a type (intercalation, deintercalation or dope, dedope reaction, etc.) in which both lithium cations and anions can enter and exit, such as graphite intercalation compounds and conductive polymers such as polyacene. is there.

【0004】一方、この種の二次電池の負極を構成する
負極活物質としては、金属リチウムを単独で用いた場合
が電極電位が最も卑であるため、上記の様な正極活物質
を用いた正極と組み合わせた電池としての出力電圧が最
も高く、エネルギー密度も高く好ましいが、充放電に伴
い負極上にリチウムの針状析出物や不働態化合物が生成
し、充放電による劣化が大きく、サイクル寿命が短い問
題があった。また、リチウムの針状析出物は充放電の繰
り返しにより成長し、やがてセパレーターを突き破り、
電池内部ショートを起こして発熱等最悪の場合には破裂
に至らしめるという安全面での課題もある。この問題を
解決するため、負極活物質として(1)リチウムとA
l、Zn、Sn、Pb、Bi、Pb等の他金属との合
金、(2)WO2、MnO2、Fe2O3、TiS2等の無機化
合物やグラファイト、有機物を焼成して得られる炭素質
材料等々の結晶構造中にリチウムイオンを吸蔵させた層
間化合物あるいは挿入化合物、(3)リチウムイオンを
ドープしたポリアセンやポリアセチレン等の導電性高分
子等々のリチウムイオンを吸蔵放出可能な物質を用いる
事が提案されている。
On the other hand, as the negative electrode active material constituting the negative electrode of this type of secondary battery, the electrode potential is the most base when metal lithium is used alone, so the above positive electrode active material was used. It has the highest output voltage and high energy density as a battery combined with the positive electrode, but it is preferable because lithium-like acicular deposits and passivation compounds are formed on the negative electrode during charging and discharging, resulting in significant deterioration due to charging and discharging and cycle life. There was a short problem. Further, lithium acicular deposits grow by repeated charging and discharging, and eventually break through the separator,
There is also a safety issue in that a short circuit occurs inside the battery, causing rupture in the worst case such as heat generation. In order to solve this problem, as a negative electrode active material, (1) lithium and A
l, Zn, Sn, Pb, Bi, Pb, and other alloys, (2) WO 2 , MnO 2 , Fe 2 O 3 , TiS 2 and other inorganic compounds, graphite, and carbon obtained by firing an organic substance Use intercalation compounds or intercalation compounds in which lithium ions are occluded in the crystal structure of organic materials, (3) Conductive polymers such as polyacene and polyacetylene doped with lithium ions, and the like that can occlude and release lithium ions Is proposed.

【0005】この種の電池の正極及び負極でのリチウム
イオンの吸蔵放出では、正極・負極ともに吸蔵されたリ
チウムイオンの一部が放出されない不可逆分があること
が報告されており、このことがサイクル性能を低下させ
る一つの原因になっている。リチウムを吸蔵・放出可能
な正極側の可逆容量と負極側の可逆容量の比、つまり可
逆容量バランスがほぼ等しくなるように両極の活物質量
の比率を設定する事で容積エネルギー密度及び重量エネ
ルギー密度を大きくすることが提案されている(例え
ば、特開平6−36798号公報参照)。
It has been reported that in the storage and release of lithium ions in the positive electrode and the negative electrode of this type of battery, there is an irreversible component in which some of the stored lithium ions are not released in both the positive electrode and the negative electrode. This is one of the causes of poor performance. By setting the ratio of the reversible capacity on the positive electrode side and the reversible capacity on the negative electrode side capable of occluding / releasing lithium, that is, the ratio of the active material amounts of both electrodes so that the reversible capacity balance is almost equal, the volumetric energy density and the weight energy density Has been proposed (see, for example, JP-A-6-36798).

【0006】[0006]

【発明が解決しようとする課題】従来、此の種の二次電
池では充放電サイク性能が重要視されている。使用され
る機器により要求される充放電サイクル性能の値が異な
るが一つの目安として300サイクルで初期容量の70
%を維持することがあげられる。しかし、上記の正極側
と負極側の可逆容量とがほぼ等しくなるように両極の活
物質量の比率を設定する方法では充放電に伴う劣化が大
きく充放電サイクル性能は不充分であった。さらに、正
極および負極の可逆容量バランスがほぼ等しい場合、過
充電時に負極上にリチウムが析出する。これにより不働
態リチウムが増加し、電池容量の低下、サイクル特性劣
化へとつながる。この様な課題に対して本発明者等は負
極と正極の可逆容量バランスが与える影響が大きいこと
を見出した。
Charge / discharge cycle performance has been conventionally emphasized in this type of secondary battery. The required charge / discharge cycle performance value differs depending on the equipment used, but one guideline is that the initial capacity is 70 at 70 cycles.
% Can be maintained. However, in the method of setting the ratio of the active material amounts of both electrodes so that the reversible capacities on the positive electrode side and the negative electrode side are substantially equal to each other, deterioration due to charging / discharging is large and the charge / discharge cycle performance is insufficient. Further, when the reversible capacity balances of the positive electrode and the negative electrode are substantially equal, lithium is deposited on the negative electrode during overcharge. As a result, the amount of passive lithium increases, leading to a decrease in battery capacity and deterioration of cycle characteristics. The present inventors have found that the reversible capacity balance between the negative electrode and the positive electrode has a great influence on such problems.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明は、正極と負極の可逆容量のバランスを
1.05<負極/正極≦1.30にして、正極の可逆容
量よりも負極の可逆容量を多くした。このため、充電時
あるいは過充電時にリチウムイオンを負極に充分に吸蔵
可能なのでリチウムの析出等が生じにくい。これにより
充放電を繰り返しても劣化が少なく、さらに安全性も向
上した高性能な電池を達成することが出来る。
In order to solve the above problems, the present invention sets the balance of the reversible capacities of the positive electrode and the negative electrode to 1.05 <negative electrode / positive electrode ≦ 1.30, and Also increased the reversible capacity of the negative electrode. For this reason, lithium ions can be sufficiently occluded in the negative electrode during charging or overcharging, so that lithium deposition is less likely to occur. As a result, it is possible to achieve a high-performance battery with little deterioration even after repeated charging and discharging and improved safety.

【0008】[0008]

【発明の実施の形態】本発明は、負極/正極の可逆容量
バランスを1.05<負極/正極≦1.30と負極を多
くするものである。可逆容量バランスが1.05以下で
は電極製造バラツキ等により電極の局部的には可逆容量
バランスが1以下となる可能性がある。また、1.30
より大きい場合には充放電に関与しない合剤が過剰に存
在する事になり、一定体積の電池内へ挿入することを考
えると、実質的に充放電可能な合剤量を減らさなければ
ならない。また、負極活物質がリチウム吸蔵量に依り電
位が変化する場合、負極合剤が過剰に存在すると充電時
に負極電位が下がらず、実質的に正極活物質の過放電を
引き起こす。以上の様に可逆容量バランスは1.05<
負極/正極≦1.30の範囲が最適である。好ましくは
1.10以上1.20以下が良い。本発明の負極と正極
の可逆容量バランスに設定する事で、過充電になっても
リチウムの析出が無いので発熱・破裂の危険性の少ない
安全で、且つ充放電の繰り返しによるサイクル特性も良
好な二次電池を提供することが出来る。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the reversible capacity balance of negative electrode / positive electrode is increased to 1.05 <negative electrode / positive electrode ≦ 1.30. When the reversible capacity balance is 1.05 or less, the reversible capacity balance may locally become 1 or less due to variations in electrode manufacturing. Also, 1.30
If it is larger than that, the mixture that does not participate in charge and discharge is excessively present, and considering that the mixture is inserted into a battery of a constant volume, the amount of the mixture that can be charged and discharged must be substantially reduced. Further, when the negative electrode active material changes in potential depending on the amount of stored lithium, if the negative electrode mixture is present in excess, the negative electrode potential does not drop during charging, and substantially overdischarge of the positive electrode active material occurs. As mentioned above, the reversible capacity balance is 1.05 <
The optimal range is negative electrode / positive electrode ≦ 1.30. It is preferably 1.10 or more and 1.20 or less. By setting the reversible capacity balance between the negative electrode and the positive electrode of the present invention, lithium is not deposited even when overcharged, so there is little risk of heat generation and bursting, and the cycle characteristics due to repeated charging and discharging are good. A secondary battery can be provided.

【0009】本発明に用いられる正極活物質としては、
TiS2,MoS2,NbSe3等の金属カルコゲン化物
や、MnO2,MoO3,V2O5,LixCoO2、LixNiO
2,Li xMn2O4等の金属酸化物、ポリアニリン、ポリポ
ロール、ポリパラフェニレン、ポリアセン等の導電性高
分子、およびグラファイト層間化合物等のリチウムイオ
ンおよび、またはアニオンを吸蔵放出可能な各種の物質
を用いることが出来る。
As the positive electrode active material used in the present invention,
TiSTwo, MoSTwo, NbSeThreeMetal chalcogenides such as
Or MnOTwo, MoOThree, VTwoOFive, LixCoOTwo, LixNiO
Two, Li xMnTwoOFourMetal oxides such as polyaniline, polypo
High conductivity of rolls, polyparaphenylene, polyacene, etc.
Molecule, and lithium ion such as graphite intercalation compound
Various substances that can occlude and / or release anions and / or anions
Can be used.

【0010】特に金属カルコゲン化物や金属酸化物等の
ような金属リチウムに対する電極電位が2V以上、より
好ましくはV2O5,MnO2,LixCoO2、LixNiO2,
Li xMn2O4等の様な3Vないし4V以上の高電位を有
する(貴な)活物質と、後に述べる金属リチウムに対す
る電極電位が1V以下の低電位を有する(卑な)活物質
を用いた負極とを組み合わせる事により、高エネルギー
密度の二次電池が得られるので、より好ましい。
In particular, metal chalcogenides, metal oxides, etc.
The electrode potential for metallic lithium is 2 V or higher, and
Preferably VTwoOFive, MnOTwo, LixCoOTwo, LixNiOTwo,
Li xMnTwoOFourIt has a high potential of 3V to 4V or higher such as
(Active) active material and metallic lithium described later
Electrode material having a low electric potential of 1 V or less (base) active material
High energy by combining with the negative electrode using
It is more preferable because a secondary battery having a high density can be obtained.

【0011】負極活物質としては、金属リチウム、炭素
質材料、LixSi、金属酸化物、窒化物、ケイ化物、炭
化物、LixSi1-yMyOz(0≦x,0≦y<1,0<z≦
3であり、Mはアルカリ金属を除く金属あるいはケイ素
を除く類金属)で示されるケイ素酸化物等のリチウムイ
オンおよび、またはアニオンを吸蔵放出可能な各種の物
質を用いることが出来る。
As the negative electrode active material, metallic lithium, carbonaceous material, Li x Si, metal oxide, nitride, silicide, carbide, Li x Si 1-y M y O z (0 ≦ x, 0 ≦ y <1,0 <z ≦
3, and M can be various substances capable of occluding and releasing anion and / or lithium ion such as silicon oxide represented by a metal excluding alkali metal or a similar metal excluding silicon).

【0012】特に、LixSi1-yMyOz(0≦x,0≦y<
1,0<z≦3であり、Mはアルカリ金属を除く金属あ
るいはケイ素を除く類金属)で示されるケイ素酸化物等
は、金属リチウムに対する電極電位が1V以下の領域で
の充放電容量が大きい事から、上記正極活物質を用いた
正極と組み合わせることで、高電圧・高エネルギー密度
な二次電池が得られるので、より好ましい。又、該ケイ
素酸化物等の酸化物を負極とする場合には一般に1回目
の充電により吸蔵されるリチウムイオンのうち放電され
ない不可逆分が比較的大きいので可逆容量バランスを
1.05<負極/正極≦1.30の範囲に設定する事は
特にサイクル特性向上への効果が大きい。更に、上記の
ケイ素酸化物や炭素質材料を負極活物質とする負極と、
正極活物質としてLixCoO2、LixNiO2,Lix
2O4やLiabcd(0<a≦1.15,0.8≦
b+c≦1.3,0≦c,1.5≦d≦2.5,MはC
o,Ni,Mn,Fe,Ti等の遷移金属の1種以上,
LはB,Al,In,Si,Ge,Sn,Pb,Mg,
Zn,Cu及びPより選ばれた1種以上)等のリチウム
を含有する遷移金属酸化物を用いる正極とを組み合わせ
た場合には、充放電サイクルによって負極と正極に繰り
返し吸蔵放出されるリチウムは実質的に電池製造時に正
極活物質に含有されているリチウムであり、上記のよう
に1.05<負極/正極≦1.30の可逆容量バランス
にする事により、過充電だけでなく過放電時にも正極へ
のリチウム析出がなく、特にサイクル劣化の小さい電池
が得られるので特に好ましい。
In particular, Li x Si 1- y My O z (0 ≦ x, 0 ≦ y <
1,0 <z ≦ 3, and M is a metal oxide other than alkali metal or a similar metal other than silicon), such as a silicon oxide, which has a large charge / discharge capacity in a region where the electrode potential with respect to metallic lithium is 1 V or less. Therefore, by combining with the positive electrode using the positive electrode active material, a secondary battery with high voltage and high energy density can be obtained, which is more preferable. When an oxide such as silicon oxide is used as the negative electrode, generally, the reversible capacity balance is 1.05 <negative electrode / positive electrode because the irreversible component of lithium ions stored by the first charge that is not discharged is relatively large. Setting within the range of ≤1.30 is particularly effective in improving cycle characteristics. Furthermore, a negative electrode using the above silicon oxide or carbonaceous material as a negative electrode active material,
Li x CoO 2 , Li x NiO 2 , Li x M as the positive electrode active material
n 2 O 4 or Li a M b L c O d (0 <a ≦ 1.15, 0.8 ≦
b + c ≦ 1.3, 0 ≦ c, 1.5 ≦ d ≦ 2.5, M is C
one or more transition metals such as o, Ni, Mn, Fe and Ti,
L is B, Al, In, Si, Ge, Sn, Pb, Mg,
When combined with a positive electrode using a transition metal oxide containing lithium (one or more selected from Zn, Cu and P), lithium that is repeatedly occluded and released by the negative electrode and the positive electrode during a charge / discharge cycle is substantially Lithium, which is included in the positive electrode active material during battery manufacture, is balanced by reversible capacity of 1.05 <negative electrode / positive electrode ≦ 1.30 as described above, so that not only overcharge but also overdischarge can be achieved. It is particularly preferable since a battery having no lithium deposition on the positive electrode and having particularly small cycle deterioration can be obtained.

【0013】電解質としては、γ−ブチロラクトン、プ
ロピレンカ−ボネ−ト、エチレンカ−ボネ−ト(E
C)、ブチレンカ−ボネ−ト、ジメチルカ−ボネ−ト、
ジエチルカ−ボネ−ト、メチルフォ−メイト、1,2−
ジメトキシエタン、テトラヒドロフラン、ジオキソラ
ン、ジメチルフォルムアミド等の非水系の有機溶媒の単
独または混合溶媒に、支持電解質としてLiClO4,L
iPF6,LiBF4,LiCF 3SO3,LiC(SO2CF3)
3,LiN(SO2CF3)2,等のリチウムイオン解離性塩を
溶解した有機非水電解質、ポリエチレンオキシドやポリ
フォスファゼン架橋体等の高分子に前記リチウム塩を固
溶させた高分子固体電解質あるいはLi3N,LiN等
の無機固体電解質等のリチウムイオン導電性の非水電解
質を用いることが出来る。
As the electrolyte, γ-butyrolactone, pr
Ropylene carbonate, ethylene carbonate (E
C), butylene carbonate, dimethyl carbonate,
Diethyl carbonate, methyl formate, 1,2-
Dimethoxyethane, tetrahydrofuran, dioxola
And non-aqueous organic solvents such as dimethylformamide and dimethylformamide.
LiClO alone or in a mixed solvent as a supporting electrolyteFour, L
iPF6, LiBFFour, LiCF ThreeSOThree, LiC (SOTwoCFThree)
Three, LiN (SOTwoCFThree)TwoLithium ion dissociable salts such as
Dissolved organic non-aqueous electrolytes, polyethylene oxide and poly
The lithium salt is fixed to a polymer such as crosslinked phosphazene.
Molten polymer solid electrolyte or Li3N, LiN, etc.
Non-aqueous electrolysis of lithium ion conductive materials such as inorganic solid electrolytes
Quality can be used.

【0014】特に、負極活物質として前述したLixSi
1-yMyOz(0≦x,0≦y<1,0<z≦3であり、Mは
アルカリ金属を除く金属あるいはケイ素を除く類金属)
で示されるケイ素酸化物を用いる場合には、ジメチルカ
−ボネ−ト、ジエチルカ−ボネ−ト、エチルメチルカ−
ボネ−ト等のR12型アルキルカ−ボネ−トとECの混
合溶媒を用いる事が好ましい。さらにECとR12型ア
ルキルカ−ボネ−トの体積混合比が、約3:1〜約1:
3の範囲である事がより好ましい。
In particular, the above-mentioned Li x Si is used as the negative electrode active material.
1-y M y O z (0 ≦ x, 0 ≦ y <1, 0 <z ≦ 3, M is a metal except alkali metal or a metal except silicon)
In the case of using the silicon oxide represented by, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate
It is preferred to use a mixed solvent of R 1 R 2 type alkyl carbonate such as carbonate and EC. Further, the volume mixing ratio of EC and R 1 R 2 type alkyl carbonate is about 3: 1 to about 1:
The range of 3 is more preferable.

【0015】[0015]

【実施例】以下、実施例について詳細に説明する。正極
活物質としてLiCoO2で示されるリチウムとコバル
トの複合酸化物と、導電剤としてグラファイトを乳鉢で
粉砕・混合したものを、結着剤を溶解した溶液に混合分
散し、正極合剤スラリーを調整した。この正極合剤スラ
リーをアルミ箔集電体の両面に、塗布・乾燥し、ロール
プレスを用いて圧延して正極板を作製した。同様にして
負極を作製した。負極活物質として市販の一酸化ケイ素
(SiO)と、導電剤のグラファイトを乳鉢で粉砕・混
合したものを、結着剤の溶液に混合分散し負極合剤スラ
リーを調整した。この負極合剤スラリーを銅箔集電体の
両面に、塗布・乾燥し、ロールプレスを用いて圧延して
負極板を作製した。この様に作製した正極板・負極板を
用いて、正極の容量は751.2mAh、負極容量は8
21.6mAhで可逆容量バランス(負極/正極)=
1.09の角形電池Cを作製した。以下同様な方法で可
逆容量バランスを0.94とした電池A、可逆容量バラ
ンス1.01とした電池B、可逆容量バランス1.18
とした電池D、可逆容量バランス1.30の電池E、可
逆容量バランス1.41の電池F、可逆容量バランス
1.50の電池Gの角形電池を同様にして作製した。
Embodiments Hereinafter, embodiments will be described in detail. Lithium-cobalt composite oxide represented by LiCoO 2 as a positive electrode active material and graphite as a conductive agent crushed and mixed in a mortar are mixed and dispersed in a solution in which a binder is dissolved to prepare a positive electrode mixture slurry. did. This positive electrode mixture slurry was applied onto both surfaces of an aluminum foil current collector, dried, and rolled using a roll press to produce a positive electrode plate. A negative electrode was produced in the same manner. Commercially available silicon monoxide (SiO) as a negative electrode active material and graphite, which was a conductive agent, were crushed and mixed in a mortar, and mixed and dispersed in a binder solution to prepare a negative electrode mixture slurry. This negative electrode mixture slurry was applied onto both surfaces of a copper foil current collector, dried, and rolled using a roll press to produce a negative electrode plate. Using the positive electrode plate / negative electrode plate thus manufactured, the positive electrode capacity is 751.2 mAh and the negative electrode capacity is 8
Reversible capacity balance at 21.6 mAh (negative / positive) =
A 1.09 prismatic battery C was produced. Hereinafter, in the same manner, Battery A with reversible capacity balance of 0.94, Battery B with reversible capacity balance of 1.01, and Reversible capacity balance of 1.18.
Batteries D, B of reversible capacity balance 1.30, B of reversible capacity balance 1.41 and B of reversible capacity balance 1.50 were prepared in the same manner.

【0016】こうして作製した電池を、400mAの定電
流定電圧で充電上限電圧を4.2V、充電時間を2.5
時間、400mAの定電流で放電終止電圧を2.7Vの条
件で充放電サイクルを行った。可逆容量バランス0.9
4、の電池A、可逆容量1.18の電池Dの300サイ
クルまでのサイクル特性を図1に示す。図1から明らか
な様に、負極/正極の可逆容量バランスによって容量保
持率に差が見られ可逆容量バランス0.94の電池Aは
300サイクルで70%より低下した。可逆容量バラン
ス1.18の電池Dは70%以上を達成している。可逆
容量バランス1.01の電池Bでは電池Aと同様にサイ
クル劣化が大きかった。可逆容量バランスの1.3より
大きい電池F,Gはサイクル劣化が少ないが初期サイク
ルから容量が小さかった。また、300サイクル終了後
・充電状態の各電池を分解して見ると可逆容量バランス
0.94、及び1.01の電池A,Bはセパレータと負
極板間に微量ながらリチウムの析出が確認された、容量
バランスが1.05より大きい電池C,D,E,F,G
ではリチウム析出は確認されなかった。実施例では負極
/正極の組み合わせはリチウムとコバルトの複合酸化物
/ケイ素酸化物について説明したが、負極及び正極には
前述の様なリチウムを吸蔵放出できる物質ならば何れも
用いることが出来る。
The battery thus produced was charged at an upper limit voltage of 4.2 V and a charging time of 2.5 at a constant current and constant voltage of 400 mA.
A charging / discharging cycle was performed under the conditions of a constant current of 400 mA and an end-of-discharge voltage of 2.7 V for an hour. Reversible capacity balance 0.9
FIG. 1 shows the cycle characteristics of Battery A of No. 4 and Battery D of reversible capacity of 1.18 up to 300 cycles. As is clear from FIG. 1, the capacity retention rate was different depending on the reversible capacity balance between the negative electrode and the positive electrode, and the value of Battery A having a reversible capacity balance of 0.94 was lower than 70% after 300 cycles. The battery D having a reversible capacity balance of 1.18 has achieved 70% or more. In the battery B having a reversible capacity balance of 1.01, the cycle deterioration was large as in the battery A. Batteries F and G having a reversible capacity balance larger than 1.3 had little cycle deterioration, but had a small capacity from the initial cycle. After 300 cycles, when disassembling each battery in the charged state, reversible capacity balances of 0.94 and 1.01 of batteries A and B were confirmed to deposit a small amount of lithium between the separator and the negative electrode plate. , Batteries with capacity balance greater than 1.05 C, D, E, F, G
In, lithium deposition was not confirmed. In the examples, the negative electrode / positive electrode combination is described as a composite oxide / silicon oxide of lithium and cobalt, but any of the above-mentioned substances capable of inserting and extracting lithium can be used for the negative electrode and the positive electrode.

【0017】[0017]

【発明の効果】本発明は、以上説明したような形態で実
施され、以下に記載されるような効果を奏する。 イ.サイクル性能に優れる。 ロ.過充電に強い。 ハ.リチウム析出が無いので安全性が高い。
The present invention is embodied in the form described above and has the following effects. I. Excellent cycle performance. B. Strong against overcharge. C. Highly safe because there is no lithium deposition.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による電池のサイクル特性を示す図であ
る。
FIG. 1 is a diagram showing cycle characteristics of a battery according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩崎 文晴 千葉県千葉市美浜区中瀬1丁目8番地 セ イコー電子工業株式会社内 (72)発明者 高杉 信一 千葉県千葉市美浜区中瀬1丁目8番地 セ イコー電子工業株式会社内 (72)発明者 玉地 恒昭 千葉県千葉市美浜区中瀬1丁目8番地 セ イコー電子工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Fumiharu Iwasaki 1-8 Nakase, Mihama-ku, Chiba, Chiba Seiko Electronics Co., Ltd. (72) Shinichi Takasugi 1-chome, Nakase, Mihama-ku, Chiba 8 Seiko Electronics Co., Ltd. (72) Inventor Tsuneaki Tamachi 1-8 Nakase, Nakase Mihama-ku, Chiba Chiba Electronics Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵放出可能な物質を活物質
とする正極と、リチウムを吸蔵放出可能な物質を活物質
とする負極と、リチウムイオン電導性の非水電解質とか
ら少なくとも成る非水電解質二次電池において正極と負
極の可逆容量の容量バランスを1.05<負極/正極≦
1.30の範囲に規制した事を特徴とする非水電解質二
次電池。
1. A non-aqueous electrolyte comprising at least a positive electrode having a substance capable of occluding and releasing lithium as an active material, a negative electrode having a substance capable of occluding and releasing lithium as an active material, and a non-aqueous electrolyte having a lithium ion conductivity. In the secondary battery, the capacity balance of the reversible capacities of the positive electrode and the negative electrode is 1.05 <negative electrode / positive electrode ≦
A non-aqueous electrolyte secondary battery characterized by being regulated within the range of 1.30.
【請求項2】 前記負極活物質が炭素質材料および、ま
たはケイ素の酸化物である事を特徴とする請求項1に記
載の非水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material is a carbonaceous material and / or a silicon oxide.
JP8105901A 1996-04-25 1996-04-25 Nonaqueous electrolyte secondary battery Pending JPH09293536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8105901A JPH09293536A (en) 1996-04-25 1996-04-25 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8105901A JPH09293536A (en) 1996-04-25 1996-04-25 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH09293536A true JPH09293536A (en) 1997-11-11

Family

ID=14419795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8105901A Pending JPH09293536A (en) 1996-04-25 1996-04-25 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH09293536A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063941A (en) * 2000-08-17 2002-02-28 Mitsubishi Cable Ind Ltd Lithium ion secondary battery
JP2002203606A (en) * 2000-12-28 2002-07-19 Sony Corp Nonaqueous electrolyte solution battery
JP2003115326A (en) * 2001-10-03 2003-04-18 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
WO2004070863A1 (en) * 2003-02-03 2004-08-19 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP2005135603A (en) * 2003-10-28 2005-05-26 Hitachi Maxell Ltd Non-aqueous secondary battery
JP2005235601A (en) * 2004-02-20 2005-09-02 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery
JP2005294013A (en) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd Precursor battery and nonaqueous electrolyte secondary battery
CN100342571C (en) * 2003-02-03 2007-10-10 三洋电机株式会社 Nonaqueous electrolyte secondary battery
US7435510B2 (en) 2004-11-12 2008-10-14 Sanyo Electric Co. Nonaqueous electrolyte secondary battery
US7608363B2 (en) 2004-11-16 2009-10-27 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery with vinylene carbonate and divinyl sulfone containing electrolyte
WO2013054676A1 (en) * 2011-10-12 2013-04-18 昭和電工株式会社 Nonaqueous solution secondary battery
JP2014112496A (en) * 2012-12-05 2014-06-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2015506563A (en) * 2012-11-22 2015-03-02 エルジー・ケム・リミテッド Electrode assembly comprising electrode units having the same overall width and different overall lengths, battery cell including the same, and device
JPWO2013042421A1 (en) * 2011-09-21 2015-03-26 日本電気株式会社 Secondary battery
JP2015513190A (en) * 2012-04-20 2015-04-30 エルジー・ケム・リミテッド Electrode assembly, battery cell and device including the same
JP2015536557A (en) * 2013-02-15 2015-12-21 エルジー・ケム・リミテッド Stepped electrode group stack
CN105684206A (en) * 2013-10-31 2016-06-15 株式会社丰田自动织机 Lithium ion secondary battery
WO2019151501A1 (en) * 2018-02-02 2019-08-08 日立化成株式会社 Lithium-ion rechargeable battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063941A (en) * 2000-08-17 2002-02-28 Mitsubishi Cable Ind Ltd Lithium ion secondary battery
JP2002203606A (en) * 2000-12-28 2002-07-19 Sony Corp Nonaqueous electrolyte solution battery
JP2003115326A (en) * 2001-10-03 2003-04-18 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
CN100342571C (en) * 2003-02-03 2007-10-10 三洋电机株式会社 Nonaqueous electrolyte secondary battery
WO2004070863A1 (en) * 2003-02-03 2004-08-19 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
KR100713036B1 (en) * 2003-02-03 2007-05-07 산요덴키가부시키가이샤 Nonaqueous electrolyte secondary battery
JP2005135603A (en) * 2003-10-28 2005-05-26 Hitachi Maxell Ltd Non-aqueous secondary battery
JP2005235601A (en) * 2004-02-20 2005-09-02 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery
JP2005294013A (en) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd Precursor battery and nonaqueous electrolyte secondary battery
US7435510B2 (en) 2004-11-12 2008-10-14 Sanyo Electric Co. Nonaqueous electrolyte secondary battery
US7608363B2 (en) 2004-11-16 2009-10-27 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery with vinylene carbonate and divinyl sulfone containing electrolyte
JPWO2013042421A1 (en) * 2011-09-21 2015-03-26 日本電気株式会社 Secondary battery
WO2013054676A1 (en) * 2011-10-12 2013-04-18 昭和電工株式会社 Nonaqueous solution secondary battery
US9263760B2 (en) 2012-04-20 2016-02-16 Lg Chem, Ltd. Stepped electrode assembly having predetermined a reversible capacitance ratio in the interface between electrode units, battery cell and device comprising the same
JP2015513190A (en) * 2012-04-20 2015-04-30 エルジー・ケム・リミテッド Electrode assembly, battery cell and device including the same
US9431674B2 (en) 2012-04-20 2016-08-30 Lg Chem, Ltd. Balanced stepped electrode assembly, and battery cell and device comprising the same
US9627708B2 (en) 2012-04-20 2017-04-18 Lg Chem, Ltd. Stepped electrode assembly having predetermined a thickness ratio in the interface between electrode units, battery cell and device comprising the same
JP2015506563A (en) * 2012-11-22 2015-03-02 エルジー・ケム・リミテッド Electrode assembly comprising electrode units having the same overall width and different overall lengths, battery cell including the same, and device
US9236631B2 (en) 2012-11-22 2016-01-12 Lg Chem, Ltd. Electrode assembly including electrode units having the same width and different lengths, and battery cell and device including the electrode assembly
JP2014112496A (en) * 2012-12-05 2014-06-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2015536557A (en) * 2013-02-15 2015-12-21 エルジー・ケム・リミテッド Stepped electrode group stack
US9935329B2 (en) 2013-02-15 2018-04-03 Lg Chem, Ltd. Stepped electrode group stack
CN105684206A (en) * 2013-10-31 2016-06-15 株式会社丰田自动织机 Lithium ion secondary battery
WO2019151501A1 (en) * 2018-02-02 2019-08-08 日立化成株式会社 Lithium-ion rechargeable battery

Similar Documents

Publication Publication Date Title
JP3079343B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP4543085B2 (en) Additive for lithium secondary battery
JP3726958B2 (en) battery
US9444120B2 (en) Rechargeable lithium battery and method for manufacturing the same
US7179565B2 (en) Lithium ion secondary cell
KR100848792B1 (en) Nonaqueous Electrolyte Secondary Battery
US20020004169A1 (en) Positive electrode and non-aqueous electrolyte cell
KR101125969B1 (en) Battery
JPH09293536A (en) Nonaqueous electrolyte secondary battery
JP2003109592A (en) Lithium secondary battery and method of manufacturing the same
JPH07235291A (en) Secondary battery
US6884548B2 (en) Nonaqueous electrolyte battery containing an alkali, transition metal negative electrode
JPH1186853A (en) Lithium secondary battery
US6436572B1 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery having the negative electrode
JP2003317705A (en) Battery
JP3204358B2 (en) Non-aqueous electrolyte secondary battery
JP2000268879A (en) Lithium secondary battery
JP2007172954A (en) Lithium secondary battery and method for producing lithium secondary battery
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP2000315504A (en) Non-aqueous electrolyte secondary battery
JPH06275268A (en) Nonaqueous electrolyte secondary battery
JP2000173670A (en) Non-aqueous electrolyte secondary battery charging method
JP3575308B2 (en) Non-aqueous electrolyte secondary battery
JP3212018B2 (en) Non-aqueous electrolyte secondary battery
JP3303319B2 (en) Non-aqueous electrolyte secondary battery