JP2019050811A - 膵内分泌細胞へのヒト胚性幹細胞の分化 - Google Patents
膵内分泌細胞へのヒト胚性幹細胞の分化 Download PDFInfo
- Publication number
- JP2019050811A JP2019050811A JP2018205548A JP2018205548A JP2019050811A JP 2019050811 A JP2019050811 A JP 2019050811A JP 2018205548 A JP2018205548 A JP 2018205548A JP 2018205548 A JP2018205548 A JP 2018205548A JP 2019050811 A JP2019050811 A JP 2019050811A
- Authority
- JP
- Japan
- Prior art keywords
- cells
- pancreatic endoderm
- activin
- expression
- treated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0018—Culture media for cell or tissue culture
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0676—Pancreatic cells
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/575—Hormones
- C07K14/62—Insulins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/04—Plant cells or tissues
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/16—Activin; Inhibin; Mullerian inhibiting substance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/50—Cell markers; Cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/998—Proteins not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2506/00—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
- C12N2506/02—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Endocrinology (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Diabetes (AREA)
- Botany (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Developmental Biology & Embryology (AREA)
- Materials For Medical Uses (AREA)
- Peptides Or Proteins (AREA)
Abstract
【課題】膵内分泌腺リッチクラスターへの膵内胚葉細胞の分化を促進し、ホルモン発現細胞におけるインスリン発現を増強する方法の提供。【解決手段】スフィンゴシン−1受容体アゴニストを用いて膵内分泌細胞を培養することを含む、内分泌クラスターの形成を誘導するための方法。【選択図】図1A
Description
(関連出願の相互参照)
本出願は、2012年6月8日に出願された、米国特許仮出願第61/657,160
号の利益を主張するものであり、その全体が、あらゆる目的について参照により本明細書
に組み込まれる。
本出願は、2012年6月8日に出願された、米国特許仮出願第61/657,160
号の利益を主張するものであり、その全体が、あらゆる目的について参照により本明細書
に組み込まれる。
(発明の分野)
本発明は、細胞分化の分野にある。より具体的には、本発明は、内分泌細胞への多能性
幹細胞の分化の調節因子として、エフリンリガンド及びスフィンゴシン−1−リン酸塩の
使用を開示する。
本発明は、細胞分化の分野にある。より具体的には、本発明は、内分泌細胞への多能性
幹細胞の分化の調節因子として、エフリンリガンド及びスフィンゴシン−1−リン酸塩の
使用を開示する。
I型糖尿病の細胞置換療法の進歩及び移植可能なランゲルハンス島の不足により、生着
に適したインスリン産生細胞すなわちβ細胞の供給源の開発に注目が集まっている。1つ
の手法として、例えば、胚性幹細胞のような多能性幹細胞から機能性のβ細胞を生成する
ことがある。
に適したインスリン産生細胞すなわちβ細胞の供給源の開発に注目が集まっている。1つ
の手法として、例えば、胚性幹細胞のような多能性幹細胞から機能性のβ細胞を生成する
ことがある。
脊椎動物の胚発生において、多能性細胞は、原腸形成として既知のプロセスにて、3つ
の胚葉(外胚葉、中胚葉、及び内胚葉)を含む細胞のグループを生じる。例えば、甲状腺
、胸腺、膵臓、腸、及び肝臓などの組織は、内胚葉から中間ステージを経て発達する。こ
のプロセスにおける中間段階は、胚体内胚葉の形成である。胚体内胚葉細胞は、HNF3
β、GATA4、MIXL1、CXCR4、及びSOX17などの多数のマーカーを発現
する。
の胚葉(外胚葉、中胚葉、及び内胚葉)を含む細胞のグループを生じる。例えば、甲状腺
、胸腺、膵臓、腸、及び肝臓などの組織は、内胚葉から中間ステージを経て発達する。こ
のプロセスにおける中間段階は、胚体内胚葉の形成である。胚体内胚葉細胞は、HNF3
β、GATA4、MIXL1、CXCR4、及びSOX17などの多数のマーカーを発現
する。
原腸形成の終了までに、内胚葉は、内胚葉の前部、中間、及び後部の領域を特異的にマ
ークする因子のパネルの発現によって認識することができる前部−後部ドメインに分割さ
れる。例えば、Hhex及びSox2は内胚葉の前領域を特定し、Cdx1、2及び4は
後半分を特定する。
ークする因子のパネルの発現によって認識することができる前部−後部ドメインに分割さ
れる。例えば、Hhex及びSox2は内胚葉の前領域を特定し、Cdx1、2及び4は
後半分を特定する。
内胚葉組織の移行は、内胚葉を腸管の領域化に役立つ異なった中胚葉組織に近接させる
。これは、例えば、FGF、Wnt、TGF−B、レチノイン酸(RA)、及びBMPリ
ガンド、並びにそれらのアンタゴニストのような多数の分泌された因子によって達成され
る。例えば、FGF4及びBMPは推定後腸内胚葉においてCdx2の発現を促進し、前
方の遺伝子Hhex及びSOX2の発現を阻害する(2000 Development
,127:1563〜1567)。WNTシグナル伝達はまた、後腸の発達を促進し、前
腸の運命を阻害するために、FGFシグナル伝達と平行して作用することが示されている
(2007 Development,134:2207〜2217)。最後に、間葉に
よって分泌されるレチノイン酸は、前腸−後腸の境界を調節する(2002 Curr
Biol,12:1215〜1220)。
。これは、例えば、FGF、Wnt、TGF−B、レチノイン酸(RA)、及びBMPリ
ガンド、並びにそれらのアンタゴニストのような多数の分泌された因子によって達成され
る。例えば、FGF4及びBMPは推定後腸内胚葉においてCdx2の発現を促進し、前
方の遺伝子Hhex及びSOX2の発現を阻害する(2000 Development
,127:1563〜1567)。WNTシグナル伝達はまた、後腸の発達を促進し、前
腸の運命を阻害するために、FGFシグナル伝達と平行して作用することが示されている
(2007 Development,134:2207〜2217)。最後に、間葉に
よって分泌されるレチノイン酸は、前腸−後腸の境界を調節する(2002 Curr
Biol,12:1215〜1220)。
特異的転写因子の発現レベルは、組織のアイデンティティを指定するために使用できる
可能性がある。原腸管への胚体内胚葉の形質転換中に、腸管は、制限された遺伝子発現パ
ターンにより分子レベルで観察することができる広いドメインに領域化される。例えば、
腸管で領域化された膵臓ドメインは、PDX−1の非常に高い発現及びCDX2並びにS
OX2の非常に低い発現を示す。同様に、Foxe1の高レベルの存在は、食道組織の指
標である。肺組織において高度に発現されるのはNKX2.1である。SOX2/Odd
1(OSR1)は胃組織において高度に発現される。PROX1/Hhex/AFPの発
現は肝組織において高い。SOX17は胆管構造の組織で高度に発現される。PDX1、
NKX6.1/PTf1a、及びNKX2.2は膵臓組織において高度に発現される。C
DX2の発現は、腸組織において高い。上記要約は、Dev Dyn 2009,238
:29〜42及びAnnu Rev Cell Dev Biol 2009,25:2
21〜251からの引用である。
可能性がある。原腸管への胚体内胚葉の形質転換中に、腸管は、制限された遺伝子発現パ
ターンにより分子レベルで観察することができる広いドメインに領域化される。例えば、
腸管で領域化された膵臓ドメインは、PDX−1の非常に高い発現及びCDX2並びにS
OX2の非常に低い発現を示す。同様に、Foxe1の高レベルの存在は、食道組織の指
標である。肺組織において高度に発現されるのはNKX2.1である。SOX2/Odd
1(OSR1)は胃組織において高度に発現される。PROX1/Hhex/AFPの発
現は肝組織において高い。SOX17は胆管構造の組織で高度に発現される。PDX1、
NKX6.1/PTf1a、及びNKX2.2は膵臓組織において高度に発現される。C
DX2の発現は、腸組織において高い。上記要約は、Dev Dyn 2009,238
:29〜42及びAnnu Rev Cell Dev Biol 2009,25:2
21〜251からの引用である。
膵臓の形成は、膵臓内胚葉への胚体内胚葉の分化から生じる(2009 Annu R
ev Cell Dev Biol,25:221〜251;2009 Dev Dyn
,238:29〜42)。背側と腹側の膵臓ドメインは、前腸上皮から生じる。また、前
腸は、食道、気管、肺、甲状腺、胃、肝臓、膵臓、及び胆管系を生じさせる。
ev Cell Dev Biol,25:221〜251;2009 Dev Dyn
,238:29〜42)。背側と腹側の膵臓ドメインは、前腸上皮から生じる。また、前
腸は、食道、気管、肺、甲状腺、胃、肝臓、膵臓、及び胆管系を生じさせる。
膵臓内胚葉の細胞は膵臓−十二指腸ホメオボックス遺伝子PDX1を発現する。PDX
1が存在しない場合、膵臓は、腹側芽及び背側芽の形成を越えて発達しない。したがって
、PDX1の発現は、膵臓器官形成において重要な工程を印している。成熟した膵臓は、
他の細胞型の中でも、外分泌組織及び内分泌組織を含む。外分泌組織及び内分泌組織は、
膵臓内胚葉の分化によって生じる。
1が存在しない場合、膵臓は、腹側芽及び背側芽の形成を越えて発達しない。したがって
、PDX1の発現は、膵臓器官形成において重要な工程を印している。成熟した膵臓は、
他の細胞型の中でも、外分泌組織及び内分泌組織を含む。外分泌組織及び内分泌組織は、
膵臓内胚葉の分化によって生じる。
D’Amourらは、高濃度のアクチビン及び低血清の存在下でのヒト胚性幹(ES)
細胞由来の胚体内胚葉の濃縮培地の生産を記述している(Nature Biotech
nol 2005,23:1534〜1541;米国特許第7,704,738号)。マ
ウスの腎臓被膜下でのこれらの細胞の移植は、内胚葉組織の特徴を有する、より成熟した
細胞への分化をもたらした(米国特許第7,704,738号)。ヒト胚性幹細胞由来の
胚体内胚葉細胞は、FGF−10及びレチノイン酸の添加後、PDX1陽性細胞に更に分
化することができる(米国特許公開第2005/0266554A1号)。免疫不全マウ
スの脂肪パッドにおけるこれらの膵臓前駆細胞のその後の移植は、3〜4ヶ月の成熟期の
後に、機能的膵内分泌細胞の形成をもたらした(米国特許第7,993,920号及び米
国特許第7,534,608号)。
細胞由来の胚体内胚葉の濃縮培地の生産を記述している(Nature Biotech
nol 2005,23:1534〜1541;米国特許第7,704,738号)。マ
ウスの腎臓被膜下でのこれらの細胞の移植は、内胚葉組織の特徴を有する、より成熟した
細胞への分化をもたらした(米国特許第7,704,738号)。ヒト胚性幹細胞由来の
胚体内胚葉細胞は、FGF−10及びレチノイン酸の添加後、PDX1陽性細胞に更に分
化することができる(米国特許公開第2005/0266554A1号)。免疫不全マウ
スの脂肪パッドにおけるこれらの膵臓前駆細胞のその後の移植は、3〜4ヶ月の成熟期の
後に、機能的膵内分泌細胞の形成をもたらした(米国特許第7,993,920号及び米
国特許第7,534,608号)。
Fiskらは、ヒト胚性幹細胞からの膵島細胞の産生のためのシステムを報告している
(米国特許第7,033,831号)。この場合、分化経路は3つの段階に分割された。
ヒト胚性幹細胞は、最初に、酪酸ナトリウムとアクチビンAとの組み合わせを用いて内胚
葉に分化された(米国特許第7,326,572号)。次に細胞をノギンなどのBMPア
ンタゴニストと共に、EGF又はベータセルリンと組み合わせて培養して、PDX1陽性
細胞を生成した。最終分化は、ニコチンアミドにより誘発された。
(米国特許第7,033,831号)。この場合、分化経路は3つの段階に分割された。
ヒト胚性幹細胞は、最初に、酪酸ナトリウムとアクチビンAとの組み合わせを用いて内胚
葉に分化された(米国特許第7,326,572号)。次に細胞をノギンなどのBMPア
ンタゴニストと共に、EGF又はベータセルリンと組み合わせて培養して、PDX1陽性
細胞を生成した。最終分化は、ニコチンアミドにより誘発された。
小分子阻害剤もまた、膵内分泌前駆細胞の誘導のために使用されている。例えば、TG
F−B受容体及びBMP受容体の小分子阻害剤(Development 2011,1
38:861〜871;Diabetes 2011,60:239〜247)は、有意
に膵内分泌細胞の数を増すために使用されている。加えて、小分子活性化剤もまた、胚体
内胚葉細胞又は膵臓前駆細胞を生成するために使用されている(Curr Opin C
ell Biol 2009,21:727〜732;Nature Chem Bio
l 2009,5:258〜265)。
F−B受容体及びBMP受容体の小分子阻害剤(Development 2011,1
38:861〜871;Diabetes 2011,60:239〜247)は、有意
に膵内分泌細胞の数を増すために使用されている。加えて、小分子活性化剤もまた、胚体
内胚葉細胞又は膵臓前駆細胞を生成するために使用されている(Curr Opin C
ell Biol 2009,21:727〜732;Nature Chem Bio
l 2009,5:258〜265)。
ヒト多能性幹細胞から膵臓細胞を産生するためのプロトコルの改善において、優れた研
究が行われてきたが、機能性内分泌細胞及び特定のベータ細胞をもたらすプロトコルを作
成する必要が依然として存在する。本出願では、エフリンリガンド及びスフィンゴシン−
1−リン酸塩のクラス又はスフィンゴシン受容体のアゴニストが内分泌細胞の生成を強化
し、内分泌ホルモン及び内分泌腺前駆細胞のクラスタリングを加速することを実証する。
究が行われてきたが、機能性内分泌細胞及び特定のベータ細胞をもたらすプロトコルを作
成する必要が依然として存在する。本出願では、エフリンリガンド及びスフィンゴシン−
1−リン酸塩のクラス又はスフィンゴシン受容体のアゴニストが内分泌細胞の生成を強化
し、内分泌ホルモン及び内分泌腺前駆細胞のクラスタリングを加速することを実証する。
一実施形態において、本発明は、エフリンA4又はエフリンA3を含む培地において膵
内胚葉細胞集団を培養することによって、インスリン及びNKX6.1の発現を増強する
方法に関する。いくつかの実施形態において、膵内胚葉細胞集団は、CDX2又はSOX
2を実質的に発現しない。いくつかの実施形態において、膵内胚葉細胞集団は、多能性細
胞の段階的分化によって取得される。いくつかの実施形態において、多能性細胞は、ヒト
胚性多能性細胞である。
内胚葉細胞集団を培養することによって、インスリン及びNKX6.1の発現を増強する
方法に関する。いくつかの実施形態において、膵内胚葉細胞集団は、CDX2又はSOX
2を実質的に発現しない。いくつかの実施形態において、膵内胚葉細胞集団は、多能性細
胞の段階的分化によって取得される。いくつかの実施形態において、多能性細胞は、ヒト
胚性多能性細胞である。
一実施形態において、本発明は、アクチビンA又はアクチビンCを含む培地において膵
内胚葉細胞を培養することによって、インスリン、グルカゴン、及びグレリンの発現を抑
制する一方、ソマトスタチンの発現を増強する方法に関する。いくつかの実施形態におい
て、アクチビンA又はアクチビンCで処理した膵内胚葉細胞集団は、アクチビンA又はア
クチビンCで処理していない膵内胚葉細胞集団としてより多くのソマトスタチンを発現す
る。いくつかの実施形態において、アクチビンA又はアクチビンCで処理した膵内胚葉細
胞集団におけるインスリンの発現は、アクチビンA又はアクチビンCで処理していない膵
臓内胚葉細胞集団におけるインスリンの発現と比較して抑制される。いくつかの実施形態
において、アクチビンA又はアクチビンCで処理した膵臓内胚葉細胞集団におけるグルカ
ゴンの発現は、アクチビンA又はアクチビンCで処理していない膵内胚葉細胞集団におけ
るグルカゴンの発現と比較して抑制される。いくつかの実施形態において、アクチビンA
又はアクチビンCで処理した膵内胚葉細胞集団におけるグレリンの発現は、アクチビンA
又はアクチビンCで処理していない膵内胚葉細胞集団におけるグレリンの発現と比較して
抑制される。いくつかの実施形態において、膵内胚葉細胞は、CDX2又はSOX2を実
質的に発現しない。いくつかの実施形態において、アクチビンA又はアクチビンCで処理
した膵内胚葉細胞は、多能性細胞の段階的分化によって取得される。いくつかの実施形態
において、膵臓内胚葉細胞の由来元である多能性細胞は、ヒト胚性多能性細胞である。
内胚葉細胞を培養することによって、インスリン、グルカゴン、及びグレリンの発現を抑
制する一方、ソマトスタチンの発現を増強する方法に関する。いくつかの実施形態におい
て、アクチビンA又はアクチビンCで処理した膵内胚葉細胞集団は、アクチビンA又はア
クチビンCで処理していない膵内胚葉細胞集団としてより多くのソマトスタチンを発現す
る。いくつかの実施形態において、アクチビンA又はアクチビンCで処理した膵内胚葉細
胞集団におけるインスリンの発現は、アクチビンA又はアクチビンCで処理していない膵
臓内胚葉細胞集団におけるインスリンの発現と比較して抑制される。いくつかの実施形態
において、アクチビンA又はアクチビンCで処理した膵臓内胚葉細胞集団におけるグルカ
ゴンの発現は、アクチビンA又はアクチビンCで処理していない膵内胚葉細胞集団におけ
るグルカゴンの発現と比較して抑制される。いくつかの実施形態において、アクチビンA
又はアクチビンCで処理した膵内胚葉細胞集団におけるグレリンの発現は、アクチビンA
又はアクチビンCで処理していない膵内胚葉細胞集団におけるグレリンの発現と比較して
抑制される。いくつかの実施形態において、膵内胚葉細胞は、CDX2又はSOX2を実
質的に発現しない。いくつかの実施形態において、アクチビンA又はアクチビンCで処理
した膵内胚葉細胞は、多能性細胞の段階的分化によって取得される。いくつかの実施形態
において、膵臓内胚葉細胞の由来元である多能性細胞は、ヒト胚性多能性細胞である。
一実施形態において、本発明は、セマフォリン3a又はエピゲンを含む培地において膵
内胚葉細胞を処理することによって、NKX6.1の発現を増強する方法を参照する。い
くつかの実施形態において、セマフォリン3a又はエピゲンを含む培地で処理した膵内胚
葉細胞集団は、セマフォリン3a又はエピゲンを含む培地で処理していない膵内胚葉細胞
と比較して、強化された量のNKX6.1を発現する。いくつかの実施形態において、セ
マフォリン3a又はエピゲンを含む培地で処理した膵内胚葉細胞におけるインスリン、グ
ルカゴン、及びグレリン等のホルモンの発現レベルは、セマフォリン3a又はエピゲンを
含む培地で処理していない膵内胚葉細胞と比較して、影響を受けない。いくつかの実施形
態において、膵内分泌細胞は、CDX2又はSOX2を実質的に発現しない。いくつかの
実施形態において、セマフォリン3a又はエピゲンを含む培地で処理した膵内胚葉細胞は
、多能性細胞の段階的分化によって取得される。いくつかの実施形態において、膵内胚葉
細胞の由来元である多能性細胞は、ヒト胚性多能性細胞である。
内胚葉細胞を処理することによって、NKX6.1の発現を増強する方法を参照する。い
くつかの実施形態において、セマフォリン3a又はエピゲンを含む培地で処理した膵内胚
葉細胞集団は、セマフォリン3a又はエピゲンを含む培地で処理していない膵内胚葉細胞
と比較して、強化された量のNKX6.1を発現する。いくつかの実施形態において、セ
マフォリン3a又はエピゲンを含む培地で処理した膵内胚葉細胞におけるインスリン、グ
ルカゴン、及びグレリン等のホルモンの発現レベルは、セマフォリン3a又はエピゲンを
含む培地で処理していない膵内胚葉細胞と比較して、影響を受けない。いくつかの実施形
態において、膵内分泌細胞は、CDX2又はSOX2を実質的に発現しない。いくつかの
実施形態において、セマフォリン3a又はエピゲンを含む培地で処理した膵内胚葉細胞は
、多能性細胞の段階的分化によって取得される。いくつかの実施形態において、膵内胚葉
細胞の由来元である多能性細胞は、ヒト胚性多能性細胞である。
いくつかの実施形態において、本発明は、エフリンA4、エフリンA3、アクチビンA
、アクチビンC、セマフォリン3a、又はエピゲンを含む培地において膵内胚葉細胞を培
養することを含む、多能性細胞を分化する段階的な方法に関する。いくつかの実施形態に
おいて、膵内胚葉細胞は、エフリンA4又はエフリンA3を含む培地において培養される
。いくつかの実施形態において、膵内胚葉細胞は、アクチビンA又はアクチビンCを含む
培地において培養される。いくつかの実施形態において、膵内胚葉細胞は、セマフォリン
3a、又はエピゲンを含む培地において培養される。いくつかの実施形態において、膵内
胚葉細胞の由来元である多能性幹細胞は、ヒト胚性多能性幹細胞である。
、アクチビンC、セマフォリン3a、又はエピゲンを含む培地において膵内胚葉細胞を培
養することを含む、多能性細胞を分化する段階的な方法に関する。いくつかの実施形態に
おいて、膵内胚葉細胞は、エフリンA4又はエフリンA3を含む培地において培養される
。いくつかの実施形態において、膵内胚葉細胞は、アクチビンA又はアクチビンCを含む
培地において培養される。いくつかの実施形態において、膵内胚葉細胞は、セマフォリン
3a、又はエピゲンを含む培地において培養される。いくつかの実施形態において、膵内
胚葉細胞の由来元である多能性幹細胞は、ヒト胚性多能性幹細胞である。
一実施形態において、本発明は、スフィンゴシン−1受容体アゴニストで膵内分泌細胞
を処理することによって、内分泌腺の発現を誘発する方法に関する。いくつかの実施形態
において、膵内分泌細胞を処理するために使用されるスフィンゴシン−1受容体アゴニス
トは、スフィンゴシン−1−リン酸塩(S1P)である。
を処理することによって、内分泌腺の発現を誘発する方法に関する。いくつかの実施形態
において、膵内分泌細胞を処理するために使用されるスフィンゴシン−1受容体アゴニス
トは、スフィンゴシン−1−リン酸塩(S1P)である。
本発明の実施形態として、本発明の方法によって調製される方法、及び本発明の細胞を
使用する方法も意図される。
使用する方法も意図される。
開示を分かりやすくするため、限定を目的とすることなく、「発明を実施するための形
態」を本発明の特定の特徴、実施形態、又は用途を、説明又は例示する下記の小項目に分
割する。
態」を本発明の特定の特徴、実施形態、又は用途を、説明又は例示する下記の小項目に分
割する。
定義
幹細胞は、単一細胞レベルでの自己再生能及び分化能の両方によって定義される未分化
細胞である。幹細胞は、自己再生前駆細胞、非再生性前駆細胞、及び最終分化細胞を含む
子孫細胞を生成することができる。幹細胞はまた、複数の胚葉(内胚葉、中胚葉及び外胚
葉)から様々な細胞系統の機能性細胞へとインビトロで分化する能力を特徴とする。幹細
胞は、移植後に複数の胚葉の組織を生じさせ、胚盤胞に注入後、実質的に(全てではない
としても)ほとんどの組織に寄与する。
幹細胞は、単一細胞レベルでの自己再生能及び分化能の両方によって定義される未分化
細胞である。幹細胞は、自己再生前駆細胞、非再生性前駆細胞、及び最終分化細胞を含む
子孫細胞を生成することができる。幹細胞はまた、複数の胚葉(内胚葉、中胚葉及び外胚
葉)から様々な細胞系統の機能性細胞へとインビトロで分化する能力を特徴とする。幹細
胞は、移植後に複数の胚葉の組織を生じさせ、胚盤胞に注入後、実質的に(全てではない
としても)ほとんどの組織に寄与する。
幹細胞は、発生能によって、(1)全胚及び胚体外細胞型を生じる能力を意味する全能
性、(2)全胚細胞型を生じる能力を意味する多能性、(3)細胞系の小集合を生じるが
、すべて特定の組織、器官、又は生理学的システム内で生じる能力を意味する複能性(例
えば、造血幹細胞(HSC)は、HSC(自己再生)、血液細胞に限定された寡能性前駆
細胞、並びに血液の通常の構成要素である全細胞型及び要素(例えば、血小板)を含む後
代を産生できる)、(4)複能性幹細胞と比較して、より限定された細胞系統の小集合を
生じる能力を意味する寡能性、並びに(5)1つの細胞系(例えば、精子形成幹細胞)を
生じる能力を意味する単能性に分類される。
性、(2)全胚細胞型を生じる能力を意味する多能性、(3)細胞系の小集合を生じるが
、すべて特定の組織、器官、又は生理学的システム内で生じる能力を意味する複能性(例
えば、造血幹細胞(HSC)は、HSC(自己再生)、血液細胞に限定された寡能性前駆
細胞、並びに血液の通常の構成要素である全細胞型及び要素(例えば、血小板)を含む後
代を産生できる)、(4)複能性幹細胞と比較して、より限定された細胞系統の小集合を
生じる能力を意味する寡能性、並びに(5)1つの細胞系(例えば、精子形成幹細胞)を
生じる能力を意味する単能性に分類される。
分化は、特殊化されていない(「コミットされていない」)又は比較的専門化されてい
ない細胞が、例えば、神経細胞又は筋細胞などの特殊化された細胞の特徴を獲得するプロ
セスである。「分化した細胞」又は「分化誘導された細胞」とは、細胞の系統内でより特
殊化した(「コミットした」)位置にある細胞である。分化プロセスに適用された際の用
語「コミットした」は、通常の環境下で特定の細胞型又は細胞型の小集合への分化を続け
、かつ通常の環境下で異なる細胞型に分化したり、又は低分化細胞型に戻ったりすること
ができない地点まで、分化経路において進行した細胞を指す。「脱分化」は、細胞が細胞
系統内で比較的特殊化されて(又はコミットして)いない状況に戻るプロセスを指す。本
明細書で使用するとき、細胞系統は、細胞の遺伝、すなわちその細胞がどの細胞から来た
か、またどの細胞を生じ得るかを規定する。ある細胞の系統とは、所定の発生及び分化の
遺伝体系内にその細胞を位置付けるものである。系統特異的マーカーとは、対象とする系
統の細胞の表現型と特異的に関連した特徴を指し、コミットされていない細胞の、対象と
する系統への分化を評価するために使用することができる。
ない細胞が、例えば、神経細胞又は筋細胞などの特殊化された細胞の特徴を獲得するプロ
セスである。「分化した細胞」又は「分化誘導された細胞」とは、細胞の系統内でより特
殊化した(「コミットした」)位置にある細胞である。分化プロセスに適用された際の用
語「コミットした」は、通常の環境下で特定の細胞型又は細胞型の小集合への分化を続け
、かつ通常の環境下で異なる細胞型に分化したり、又は低分化細胞型に戻ったりすること
ができない地点まで、分化経路において進行した細胞を指す。「脱分化」は、細胞が細胞
系統内で比較的特殊化されて(又はコミットして)いない状況に戻るプロセスを指す。本
明細書で使用するとき、細胞系統は、細胞の遺伝、すなわちその細胞がどの細胞から来た
か、またどの細胞を生じ得るかを規定する。ある細胞の系統とは、所定の発生及び分化の
遺伝体系内にその細胞を位置付けるものである。系統特異的マーカーとは、対象とする系
統の細胞の表現型と特異的に関連した特徴を指し、コミットされていない細胞の、対象と
する系統への分化を評価するために使用することができる。
本明細書で使用するとき、「マーカー」とは、対象とする細胞で差異的に発現される核
酸又はポリペプチド分子である。この文脈において、差異的な発現とは、未分化細胞と比
較して、陽性マーカーのレベルの増加、及び陰性マーカーのレベルの減少を意味する。マ
ーカー核酸又はポリペプチドの検出可能なレベルは、他の細胞と比較して対象とする細胞
において充分に高いか又は低いことから、当該技術分野において知られる各種の方法のい
ずれを用いても対象とする細胞を他の細胞から識別及び区別することが可能である。
酸又はポリペプチド分子である。この文脈において、差異的な発現とは、未分化細胞と比
較して、陽性マーカーのレベルの増加、及び陰性マーカーのレベルの減少を意味する。マ
ーカー核酸又はポリペプチドの検出可能なレベルは、他の細胞と比較して対象とする細胞
において充分に高いか又は低いことから、当該技術分野において知られる各種の方法のい
ずれを用いても対象とする細胞を他の細胞から識別及び区別することが可能である。
本明細書で使用するとき、細胞は、特異的マーカーが細胞内で検出されたとき、特異的
マーカー「について陽性」又は「陽性」である。同様に、細胞は、特異的マーカーが細胞
内で検出されないとき、特異的マーカー「について陰性」又は「陰性」である。
マーカー「について陽性」又は「陽性」である。同様に、細胞は、特異的マーカーが細胞
内で検出されないとき、特異的マーカー「について陰性」又は「陰性」である。
本明細書で使用するとき、「細胞密度」及び「播種密度」は、本明細書において互換的
に使用され、固体又は半固体平面又は湾曲基質の単位面積あたりに播種された細胞の数を
指す。
に使用され、固体又は半固体平面又は湾曲基質の単位面積あたりに播種された細胞の数を
指す。
本明細書で使用するとき、「ステージ1」及び「S1」は、胚体内胚葉(DE)に特徴
的なマーカーを発現する細胞を同定するために互換的に使用される。
的なマーカーを発現する細胞を同定するために互換的に使用される。
本明細書で使用するとき、「胚体内胚葉」は、原腸形成中、胚盤葉上層から生じ、胃腸
管及びその誘導体を形成する細胞の特徴を有する細胞を指す。胚体内胚葉細胞は、以下の
マーカーの少なくとも1つを発現する:HNF3β、GATA4、SOX17、CXCR
4、ケルベロス、OTX2、グースコイド、C−Kit、CD99、及びMIXL1。
管及びその誘導体を形成する細胞の特徴を有する細胞を指す。胚体内胚葉細胞は、以下の
マーカーの少なくとも1つを発現する:HNF3β、GATA4、SOX17、CXCR
4、ケルベロス、OTX2、グースコイド、C−Kit、CD99、及びMIXL1。
本明細書で使用するとき、「腸管」は、以下のマーカーのうちの少なくとも一つを発現
する胚体内胚葉に由来する細胞を指す:HNF3β、HNF1β、又はHNF4α。腸管
細胞は、肺、肝臓、膵臓、胃、腸などの全ての内胚葉臓器を生じさせ得る。
する胚体内胚葉に由来する細胞を指す:HNF3β、HNF1β、又はHNF4α。腸管
細胞は、肺、肝臓、膵臓、胃、腸などの全ての内胚葉臓器を生じさせ得る。
本明細書で使用するとき、原腸管に特徴的なマーカーを発現する細胞を特定する「ステ
ージ2」及び「S2」は互換的に使用される。
ージ2」及び「S2」は互換的に使用される。
「前腸内胚葉」とは、食道、肺、胃、肝臓、膵臓、胆嚢、十二指腸の一部を生じさせる
内胚葉細胞を指す。
内胚葉細胞を指す。
「後方前腸」は、後方胃、膵臓、肝臓、及び十二指腸の一部を生じさせることができる
内胚葉細胞を指す。
内胚葉細胞を指す。
「中腸内胚葉」は、腸、十二指腸の一部、虫垂、及び上行結腸を生じさせることができ
る内胚葉細胞を指す。
る内胚葉細胞を指す。
「後腸内胚葉」は、横行結腸の遠位3分の1、下行結腸、S状結腸、及び直腸を生じさ
せることができる内胚葉細胞を指す。
せることができる内胚葉細胞を指す。
「ステージ3」及び「S3」の双方は、前腸内胚葉に特徴的なマーカーを発現する細胞
を特定するために互換的に使用される。「前腸系統に特徴的なマーカーを発現する細胞」
は、本明細書で使用するとき、以下のマーカーの少なくとも1つを発現する細胞を指す:
PDX−1、FOXA2、CDX2、SOX2、及びHNF4α。
を特定するために互換的に使用される。「前腸系統に特徴的なマーカーを発現する細胞」
は、本明細書で使用するとき、以下のマーカーの少なくとも1つを発現する細胞を指す:
PDX−1、FOXA2、CDX2、SOX2、及びHNF4α。
「ステージ4」及び「S4」は、膵臓前腸前駆細胞に特徴的なマーカーを発現する細胞
を特定するために互換的に使用される。本明細書で使用するとき、「膵臓前腸前駆細胞系
統に特徴的なマーカーを発現する細胞」は、以下のマーカーの少なくとも1つを発現する
細胞を指す:PDX−1、NKX6.1、HNF6、FOXA2、PTF1a、Prox
1、及びHNF4α。
を特定するために互換的に使用される。本明細書で使用するとき、「膵臓前腸前駆細胞系
統に特徴的なマーカーを発現する細胞」は、以下のマーカーの少なくとも1つを発現する
細胞を指す:PDX−1、NKX6.1、HNF6、FOXA2、PTF1a、Prox
1、及びHNF4α。
本明細書で使用するとき、「ステージ5」及び「S5」は、膵臓内胚葉及び膵内分泌前
駆細胞に特徴的なマーカーを発現する細胞を特定するために互換的に使用される。本明細
書で使用するとき、「膵臓内胚葉系統に特徴的なマーカーを発現する細胞」は、以下のマ
ーカーの少なくとも1つを発現する細胞を指す:PDX1、NKX6.1、HNF1β、
PTF1α、HNF6、HNF4α、SOX9、HB9、又はPROX1。膵臓内胚葉系
統に特徴的なマーカーを発現する細胞は、CDX2又はSOX2を実質的に発現しない。
駆細胞に特徴的なマーカーを発現する細胞を特定するために互換的に使用される。本明細
書で使用するとき、「膵臓内胚葉系統に特徴的なマーカーを発現する細胞」は、以下のマ
ーカーの少なくとも1つを発現する細胞を指す:PDX1、NKX6.1、HNF1β、
PTF1α、HNF6、HNF4α、SOX9、HB9、又はPROX1。膵臓内胚葉系
統に特徴的なマーカーを発現する細胞は、CDX2又はSOX2を実質的に発現しない。
「膵内分泌細胞」、又は「膵臓ホルモン発現細胞」、又は「膵臓内分泌系統に特徴的な
マーカーを発現する細胞」、又は「ステージ6細胞」、又は「S6細胞」は、本明細書に
おいて互換的に使用され、以下のホルモンの少なくとも1つを発現することが可能な細胞
を指す:インスリン、グルカゴン、ソマトスタチン、グレリン、及び膵臓ポリペプチド。
マーカーを発現する細胞」、又は「ステージ6細胞」、又は「S6細胞」は、本明細書に
おいて互換的に使用され、以下のホルモンの少なくとも1つを発現することが可能な細胞
を指す:インスリン、グルカゴン、ソマトスタチン、グレリン、及び膵臓ポリペプチド。
「膵臓インスリン陽性細胞」は、インスリン、HB9、NKX2.2、及びNKX6.
1を発現する細胞の内分泌腺集団を指す。
1を発現する細胞の内分泌腺集団を指す。
「膵内分泌前駆細胞(precursor cell)」又は「膵内分泌前駆細胞(progenitor cell
)」は、細胞を発現する膵臓ホルモンになり得る膵臓内胚葉細胞を指す。そのような細胞
は、以下のマーカーの少なくとも1つを発現し得る:NGN3、NKX2.2、Neur
oD、ISL−1、Pax4、Pax6、又はARX。
)」は、細胞を発現する膵臓ホルモンになり得る膵臓内胚葉細胞を指す。そのような細胞
は、以下のマーカーの少なくとも1つを発現し得る:NGN3、NKX2.2、Neur
oD、ISL−1、Pax4、Pax6、又はARX。
本明細書では、「d1」、「d1」、及び「1日目」、「d2」、「d2」、及び「2
日目」、「d3」、「d3」及び「3日目」等は互換的に使用される。これらの数字の組
み合わせは、本願の段階的分化プロトコル中の異なるステージにおけるインキュベーショ
ンの特定の日を指す。
日目」、「d3」、「d3」及び「3日目」等は互換的に使用される。これらの数字の組
み合わせは、本願の段階的分化プロトコル中の異なるステージにおけるインキュベーショ
ンの特定の日を指す。
「グルコース」及び「D−グルコース」は、本明細書で互換的に使用され、天然に一般
に見出される糖、デキストロースを指す。
に見出される糖、デキストロースを指す。
膵内分泌前駆細胞において発現されるタンパク質及びそれをコードする遺伝子を特定す
る「NeuroD」及び「NeuroD1」は、本明細書で互換的に使用される。
る「NeuroD」及び「NeuroD1」は、本明細書で互換的に使用される。
「LDN」及び「LDN−193189」は本明細書で互換的に使用され、米国カリフ
ォルニア州のStemgentから入手可能なBMP受容体阻害剤を示す。
ォルニア州のStemgentから入手可能なBMP受容体阻害剤を示す。
多能性幹細胞の単離、増殖及び培養
多能性幹細胞は、段階特異的胚抗原(SSEA)3及び4、並びにTra−1−60及
びTra−1−81と呼ばれる抗体を使用して検出可能なマーカーのうちの1つ以上を発
現することができる(Thomsonら、1998、Science 282:1145
〜1147)。インビトロでの多能性幹細胞の分化は、SSEA−4、Tra−1−60
、及びTra−1−81の発現の消失をもたらす。未分化多能性幹細胞は、一般にアルカ
リホスファターゼ活性を有し、これは、製造業者(米国カリフォルニア州のVector
Laboratories)により説明されているように、細胞を4%パラホルムアル
デヒドで固定した後、基質としてVector Redを使用して現像することにより検
出することができる。未分化の多能性幹細胞はまた、RT−PCRにより検出されるよう
に、一般にOCT4及びTERTも発現する。
多能性幹細胞は、段階特異的胚抗原(SSEA)3及び4、並びにTra−1−60及
びTra−1−81と呼ばれる抗体を使用して検出可能なマーカーのうちの1つ以上を発
現することができる(Thomsonら、1998、Science 282:1145
〜1147)。インビトロでの多能性幹細胞の分化は、SSEA−4、Tra−1−60
、及びTra−1−81の発現の消失をもたらす。未分化多能性幹細胞は、一般にアルカ
リホスファターゼ活性を有し、これは、製造業者(米国カリフォルニア州のVector
Laboratories)により説明されているように、細胞を4%パラホルムアル
デヒドで固定した後、基質としてVector Redを使用して現像することにより検
出することができる。未分化の多能性幹細胞はまた、RT−PCRにより検出されるよう
に、一般にOCT4及びTERTも発現する。
増殖させた多能性幹細胞の別の望ましい表現型は、3つの胚葉のすべて、すなわち、内
胚葉、中胚葉、及び外胚葉組織の細胞に分化する能力である。幹細胞の多能性は、例えば
、細胞をSCIDマウスに注入し、4%パラホルムアルデヒドを使用して、形成された奇
形腫を固定した後、それらを3つの胚葉からの細胞型の痕跡に関して組織学的に検査する
ことにより確認することができる。代替的に、多能性は、胚様体を形成し、この胚様体を
3つの胚葉に関連したマーカーの存在に関して評価することにより決定することができる
。
胚葉、中胚葉、及び外胚葉組織の細胞に分化する能力である。幹細胞の多能性は、例えば
、細胞をSCIDマウスに注入し、4%パラホルムアルデヒドを使用して、形成された奇
形腫を固定した後、それらを3つの胚葉からの細胞型の痕跡に関して組織学的に検査する
ことにより確認することができる。代替的に、多能性は、胚様体を形成し、この胚様体を
3つの胚葉に関連したマーカーの存在に関して評価することにより決定することができる
。
増殖させた多能性幹細胞株は、標準的なGバンド法を使用し、対応する霊長類種の発表
されている核型と比較することで、核型を決定することができる。細胞は「正常な核型」
を有することが望ましく、「正常な核型」とは、細胞が正倍数体であり、ヒト染色体がす
べて揃っておりかつ目立った変化のないことを意味する。多能性細胞は、種々のフィーダ
ー層を用いて培養中に、又はマトリックスタンパク質コート容器を用いることによって、
簡単に増殖しうる。あるいは、mTeSR(登録商標)1培地(カナダ国バンクーバーの
StemCell Technologies)のような明確な培地との組み合わせで、
化学的に明確な表面を、細胞の常用増殖のために使用してよい。多能性細胞は、酵素的、
機械的、又はEDTA(エチレンジアミンテトラ酢酸)のような種々のカルシウムキレー
ターの利用を用いて、培養プレートから簡単に取り除くことができる。あるいは、多能性
細胞を、任意のマトリックスタンパク質又はフィーダー層がない状態で、懸濁液中で増殖
させてよい。
されている核型と比較することで、核型を決定することができる。細胞は「正常な核型」
を有することが望ましく、「正常な核型」とは、細胞が正倍数体であり、ヒト染色体がす
べて揃っておりかつ目立った変化のないことを意味する。多能性細胞は、種々のフィーダ
ー層を用いて培養中に、又はマトリックスタンパク質コート容器を用いることによって、
簡単に増殖しうる。あるいは、mTeSR(登録商標)1培地(カナダ国バンクーバーの
StemCell Technologies)のような明確な培地との組み合わせで、
化学的に明確な表面を、細胞の常用増殖のために使用してよい。多能性細胞は、酵素的、
機械的、又はEDTA(エチレンジアミンテトラ酢酸)のような種々のカルシウムキレー
ターの利用を用いて、培養プレートから簡単に取り除くことができる。あるいは、多能性
細胞を、任意のマトリックスタンパク質又はフィーダー層がない状態で、懸濁液中で増殖
させてよい。
多能性幹細胞の供給源
使用が可能な多能性幹細胞の種類としては、妊娠期間中の任意の時期(必ずしもではな
いが、通常は妊娠約10〜12週よりも前)に採取した前胚性組織(例えば胚盤胞など)
、胚性組織、又は胎児組織などの、妊娠後に形成される組織に由来する多能性細胞の樹立
株が含まれる。非限定的な例は、ヒト胚性幹細胞(hESCs)又はヒト胚生殖細胞の樹
立株であり、例えば、ヒト胚性幹細胞株H1、H7、及びH9(米国ウィスコンシン州M
adisonのWiCell Research Institute)などである。フ
ィーダー細胞の不在下で既に培養された多能性幹細胞集団から採取した細胞も好適である
。また、OCT4、NANOG、Sox2、KLF4、及びZFP42等の多数の多能性
に関係する転写因子の強制発現を用いて、成体体細胞から誘導することができる誘導性多
能性細胞(IPS)又は再プログラム化された多能性細胞も好適である(Annu Re
v Genomics Hum Genet,2011,12:165〜185)。本発
明の方法に使用されるヒト胚性幹細胞は、Thomsonらによって記述されたように調
製してもよい(米国特許第5,843,780号;Science,1998,282:
1145〜1147;Curr Top Dev Biol 1998,38:133〜
165;Proc Natl Acad Sci U.S.A.1995,92:784
4〜7848)。
使用が可能な多能性幹細胞の種類としては、妊娠期間中の任意の時期(必ずしもではな
いが、通常は妊娠約10〜12週よりも前)に採取した前胚性組織(例えば胚盤胞など)
、胚性組織、又は胎児組織などの、妊娠後に形成される組織に由来する多能性細胞の樹立
株が含まれる。非限定的な例は、ヒト胚性幹細胞(hESCs)又はヒト胚生殖細胞の樹
立株であり、例えば、ヒト胚性幹細胞株H1、H7、及びH9(米国ウィスコンシン州M
adisonのWiCell Research Institute)などである。フ
ィーダー細胞の不在下で既に培養された多能性幹細胞集団から採取した細胞も好適である
。また、OCT4、NANOG、Sox2、KLF4、及びZFP42等の多数の多能性
に関係する転写因子の強制発現を用いて、成体体細胞から誘導することができる誘導性多
能性細胞(IPS)又は再プログラム化された多能性細胞も好適である(Annu Re
v Genomics Hum Genet,2011,12:165〜185)。本発
明の方法に使用されるヒト胚性幹細胞は、Thomsonらによって記述されたように調
製してもよい(米国特許第5,843,780号;Science,1998,282:
1145〜1147;Curr Top Dev Biol 1998,38:133〜
165;Proc Natl Acad Sci U.S.A.1995,92:784
4〜7848)。
多能性幹細胞からの、膵臓内胚葉系に特徴的なマーカーを発現している細胞の形成
多能性幹細胞の特徴は当業者に周知であり、多能性幹細胞の更なる特徴は、継続して同
定されている。多能性幹細胞のマーカーとして、例えば、以下のもの、すなわち、ABC
G2、cripto、FOXD3、CONNEXIN43、CONNEXIN45、OC
T4、SOX2、NANOG、hTERT、UTF1、ZFP42、SSEA−3、SS
EA−4、Tra 1−60、Tra 1−81の1つ以上の発現が挙げられる。
多能性幹細胞の特徴は当業者に周知であり、多能性幹細胞の更なる特徴は、継続して同
定されている。多能性幹細胞のマーカーとして、例えば、以下のもの、すなわち、ABC
G2、cripto、FOXD3、CONNEXIN43、CONNEXIN45、OC
T4、SOX2、NANOG、hTERT、UTF1、ZFP42、SSEA−3、SS
EA−4、Tra 1−60、Tra 1−81の1つ以上の発現が挙げられる。
本発明で用いるのに好適な多能性幹細胞としては、例えば、ヒト胚性幹細胞株H9(N
IHコード:WA09)、ヒト胚性幹細胞株H1(NIHコード:WA01)、ヒト胚性
幹細胞株H7(NIHコード:WA07)、及びヒト胚性幹細胞株SA002(Cell
artis,Sweden)が挙げられる。多能性細胞に特徴的な以下のマーカー、すな
わち、ABCG2、cripto、CD9、FOXD3、CONNEXIN43、CON
NEXIN45、OCT4、SOX2、NANOG、hTERT、UTF1、ZFP42
、SSEA−3、SSEA−4、Tra 1−60、及びTra 1−81のうちのすく
なくとも1つを発現する細胞も本発明で用いるのに好適である。
IHコード:WA09)、ヒト胚性幹細胞株H1(NIHコード:WA01)、ヒト胚性
幹細胞株H7(NIHコード:WA07)、及びヒト胚性幹細胞株SA002(Cell
artis,Sweden)が挙げられる。多能性細胞に特徴的な以下のマーカー、すな
わち、ABCG2、cripto、CD9、FOXD3、CONNEXIN43、CON
NEXIN45、OCT4、SOX2、NANOG、hTERT、UTF1、ZFP42
、SSEA−3、SSEA−4、Tra 1−60、及びTra 1−81のうちのすく
なくとも1つを発現する細胞も本発明で用いるのに好適である。
胚体内胚葉系に特徴的なマーカーは、SOX17、GATA4、HNF3β、GSC、
CER1、Nodal、FGF8、短尾奇形、Mix様ホメオボックスタンパク質、FG
F4、CD48、エオメソダーミン(EOMES)、DKK4、FGF17、GATA6
、CXCR4、C−Kit、CD99、及びOTX2からなる群から選択される。胚体内
胚葉系に特徴的なマーカーのうちの少なくとも1つを発現している細胞は本発明での使用
に好適である。本発明の一態様では、胚体内胚葉系に特徴的なマーカーを発現している細
胞は、原始線条前駆細胞である。別の態様では、胚体内胚葉系に特徴的なマーカーを発現
している細胞は、中内胚葉細胞である。別の態様では、胚体内胚葉系に特徴的なマーカー
を発現している細胞は、胚体内胚葉細胞である。
CER1、Nodal、FGF8、短尾奇形、Mix様ホメオボックスタンパク質、FG
F4、CD48、エオメソダーミン(EOMES)、DKK4、FGF17、GATA6
、CXCR4、C−Kit、CD99、及びOTX2からなる群から選択される。胚体内
胚葉系に特徴的なマーカーのうちの少なくとも1つを発現している細胞は本発明での使用
に好適である。本発明の一態様では、胚体内胚葉系に特徴的なマーカーを発現している細
胞は、原始線条前駆細胞である。別の態様では、胚体内胚葉系に特徴的なマーカーを発現
している細胞は、中内胚葉細胞である。別の態様では、胚体内胚葉系に特徴的なマーカー
を発現している細胞は、胚体内胚葉細胞である。
膵臓内胚葉系に特徴的なマーカーは、PDX1、NKX6.1、HNF1β、PTF1
α、HNF6、HNF4α、SOX9、HB9、及びPROX1からなる群から選択され
る。膵臓内胚葉系に特徴的なこれらのマーカーのうちの少なくとも1つを発現する細胞が
本発明における使用に適している。本発明の一態様では、膵臓内胚葉系統に特徴的なマー
カーを発現する細胞は、膵臓内胚葉細胞であり、PDX−1及びNKX6.1の発現はC
DX2及びSOX2の発現より実質的に高い。
α、HNF6、HNF4α、SOX9、HB9、及びPROX1からなる群から選択され
る。膵臓内胚葉系に特徴的なこれらのマーカーのうちの少なくとも1つを発現する細胞が
本発明における使用に適している。本発明の一態様では、膵臓内胚葉系統に特徴的なマー
カーを発現する細胞は、膵臓内胚葉細胞であり、PDX−1及びNKX6.1の発現はC
DX2及びSOX2の発現より実質的に高い。
膵内分泌系統に特徴的なマーカーは、NGN3、NEUROD、ISL1、PDX1、
NKX6.1、PAX4、ARX、NKX2.2、及びPAX6からなる群から選択され
る。一実施形態では、膵内分泌細胞は、以下のホルモン:インスリン、グルカゴン、ソマ
トスタチン、及び膵臓ポリペプチドのうちの少なくとも1つを発現することができる。本
発明で使用するに好適なものは、膵内分泌系の特徴を示すマーカーを少なくとも1つ発現
する細胞である。本発明の一態様において、膵内分泌系に特徴的なマーカーを発現してい
る細胞は、膵内分泌細胞である。膵内分泌細胞は、膵臓ホルモン発現細胞であってよい。
あるいは、膵内分泌細胞は膵臓ホルモン分泌細胞であってもよい。
NKX6.1、PAX4、ARX、NKX2.2、及びPAX6からなる群から選択され
る。一実施形態では、膵内分泌細胞は、以下のホルモン:インスリン、グルカゴン、ソマ
トスタチン、及び膵臓ポリペプチドのうちの少なくとも1つを発現することができる。本
発明で使用するに好適なものは、膵内分泌系の特徴を示すマーカーを少なくとも1つ発現
する細胞である。本発明の一態様において、膵内分泌系に特徴的なマーカーを発現してい
る細胞は、膵内分泌細胞である。膵内分泌細胞は、膵臓ホルモン発現細胞であってよい。
あるいは、膵内分泌細胞は膵臓ホルモン分泌細胞であってもよい。
本発明の膵内分泌細胞は、細胞系統に特徴的なマーカーを発現する細胞である。細胞系
統に特徴的なマーカーを発現する細胞は、PDX1、並びに以下の転写因子、すなわち、
NKX2.2、NKX6.1、NEUROD、ISL1、HNF3β、MAFA、PAX
4、及びPAX6のうちの少なくとも1つを発現する。本発明の一態様において、細胞系
統に特徴的なマーカーを発現する細胞は、細胞である。
統に特徴的なマーカーを発現する細胞は、PDX1、並びに以下の転写因子、すなわち、
NKX2.2、NKX6.1、NEUROD、ISL1、HNF3β、MAFA、PAX
4、及びPAX6のうちの少なくとも1つを発現する。本発明の一態様において、細胞系
統に特徴的なマーカーを発現する細胞は、細胞である。
一実施形態において、本発明は、エフリンA4又はエフリンA3を含む培地においてス
テージ5の集団を培養することによって、インスリン及びNKX6.1の発現を増強する
方法に関する。いくつかの実施形態において、インスリン及びNKX6.1の発現は、こ
の細胞集団において、未処理細胞集団におけるインスリン及びNKX6.1の発現の少な
くとも2倍に増強される。いくつかの実施形態において、ステージ5細胞集団は、CDX
2又はSOX2を実質的に発現しない。いくつかの実施形態において、ステージ5細胞集
団は、多能性細胞の段階的分化によって取得される。いくつかの実施形態において、多能
性細胞は、ヒト胚性多能性細胞である。
テージ5の集団を培養することによって、インスリン及びNKX6.1の発現を増強する
方法に関する。いくつかの実施形態において、インスリン及びNKX6.1の発現は、こ
の細胞集団において、未処理細胞集団におけるインスリン及びNKX6.1の発現の少な
くとも2倍に増強される。いくつかの実施形態において、ステージ5細胞集団は、CDX
2又はSOX2を実質的に発現しない。いくつかの実施形態において、ステージ5細胞集
団は、多能性細胞の段階的分化によって取得される。いくつかの実施形態において、多能
性細胞は、ヒト胚性多能性細胞である。
一実施形態において、本発明は、アクチビンA又はアクチビンCを含む培地においてス
テージ5細胞を培養することによって、インスリン、グルカゴン、及びグレリンの発現を
抑制する一方、ソマトスタチンの発現を増強する方法に関する。いくつかの実施形態にお
いて、処理した細胞集団は、未処理培養の少なくとも2倍のソマトスタチンを発現する。
いくつかの実施形態において、インスリンの発現は、未処理培養におけるインスリンの発
現の約半分に抑制される。いくつかの実施形態において、グルカゴンの発現は、未処理培
養におけるグルカゴンの発現の約10分の1に抑制される。いくつかの実施形態において
、グレリンの発現は、未処理培養におけるグレリンの発現の約3分の1に抑制される。い
くつかの実施形態において、ステージ5細胞は、CDX2又はSOX2を実質的に発現し
ない。いくつかの実施形態において、ステージ5細胞は、多能性細胞の段階的分化によっ
て取得される。いくつかの実施形態において、多能性細胞は、ヒト胚性多能性細胞である
。
テージ5細胞を培養することによって、インスリン、グルカゴン、及びグレリンの発現を
抑制する一方、ソマトスタチンの発現を増強する方法に関する。いくつかの実施形態にお
いて、処理した細胞集団は、未処理培養の少なくとも2倍のソマトスタチンを発現する。
いくつかの実施形態において、インスリンの発現は、未処理培養におけるインスリンの発
現の約半分に抑制される。いくつかの実施形態において、グルカゴンの発現は、未処理培
養におけるグルカゴンの発現の約10分の1に抑制される。いくつかの実施形態において
、グレリンの発現は、未処理培養におけるグレリンの発現の約3分の1に抑制される。い
くつかの実施形態において、ステージ5細胞は、CDX2又はSOX2を実質的に発現し
ない。いくつかの実施形態において、ステージ5細胞は、多能性細胞の段階的分化によっ
て取得される。いくつかの実施形態において、多能性細胞は、ヒト胚性多能性細胞である
。
一実施形態において、本発明は、セマフォリン3a又はエピゲンを含む培地においてス
テージ5細胞を処理することによって、NKX6.1の発現を増強する方法を参照する。
いくつかの実施形態において、処理した細胞集団は、処理していない培養の少なくとも2
倍のNKX6.1を発現する。いくつかの実施形態において、処理した培養におけるホル
モンの発現レベルは、未処置培養と比較して影響を受けない。いくつかの実施形態におい
て、ステージ5細胞は、CDX2又はSOX2を実質的に発現しない。いくつかの実施形
態において、ステージ5細胞は、多能性細胞の段階的分化によって取得される。いくつか
の実施形態において、多能性細胞は、ヒト胚性多能性細胞である。
テージ5細胞を処理することによって、NKX6.1の発現を増強する方法を参照する。
いくつかの実施形態において、処理した細胞集団は、処理していない培養の少なくとも2
倍のNKX6.1を発現する。いくつかの実施形態において、処理した培養におけるホル
モンの発現レベルは、未処置培養と比較して影響を受けない。いくつかの実施形態におい
て、ステージ5細胞は、CDX2又はSOX2を実質的に発現しない。いくつかの実施形
態において、ステージ5細胞は、多能性細胞の段階的分化によって取得される。いくつか
の実施形態において、多能性細胞は、ヒト胚性多能性細胞である。
いくつかの実施形態において、本発明は、エフリンA4、エフリンA3、アクチビンA
、アクチビンC、セマフォリン3a、又はエピゲンを含む培地においてステージ5細胞を
培養することを含む、多能性細胞を分化する段階的な方法に関する。いくつかの実施形態
において、ステージ5細胞は、エフリンA4又はエフリンA3を含む培地において培養さ
れる。いくつかの実施形態において、ステージ5細胞は、アクチビンA又はアクチビンC
を含む培地において培養される。いくつかの実施形態において、ステージ5細胞は、セマ
フォリン3a、又はエピゲンを含む培地において培養される。いくつかの実施形態におい
て、多能性細胞は、ヒト胚性多能性幹細胞である。
、アクチビンC、セマフォリン3a、又はエピゲンを含む培地においてステージ5細胞を
培養することを含む、多能性細胞を分化する段階的な方法に関する。いくつかの実施形態
において、ステージ5細胞は、エフリンA4又はエフリンA3を含む培地において培養さ
れる。いくつかの実施形態において、ステージ5細胞は、アクチビンA又はアクチビンC
を含む培地において培養される。いくつかの実施形態において、ステージ5細胞は、セマ
フォリン3a、又はエピゲンを含む培地において培養される。いくつかの実施形態におい
て、多能性細胞は、ヒト胚性多能性幹細胞である。
一実施形態において、本発明は、エフリンリガンドを用いて膵内胚葉細胞を培養するこ
とを含む、インスリン発現を誘導する方法に関する。いくつかの実施形態において、エフ
リンリガンドは、エフリンA3及びエフリンA4から選択される。いくつかの実施形態に
おいて、エフリンリガンドを用いて膵内胚葉細胞を培養することによって、インスリン及
びNKX6.1の発現を増強する。いくつかの実施形態において、エフリンリガンドを用
いて膵内胚葉細胞を培養することは、膵内胚葉細胞におけるインスリン及びNKX6.1
の発現を、未処理の膵内胚葉細胞におけるインスリン及びNKX6.1の発現の少なくと
も2倍に増強する。いくつかの実施形態において、膵内胚葉細胞は、CDX2又はSOX
2を実質的に発現しない。いくつかの実施形態において、膵内胚葉細胞は、多能性幹細胞
の段階的分化によって取得される。いくつかの実施形態において、本発明の方法において
使用される多能性幹細胞は、ヒト胚性多能性幹細胞である。
とを含む、インスリン発現を誘導する方法に関する。いくつかの実施形態において、エフ
リンリガンドは、エフリンA3及びエフリンA4から選択される。いくつかの実施形態に
おいて、エフリンリガンドを用いて膵内胚葉細胞を培養することによって、インスリン及
びNKX6.1の発現を増強する。いくつかの実施形態において、エフリンリガンドを用
いて膵内胚葉細胞を培養することは、膵内胚葉細胞におけるインスリン及びNKX6.1
の発現を、未処理の膵内胚葉細胞におけるインスリン及びNKX6.1の発現の少なくと
も2倍に増強する。いくつかの実施形態において、膵内胚葉細胞は、CDX2又はSOX
2を実質的に発現しない。いくつかの実施形態において、膵内胚葉細胞は、多能性幹細胞
の段階的分化によって取得される。いくつかの実施形態において、本発明の方法において
使用される多能性幹細胞は、ヒト胚性多能性幹細胞である。
一実施形態において、本発明は、本発明の方法によって調製される、インスリン及びN
K6.1を発現する細胞に関する。
K6.1を発現する細胞に関する。
一実施形態において、本発明は、スフィンゴシン−1受容体アゴニストを用いて膵内胚
葉細胞を培養することを含む、内分泌腺クラスター形成を誘発するための方法に関する。
いくつかの実施形態において、膵内胚葉細胞は、多能性幹細胞の段階的分化によって取得
される。いくつかの実施形態において、多能性細胞は、ヒト胚性多能性幹細胞である。
葉細胞を培養することを含む、内分泌腺クラスター形成を誘発するための方法に関する。
いくつかの実施形態において、膵内胚葉細胞は、多能性幹細胞の段階的分化によって取得
される。いくつかの実施形態において、多能性細胞は、ヒト胚性多能性幹細胞である。
本明細書の全体を通じて引用した刊行物は、その全体を参照により本明細書に組み込む
ものとする。本発明を以下の実施例によって更に説明するが、本発明はこれらの実施例に
より限定されるものではない。
ものとする。本発明を以下の実施例によって更に説明するが、本発明はこれらの実施例に
より限定されるものではない。
(実施例1)
インスリン発現の強力な誘発因子としてのエフリンA4の確認
本実施例は、ヒトES細胞の分化から膵内胚葉/内分泌培養の産出に関する多様なタン
パクの役割を理解するために実施された。
インスリン発現の強力な誘発因子としてのエフリンA4の確認
本実施例は、ヒトES細胞の分化から膵内胚葉/内分泌培養の産出に関する多様なタン
パクの役割を理解するために実施された。
ヒト胚性幹細胞株H1(hESC H1、継代40)の細胞は、10μMのY2763
2(ロック阻害剤、カタログ番号Y0503、米国ミズーリ州セントルイスのSigma
Aldrich)を補充したmTeSR(登録商標)1培地(カナダ国バンクーバーのS
temCell Technologies)において、MATRIGEL(商標)(1
:30希釈;米国ニュージャージー州のBD Biosciences)で被覆された皿
上に、1×105細胞/cm2で、単一細胞として播種した。播種の48時間後に、培養物
を、不完全なPBS(Mg又はCaを含まないリン酸緩衝生理食塩水)中で洗浄した。培
養物は、以下のように膵内胚葉/内分泌系に分化した:
a)ステージ1(胚体内胚葉(DE)−3日):細胞は、ステージ1培地(0.1%の
無脂肪酸BSA(カタログ番号68700,米国アイオワ州アンケニーのProlian
t)、0.0012g/mLの重炭酸ナトリウム(カタログ番号S3187、米国ミズー
リ州セントルイスのSigmaAldrich)、1X GlutaMax(商標)(I
nvitrogen、カタログ番号35050−079)、4.5mMのD−グルコース
(SigmaAldrich、カタログ番号G8769)、100ng/mLのGDF8
(米国ミネソタ州ミネアポリスのR&D Systems)及び1μMのMCX化合物(
GSK3B阻害剤、14−Prop−2−エン−1−イル−3,5,7,14,17,2
3,27−へプタアザテトラシクロ[19.3.1.1〜2,6〜.1〜8,12〜]へ
プタコサ−1(25),2(27),3,5,8(26),9,11,21,23−ノナ
エン−16−オン、米国特許出願公開第2010−0015711号;参照によりその全
体を本明細書に組み入れる)を補充したMCDB−131培地(カタログ番号10372
−019、米国カリフォルニア州カールスバッドのInvitrogen)において1日
間培養した。次いで、細胞は、0.1%の無脂肪酸BSA、0.0012g/mLの重炭
酸ナトリウム、1X GlutaMax(商標)、4.5mMのD−グルコース、100
ng/mLのGDF8、及び0.1μMのMCX化合物を補充したMCDB−131倍地
でもう1日培養した。次いで、細胞は、0.1%の無脂肪酸BSA、0.0012g/m
Lの重炭酸ナトリウム、1X GlutaMax(商標)、4.5mMのD−グルコース
、及び100ng/mLのGDF8を補充したMCDB−131倍地でもう1日培養し、
次いで、
b)ステージ2(前駆腸管−2日):細胞は、0.1%の無脂肪酸BSA、0.001
2g/mLの重炭酸ナトリウム、1X GlutaMax(商標)、4.5mMのD−グ
ルコース、0.25mMのアスコルビン酸(米国ミズーリ州セントルイスのSigma)
、及び25ng/mLのFGF7(米国ミネソタ州ミネアポリスのR & D Syst
ems)を補充したMCDB−131培地で2日間処理し、次いで、
c)ステージ3(前腸−2日):細胞は、1日目は、ITS−Xの1:200希釈(I
nvitrogen)、4.5mMのGlucose、1X GlutaMax(商標)
、0.0017g/mLの重炭酸ナトリウム、2%の無脂肪酸BSA、0.25μMのS
ANT−1(米国ミズーリ州セントルイスのSigma)、10ng/mLのアクチビン
−A(R & D Systems)、1μMレチノイン酸(RA、Sigma)、25
ng/mLのFGF7、0.25mMのアスコルビン酸、200nMのTPB(PKC賦
活体;カタログ番号565740;米国ニュージャージー州ギブスタウンのEMD Ch
emicals)、10μMのフォルスコリン(FSK、Sigma)、及び100nM
のLDN(BMP受容体阻害剤;カタログ番号04−0019;米国カリフォルニア州サ
ンディエゴのStemgent)を補充したMCDB−131培地で処理した。2日目、
細胞は、ITS−Xの1:200希釈、4.5mMのグルコース、1X GlutaMa
x(商標)、0.0017g/mLの重炭酸ナトリウム、2%の無脂肪酸BSA、0.2
5μMのSANT−1、10ng/mLのアクチビンA、1μMのRA、25ng/mL
のFGF7、0.25mMのアスコルビン酸、200nMのTPB、10μMのフォルス
コリン、及び10nMのLDNを補充したMCDB−131倍地で処理し、次いで、
d)ステージ4(膵臓前腸前駆細胞−2日):細胞は、ITS−Xの1:200希釈、
4.5mMのグルコース、1X GlutaMax(商標)、0.0015g/mLの重
炭酸ナトリウム、2%の無脂肪酸BSA、0.25μMのSANT−1、50nMのRA
、50μMのLDN−193189、10μMのフォルスコリン、0.25mMのアスコ
ルビン酸、及び100nMのTPBを補充したMCDB−131倍地で2日間処理し、次
いで、
e)ステージ5(膵内胚葉/内分泌−3日):ステージ4細胞は、ITS−Xの1:2
00希釈、20mMのグルコース、1X GlutaMax(商標)、0.0015g/
mLの重炭酸ナトリウム、2%の無脂肪酸BSA、0.25μMのSANT−1、50n
MのRA、10μMのフォルスコリン、0.25mMのアスコルビン酸を補充し、2〜3
日目のみ、100nMのALk5阻害剤SD−208(Molecular Pharm
acology 2007,72:152〜161に開示される)を添加したMCDB−
131培地で3日間処理した。
2(ロック阻害剤、カタログ番号Y0503、米国ミズーリ州セントルイスのSigma
Aldrich)を補充したmTeSR(登録商標)1培地(カナダ国バンクーバーのS
temCell Technologies)において、MATRIGEL(商標)(1
:30希釈;米国ニュージャージー州のBD Biosciences)で被覆された皿
上に、1×105細胞/cm2で、単一細胞として播種した。播種の48時間後に、培養物
を、不完全なPBS(Mg又はCaを含まないリン酸緩衝生理食塩水)中で洗浄した。培
養物は、以下のように膵内胚葉/内分泌系に分化した:
a)ステージ1(胚体内胚葉(DE)−3日):細胞は、ステージ1培地(0.1%の
無脂肪酸BSA(カタログ番号68700,米国アイオワ州アンケニーのProlian
t)、0.0012g/mLの重炭酸ナトリウム(カタログ番号S3187、米国ミズー
リ州セントルイスのSigmaAldrich)、1X GlutaMax(商標)(I
nvitrogen、カタログ番号35050−079)、4.5mMのD−グルコース
(SigmaAldrich、カタログ番号G8769)、100ng/mLのGDF8
(米国ミネソタ州ミネアポリスのR&D Systems)及び1μMのMCX化合物(
GSK3B阻害剤、14−Prop−2−エン−1−イル−3,5,7,14,17,2
3,27−へプタアザテトラシクロ[19.3.1.1〜2,6〜.1〜8,12〜]へ
プタコサ−1(25),2(27),3,5,8(26),9,11,21,23−ノナ
エン−16−オン、米国特許出願公開第2010−0015711号;参照によりその全
体を本明細書に組み入れる)を補充したMCDB−131培地(カタログ番号10372
−019、米国カリフォルニア州カールスバッドのInvitrogen)において1日
間培養した。次いで、細胞は、0.1%の無脂肪酸BSA、0.0012g/mLの重炭
酸ナトリウム、1X GlutaMax(商標)、4.5mMのD−グルコース、100
ng/mLのGDF8、及び0.1μMのMCX化合物を補充したMCDB−131倍地
でもう1日培養した。次いで、細胞は、0.1%の無脂肪酸BSA、0.0012g/m
Lの重炭酸ナトリウム、1X GlutaMax(商標)、4.5mMのD−グルコース
、及び100ng/mLのGDF8を補充したMCDB−131倍地でもう1日培養し、
次いで、
b)ステージ2(前駆腸管−2日):細胞は、0.1%の無脂肪酸BSA、0.001
2g/mLの重炭酸ナトリウム、1X GlutaMax(商標)、4.5mMのD−グ
ルコース、0.25mMのアスコルビン酸(米国ミズーリ州セントルイスのSigma)
、及び25ng/mLのFGF7(米国ミネソタ州ミネアポリスのR & D Syst
ems)を補充したMCDB−131培地で2日間処理し、次いで、
c)ステージ3(前腸−2日):細胞は、1日目は、ITS−Xの1:200希釈(I
nvitrogen)、4.5mMのGlucose、1X GlutaMax(商標)
、0.0017g/mLの重炭酸ナトリウム、2%の無脂肪酸BSA、0.25μMのS
ANT−1(米国ミズーリ州セントルイスのSigma)、10ng/mLのアクチビン
−A(R & D Systems)、1μMレチノイン酸(RA、Sigma)、25
ng/mLのFGF7、0.25mMのアスコルビン酸、200nMのTPB(PKC賦
活体;カタログ番号565740;米国ニュージャージー州ギブスタウンのEMD Ch
emicals)、10μMのフォルスコリン(FSK、Sigma)、及び100nM
のLDN(BMP受容体阻害剤;カタログ番号04−0019;米国カリフォルニア州サ
ンディエゴのStemgent)を補充したMCDB−131培地で処理した。2日目、
細胞は、ITS−Xの1:200希釈、4.5mMのグルコース、1X GlutaMa
x(商標)、0.0017g/mLの重炭酸ナトリウム、2%の無脂肪酸BSA、0.2
5μMのSANT−1、10ng/mLのアクチビンA、1μMのRA、25ng/mL
のFGF7、0.25mMのアスコルビン酸、200nMのTPB、10μMのフォルス
コリン、及び10nMのLDNを補充したMCDB−131倍地で処理し、次いで、
d)ステージ4(膵臓前腸前駆細胞−2日):細胞は、ITS−Xの1:200希釈、
4.5mMのグルコース、1X GlutaMax(商標)、0.0015g/mLの重
炭酸ナトリウム、2%の無脂肪酸BSA、0.25μMのSANT−1、50nMのRA
、50μMのLDN−193189、10μMのフォルスコリン、0.25mMのアスコ
ルビン酸、及び100nMのTPBを補充したMCDB−131倍地で2日間処理し、次
いで、
e)ステージ5(膵内胚葉/内分泌−3日):ステージ4細胞は、ITS−Xの1:2
00希釈、20mMのグルコース、1X GlutaMax(商標)、0.0015g/
mLの重炭酸ナトリウム、2%の無脂肪酸BSA、0.25μMのSANT−1、50n
MのRA、10μMのフォルスコリン、0.25mMのアスコルビン酸を補充し、2〜3
日目のみ、100nMのALk5阻害剤SD−208(Molecular Pharm
acology 2007,72:152〜161に開示される)を添加したMCDB−
131培地で3日間処理した。
ステージ5の1日目に、以下の表Iに列挙された因子が培地内に混合され、S5(ステ
ージ5の3日目)が完了した後、関連の膵内胚葉/内分泌遺伝子のPCR分析のためにm
RNAが収集された。対照として、培養物は、上記に列挙したS5培地のみで処理された
。トータルRNAは、RNeasy Mini Kit(米国カリフォルニア州バレンシ
アのQiagen)を用いて抽出し、製造元の指示に従ってHigh Capacity
cDNA Reverse Transcription Kit(米国カリフォルニ
ア州フォスターシティのApplied Biosystems)を使用して逆転写した
。cDNAは、カスタムのTaqman Arrays(Applied Biosys
tems)に予め充填されたTaqman Universal Master Mix
及びTaqman Gene Expression Assaysを使用して増幅した
。データは、Sequence Detection Software(Applie
d Biosystems)を使用して解析し、ΔΔCtメソッドを使用して、未分化ヒ
ト胚性幹(hES)細胞に正規化した。全てのプライマーは、Applied Bios
ystemsから購入された。
ージ5の3日目)が完了した後、関連の膵内胚葉/内分泌遺伝子のPCR分析のためにm
RNAが収集された。対照として、培養物は、上記に列挙したS5培地のみで処理された
。トータルRNAは、RNeasy Mini Kit(米国カリフォルニア州バレンシ
アのQiagen)を用いて抽出し、製造元の指示に従ってHigh Capacity
cDNA Reverse Transcription Kit(米国カリフォルニ
ア州フォスターシティのApplied Biosystems)を使用して逆転写した
。cDNAは、カスタムのTaqman Arrays(Applied Biosys
tems)に予め充填されたTaqman Universal Master Mix
及びTaqman Gene Expression Assaysを使用して増幅した
。データは、Sequence Detection Software(Applie
d Biosystems)を使用して解析し、ΔΔCtメソッドを使用して、未分化ヒ
ト胚性幹(hES)細胞に正規化した。全てのプライマーは、Applied Bios
ystemsから購入された。
図1A〜図1Gは、実施例1に記載のように、表Iに列挙されたインスリン(図1A)
、ソマトスタチン(図1B)、グレリン(図1C)、グルカゴン(図1D)、PDX−1
(図1E)、NKX6.1(図1F)、及びNGN3(図1G)の因子の存在下において
、ステージ5に分化されたヒト胚性幹細胞株H1の細胞内の以下の遺伝子の発現のリアル
タイムPCR分析からのデータを表す。
、ソマトスタチン(図1B)、グレリン(図1C)、グルカゴン(図1D)、PDX−1
(図1E)、NKX6.1(図1F)、及びNGN3(図1G)の因子の存在下において
、ステージ5に分化されたヒト胚性幹細胞株H1の細胞内の以下の遺伝子の発現のリアル
タイムPCR分析からのデータを表す。
図1に示されるように、エフリン−A4は、対照培養(図1F)に比較すると、NKX
6.1及びインスリンのmRNA発現を増強する一方、PDX−1(図1E)及びNGN
3発現(図1G)に関して最小限の影響を示す。アクチビン−A及びアクチビン−C等の
因子は、ソマトスタチン(図1B)の発現を有意に増強する一方、インスリン(図1A)
、グルカゴン(図1D)、及びグレリン(図1C)の発現を抑制した。更に、セマフォリ
ン3a及びエピゲン等の因子は、NKX6.1の発現を増強する一方、未処理培養に比較
すると、ホルモンの発現に影響を与えなかった。図1において、対照培養の異なるマーカ
ーの発現の平均レベルは、グラフ上で破線によって示される。
6.1及びインスリンのmRNA発現を増強する一方、PDX−1(図1E)及びNGN
3発現(図1G)に関して最小限の影響を示す。アクチビン−A及びアクチビン−C等の
因子は、ソマトスタチン(図1B)の発現を有意に増強する一方、インスリン(図1A)
、グルカゴン(図1D)、及びグレリン(図1C)の発現を抑制した。更に、セマフォリ
ン3a及びエピゲン等の因子は、NKX6.1の発現を増強する一方、未処理培養に比較
すると、ホルモンの発現に影響を与えなかった。図1において、対照培養の異なるマーカ
ーの発現の平均レベルは、グラフ上で破線によって示される。
(実施例2)
S5でのインスリン発現に関するエフリンの影響の検証
この実施例は、実施例1において特定された該当点の検定を説明する。具体的には、プ
ロトコルのS5でのエフリン−A3又はエフリン−A4の添加の影響を以下に列挙する。
S5でのインスリン発現に関するエフリンの影響の検証
この実施例は、実施例1において特定された該当点の検定を説明する。具体的には、プ
ロトコルのS5でのエフリン−A3又はエフリン−A4の添加の影響を以下に列挙する。
ヒト胚性幹細胞株H1(hESC H1、継代40)の細胞は、10μMのY2763
2が補充されたmTeSR(登録商標)1培地において、MATRIGEL(商標)(1
:30希釈;米国ニュージャージー州のBD Biosciences)で被覆された皿
上に、1×105細胞/cm2で、単一細胞として播種した。播種の48時間後に、培養物
を、不完全なPBS(Mg又はCaを含まないリン酸緩衝生理食塩水)中で洗浄した。培
養物は、以下のように膵内胚葉/内分泌系統に分化した:
a)ステージ1(胚体内胚葉(DE)−3日):細胞は、ステージ1の培地(上記の実
施例1を参照)で1日間培養した。次いで、細胞は、0.1%の無脂肪酸BSA、0.0
012g/mLの重炭酸ナトリウム、1X GlutaMax(商標)、4.5mMのD
−グルコース、100ng/mLのGDF8、及び0.1μMのMCX化合物を補充した
MCDB−131倍地でもう1日培養した。次いで、細胞は、0.1%の無脂肪酸BSA
、0.0012g/mLの重炭酸ナトリウム、1X GlutaMax(商標)、4.5
mMのD−グルコース、及び100ng/mLのGDF8を補充したMCDB−131倍
地でもう1日培養し、次いで、
b)ステージ2(前駆腸管−2日):細胞は、0.1%の無脂肪酸BSA、0.001
2g/mLの重炭酸ナトリウム、1X GlutaMax(商標)、4.5mMのD−グ
ルコース、0.25mMのアスコルビン酸(米国ミズーリ州のSigma)、及び25n
g/mLのFGF7(米国ミネソタ州のR & D Systems)を補充したMCD
B−131培地で2日間処理し、次いで、
c)ステージ3(前腸−2日):細胞は、1日目、1:200希釈のITS−X(米国
カリフォルニア州のInvitrogen)、4.5mMのグルコース、1X Glut
aMax(商標)、0.0017g/mLの重炭酸ナトリウム、2%の無脂肪酸BSA、
0.25μMのSANT−1(米国ミズーリ州のSigma)、10ng/mLのアクチ
ビン−A(米国ミネソタ州のR & D Systems)、1μMのレチノイン酸(米
国ミズーリ州のSigma)、25ng/mLのFGF7、0.25mMのアスコルビン
酸、200nMのTPB(PKC賦活体、カタログ番号565740、米国ニュージャー
ジー州ギブスタウンのEMD Chemicals)、10μMのフォルスコリン、及び
100nMのLDN(BMP受容体阻害剤、カタログ番号04−0019、Stemge
nt)を補充したMCDB−131培地で処理した。2日目、細胞は、ITS−Xの1:
200希釈、4.5mMのグルコース、1X GlutaMax(商標)、0.0017
g/mLの重炭酸ナトリウム、2%の無脂肪酸BSA、0.25μMのSANT−1、1
0ng/mLのアクチビン−A、1μMのRA、25ng/mLのFGF7、0.25m
Mのアスコルビン酸、200nMのTPB、10μMのフォルスコリン、及び10nMの
LDNを補充したMCDB−131倍地で処理し、次いで、
d)ステージ4(膵臓前腸前駆細胞−2日):細胞は、ITS−Xの1:200希釈、
4.5mMのグルコース、1X GlutaMax(商標)、0.0015g/mLの重
炭酸ナトリウム、2%の無脂肪酸BSA、0.25μMのSANT−1、50nMのRA
、50μMのLDN−193189、10μMのフォルスコリン、0.25mMのアスコ
ルビン酸、及び100nMのTPBを補充したMCDB−131倍地で2日間処理し、次
いで、
e)ステージ5(膵内胚葉/内分泌−3日):ステージ4細胞は、ITS−Xの1:2
00希釈;4.5mMグルコース、1X GlutaMax(商標)、0.0015g/
mLの重炭酸ナトリウム、2%の無脂肪酸BSA、0.25μMのSANT−1、50n
MのRA、10μMのフォルスコリン、0.25mMのアスコルビン酸、100nMのA
Lk5阻害剤(2〜3日目のみ)(SD−208、Molecular Pharmac
ology 2007,72:152〜161に開示)、及び+/−0〜100ng/m
Lのエフリン−A3又はエフリン−A4(米国ミネソタ州のR & D systems
)を補充したMCDB−131培地で3日間処理した。
2が補充されたmTeSR(登録商標)1培地において、MATRIGEL(商標)(1
:30希釈;米国ニュージャージー州のBD Biosciences)で被覆された皿
上に、1×105細胞/cm2で、単一細胞として播種した。播種の48時間後に、培養物
を、不完全なPBS(Mg又はCaを含まないリン酸緩衝生理食塩水)中で洗浄した。培
養物は、以下のように膵内胚葉/内分泌系統に分化した:
a)ステージ1(胚体内胚葉(DE)−3日):細胞は、ステージ1の培地(上記の実
施例1を参照)で1日間培養した。次いで、細胞は、0.1%の無脂肪酸BSA、0.0
012g/mLの重炭酸ナトリウム、1X GlutaMax(商標)、4.5mMのD
−グルコース、100ng/mLのGDF8、及び0.1μMのMCX化合物を補充した
MCDB−131倍地でもう1日培養した。次いで、細胞は、0.1%の無脂肪酸BSA
、0.0012g/mLの重炭酸ナトリウム、1X GlutaMax(商標)、4.5
mMのD−グルコース、及び100ng/mLのGDF8を補充したMCDB−131倍
地でもう1日培養し、次いで、
b)ステージ2(前駆腸管−2日):細胞は、0.1%の無脂肪酸BSA、0.001
2g/mLの重炭酸ナトリウム、1X GlutaMax(商標)、4.5mMのD−グ
ルコース、0.25mMのアスコルビン酸(米国ミズーリ州のSigma)、及び25n
g/mLのFGF7(米国ミネソタ州のR & D Systems)を補充したMCD
B−131培地で2日間処理し、次いで、
c)ステージ3(前腸−2日):細胞は、1日目、1:200希釈のITS−X(米国
カリフォルニア州のInvitrogen)、4.5mMのグルコース、1X Glut
aMax(商標)、0.0017g/mLの重炭酸ナトリウム、2%の無脂肪酸BSA、
0.25μMのSANT−1(米国ミズーリ州のSigma)、10ng/mLのアクチ
ビン−A(米国ミネソタ州のR & D Systems)、1μMのレチノイン酸(米
国ミズーリ州のSigma)、25ng/mLのFGF7、0.25mMのアスコルビン
酸、200nMのTPB(PKC賦活体、カタログ番号565740、米国ニュージャー
ジー州ギブスタウンのEMD Chemicals)、10μMのフォルスコリン、及び
100nMのLDN(BMP受容体阻害剤、カタログ番号04−0019、Stemge
nt)を補充したMCDB−131培地で処理した。2日目、細胞は、ITS−Xの1:
200希釈、4.5mMのグルコース、1X GlutaMax(商標)、0.0017
g/mLの重炭酸ナトリウム、2%の無脂肪酸BSA、0.25μMのSANT−1、1
0ng/mLのアクチビン−A、1μMのRA、25ng/mLのFGF7、0.25m
Mのアスコルビン酸、200nMのTPB、10μMのフォルスコリン、及び10nMの
LDNを補充したMCDB−131倍地で処理し、次いで、
d)ステージ4(膵臓前腸前駆細胞−2日):細胞は、ITS−Xの1:200希釈、
4.5mMのグルコース、1X GlutaMax(商標)、0.0015g/mLの重
炭酸ナトリウム、2%の無脂肪酸BSA、0.25μMのSANT−1、50nMのRA
、50μMのLDN−193189、10μMのフォルスコリン、0.25mMのアスコ
ルビン酸、及び100nMのTPBを補充したMCDB−131倍地で2日間処理し、次
いで、
e)ステージ5(膵内胚葉/内分泌−3日):ステージ4細胞は、ITS−Xの1:2
00希釈;4.5mMグルコース、1X GlutaMax(商標)、0.0015g/
mLの重炭酸ナトリウム、2%の無脂肪酸BSA、0.25μMのSANT−1、50n
MのRA、10μMのフォルスコリン、0.25mMのアスコルビン酸、100nMのA
Lk5阻害剤(2〜3日目のみ)(SD−208、Molecular Pharmac
ology 2007,72:152〜161に開示)、及び+/−0〜100ng/m
Lのエフリン−A3又はエフリン−A4(米国ミネソタ州のR & D systems
)を補充したMCDB−131培地で3日間処理した。
ステージ5の終了時、対照及びエフリン処理の培養物は、(米国マサチューセッツ州ケ
ンブリッジのMilliporeからのモルモットアンチインスリン抗体を使用して)イ
ンスリンタンパク質発現に対して固定染色された。図2は、インスリンに対して免疫染色
した細胞の画像を表す。図2Aは対照細胞、図2Bは50ng/mLのエフリンA3で処
理した細胞、図2Cは、100ng/mLのエフリンA3で処理した細胞を示す。図3は
、インスリンに対して免疫染色した細胞の画像を表す。図3Aは対照細胞、図3Bは50
ng/mLのエフリンA4で処理した細胞、図3Cは、100ng/mLのエフリンA4
で処理した細胞を示す。これらのデータは、実施例1のデータと一致して、ステージ5で
のエフリン−A3及びエフリン−A4両方の添加が、インスリンのタンパク質発現を有意
に増強したことを示す。
ンブリッジのMilliporeからのモルモットアンチインスリン抗体を使用して)イ
ンスリンタンパク質発現に対して固定染色された。図2は、インスリンに対して免疫染色
した細胞の画像を表す。図2Aは対照細胞、図2Bは50ng/mLのエフリンA3で処
理した細胞、図2Cは、100ng/mLのエフリンA3で処理した細胞を示す。図3は
、インスリンに対して免疫染色した細胞の画像を表す。図3Aは対照細胞、図3Bは50
ng/mLのエフリンA4で処理した細胞、図3Cは、100ng/mLのエフリンA4
で処理した細胞を示す。これらのデータは、実施例1のデータと一致して、ステージ5で
のエフリン−A3及びエフリン−A4両方の添加が、インスリンのタンパク質発現を有意
に増強したことを示す。
(実施例3)
S6でのスフィンゴシン−1−リン酸塩の添加は、内分泌ホルモンを含む細胞クラスタ
ー形成を大幅に加速
この実施例では、ステージ6での内分泌腺クラスター形成の進行、及び内分泌腺リッチ
クラスターの形成の加速化におけるスフィンゴシン−1−リン酸塩の影響を説明する。
S6でのスフィンゴシン−1−リン酸塩の添加は、内分泌ホルモンを含む細胞クラスタ
ー形成を大幅に加速
この実施例では、ステージ6での内分泌腺クラスター形成の進行、及び内分泌腺リッチ
クラスターの形成の加速化におけるスフィンゴシン−1−リン酸塩の影響を説明する。
ヒト胚性幹細胞株H1(hESC H1、継代40)の細胞は、10μMのY2763
2を補充したmTeSR(登録商標)1培地(カナダ国バンクーバーのStemCell
Technologies)において、MATRIGEL(商標)(1:30希釈;米
国ニュージャージー州のBD Biosciences)で被覆された皿上に、1×10
5細胞/cm2で、単一細胞として播種した。播種の48時間後に、培養物を、不完全なP
BS(Mg又はCaを含まないリン酸緩衝生理食塩水)中で洗浄した。培養物は、以下の
ように膵内胚葉/内分泌系統に分化した:
a)ステージ1(胚体内胚葉(DE)−3日):細胞は、ステージ1の培地(上記の実
施例1を参照)で1日間培養された。次いで、細胞は、0.1%の無脂肪酸BSA、0.
0012g/mLの重炭酸ナトリウム、1X GlutaMax(商標)、4.5mMの
D−グルコース、100ng/mLのGDF8、及び0.1μMのMCX化合物を補充し
たMCDB−131倍地でもう1日培養した。次いで、細胞は、0.1%の無脂肪酸BS
A、0.0012g/mLの重炭酸ナトリウム、1X GlutaMax(商標)、4.
5mMのD−グルコース、及び100ng/mLのGDF8を補充したMCDB−131
倍地でもう1日培養し、次いで、
b)ステージ2(前駆腸管−2日):細胞は、0.1%の無脂肪酸BSA、0.001
2g/mLの重炭酸ナトリウム、1X GlutaMax(商標)、4.5mMのD−グ
ルコース、0.25mMのアスコルビン酸(米国ミズーリ州のSigma)及び25ng
/mLのFGF7(米国ミネソタ州のR & D Systems)を補充したMCDB
−131培地で2日間処理し、次いで、
c)ステージ3(前腸−2日):細胞は、1日目、ITS−Xの1:200希釈(米国
カリフォルニア州のInvitrogen)、4.5mMのグルコース、1X Glut
aMax(商標)、0.0017g/mLの重炭酸ナトリウム、2%の無脂肪酸BSA、
0.25μMのSANT−1(米国ミズーリ州のSigma)、10ng/mLのアクチ
ビン−A(米国ミネソタ州のR & D Systems)、1μMのレチノイン酸(米
国ミズーリ州のSigma)、25ng/mLのFGF7、0.25mMのアスコルビン
酸、200nMのTPB(PKC賦活体、カタログ番号565740、米国ニュージャー
ジー州ギブスタウンのEMD Chemicals)、10μMのフォルスコリン(FS
K、米国ミズーリ州のSigma)、及び100nMのLDN(BMP受容体阻害剤、カ
タログ番号04−0019、米国カリフォルニア州のStemgent)を補充したMC
DB−131培地で処理した。2日目、細胞は、ITS−Xの1:200希釈、4.5m
Mのグルコース、1X GlutaMax(商標)、0.0017g/mLの重炭酸ナト
リウム、2%の無脂肪酸BSA、0.25μMのSANT−1、10ng/mLのアクチ
ビン−A、1μMのRA、25ng/mLのFGF7、0.25mMのアスコルビン酸、
200nMのTPB、及び10nMのLDNを補充したMCDB−131倍地で処理し、
次いで、
d)ステージ4(膵臓前腸前駆細胞−2日):細胞は、ITS−Xの1:200希釈、
4.5mMのグルコース、1X GlutaMax(商標)、0.0015g/mLの重
炭酸ナトリウム、2%の無脂肪酸BSA、0.25μMのSANT−1、50nMのRA
、50μMのLDN−193189、10μMのフォルスコリン、0.25mMのアスコ
ルビン酸、2ng/mLのFGF7、1ng/mLのAA、及び100nMのTPBを補
充したMCDB−131倍地で2日間処理し、次いで、
e)ステージ5(膵内胚葉/内分泌−3日):ステージ4細胞は、ITS−Xの1:2
00希釈、15mMのグルコース、1X GlutaMax(商標)、0.0015g/
mLの重炭酸ナトリウム、2%の無脂肪酸BSA、0.25μMのSANT−1、50n
MのRA、10μMのフォルスコリン、0.25mMのアスコルビン酸、及び1ng/m
LのFGF7、2〜3日目のみ100nMのALK5阻害剤SD208を添加して補充し
たMCDB−131培地で3日間処理し、次いで、
f)ステージ6(膵内胚葉−3〜10日):ステージ5細胞を、ITS−Xの1:20
0希釈、15mMのグルコース、1X GlutaMax(商標)、0.0015g/m
Lの重炭酸ナトリウム、2%の無脂肪酸BSA、0.25μMのSANT−1、50nM
のRA、0.25mMのアスコルビン酸を補充したMCDB−131倍地で3〜10日間
処理した。一部の培養物は、10μMのスフィンゴシン−1−リン酸塩(米国ミズーリ州
のSigma)を3日間添加した。
2を補充したmTeSR(登録商標)1培地(カナダ国バンクーバーのStemCell
Technologies)において、MATRIGEL(商標)(1:30希釈;米
国ニュージャージー州のBD Biosciences)で被覆された皿上に、1×10
5細胞/cm2で、単一細胞として播種した。播種の48時間後に、培養物を、不完全なP
BS(Mg又はCaを含まないリン酸緩衝生理食塩水)中で洗浄した。培養物は、以下の
ように膵内胚葉/内分泌系統に分化した:
a)ステージ1(胚体内胚葉(DE)−3日):細胞は、ステージ1の培地(上記の実
施例1を参照)で1日間培養された。次いで、細胞は、0.1%の無脂肪酸BSA、0.
0012g/mLの重炭酸ナトリウム、1X GlutaMax(商標)、4.5mMの
D−グルコース、100ng/mLのGDF8、及び0.1μMのMCX化合物を補充し
たMCDB−131倍地でもう1日培養した。次いで、細胞は、0.1%の無脂肪酸BS
A、0.0012g/mLの重炭酸ナトリウム、1X GlutaMax(商標)、4.
5mMのD−グルコース、及び100ng/mLのGDF8を補充したMCDB−131
倍地でもう1日培養し、次いで、
b)ステージ2(前駆腸管−2日):細胞は、0.1%の無脂肪酸BSA、0.001
2g/mLの重炭酸ナトリウム、1X GlutaMax(商標)、4.5mMのD−グ
ルコース、0.25mMのアスコルビン酸(米国ミズーリ州のSigma)及び25ng
/mLのFGF7(米国ミネソタ州のR & D Systems)を補充したMCDB
−131培地で2日間処理し、次いで、
c)ステージ3(前腸−2日):細胞は、1日目、ITS−Xの1:200希釈(米国
カリフォルニア州のInvitrogen)、4.5mMのグルコース、1X Glut
aMax(商標)、0.0017g/mLの重炭酸ナトリウム、2%の無脂肪酸BSA、
0.25μMのSANT−1(米国ミズーリ州のSigma)、10ng/mLのアクチ
ビン−A(米国ミネソタ州のR & D Systems)、1μMのレチノイン酸(米
国ミズーリ州のSigma)、25ng/mLのFGF7、0.25mMのアスコルビン
酸、200nMのTPB(PKC賦活体、カタログ番号565740、米国ニュージャー
ジー州ギブスタウンのEMD Chemicals)、10μMのフォルスコリン(FS
K、米国ミズーリ州のSigma)、及び100nMのLDN(BMP受容体阻害剤、カ
タログ番号04−0019、米国カリフォルニア州のStemgent)を補充したMC
DB−131培地で処理した。2日目、細胞は、ITS−Xの1:200希釈、4.5m
Mのグルコース、1X GlutaMax(商標)、0.0017g/mLの重炭酸ナト
リウム、2%の無脂肪酸BSA、0.25μMのSANT−1、10ng/mLのアクチ
ビン−A、1μMのRA、25ng/mLのFGF7、0.25mMのアスコルビン酸、
200nMのTPB、及び10nMのLDNを補充したMCDB−131倍地で処理し、
次いで、
d)ステージ4(膵臓前腸前駆細胞−2日):細胞は、ITS−Xの1:200希釈、
4.5mMのグルコース、1X GlutaMax(商標)、0.0015g/mLの重
炭酸ナトリウム、2%の無脂肪酸BSA、0.25μMのSANT−1、50nMのRA
、50μMのLDN−193189、10μMのフォルスコリン、0.25mMのアスコ
ルビン酸、2ng/mLのFGF7、1ng/mLのAA、及び100nMのTPBを補
充したMCDB−131倍地で2日間処理し、次いで、
e)ステージ5(膵内胚葉/内分泌−3日):ステージ4細胞は、ITS−Xの1:2
00希釈、15mMのグルコース、1X GlutaMax(商標)、0.0015g/
mLの重炭酸ナトリウム、2%の無脂肪酸BSA、0.25μMのSANT−1、50n
MのRA、10μMのフォルスコリン、0.25mMのアスコルビン酸、及び1ng/m
LのFGF7、2〜3日目のみ100nMのALK5阻害剤SD208を添加して補充し
たMCDB−131培地で3日間処理し、次いで、
f)ステージ6(膵内胚葉−3〜10日):ステージ5細胞を、ITS−Xの1:20
0希釈、15mMのグルコース、1X GlutaMax(商標)、0.0015g/m
Lの重炭酸ナトリウム、2%の無脂肪酸BSA、0.25μMのSANT−1、50nM
のRA、0.25mMのアスコルビン酸を補充したMCDB−131倍地で3〜10日間
処理した。一部の培養物は、10μMのスフィンゴシン−1−リン酸塩(米国ミズーリ州
のSigma)を3日間添加した。
図4A〜図4Dは、スフィンゴシン−1−リン酸塩(S1P)で処理し、1日目(図4
A)、7日目(図4B)、及び10日目に2つの異なる拡大率(図4C及び図4D)で撮
像した細胞のS6培養の位相差画像を表す。画像は、7日目に、内分泌細胞のクラスタリ
ングの明確な証拠が存在すること、10日目に、クラスターが膵内胚葉上皮の薄層によっ
て相互に分離したことを示す。
A)、7日目(図4B)、及び10日目に2つの異なる拡大率(図4C及び図4D)で撮
像した細胞のS6培養の位相差画像を表す。画像は、7日目に、内分泌細胞のクラスタリ
ングの明確な証拠が存在すること、10日目に、クラスターが膵内胚葉上皮の薄層によっ
て相互に分離したことを示す。
図5A〜図5Dは、Hb9(図5A)及びNKX6.1(図5B)に対して免疫染色、
又はインスリン(図5C)及びHb9(図5D)に対して免疫染色した細胞の画像を表す
。図5A及び図5Bは、内分泌腺クラスタリングではHb9が濃縮した一方、クラスター
周囲の膵臓上皮ではNKX6.1が濃縮したことを示す。Hb9が濃縮したクラスター内
の細胞の一部は、NKX6.1にも陽性であった。図5C及び図5Dに示されるように、
クラスターではインスリン及びHb9が濃縮した。この形態的変化は、NKX6.1+P
DX−1+リッチ上皮が内分泌腺クラスターを生じさせる膵臓の発達と密接に類似する。
それぞれの実例において、1対の画像は、同じ視野の細胞で異なるフィルターを使用して
取得された。
又はインスリン(図5C)及びHb9(図5D)に対して免疫染色した細胞の画像を表す
。図5A及び図5Bは、内分泌腺クラスタリングではHb9が濃縮した一方、クラスター
周囲の膵臓上皮ではNKX6.1が濃縮したことを示す。Hb9が濃縮したクラスター内
の細胞の一部は、NKX6.1にも陽性であった。図5C及び図5Dに示されるように、
クラスターではインスリン及びHb9が濃縮した。この形態的変化は、NKX6.1+P
DX−1+リッチ上皮が内分泌腺クラスターを生じさせる膵臓の発達と密接に類似する。
それぞれの実例において、1対の画像は、同じ視野の細胞で異なるフィルターを使用して
取得された。
図6A及び図6Bは、10μMのスフィンゴシン−1−リン酸塩(S1P)で処理し、
ステージ6の開始後3日間培養した細胞の、異なる拡大率の位相差画像を表す。これらの
画像は、ステージ6の開始後3日間だけで、内分泌腺クラスターが発現したことを示す。
これは、対照培養のクラスター形成よりも約7日間早い。
ステージ6の開始後3日間培養した細胞の、異なる拡大率の位相差画像を表す。これらの
画像は、ステージ6の開始後3日間だけで、内分泌腺クラスターが発現したことを示す。
これは、対照培養のクラスター形成よりも約7日間早い。
図6C及び図6Dは、対照細胞(図6C)、及びS1Pで処理し、NKX2.2に対し
て免疫染色した細胞(図6D)を表す。S1Pで処理した培養において、内分泌クラスタ
ーでは、NKX2.2+細胞が培養全体で均一に分布された対照培養(図6D)と比較し
て、NKX2.2+細胞でも濃縮(図6C)した。
て免疫染色した細胞(図6D)を表す。S1Pで処理した培養において、内分泌クラスタ
ーでは、NKX2.2+細胞が培養全体で均一に分布された対照培養(図6D)と比較し
て、NKX2.2+細胞でも濃縮(図6C)した。
図6C及び図6Dは、対照細胞(図6C)、及びS1Pで処理し、NKX2.2に対し
て免疫染色した細胞(図6D)を表す。S1Pで処理した培養において、内分泌クラスタ
ーでは、NKX2.2+細胞が培養全体で均一に分布された対照培養(図6D)と比較し
て、NKX2.2+細胞でも濃縮(図6C)した。
上記の開示によって提供される発明の例として、以下のものが挙げられる。
[1] エフリンリガンドを用いて膵内胚葉細胞を培養することを含む、ホルモン発現細胞におけるインスリン発現を誘発する方法。
[2] 前記エフリンリガンドを用いて前記膵内胚葉細胞を培養することが、NKX6.1の発現も強化する、[2]に記載の方法。
[3] エフリンリガンドを用いて前記膵内胚葉細胞を培養することが、非処理の膵内胚葉細胞におけるインスリン及びNKX6.1の発現と比較して、前記膵内胚葉細胞におけるインスリン及びNKX6.1の発現を強化する、[2]に記載の方法。
[4] 前記膵内胚葉細胞が、CDX2又はSOX2を実質的に発現しない[3]に記載の方法。
[5] 前記膵内胚葉細胞が、ほぼ約10%未満のCDX2又はSOX2を発現する、[4]に記載の方法。
[6] 前記エフリンリガンドが、エフリンA3又はエフリンA4である、[1]〜[5]のいずれか1項に記載の方法。
[7] 前記膵内胚葉細胞が、多能性幹細胞の段階的分化によって取得される、[6]に記載の方法。
[8] 前記多能性幹細胞が、ヒト胚性多能性幹細胞である、[7]に記載の方法。
[9] 請求項1の方法によって調製されたインスリン及びNKX6.1発現細胞。
[10] エフリンリガンドを用いて膵内胚葉細胞を培養することによって調製された細胞集団であって、前記細胞集団が、エフリンリガンドで処理していない膵内胚葉細胞と比較して、強化されたインスリン及びNKX6.1を発現する、細胞集団。
[11] 前記エフリンリガンドが、エフリンA3又はエフリンA4である、[10]に記載の細胞集団。
[12] アクチビンA又はアクチビンCを含む培地において膵内胚葉細胞を培養することを含む、ホルモン発現細胞における成長ホルモン分泌抑制ホルモンの発現を増強する方法。
[13] インスリン、グルカゴン、及びグレリンの発現が抑制される、[12]に記載の方法。
[14] アクチビンA又はアクチビンCで処理した前記膵内胚葉細胞集団が、アクチビンA又はアクチビンCで処理していない膵内胚葉細胞集団より多くの成長ホルモン分泌抑制ホルモンを発現する、[12]に記載の方法。
[15] インスリンの前記発現が、アクチビンA又はアクチビンCで処理した前記膵内胚葉細胞集団において、アクチビンA又はアクチビンCで処理していない膵内胚葉細胞集団におけるインスリンの前記発現と比較して抑制される、[14]に記載の方法。
[16] グルカゴンの前記発現が、アクチビンA又はアクチビンCで処理した前記膵内胚葉細胞集団において、アクチビンA又はアクチビンCで処理していない膵内胚葉細胞集団におけるグルカゴンの前記発現と比較して抑制される、[12]に記載の方法。
[17] グレリンの前記発現が、アクチビンA又はアクチビンCで処理した前記膵内胚葉細胞集団において、アクチビンA又はアクチビンCで処理していない膵内胚葉細胞集団におけるグレリンの前記発現と比較して抑制される、[12]に記載の方法。
[18] 前記膵内胚葉細胞が、CDX2又はSOX2を実質的に発現しない、[12]〜[18]のいずれか1項に記載の方法。
[19] アクチビンA又はアクチビンCで処理された前記膵内胚葉細胞が、多能性細胞の段階的分化によって取得される、[18]に記載の方法。
[20] 前記膵内胚葉細胞の由来元である前記多能性細胞が、ヒト胚性多能性細胞である、[19]に記載の方法。
[21] セマフォリン3a又はエピゲンを含む培地において膵内胚葉細胞を処理することによって、NKX6.1の発現を増強する方法。
[22] セマフォリン3a又はエピゲンを含む培地で処理した前記膵内胚葉細胞集団が、セマフォリン3a又はエピゲンを含む培地で処理されていない膵内胚葉細胞に比較して強化された量のNKX6.1を発現する、[21]に記載の方法。
[23] インスリン、グルカゴン、及びグレリンの発現レベルが、セマフォリン3a又はエピゲンを含む培地で処理した膵内胚葉細胞において、セマフォリン3a又はエピゲンを含む培地で処理していない膵内胚葉細胞に比較して影響を受けない、[21]に記載の方法。
[24] スフィンゴシン−1受容体アゴニストを用いて膵内分泌細胞を培養することを含む、内分泌クラスターの形成を誘導するための方法。
[25] 膵内分泌細胞を処理するために使用された前記スフィンゴシン−1受容体アゴニストが、スフィンゴシン−1−リン酸塩(S1P)である、[24]に記載の方法。
[26] 前記膵内分泌細胞が、多能性幹細胞の段階的分化によって取得される、[24]に記載の方法。
[27] 前記多能性幹細胞が、ヒト胚性多能性幹細胞である、[26]に記載の方法。
て免疫染色した細胞(図6D)を表す。S1Pで処理した培養において、内分泌クラスタ
ーでは、NKX2.2+細胞が培養全体で均一に分布された対照培養(図6D)と比較し
て、NKX2.2+細胞でも濃縮(図6C)した。
上記の開示によって提供される発明の例として、以下のものが挙げられる。
[1] エフリンリガンドを用いて膵内胚葉細胞を培養することを含む、ホルモン発現細胞におけるインスリン発現を誘発する方法。
[2] 前記エフリンリガンドを用いて前記膵内胚葉細胞を培養することが、NKX6.1の発現も強化する、[2]に記載の方法。
[3] エフリンリガンドを用いて前記膵内胚葉細胞を培養することが、非処理の膵内胚葉細胞におけるインスリン及びNKX6.1の発現と比較して、前記膵内胚葉細胞におけるインスリン及びNKX6.1の発現を強化する、[2]に記載の方法。
[4] 前記膵内胚葉細胞が、CDX2又はSOX2を実質的に発現しない[3]に記載の方法。
[5] 前記膵内胚葉細胞が、ほぼ約10%未満のCDX2又はSOX2を発現する、[4]に記載の方法。
[6] 前記エフリンリガンドが、エフリンA3又はエフリンA4である、[1]〜[5]のいずれか1項に記載の方法。
[7] 前記膵内胚葉細胞が、多能性幹細胞の段階的分化によって取得される、[6]に記載の方法。
[8] 前記多能性幹細胞が、ヒト胚性多能性幹細胞である、[7]に記載の方法。
[9] 請求項1の方法によって調製されたインスリン及びNKX6.1発現細胞。
[10] エフリンリガンドを用いて膵内胚葉細胞を培養することによって調製された細胞集団であって、前記細胞集団が、エフリンリガンドで処理していない膵内胚葉細胞と比較して、強化されたインスリン及びNKX6.1を発現する、細胞集団。
[11] 前記エフリンリガンドが、エフリンA3又はエフリンA4である、[10]に記載の細胞集団。
[12] アクチビンA又はアクチビンCを含む培地において膵内胚葉細胞を培養することを含む、ホルモン発現細胞における成長ホルモン分泌抑制ホルモンの発現を増強する方法。
[13] インスリン、グルカゴン、及びグレリンの発現が抑制される、[12]に記載の方法。
[14] アクチビンA又はアクチビンCで処理した前記膵内胚葉細胞集団が、アクチビンA又はアクチビンCで処理していない膵内胚葉細胞集団より多くの成長ホルモン分泌抑制ホルモンを発現する、[12]に記載の方法。
[15] インスリンの前記発現が、アクチビンA又はアクチビンCで処理した前記膵内胚葉細胞集団において、アクチビンA又はアクチビンCで処理していない膵内胚葉細胞集団におけるインスリンの前記発現と比較して抑制される、[14]に記載の方法。
[16] グルカゴンの前記発現が、アクチビンA又はアクチビンCで処理した前記膵内胚葉細胞集団において、アクチビンA又はアクチビンCで処理していない膵内胚葉細胞集団におけるグルカゴンの前記発現と比較して抑制される、[12]に記載の方法。
[17] グレリンの前記発現が、アクチビンA又はアクチビンCで処理した前記膵内胚葉細胞集団において、アクチビンA又はアクチビンCで処理していない膵内胚葉細胞集団におけるグレリンの前記発現と比較して抑制される、[12]に記載の方法。
[18] 前記膵内胚葉細胞が、CDX2又はSOX2を実質的に発現しない、[12]〜[18]のいずれか1項に記載の方法。
[19] アクチビンA又はアクチビンCで処理された前記膵内胚葉細胞が、多能性細胞の段階的分化によって取得される、[18]に記載の方法。
[20] 前記膵内胚葉細胞の由来元である前記多能性細胞が、ヒト胚性多能性細胞である、[19]に記載の方法。
[21] セマフォリン3a又はエピゲンを含む培地において膵内胚葉細胞を処理することによって、NKX6.1の発現を増強する方法。
[22] セマフォリン3a又はエピゲンを含む培地で処理した前記膵内胚葉細胞集団が、セマフォリン3a又はエピゲンを含む培地で処理されていない膵内胚葉細胞に比較して強化された量のNKX6.1を発現する、[21]に記載の方法。
[23] インスリン、グルカゴン、及びグレリンの発現レベルが、セマフォリン3a又はエピゲンを含む培地で処理した膵内胚葉細胞において、セマフォリン3a又はエピゲンを含む培地で処理していない膵内胚葉細胞に比較して影響を受けない、[21]に記載の方法。
[24] スフィンゴシン−1受容体アゴニストを用いて膵内分泌細胞を培養することを含む、内分泌クラスターの形成を誘導するための方法。
[25] 膵内分泌細胞を処理するために使用された前記スフィンゴシン−1受容体アゴニストが、スフィンゴシン−1−リン酸塩(S1P)である、[24]に記載の方法。
[26] 前記膵内分泌細胞が、多能性幹細胞の段階的分化によって取得される、[24]に記載の方法。
[27] 前記多能性幹細胞が、ヒト胚性多能性幹細胞である、[26]に記載の方法。
Claims (27)
- エフリンリガンドを用いて膵内胚葉細胞を培養することを含む、ホルモン発現細胞にお
けるインスリン発現を誘発する方法。 - 前記エフリンリガンドを用いて前記膵内胚葉細胞を培養することが、NKX6.1の発
現も強化する、請求項2に記載の方法。 - エフリンリガンドを用いて前記膵内胚葉細胞を培養することが、非処理の膵臓内胚葉細
胞におけるインスリン及びNKX6.1の発現と比較して、前記膵内胚葉細胞におけるイ
ンスリン及びNKX6.1の発現を強化する、請求項2に記載の方法。 - 前記膵内胚葉細胞が、CDX2又はSOX2を実質的に発現しない、請求項3に記載の
方法。 - 前記膵内胚葉細胞が、ほぼ約10%未満のCDX2又はSOX2を発現する、請求項4
に記載の方法。 - 前記エフリンリガンドが、エフリンA3又はエフリンA4である、請求項1〜5のいず
れか1項に記載の方法。 - 前記膵内胚葉細胞が、多能性幹細胞の段階的分化によって取得される、請求項6に記載
の方法。 - 前記多能性幹細胞が、ヒト胚性多能性幹細胞である、請求項7に記載の方法。
- 請求項1の方法によって調製されたインスリン及びNKX6.1発現細胞。
- エフリンリガンドを用いて膵内胚葉細胞を培養することによって調製された細胞集団で
あって、前記細胞集団が、エフリンリガンドで処理していない膵内胚葉細胞と比較して、
強化されたインスリン及びNKX6.1を発現する、細胞集団。 - 前記エフリンリガンドが、エフリンA3又はエフリンA4である、請求項10に記載の
細胞集団。 - アクチビンA又はアクチビンCを含む培地において膵臓内胚葉細胞を培養することを含
む、ホルモン発現細胞における成長ホルモン分泌抑制ホルモンの発現を増強する方法。 - インスリン、グルカゴン、及びグレリンの発現が抑制される、請求項12に記載の方法
。 - アクチビンA又はアクチビンCで処理した前記膵内胚葉細胞集団が、アクチビンA又は
アクチビンCで処理していない膵内胚葉細胞集団より多くの成長ホルモン分泌抑制ホルモ
ンを発現する、請求項12に記載の方法。 - インスリンの前記発現が、アクチビンA又はアクチビンCで処理した前記膵内胚葉細胞
集団において、アクチビンA又はアクチビンCで処理していない膵内胚葉細胞集団におけ
るインスリンの前記発現と比較して抑制される、請求項14に記載の方法。 - グルカゴンの前記発現が、アクチビンA又はアクチビンCで処理した前記膵内胚葉細胞
集団において、アクチビンA又はアクチビンCで処理していない膵内胚葉細胞集団におけ
るグルカゴンの前記発現と比較して抑制される、請求項12に記載の方法。 - グレリンの前記発現が、アクチビンA又はアクチビンCで処理した前記膵内胚葉細胞集
団において、アクチビンA又はアクチビンCで処理していない膵内胚葉細胞集団における
グレリンの前記発現と比較して抑制される、請求項12に記載の方法。 - 前記膵内胚葉細胞が、CDX2又はSOX2を実質的に発現しない、請求項12〜18
のいずれか1項に記載の方法。 - アクチビンA又はアクチビンCで処理された前記膵内胚葉細胞が、多能性細胞の段階的
分化によって取得される、請求項18に記載の方法。 - 前記膵内胚葉細胞の由来元である前記多能性細胞が、ヒト胚性多能性細胞である、請求
項19に記載の方法。 - セマフォリン3a又はエピゲンを含む培地において膵内胚葉細胞を処理することによっ
て、NKX6.1の発現を増強する方法。 - セマフォリン3a又はエピゲンを含む培地で処理した前記膵内胚葉細胞集団が、セマフ
ォリン3a又はエピゲンを含む培地で処理されていない膵内胚葉細胞に比較して強化され
た量のNKX6.1を発現する、請求項21に記載の方法。 - インスリン、グルカゴン、及びグレリンの発現レベルが、セマフォリン3a又はエピゲ
ンを含む培地で処理した膵内胚葉細胞において、セマフォリン3a又はエピゲンを含む培
地で処理していない膵内胚葉細胞に比較して影響を受けない、請求項21に記載の方法。 - スフィンゴシン−1受容体アゴニストを用いて膵内分泌細胞を培養することを含む、内
分泌クラスターの形成を誘導するための方法。 - 膵内分泌細胞を処理するために使用された前記スフィンゴシン−1受容体アゴニストが
、スフィンゴシン−1−リン酸塩(S1P)である、請求項24に記載の方法。 - 前記膵内分泌細胞が、多能性幹細胞の段階的分化によって取得される、請求項24に記
載の方法。 - 前記多能性幹細胞が、ヒト胚性多能性幹細胞である、請求項26に記載の方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261657160P | 2012-06-08 | 2012-06-08 | |
US61/657,160 | 2012-06-08 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015516197A Division JP6469003B2 (ja) | 2012-06-08 | 2013-06-06 | 膵内分泌細胞へのヒト胚性幹細胞の分化 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019050811A true JP2019050811A (ja) | 2019-04-04 |
Family
ID=49712621
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015516197A Active JP6469003B2 (ja) | 2012-06-08 | 2013-06-06 | 膵内分泌細胞へのヒト胚性幹細胞の分化 |
JP2018205548A Pending JP2019050811A (ja) | 2012-06-08 | 2018-10-31 | 膵内分泌細胞へのヒト胚性幹細胞の分化 |
JP2018205547A Active JP6694037B2 (ja) | 2012-06-08 | 2018-10-31 | 膵内分泌細胞へのヒト胚性幹細胞の分化 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015516197A Active JP6469003B2 (ja) | 2012-06-08 | 2013-06-06 | 膵内分泌細胞へのヒト胚性幹細胞の分化 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018205547A Active JP6694037B2 (ja) | 2012-06-08 | 2018-10-31 | 膵内分泌細胞へのヒト胚性幹細胞の分化 |
Country Status (19)
Country | Link |
---|---|
US (5) | US10066210B2 (ja) |
EP (5) | EP3957714A1 (ja) |
JP (3) | JP6469003B2 (ja) |
KR (4) | KR102468315B1 (ja) |
CN (4) | CN108103006A (ja) |
AR (1) | AR091388A1 (ja) |
AU (4) | AU2013271581B2 (ja) |
BR (1) | BR112014030682A2 (ja) |
CA (2) | CA2875786C (ja) |
DK (1) | DK3450542T3 (ja) |
ES (2) | ES2690118T3 (ja) |
IN (1) | IN2014DN10021A (ja) |
MX (1) | MX358590B (ja) |
PH (4) | PH12014502661A1 (ja) |
PL (1) | PL2859091T3 (ja) |
RU (4) | RU2650813C2 (ja) |
SG (2) | SG10201610313WA (ja) |
WO (1) | WO2013184888A1 (ja) |
ZA (3) | ZA201802251B (ja) |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9080145B2 (en) | 2007-07-01 | 2015-07-14 | Lifescan Corporation | Single pluripotent stem cell culture |
CA2695225C (en) | 2007-07-31 | 2021-06-01 | Lifescan, Inc. | Differentiation of human embryonic stem cells to pancreatic endocrine |
RU2473684C2 (ru) | 2007-11-27 | 2013-01-27 | Лайфскен, Инк. | Дифференцировка человеческих эмбриональных стволовых клеток |
KR101597731B1 (ko) | 2008-02-21 | 2016-02-26 | 센토코 오르토 바이오테크 인코포레이티드 | 세포 부착, 배양 및 탈리를 위한 방법, 표면 개질 플레이트 및 조성물 |
MX2011000125A (es) | 2008-06-30 | 2011-02-25 | Centocor Ortho Biotech Inc | Diferenciacion de celulas madre pluripotentes. |
EP2346988B1 (en) | 2008-10-31 | 2017-05-31 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells to the pancreatic endocrine lineage |
US20100124781A1 (en) | 2008-11-20 | 2010-05-20 | Shelley Nelson | Pluripotent Stem Cell Culture on Micro-Carriers |
US9969973B2 (en) | 2008-11-20 | 2018-05-15 | Janssen Biotech, Inc. | Methods and compositions for cell attachment and cultivation on planar substrates |
US10076544B2 (en) | 2009-07-20 | 2018-09-18 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
BR112012017761A2 (pt) | 2009-12-23 | 2015-09-15 | Centocor Ortho Biotech Inc | diferenciação das células-tronco embrionárias humanas |
KR101928299B1 (ko) | 2010-03-01 | 2018-12-12 | 얀센 바이오테크 인코포레이티드 | 만능 줄기 세포로부터 유래된 세포의 정제 방법 |
US9719068B2 (en) | 2010-05-06 | 2017-08-01 | Children's Hospital Medical Center | Methods and systems for converting precursor cells into intestinal tissues through directed differentiation |
EP3498825A1 (en) | 2010-05-12 | 2019-06-19 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
WO2012030538A2 (en) * | 2010-08-31 | 2012-03-08 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
MX2014007744A (es) | 2011-12-22 | 2015-01-12 | Janssen Biotech Inc | Diferenciacion de celulas madre embrionicas humanas en celulas individuales positivas de insulina hormonal. |
JP6383292B2 (ja) | 2012-03-07 | 2018-08-29 | ヤンセン バイオテツク,インコーポレーテツド | 多能性幹細胞の増殖及び維持のための明確な培地 |
SG10201610313WA (en) | 2012-06-08 | 2017-02-27 | Janssen Biotech Inc | Differentiation of human embryonic stem cells into pancreatic endocrine cells |
EP4219683A1 (en) | 2012-12-31 | 2023-08-02 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into pancreatic endocrine cells using hb9 regulators |
US10370644B2 (en) | 2012-12-31 | 2019-08-06 | Janssen Biotech, Inc. | Method for making human pluripotent suspension cultures and cells derived therefrom |
DK2938724T3 (da) * | 2012-12-31 | 2020-12-14 | Janssen Biotech Inc | Dyrkning af humane embryonale stamceller ved luft-væskegrænsefladen til differentiering til endokrine pankreasceller |
KR20150103203A (ko) | 2012-12-31 | 2015-09-09 | 얀센 바이오테크 인코포레이티드 | 췌장 내분비 세포 내로의 분화를 위한 인간 만능 세포의 현탁 및 클러스터링 |
US8859286B2 (en) | 2013-03-14 | 2014-10-14 | Viacyte, Inc. | In vitro differentiation of pluripotent stem cells to pancreatic endoderm cells (PEC) and endocrine cells |
EP4461806A3 (en) | 2013-06-11 | 2025-02-12 | President and Fellows of Harvard College | Sc-b cells and compositions and methods for generating the same |
BR112016026626A2 (pt) | 2014-05-16 | 2017-08-15 | Janssen Biotech Inc | Uso de moléculas pequenas para melhorar a expressão de mafa em células pancreáticas endócrinas |
WO2015178431A1 (ja) * | 2014-05-21 | 2015-11-26 | 国立大学法人京都大学 | 膵芽細胞の製造方法および膵芽細胞を含む膵疾患治療剤 |
CN106661548B (zh) | 2014-05-28 | 2020-12-11 | 儿童医院医疗中心 | 用于经由定向分化将前体细胞转化为胃组织的方法和系统 |
WO2016100930A1 (en) | 2014-12-18 | 2016-06-23 | President And Fellows Of Harvard College | Methods for generating stem cell-derived b cells and methods of use thereof |
WO2016100898A1 (en) | 2014-12-18 | 2016-06-23 | President And Fellows Of Harvard College | Serum-free in vitro directed differentiation protocol for generating stem cell-derived b cells and uses thereof |
DK3234110T3 (da) | 2014-12-18 | 2024-05-13 | Harvard College | FREMGANGSMÅDER TIL GENERERING AF STAMCELLE-AFLEDTE ß-CELLER OG ANVENDELSER DERAF |
EP3411471B1 (en) * | 2016-02-04 | 2021-01-06 | Société des Produits Nestlé S.A. | In vitro production of pancreatic beta cells |
MA45479A (fr) | 2016-04-14 | 2019-02-20 | Janssen Biotech Inc | Différenciation de cellules souches pluripotentes en cellules de l'endoderme de l'intestin moyen |
MA45502A (fr) * | 2016-06-21 | 2019-04-24 | Janssen Biotech Inc | Génération de cellules bêta fonctionnelles dérivées de cellules souches pluripotentes humaines ayant une respiration mitochondriale glucose-dépendante et une réponse en sécrétion d'insuline en deux phases |
US11623023B2 (en) | 2016-11-10 | 2023-04-11 | Viacyte, Inc. | PDX1 pancreatic endoderm cells in cell delivery devices and methods thereof |
JP7248586B2 (ja) | 2017-04-14 | 2023-03-29 | チルドレンズ ホスピタル メディカル センター | 複数ドナー幹細胞組成物およびそれを作製する方法 |
WO2018229179A1 (en) * | 2017-06-14 | 2018-12-20 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) | Methods for purifying endoderm and pancreatic endoderm cells derived from human embryonic stem cells |
US10391156B2 (en) | 2017-07-12 | 2019-08-27 | Viacyte, Inc. | University donor cells and related methods |
JP2020536529A (ja) | 2017-10-10 | 2020-12-17 | チルドレンズ ホスピタル メディカル センター | 食道組織および/または臓器組成物およびそれを作製する方法 |
KR102789149B1 (ko) | 2017-11-15 | 2025-03-31 | 셈마 테라퓨틱스, 인크. | 섬세포 제조 조성물 및 사용 방법 |
CN112533618A (zh) * | 2018-05-16 | 2021-03-19 | 华盛顿大学 | 用于生成内胚层谱系细胞和β细胞的方法和组合物及其用途 |
EP3833365A4 (en) | 2018-08-10 | 2022-05-11 | Vertex Pharmaceuticals Incorporated | Stem cell derived islet differentiation |
CN111848745B (zh) * | 2018-09-03 | 2022-01-18 | 山东卓东生物科技有限公司 | 表皮干细胞向胰腺细胞分化的改进方法 |
US20200080107A1 (en) | 2018-09-07 | 2020-03-12 | Crispr Therapeutics Ag | Universal donor cells |
US11014940B1 (en) | 2018-10-16 | 2021-05-25 | Celgene Corporation | Thiazolidinone and oxazolidinone compounds and formulations |
US11186556B1 (en) | 2018-10-16 | 2021-11-30 | Celgene Corporation | Salts of a thiazolidinone compound, solid forms, compositions and methods of use thereof |
US11014897B1 (en) | 2018-10-16 | 2021-05-25 | Celgene Corporation | Solid forms comprising a thiazolidinone compound, compositions and methods of use thereof |
US11013723B1 (en) | 2018-10-16 | 2021-05-25 | Celgene Corporation | Solid forms of a thiazolidinone compound, compositions and methods of use thereof |
JP2022535239A (ja) | 2019-05-31 | 2022-08-05 | ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド | 生体適合性メンブレン複合体 |
WO2020243663A1 (en) | 2019-05-31 | 2020-12-03 | W. L. Gore & Associates, Inc. | A biocompatible membrane composite |
CN114401752B (zh) | 2019-05-31 | 2023-04-04 | W.L.戈尔及同仁股份有限公司 | 具有受控氧扩散距离的细胞封装装置 |
US12310830B2 (en) | 2019-05-31 | 2025-05-27 | W. L. Gore & Associates, Inc. | Biocompatible membrane composite |
MX2022002663A (es) | 2019-09-05 | 2022-04-07 | Crispr Therapeutics Ag | Celulas donantes universales. |
JP2022547505A (ja) | 2019-09-05 | 2022-11-14 | クリスパー セラピューティクス アクチェンゲゼルシャフト | ユニバーサルドナー細胞 |
JP7709737B2 (ja) * | 2019-10-21 | 2025-07-17 | オリヅルセラピューティクス株式会社 | 増殖抑制剤 |
US11566230B2 (en) | 2020-12-31 | 2023-01-31 | Crispr Therapeutics Ag | Universal donor cells |
CN114634904B (zh) * | 2022-05-17 | 2022-09-13 | 天津外泌体科技有限公司 | 高纯度胰腺祖细胞的产生方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012507292A (ja) * | 2008-10-31 | 2012-03-29 | ヤンセン バイオテツク,インコーポレーテツド | ヒト胚性幹細胞の膵内分泌系への分化 |
JP2015519907A (ja) * | 2012-06-08 | 2015-07-16 | ヤンセン バイオテツク,インコーポレーテツド | 膵内分泌細胞へのヒト胚性幹細胞の分化 |
Family Cites Families (271)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3209652A (en) | 1961-03-30 | 1965-10-05 | Burgsmueller Karl | Thread whirling method |
AT326803B (de) | 1968-08-26 | 1975-12-29 | Binder Fa G | Maschenware sowie verfahren zur herstellung derselben |
US3935067A (en) | 1974-11-22 | 1976-01-27 | Wyo-Ben Products, Inc. | Inorganic support for culture media |
CA1201400A (en) | 1982-04-16 | 1986-03-04 | Joel L. Williams | Chemically specific surfaces for influencing cell activity during culture |
US4499802A (en) | 1982-09-29 | 1985-02-19 | Container Graphics Corporation | Rotary cutting die with scrap ejection |
US4537773A (en) | 1983-12-05 | 1985-08-27 | E. I. Du Pont De Nemours And Company | α-Aminoboronic acid derivatives |
US4557264A (en) | 1984-04-09 | 1985-12-10 | Ethicon Inc. | Surgical filament from polypropylene blended with polyethylene |
US5089396A (en) | 1985-10-03 | 1992-02-18 | Genentech, Inc. | Nucleic acid encoding β chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid |
US5215893A (en) | 1985-10-03 | 1993-06-01 | Genentech, Inc. | Nucleic acid encoding the ba chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid |
US4737578A (en) | 1986-02-10 | 1988-04-12 | The Salk Institute For Biological Studies | Human inhibin |
US5863531A (en) | 1986-04-18 | 1999-01-26 | Advanced Tissue Sciences, Inc. | In vitro preparation of tubular tissue structures by stromal cell culture on a three-dimensional framework |
CA1340581C (en) | 1986-11-20 | 1999-06-08 | Joseph P. Vacanti | Chimeric neomorphogenesis of organs by controlled cellular implantation using artificial matrices |
US5759830A (en) | 1986-11-20 | 1998-06-02 | Massachusetts Institute Of Technology | Three-dimensional fibrous scaffold containing attached cells for producing vascularized tissue in vivo |
US5567612A (en) | 1986-11-20 | 1996-10-22 | Massachusetts Institute Of Technology | Genitourinary cell-matrix structure for implantation into a human and a method of making |
NZ229354A (en) | 1988-07-01 | 1990-09-26 | Becton Dickinson Co | Treating polymer surfaces with a gas plasma and then applying a layer of endothelial cells to the surface |
EP0363125A3 (en) | 1988-10-03 | 1990-08-16 | Hana Biologics Inc. | Proliferated pancreatic endocrine cell product and process |
SU1767433A1 (ru) | 1989-11-27 | 1992-10-07 | Пермский государственный медицинский институт | Способ определени инсулинорезистентности имунного генеза у больных сахарным диабетом I типа |
US5837539A (en) | 1990-11-16 | 1998-11-17 | Osiris Therapeutics, Inc. | Monoclonal antibodies for human mesenchymal stem cells |
KR100249937B1 (ko) | 1991-04-25 | 2000-04-01 | 나가야마 오사무 | 인간 인터루킨-6 수용체에 대한 재구성 인간 항체 |
US5449383A (en) | 1992-03-18 | 1995-09-12 | Chatelier; Ronald C. | Cell growth substrates |
GB9206861D0 (en) | 1992-03-28 | 1992-05-13 | Univ Manchester | Wound healing and treatment of fibrotic disorders |
CA2114282A1 (en) | 1993-01-28 | 1994-07-29 | Lothar Schilder | Multi-layered implant |
JP3525221B2 (ja) | 1993-02-17 | 2004-05-10 | 味の素株式会社 | 免疫抑制剤 |
AU687386B2 (en) | 1993-04-08 | 1998-02-26 | Human Cell Cultures, Inc. | Cell culturing method and medium |
US5523226A (en) | 1993-05-14 | 1996-06-04 | Biotechnology Research And Development Corp. | Transgenic swine compositions and methods |
GB9310557D0 (en) | 1993-05-21 | 1993-07-07 | Smithkline Beecham Plc | Novel process and apparatus |
TW257671B (ja) | 1993-11-19 | 1995-09-21 | Ciba Geigy | |
US6001647A (en) | 1994-04-28 | 1999-12-14 | Ixion Biotechnology, Inc. | In vitro growth of functional islets of Langerhans and in vivo uses thereof |
US6703017B1 (en) | 1994-04-28 | 2004-03-09 | Ixion Biotechnology, Inc. | Reversal of insulin-dependent diabetes by islet-producing stem cells, islet progenitor cells and islet-like structures |
US5834308A (en) | 1994-04-28 | 1998-11-10 | University Of Florida Research Foundation, Inc. | In vitro growth of functional islets of Langerhans |
US6083903A (en) | 1994-10-28 | 2000-07-04 | Leukosite, Inc. | Boronic ester and acid compounds, synthesis and uses |
DE69525971T3 (de) | 1994-12-29 | 2013-01-10 | Chugai Seiyaku K.K. | Verwendung eines pm-1 antikörpers oder eines mh 166 antikörpers zur verstärkung des anti-tumor-effektes von cisplatin oder carboplatin |
US5843780A (en) | 1995-01-20 | 1998-12-01 | Wisconsin Alumni Research Foundation | Primate embryonic stem cells |
US5718922A (en) | 1995-05-31 | 1998-02-17 | Schepens Eye Research Institute, Inc. | Intravitreal microsphere drug delivery and method of preparation |
US5908782A (en) | 1995-06-05 | 1999-06-01 | Osiris Therapeutics, Inc. | Chemically defined medium for human mesenchymal stem cells |
US5681561A (en) | 1995-06-07 | 1997-10-28 | Life Medical Sciences, Inc. | Compositions and methods for improving autologous fat grafting |
EP0986635A4 (en) | 1997-01-10 | 2001-11-07 | Life Technologies Inc | SERUM SUBSTITUTE FOR EMBRYONIC STEM CELLS |
PL191111B1 (pl) | 1997-04-24 | 2006-03-31 | Ortho Mcneil Pharm Inc | Podstawione imidazole, sposób ich wytwarzania, kompozycje zawierające podstawione imidazole oraz ich zastosowanie |
EP1028737B1 (en) | 1997-07-03 | 2007-04-04 | Osiris Therapeutics, Inc. | Human mesenchymal stem cells from peripheral blood |
ATE294860T1 (de) | 1997-09-16 | 2005-05-15 | Egea Biosciences Llc | Methoden zur kompletten chemischen synthese und zusammensetzung von genen und genomen |
US6670127B2 (en) | 1997-09-16 | 2003-12-30 | Egea Biosciences, Inc. | Method for assembly of a polynucleotide encoding a target polypeptide |
JP3880795B2 (ja) | 1997-10-23 | 2007-02-14 | ジェロン・コーポレーション | フィーダー細胞を含まない培養物中で、霊長類由来始原幹細胞を増殖させるための方法 |
AR014195A1 (es) | 1997-12-29 | 2001-02-07 | Ortho Mcneil Pharm Inc | Compuestos de trifenilpropanamida utiles para el tratamiento de procesos inflamatorios, composiciones anti-inflamatorias que los comprenden, ymetodos para prepararlos |
CA2320040C (en) | 1998-03-18 | 2007-05-22 | Osiris Therapeutics, Inc. | Mesenchymal stem cells for prevention and treatment of immune responses in transplantation |
MY132496A (en) | 1998-05-11 | 2007-10-31 | Vertex Pharma | Inhibitors of p38 |
US6413773B1 (en) | 1998-06-01 | 2002-07-02 | The Regents Of The University Of California | Phosphatidylinositol 3-kinase inhibitors as stimulators of endocrine differentiation |
US6667176B1 (en) | 2000-01-11 | 2003-12-23 | Geron Corporation | cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells |
US7410798B2 (en) | 2001-01-10 | 2008-08-12 | Geron Corporation | Culture system for rapid expansion of human embryonic stem cells |
US6610540B1 (en) | 1998-11-18 | 2003-08-26 | California Institute Of Technology | Low oxygen culturing of central nervous system progenitor cells |
US6413556B1 (en) | 1999-01-08 | 2002-07-02 | Sky High, Llc | Aqueous anti-apoptotic compositions |
EP1144597A2 (en) | 1999-01-21 | 2001-10-17 | Vitro Diagnostics, Inc. | Immortalized cell lines and methods of making the same |
US6815203B1 (en) | 1999-06-23 | 2004-11-09 | Joslin Diabetes Center, Inc. | Methods of making pancreatic islet cells |
US6333029B1 (en) | 1999-06-30 | 2001-12-25 | Ethicon, Inc. | Porous tissue scaffoldings for the repair of regeneration of tissue |
US6306424B1 (en) | 1999-06-30 | 2001-10-23 | Ethicon, Inc. | Foam composite for the repair or regeneration of tissue |
AU7719300A (en) | 1999-09-27 | 2001-04-30 | Ixion Biotechnology, Inc. | Reversal of insulin-dependent diabetes by islet-producing stem cells, islet progenitor cells and islet-like structures |
US6685936B2 (en) | 1999-10-12 | 2004-02-03 | Osiris Therapeutics, Inc. | Suppressor cells induced by culture with mesenchymal stem cells for treatment of immune responses in transplantation |
US20030082155A1 (en) | 1999-12-06 | 2003-05-01 | Habener Joel F. | Stem cells of the islets of langerhans and their use in treating diabetes mellitus |
WO2001042789A1 (en) | 1999-12-13 | 2001-06-14 | The Scripps Research Institute | MARKERS FOR IDENTIFICATION AND ISOLATION OF PANCREATIC ISLET α AND β CELL PROGENITORS |
US7005252B1 (en) | 2000-03-09 | 2006-02-28 | Wisconsin Alumni Research Foundation | Serum free cultivation of primate embryonic stem cells |
US7439064B2 (en) | 2000-03-09 | 2008-10-21 | Wicell Research Institute, Inc. | Cultivation of human embryonic stem cells in the absence of feeder cells or without conditioned medium |
US6436704B1 (en) | 2000-04-10 | 2002-08-20 | Raven Biotechnologies, Inc. | Human pancreatic epithelial progenitor cells and methods of isolation and use thereof |
US6458589B1 (en) | 2000-04-27 | 2002-10-01 | Geron Corporation | Hepatocyte lineage cells derived from pluripotent stem cells |
JP4621410B2 (ja) | 2000-06-26 | 2011-01-26 | Ncメディカルリサーチ株式会社 | 神経細胞へ分化しうる細胞分画の調製方法及び神経変性疾患治療薬の製造方法 |
AU2002246855B2 (en) | 2000-10-23 | 2005-12-22 | Smithkline Beecham Corporation | Novel compounds |
DE60112611T2 (de) | 2000-12-08 | 2006-06-14 | Ortho Mcneil Pharm Inc | Makroheterocyclische verbindungen als kinase inhibitoren |
AU2002230727A1 (en) | 2000-12-08 | 2002-06-18 | Ortho-Mcneil Pharmaceutical, Inc. | Indazolyl-substituted pyrroline compounds as kinase inhibitors |
US6599323B2 (en) | 2000-12-21 | 2003-07-29 | Ethicon, Inc. | Reinforced tissue implants and methods of manufacture and use |
WO2002059278A2 (en) | 2001-01-24 | 2002-08-01 | The Government Of The United States Of America, As Represented By The Secretary Of Department Of Health & Human Services | Differentiation of stem cells to pancreatic endocrine cells |
CA2435146C (en) | 2001-01-25 | 2011-03-29 | The United States Of America, Represented By The Secretary, Department Of Health And Human Services | Formulation of boronic acid compounds |
US6656488B2 (en) | 2001-04-11 | 2003-12-02 | Ethicon Endo-Surgery, Inc. | Bioabsorbable bag containing bioabsorbable materials of different bioabsorption rates for tissue engineering |
US20050054102A1 (en) | 2001-04-19 | 2005-03-10 | Anna Wobus | Method for differentiating stem cells into insulin-producing cells |
ATE421991T1 (de) | 2001-04-24 | 2009-02-15 | Ajinomoto Kk | Stammzellen und verfahren zu deren trennung |
JP2004531262A (ja) | 2001-05-15 | 2004-10-14 | ラッパポート ファミリー インスチチュート フォア リサーチ イン ザ メディカル サイエンシズ | ヒト胚性幹細胞由来インスリン産生細胞 |
US6626950B2 (en) | 2001-06-28 | 2003-09-30 | Ethicon, Inc. | Composite scaffold with post anchor for the repair and regeneration of tissue |
KR100418195B1 (ko) | 2001-07-05 | 2004-02-11 | 주식회사 우리기술 | 전력케이블의 다중절연진단장치 및 그 방법 |
GB0117583D0 (en) | 2001-07-19 | 2001-09-12 | Astrazeneca Ab | Novel compounds |
US7432104B2 (en) | 2001-08-06 | 2008-10-07 | Bresgen Inc. | Methods for the culture of human embryonic stem cells on human feeder cells |
US6617152B2 (en) | 2001-09-04 | 2003-09-09 | Corning Inc | Method for creating a cell growth surface on a polymeric substrate |
EP1298201A1 (en) | 2001-09-27 | 2003-04-02 | Cardion AG | Process for the production of cells exhibiting an islet-beta-cell-like state |
US20030138951A1 (en) | 2001-10-18 | 2003-07-24 | Li Yin | Conversion of liver stem and progenitor cells to pancreatic functional cells |
AU2002363659B2 (en) | 2001-11-15 | 2008-09-25 | Children's Medical Center Corporation | Methods of isolation, expansion and differentiation of fetal stem cells from chorionic villus, amniotic fluid, and placenta and therapeutic uses thereof |
JP4666567B2 (ja) | 2001-12-07 | 2011-04-06 | ジェロン・コーポレーション | ヒト胚幹細胞由来の膵島細胞 |
KR20120003961A (ko) | 2001-12-07 | 2012-01-11 | 사이토리 테라퓨틱스, 인크. | 처리된 리포애스퍼레이트 세포로 환자를 치료하기 위한 시스템 및 방법 |
AU2002218893A1 (en) | 2001-12-21 | 2003-07-09 | Thromb-X Nv | Compositions for the in vitro derivation and culture of embryonic stem (es) cell lines with germline transmission capability |
IL162663A0 (en) | 2001-12-28 | 2005-11-20 | Cellartis Ab | A method for the establishment of apluripotent human blastocyst-derived stem cell line |
US20030162290A1 (en) | 2002-01-25 | 2003-08-28 | Kazutomo Inoue | Method for inducing differentiation of embryonic stem cells into functioning cells |
US20030180268A1 (en) | 2002-02-05 | 2003-09-25 | Anthony Atala | Tissue engineered construct for supplementing or replacing a damaged organ |
GB0207440D0 (en) * | 2002-03-28 | 2002-05-08 | Ppl Therapeutics Scotland Ltd | Tolerogenic antigen-presenting cells |
AU2003231358A1 (en) | 2002-04-17 | 2003-10-27 | Otsuka Pharmaceutical Co., Ltd. | METHOD OF FORMING PANCREATIC Beta CELLS FROM MESENCHYMAL CELLS |
US20040161419A1 (en) | 2002-04-19 | 2004-08-19 | Strom Stephen C. | Placental stem cells and uses thereof |
JP2005529918A (ja) | 2002-05-08 | 2005-10-06 | ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ | 置換されたピロリンキナーゼ阻害剤 |
US20060003446A1 (en) | 2002-05-17 | 2006-01-05 | Gordon Keller | Mesoderm and definitive endoderm cell populations |
WO2003102134A2 (en) * | 2002-05-28 | 2003-12-11 | Becton, Dickinson And Company | Pancreatic acinar cells into insulin producing cells |
KR20050008787A (ko) | 2002-06-05 | 2005-01-21 | 얀센 파마슈티카 엔.브이. | 키나제 저해제로서의 비스인돌릴-말레이미드 유도체 |
GB0212976D0 (en) | 2002-06-06 | 2002-07-17 | Tonejet Corp Pty Ltd | Ejection method and apparatus |
CN1171991C (zh) | 2002-07-08 | 2004-10-20 | 徐如祥 | 人神经干细胞的培养方法 |
US6877147B2 (en) | 2002-07-22 | 2005-04-05 | Broadcom Corporation | Technique to assess timing delay by use of layout quality analyzer comparison |
US7838290B2 (en) | 2002-07-25 | 2010-11-23 | The Scripps Research Institute | Hematopoietic stem cells and methods of treatment of neovascular eye diseases therewith |
EP1539930A4 (en) | 2002-07-29 | 2006-08-09 | Es Cell Int Pte Ltd | METHOD IN MULTIPLE STAGES OF DIFFERENTIATION OF POSITIVE INSULIN-SENSITIVE CELLS, GLUCOSE |
WO2004016747A2 (en) | 2002-08-14 | 2004-02-26 | University Of Florida | Bone marrow cell differentiation |
EP1539928A4 (en) | 2002-09-06 | 2006-09-06 | Amcyte Inc | POSIOTIVE PANCREATIC ENDOCRINE PROGENITOR CELLS CD56 IN ADULT HUMAN BEINGS |
US9969977B2 (en) | 2002-09-20 | 2018-05-15 | Garnet Biotherapeutics | Cell populations which co-express CD49c and CD90 |
US20040062753A1 (en) | 2002-09-27 | 2004-04-01 | Alireza Rezania | Composite scaffolds seeded with mammalian cells |
AU2003285172A1 (en) | 2002-11-08 | 2004-06-03 | The Johns Hopkins University | Human embryonic stem cell cultures, and compositions and methods for growing same |
US7144999B2 (en) | 2002-11-23 | 2006-12-05 | Isis Pharmaceuticals, Inc. | Modulation of hypoxia-inducible factor 1 alpha expression |
AU2003302702B2 (en) | 2002-12-05 | 2008-08-07 | Technion Research & Development Foundation Ltd. | Cultured human pancreatic islets, and uses thereof |
ES2705683T3 (es) | 2002-12-16 | 2019-03-26 | Technion Res & Dev Foundation | Medio de cultivo de células madre pluripotentes |
US20050118148A1 (en) | 2002-12-20 | 2005-06-02 | Roland Stein | Compositions and methods related to mammalian Maf-A |
NZ541749A (en) | 2003-01-29 | 2009-06-26 | Takeda Pharmaceutical | Process for producing coated preparation comprising pioglitazone hydrochloride and a coating material |
RU2359671C2 (ru) | 2003-01-29 | 2009-06-27 | Такеда Фармасьютикал Компани Лимитед | Способ получения препарата с покрытием |
US20070155661A1 (en) | 2003-02-14 | 2007-07-05 | The Board Of Trustees Of The Leland Standord Junior University | Methods and compositions for modulating the development of stem cells |
WO2005045001A2 (en) | 2003-02-14 | 2005-05-19 | The Board Of Trustees Of The Leland Stanford Junior University | Insulin-producing cells derived from stem cells |
WO2004087885A2 (en) | 2003-03-27 | 2004-10-14 | Ixion Biotechnology, Inc. | Method for transdifferentiation of non-pancreatic stem cells to the pancreatic pathway |
WO2004090110A2 (en) | 2003-03-31 | 2004-10-21 | Bresagen Inc. | Compositions and methods for the control, differentiation and/or manipulation of pluripotent cells through a gamma-secretase signaling pathway |
US20090203141A1 (en) | 2003-05-15 | 2009-08-13 | Shi-Lung Lin | Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant RNA agents |
KR20060021908A (ko) * | 2003-06-23 | 2006-03-08 | 프라운호퍼-게젤샤프트 추르 푀르데룽 데어 안제반텐 포르슝 에 파우 | 췌장 호르몬을 생산하는 세포로 줄기세포를 분화시키는방법 |
PL2322599T3 (pl) | 2003-06-27 | 2015-10-30 | Depuy Synthes Products Inc | Komórki pozyskiwane poporodowo z tkanki sznura pępowinowego i sposoby pozyskiwania i zastosowania tych komórek do naprawy i regeneracji tkanek miękkich |
IL161903A0 (en) | 2003-07-17 | 2005-11-20 | Gamida Cell Ltd | Ex vivo progenitor and stem cell expansion for usein the treatment of disease of endodermally- deri ved organs |
ITRM20030395A1 (it) | 2003-08-12 | 2005-02-13 | Istituto Naz Per Le Malattie Infettive Lazz | Terreno di coltura per il mantenimento, la proliferazione e il differenziamento di cellule di mammifero. |
US20050042595A1 (en) | 2003-08-14 | 2005-02-24 | Martin Haas | Banking of multipotent amniotic fetal stem cells |
US7157275B2 (en) | 2003-08-15 | 2007-01-02 | Becton, Dickinson And Company | Peptides for enhanced cell attachment and growth |
EP1670900A4 (en) | 2003-08-27 | 2008-06-11 | Stemcells California Inc | ENHANCED PANCREATIC STEM CELL AND PRECURSOR CELL POPULATIONS AND METHOD OF IDENTIFYING, INSULATING AND ENRICHING SUCH POPULATIONS |
JP2007515433A (ja) | 2003-12-17 | 2007-06-14 | アラーガン インコーポレイテッド | Cyp26aおよびcyp26bの選択的阻害剤を使用するレチノイド反応性障害の処置方法 |
US20060030042A1 (en) | 2003-12-19 | 2006-02-09 | Ali Brivanlou | Maintenance of embryonic stem cells by the GSK-3 inhibitor 6-bromoindirubin-3'-oxime |
US20050266554A1 (en) | 2004-04-27 | 2005-12-01 | D Amour Kevin A | PDX1 expressing endoderm |
US7541185B2 (en) | 2003-12-23 | 2009-06-02 | Cythera, Inc. | Methods for identifying factors for differentiating definitive endoderm |
CN1946838A (zh) | 2003-12-23 | 2007-04-11 | 赛瑟拉公司 | 定形内胚层 |
SG149061A1 (en) | 2003-12-23 | 2009-01-29 | Cythera Inc | Definitive endoderm |
US7625753B2 (en) | 2003-12-23 | 2009-12-01 | Cythera, Inc. | Expansion of definitive endoderm cells |
TWI334443B (en) | 2003-12-31 | 2010-12-11 | Ind Tech Res Inst | Method of single cell culture of undifferentiated human embryonic stem cells |
US20050233446A1 (en) | 2003-12-31 | 2005-10-20 | Parsons Xuejun H | Defined media for stem cell culture |
WO2005071066A1 (en) | 2004-01-23 | 2005-08-04 | Board Of Regents, The University Of Texas System | Methods and compositions for preparing pancreatic insulin secreting cells |
US7794704B2 (en) | 2004-01-23 | 2010-09-14 | Advanced Cell Technology, Inc. | Methods for producing enriched populations of human retinal pigment epithelium cells for treatment of retinal degeneration |
GB2441530B (en) | 2004-02-12 | 2009-09-23 | Univ Newcastle | Stem Cells |
US7964401B2 (en) | 2004-02-19 | 2011-06-21 | Kyoto University | Screening method for somatic cell nuclear reprogramming substance affecting ECAT2 and ECAT3 |
JP2008500809A (ja) | 2004-03-09 | 2008-01-17 | ライフスキャン・インコーポレイテッド | インスリン産生細胞を発生させるための方法 |
CA2558486A1 (en) | 2004-03-10 | 2005-09-22 | Alberto Hayek | Compositions and methods for growth of embryonic stem cells |
KR101178786B1 (ko) | 2004-03-23 | 2012-09-07 | 다이이찌 산쿄 가부시키가이샤 | 다능성 줄기세포의 증식 방법 |
WO2005097980A2 (en) | 2004-03-26 | 2005-10-20 | Geron Corporation | New protocols for making hepatocytes from embryonic stem cells |
GB2427874B (en) | 2004-04-01 | 2008-09-10 | Wisconsin Alumni Res Found | Differentiation of stem cells to endoderm and pancreatic lineage |
EA011953B1 (ru) | 2004-04-27 | 2009-06-30 | Китера, Инк. | Pdx1-экспрессирующая энтодерма |
WO2006016999A1 (en) | 2004-07-09 | 2006-02-16 | Cythera, Inc. | Methods for identifying factors for differentiating definitive endoderm |
MX2007001772A (es) | 2004-08-13 | 2007-07-11 | Univ Georgia Res Found | Composiciones y metodos para auto-renovacion y diferenciacion de celulas troncales embrionicas humanas. |
WO2006026473A2 (en) | 2004-08-25 | 2006-03-09 | University Of Georgia Research Foundation, Inc. | METHODS AND COMPOSITIONS UTILIZING MYC AND GSK3ß TO MANIPULATE THE PLURIPOTENCY OF EMBRYONIC STEM CELLS |
DE102004043256B4 (de) | 2004-09-07 | 2013-09-19 | Rheinische Friedrich-Wilhelms-Universität Bonn | Skalierbarer Prozess zur Kultivierung undifferenzierter Stammzellen in Suspension |
GB2432846B (en) | 2004-09-08 | 2009-12-30 | Wisconsin Alumni Res Found | Medium and culture of embryonic stem cells |
MX2007002389A (es) | 2004-09-08 | 2009-02-12 | Wisconsin Alumni Res Found | Cultivo de celulas progenitoras embrionarias humanas. |
AU2006208944A1 (en) | 2005-01-28 | 2006-08-03 | Imperial College Innovations Limited | Methods for embryonic stem cell culture |
JP2008528038A (ja) | 2005-01-31 | 2008-07-31 | エス セル インターナショナル ピーティーイー リミテッド | 胚性幹細胞の指示された分化及びその利用 |
WO2006088867A2 (en) | 2005-02-15 | 2006-08-24 | Medistem Laboratories, Incorporated | Method for expansion of stem cells |
WO2006094286A2 (en) | 2005-03-04 | 2006-09-08 | John O'neil | Adult pancreatic derived stromal cells |
US20060212476A1 (en) | 2005-03-18 | 2006-09-21 | Bogle Phillip L | Method and apparatus for tracking candidate referrers |
GB0505970D0 (en) | 2005-03-23 | 2005-04-27 | Univ Edinburgh | Culture medium containing kinase inhibitor, and uses thereof |
CN100425694C (zh) | 2005-04-15 | 2008-10-15 | 北京大学 | 诱导胚胎干细胞向胰腺细胞分化的方法 |
US7998938B2 (en) | 2005-04-15 | 2011-08-16 | Geron Corporation | Cancer treatment by combined inhibition of proteasome and telomerase activities |
EP1874367B1 (en) | 2005-04-26 | 2011-07-06 | Arhus Universitet | Biocompatible material for surgical implants and cell guiding tissue culture surfaces |
JP5092124B2 (ja) | 2005-05-24 | 2012-12-05 | 国立大学法人 熊本大学 | Es細胞の分化誘導方法 |
AU2006202209B2 (en) | 2005-05-27 | 2011-04-14 | Lifescan, Inc. | Amniotic fluid derived cells |
EP1899344A1 (en) | 2005-06-10 | 2008-03-19 | Irm, Llc | Compounds that maintain pluripotency of embryonic stem cells |
EP1893746A2 (en) * | 2005-06-13 | 2008-03-05 | Novo Nordisk A/S | Modulation of cells |
WO2006138433A2 (en) | 2005-06-14 | 2006-12-28 | The Regents Of The University Of California | Induction of cell differentiation by class i bhlh polypeptides |
US20080199959A1 (en) | 2005-06-21 | 2008-08-21 | Ge Healthcare Bio-Sciences Ab | Method For Cell Culture |
KR20130100221A (ko) | 2005-06-22 | 2013-09-09 | 제론 코포레이션 | 인간 배아 줄기 세포의 현탁 배양 |
EA017545B1 (ru) | 2005-06-30 | 2013-01-30 | Янссен Фармацевтика Н.В. | Циклические анилино-пиридинотриазины в качестве ингибиторов gsk-3 |
WO2007016485A2 (en) | 2005-07-29 | 2007-02-08 | Athersys, Inc. | Use of a gsk-3 inhibitor to maintain potency of cultured cells |
GB2443370A (en) | 2005-07-29 | 2008-04-30 | Australian Stem Cell Ct Ltd | Compositions and methods for growth of pluripotent cells |
WO2007025234A2 (en) | 2005-08-26 | 2007-03-01 | The Trustees Of Columbia University In The City Of New York | Generation of pancreatic endocrine cells from primary duct cell cultures and methods of use for treatment of diabetes |
WO2007026353A2 (en) | 2005-08-29 | 2007-03-08 | Technion Research & Development Foundation Ltd. | Media for culturing stem cells |
KR20080056181A (ko) | 2005-09-02 | 2008-06-20 | 에이전시 포 사이언스, 테크놀로지 앤드 리서치 | 전구세포주의 유도 방법 |
WO2007030870A1 (en) | 2005-09-12 | 2007-03-22 | Es Cell International Pte Ltd | Cardiomyocyte production |
KR20080075494A (ko) * | 2005-09-21 | 2008-08-18 | 다스크 테크날러지, 엘엘씨 | 장기 및 조직 기능성을 위한 방법 및 조성물 |
US7807459B2 (en) * | 2005-09-27 | 2010-10-05 | Reneuron, Inc. | EphA4-positive human adult pancreatic endocrine progenitor cells |
CN101310012B (zh) | 2005-10-14 | 2012-05-09 | 明尼苏达大学董事会 | 非胚胎干细胞分化成具有胰腺表型的细胞 |
US7732202B2 (en) | 2005-10-21 | 2010-06-08 | International Stem Cell Corporation | Oxygen tension for the parthenogenic activation of human oocytes for the production of human embryonic stem cells |
EP2674485B1 (en) | 2005-10-27 | 2019-06-12 | Viacyte, Inc. | Pdx-1 expressing dorsal and ventral foregut endoderm |
UA96139C2 (uk) * | 2005-11-08 | 2011-10-10 | Дженентек, Інк. | Антитіло до нейропіліну-1 (nrp1) |
AU2006325975B2 (en) | 2005-12-13 | 2011-12-08 | Kyoto University | Nuclear reprogramming factor |
WO2007082963A1 (es) | 2006-01-18 | 2007-07-26 | Fundación Instituto Valenciano De Infertilidad | Líneas de células madre embrionarias humanas y métodos para usar las mismas |
SG10201405107YA (en) | 2006-02-23 | 2014-10-30 | Viacyte Inc | Compositions and methods useful for culturing differentiable cells |
US7695965B2 (en) * | 2006-03-02 | 2010-04-13 | Cythera, Inc. | Methods of producing pancreatic hormones |
CA2644468C (en) | 2006-03-02 | 2022-02-01 | Cythera, Inc. | Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production |
US8741643B2 (en) | 2006-04-28 | 2014-06-03 | Lifescan, Inc. | Differentiation of pluripotent stem cells to definitive endoderm lineage |
CA2984541C (en) | 2006-04-28 | 2022-04-12 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
CA2650561C (en) | 2006-05-02 | 2014-02-25 | Wisconsin Alumni Research Foundation | Method of differentiating stem cells into cells of the endoderm and pancreatic lineage |
US8685730B2 (en) | 2006-05-02 | 2014-04-01 | Wisconsin Alumni Research Foundation | Methods and devices for differentiating pluripotent stem cells into cells of the pancreatic lineage |
US9598673B2 (en) | 2006-05-19 | 2017-03-21 | Creative Medical Health | Treatment of disc degenerative disease |
WO2007139929A2 (en) | 2006-05-25 | 2007-12-06 | The Burnham Institute For Medical Research | Methods for culture and production of single cell populations of human embryonic stem cells |
US20090298169A1 (en) | 2006-06-02 | 2009-12-03 | The University Of Georgia Research Foundation | Pancreatic and Liver Endoderm Cells and Tissue by Differentiation of Definitive Endoderm Cells Obtained from Human Embryonic Stems |
CN101541953A (zh) | 2006-06-02 | 2009-09-23 | 佐治亚大学研究基金会 | 通过从人胚胎干细胞获得的定形内胚层细胞的分化得到胰和肝内胚层细胞及组织 |
WO2007149182A2 (en) | 2006-06-19 | 2007-12-27 | Geron Corporation | Differentiation and enrichment of islet-like cells from human pluripotent stem cells |
CN100494359C (zh) | 2006-06-23 | 2009-06-03 | 中日友好医院 | 神经干细胞三维立体培养体外扩增的方法 |
US20080003676A1 (en) | 2006-06-26 | 2008-01-03 | Millipore Corporation | Growth of embryonic stem cells |
EP2046946B8 (en) | 2006-06-26 | 2017-01-25 | Lifescan, Inc. | Pluripotent stem cell culture |
GB2454386B (en) | 2006-07-06 | 2011-07-06 | Es Cell Int Pte Ltd | Method for embryonic stem cell culture on a positively charged support surface |
AU2007277364B2 (en) | 2006-07-26 | 2010-08-12 | Viacyte, Inc. | Methods of producing pancreatic hormones |
EP2059586B1 (en) | 2006-08-02 | 2016-07-20 | Technion Research & Development Foundation Ltd. | Methods of expanding embryonic stem cells in a suspension culture |
KR101331510B1 (ko) | 2006-08-30 | 2013-11-20 | 재단법인서울대학교산학협력재단 | 저농도의 포도당을 함유하는 인간 배아줄기세포용 배지조성물 및 이를 이용한 인간 배아 줄기세포로부터 인슐린생산 세포 또는 세포괴로 분화시키는 방법, 그리고그로부터 유도된 인슐린 생산 세포 또는 세포괴 |
JP2008099662A (ja) | 2006-09-22 | 2008-05-01 | Institute Of Physical & Chemical Research | 幹細胞の培養方法 |
US20080091234A1 (en) | 2006-09-26 | 2008-04-17 | Kladakis Stephanie M | Method for modifying a medical implant surface for promoting tissue growth |
WO2008048647A1 (en) | 2006-10-17 | 2008-04-24 | Cythera, Inc. | Modulation of the phosphatidylinositol-3-kinase pathway in the differentiation of human embryonic stem cells |
CA2667053C (en) | 2006-10-17 | 2015-04-28 | Stiefel Laboratories, Inc. | Talarazole metabolites |
US8835163B2 (en) | 2006-10-18 | 2014-09-16 | The Board Of Trustees Of The University Of Illinois | Embryonic-like stem cells derived from adult human peripheral blood and methods of use |
JP5067949B2 (ja) | 2006-11-09 | 2012-11-07 | 独立行政法人国立国際医療研究センター | 霊長類動物胚性幹細胞の培養及び継代方法、並びにその分化誘導方法 |
TW200836749A (en) | 2007-01-09 | 2008-09-16 | Vioquest Pharmaceuticals Inc | Compositions including triciribine and bortezomib and derivatives thereof and methods of use thereof |
EP1947193A1 (en) * | 2007-01-17 | 2008-07-23 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Screening method for anti-diabetic compounds |
AU2008211103B2 (en) | 2007-01-30 | 2014-05-08 | University Of Georgia Research Foundation, Inc. | Early mesoderm cells, a stable population of mesendoderm cells that has utility for generation of endoderm and mesoderm lineages and multipotent migratory cells (MMC) |
GB0703188D0 (en) | 2007-02-19 | 2007-03-28 | Roger Land Building | Large scale production of stem cells |
US20090053182A1 (en) | 2007-05-25 | 2009-02-26 | Medistem Laboratories, Inc. | Endometrial stem cells and methods of making and using same |
JP5991796B2 (ja) | 2007-06-29 | 2016-09-14 | セルラー ダイナミクス インターナショナル, インコーポレイテッド | 胚性幹細胞培養のための自動化された方法および装置 |
JP5738591B2 (ja) * | 2007-07-18 | 2015-06-24 | ライフスキャン・インコーポレイテッドLifescan,Inc. | ヒト胚幹細胞の分化 |
PL2185691T3 (pl) | 2007-07-31 | 2018-08-31 | Lifescan, Inc. | Różnicowanie pluripotencjalnych komórek macierzystych poprzez zastosowanie ludzkich komórek odżywczych |
CA2695225C (en) | 2007-07-31 | 2021-06-01 | Lifescan, Inc. | Differentiation of human embryonic stem cells to pancreatic endocrine |
AU2008291930B2 (en) | 2007-08-24 | 2014-04-17 | Slotervaart Participaties Bv | Compositions for the treatment of neoplastic diseases |
US20110151447A1 (en) | 2007-11-06 | 2011-06-23 | Children's Medical Center Corporation | Method to produce induced pluripotent stem (ips) cells from non-embryonic human cells |
RU2473684C2 (ru) * | 2007-11-27 | 2013-01-27 | Лайфскен, Инк. | Дифференцировка человеческих эмбриональных стволовых клеток |
SG154367A1 (en) | 2008-01-31 | 2009-08-28 | Es Cell Int Pte Ltd | Method of differentiating stem cells |
WO2009096049A1 (ja) | 2008-02-01 | 2009-08-06 | Kyoto University | 人工多能性幹細胞由来分化細胞 |
WO2009101407A2 (en) | 2008-02-11 | 2009-08-20 | Cambridge Enterprise Limited | Improved reprogramming of mammalian cells, and the cells obtained |
KR101597731B1 (ko) | 2008-02-21 | 2016-02-26 | 센토코 오르토 바이오테크 인코포레이티드 | 세포 부착, 배양 및 탈리를 위한 방법, 표면 개질 플레이트 및 조성물 |
JPWO2009110215A1 (ja) | 2008-03-03 | 2011-07-14 | 独立行政法人科学技術振興機構 | 繊毛細胞の分化誘導方法 |
EP2271747B1 (en) | 2008-03-17 | 2016-09-07 | Agency for Science, Technology And Research | Microcarriers for pluripotent stem cell culture |
RU2359030C1 (ru) | 2008-03-19 | 2009-06-20 | Общество С Ограниченной Ответственностью "Лаборатория Клеточных Технологий" | Способ получения эндотелиальных клеток из эмбриональных стволовых клеток человека (варианты) |
US8338170B2 (en) | 2008-04-21 | 2012-12-25 | Viacyte, Inc. | Methods for purifying endoderm and pancreatic endoderm cells derived from human embryonic stem cells |
AU2008355123B2 (en) | 2008-04-21 | 2014-12-04 | Viacyte, Inc. | Methods for purifying endoderm and pancreatic endoderm cells derived from human embryonic stem cells |
US8728812B2 (en) | 2008-04-22 | 2014-05-20 | President And Fellows Of Harvard College | Compositions and methods for promoting the generation of PDX1+ pancreatic cells |
US7939322B2 (en) | 2008-04-24 | 2011-05-10 | Centocor Ortho Biotech Inc. | Cells expressing pluripotency markers and expressing markers characteristic of the definitive endoderm |
US8623648B2 (en) | 2008-04-24 | 2014-01-07 | Janssen Biotech, Inc. | Treatment of pluripotent cells |
US20090298178A1 (en) | 2008-06-03 | 2009-12-03 | D Amour Kevin Allen | Growth factors for production of definitive endoderm |
EP2993226B1 (en) | 2008-06-03 | 2020-12-16 | Viacyte, Inc. | Growth factors for production of definitive endoderm |
DE102008032236A1 (de) | 2008-06-30 | 2010-04-01 | Eberhard-Karls-Universität Tübingen | Isolierung und/oder Identifizierung von Stammzellen mit adipozytärem, chondrozytärem und pankreatischem Differenzierungspotential |
MX2011000125A (es) | 2008-06-30 | 2011-02-25 | Centocor Ortho Biotech Inc | Diferenciacion de celulas madre pluripotentes. |
KR20110025220A (ko) * | 2008-06-30 | 2011-03-09 | 센토코 오르토 바이오테크 인코포레이티드 | 만능 줄기 세포의 분화 |
US20100028307A1 (en) | 2008-07-31 | 2010-02-04 | O'neil John J | Pluripotent stem cell differentiation |
US9683215B2 (en) | 2008-08-22 | 2017-06-20 | President And Fellows Of Harvard College | Methods of reprogramming cells |
CA2742267C (en) * | 2008-10-31 | 2019-06-04 | Centocor Ortho Biotech Inc. | Differentiation of human embryonic stem cells to the pancreatic endocrine lineage |
EP2356213B1 (en) | 2008-11-04 | 2019-05-29 | Viacyte, Inc. | Stem cell aggregate suspension compositions and methods for differentiation thereof |
US8008075B2 (en) | 2008-11-04 | 2011-08-30 | Viacyte, Inc. | Stem cell aggregate suspension compositions and methods of differentiation thereof |
EP2356227B1 (en) | 2008-11-14 | 2018-03-28 | Viacyte, Inc. | Encapsulation of pancreatic cells derived from human pluripotent stem cells |
US20100124781A1 (en) | 2008-11-20 | 2010-05-20 | Shelley Nelson | Pluripotent Stem Cell Culture on Micro-Carriers |
US20110229441A1 (en) | 2008-12-05 | 2011-09-22 | Association Francaise Contre Les Myopathies | Method and Medium for Neural Differentiation of Pluripotent Cells |
US9109245B2 (en) * | 2009-04-22 | 2015-08-18 | Viacyte, Inc. | Cell compositions derived from dedifferentiated reprogrammed cells |
EP2456859A4 (en) | 2009-07-20 | 2015-03-18 | Janssen Biotech Inc | DIFFERENTIATION OF HUMAN EMBRYONIC STEM CELLS |
KR101893021B1 (ko) * | 2009-07-20 | 2018-08-29 | 얀센 바이오테크 인코포레이티드 | 인간 배아 줄기 세포의 분화 |
US10076544B2 (en) | 2009-07-20 | 2018-09-18 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US20110104805A1 (en) | 2009-10-29 | 2011-05-05 | Centocor Ortho Biotech Inc. | Pluripotent Stem Cells |
FI20096288A0 (fi) | 2009-12-04 | 2009-12-04 | Kristiina Rajala | Formulations and methods for culturing stem cells |
BR112012017761A2 (pt) * | 2009-12-23 | 2015-09-15 | Centocor Ortho Biotech Inc | diferenciação das células-tronco embrionárias humanas |
SG181685A1 (en) | 2009-12-23 | 2012-07-30 | Centocor Ortho Biotech Inc | Differentiation of human embryonic stem cells |
CA2785966C (en) * | 2009-12-29 | 2020-10-27 | Takeda Pharmaceutical Company Limited | Method for manufacturing pancreatic-hormone-producing cells |
ES2667058T3 (es) | 2010-02-03 | 2018-05-09 | Tetsuya Ishikawa | Célula madre hepática inducida y procedimiento para su producción, y aplicaciones de la célula |
EP2542666A4 (en) | 2010-03-02 | 2014-05-07 | Univ Singapore | CULTURE ADDITIVES FOR PROMOTING A STEM CELL PROGRAMMING AND DIFFERENTIATION REACTION |
WO2011123572A1 (en) | 2010-03-31 | 2011-10-06 | The Scripps Research Institute | Reprogramming cells |
EP2563908B1 (en) | 2010-04-25 | 2019-01-09 | Icahn School of Medicine at Mount Sinai | Generation of anterior foregut endoderm from pluripotent cells |
EP3498825A1 (en) | 2010-05-12 | 2019-06-19 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9085757B2 (en) * | 2010-06-17 | 2015-07-21 | Regents Of The University Of Minnesota | Production of insulin producing cells |
CA2807418C (en) | 2010-08-05 | 2017-04-04 | Wisconsin Alumni Research Foundation | Simplified basic media for human pluripotent cell culture |
WO2012018069A1 (ja) * | 2010-08-06 | 2012-02-09 | 大日本住友製薬株式会社 | 脊髄損傷治療用製剤 |
PL2611910T3 (pl) | 2010-08-31 | 2018-06-29 | Janssen Biotech, Inc | Różnicowanie ludzkich embrionalnych komórek macierzystych |
RU2673946C1 (ru) | 2010-08-31 | 2018-12-03 | Янссен Байотек, Инк. | Дифференцирование плюрипотентных стволовых клеток |
WO2012117333A1 (en) | 2011-02-28 | 2012-09-07 | Stempeutics Research Malaysia Sdn Bhd | Isolation and expansion of adult stem cells, their therapeutic composition and uses thereof |
WO2013055834A2 (en) | 2011-10-11 | 2013-04-18 | The New York Stem Cell Foundation | Er stress relievers in beta cell protection |
US9670463B2 (en) | 2011-10-14 | 2017-06-06 | Children's Medical Center Corporation | Inhibition and enhancement of reprogramming by chromatin modifying enzymes |
MX2014007744A (es) | 2011-12-22 | 2015-01-12 | Janssen Biotech Inc | Diferenciacion de celulas madre embrionicas humanas en celulas individuales positivas de insulina hormonal. |
US10519422B2 (en) | 2012-02-29 | 2019-12-31 | Riken | Method of producing human retinal pigment epithelial cells |
CN104903440B (zh) | 2012-09-03 | 2018-04-06 | 诺和诺德股份有限公司 | 使用小分子从多能干细胞产生胰内胚层 |
EP4219683A1 (en) | 2012-12-31 | 2023-08-02 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into pancreatic endocrine cells using hb9 regulators |
US8859286B2 (en) | 2013-03-14 | 2014-10-14 | Viacyte, Inc. | In vitro differentiation of pluripotent stem cells to pancreatic endoderm cells (PEC) and endocrine cells |
SG11201507510PA (en) | 2013-03-15 | 2015-10-29 | Jackson Lab | Isolation of non-embryonic stem cells and uses thereof |
CN112546231A (zh) * | 2014-07-09 | 2021-03-26 | 博笛生物科技有限公司 | 用于治疗癌症的联合治疗组合物和联合治疗方法 |
CN110582564A (zh) * | 2015-09-15 | 2019-12-17 | 新加坡科技研究局 | 从人类多能干细胞衍生肝类器官 |
JP7389980B2 (ja) * | 2018-12-06 | 2023-12-01 | 国立大学法人 琉球大学 | ヒト膵臓組織特異的幹/前駆細胞の人工作製方法 |
-
2013
- 2013-06-06 SG SG10201610313WA patent/SG10201610313WA/en unknown
- 2013-06-06 CA CA2875786A patent/CA2875786C/en active Active
- 2013-06-06 RU RU2014153529A patent/RU2650813C2/ru active
- 2013-06-06 CN CN201810037871.9A patent/CN108103006A/zh active Pending
- 2013-06-06 KR KR1020217023975A patent/KR102468315B1/ko active Active
- 2013-06-06 KR KR1020207014164A patent/KR102285014B1/ko active Active
- 2013-06-06 EP EP21193941.8A patent/EP3957714A1/en active Pending
- 2013-06-06 KR KR1020227039793A patent/KR102667288B1/ko active Active
- 2013-06-06 RU RU2018108850A patent/RU2018108850A/ru not_active Application Discontinuation
- 2013-06-06 AU AU2013271581A patent/AU2013271581B2/en active Active
- 2013-06-06 JP JP2015516197A patent/JP6469003B2/ja active Active
- 2013-06-06 ES ES13799837.3T patent/ES2690118T3/es active Active
- 2013-06-06 RU RU2018108851A patent/RU2018108851A/ru not_active Application Discontinuation
- 2013-06-06 RU RU2018108847A patent/RU2018108847A/ru not_active Application Discontinuation
- 2013-06-06 MX MX2014014986A patent/MX358590B/es active IP Right Grant
- 2013-06-06 PL PL13799837T patent/PL2859091T3/pl unknown
- 2013-06-06 DK DK18190030.9T patent/DK3450542T3/da active
- 2013-06-06 SG SG11201408124PA patent/SG11201408124PA/en unknown
- 2013-06-06 KR KR1020157000172A patent/KR102114209B1/ko active Active
- 2013-06-06 EP EP13799837.3A patent/EP2859091B1/en active Active
- 2013-06-06 WO PCT/US2013/044472 patent/WO2013184888A1/en active Application Filing
- 2013-06-06 CN CN201810037759.5A patent/CN108103005A/zh active Pending
- 2013-06-06 EP EP18191243.7A patent/EP3450543A1/en not_active Withdrawn
- 2013-06-06 CN CN201380030234.4A patent/CN104334719B/zh active Active
- 2013-06-06 ES ES18190030T patent/ES2897649T3/es active Active
- 2013-06-06 EP EP18191263.5A patent/EP3450544A1/en not_active Withdrawn
- 2013-06-06 EP EP18190030.9A patent/EP3450542B1/en active Active
- 2013-06-06 CN CN201810038231.XA patent/CN108034633B/zh active Active
- 2013-06-06 CA CA3173122A patent/CA3173122A1/en active Pending
- 2013-06-06 US US13/911,829 patent/US10066210B2/en active Active
- 2013-06-06 BR BR112014030682A patent/BR112014030682A2/pt not_active Application Discontinuation
- 2013-06-07 AR ARP130102023 patent/AR091388A1/es unknown
-
2014
- 2014-11-26 IN IN10021DEN2014 patent/IN2014DN10021A/en unknown
- 2014-11-28 PH PH12014502661A patent/PH12014502661A1/en unknown
-
2016
- 2016-11-01 US US15/340,418 patent/US10208288B2/en active Active
-
2018
- 2018-04-06 ZA ZA2018/02251A patent/ZA201802251B/en unknown
- 2018-04-06 ZA ZA2018/02253A patent/ZA201802253B/en unknown
- 2018-04-06 ZA ZA2018/02252A patent/ZA201802252B/en unknown
- 2018-06-18 PH PH12018501295A patent/PH12018501295A1/en unknown
- 2018-06-18 PH PH12018501294A patent/PH12018501294A1/en unknown
- 2018-06-18 PH PH12018501293A patent/PH12018501293A1/en unknown
- 2018-07-24 AU AU2018208647A patent/AU2018208647A1/en not_active Abandoned
- 2018-07-24 AU AU2018208650A patent/AU2018208650A1/en not_active Abandoned
- 2018-07-24 AU AU2018208646A patent/AU2018208646A1/en not_active Abandoned
- 2018-08-31 US US16/119,887 patent/US20190010465A1/en not_active Abandoned
- 2018-08-31 US US16/119,862 patent/US10519424B2/en active Active
- 2018-08-31 US US16/119,995 patent/US20190010466A1/en not_active Abandoned
- 2018-10-31 JP JP2018205548A patent/JP2019050811A/ja active Pending
- 2018-10-31 JP JP2018205547A patent/JP6694037B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012507292A (ja) * | 2008-10-31 | 2012-03-29 | ヤンセン バイオテツク,インコーポレーテツド | ヒト胚性幹細胞の膵内分泌系への分化 |
JP2015519907A (ja) * | 2012-06-08 | 2015-07-16 | ヤンセン バイオテツク,インコーポレーテツド | 膵内分泌細胞へのヒト胚性幹細胞の分化 |
Non-Patent Citations (1)
Title |
---|
J. BIOL. CHEM., vol. 287, JPN6019034145, 2012, pages 13457 - 13464, ISSN: 0004240942 * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6694037B2 (ja) | 膵内分泌細胞へのヒト胚性幹細胞の分化 | |
JP6450674B2 (ja) | ヒト胚性幹細胞の膵臓の内胚葉への分化 | |
JP2013515481A (ja) | ヒト胚性幹細胞の分化 | |
HK1209160B (en) | Differentiation of human embryonic stem cells into pancreatic endocrine cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181130 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190903 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200331 |