JP2013001184A - 空気入りタイヤ - Google Patents
空気入りタイヤ Download PDFInfo
- Publication number
- JP2013001184A JP2013001184A JP2011132213A JP2011132213A JP2013001184A JP 2013001184 A JP2013001184 A JP 2013001184A JP 2011132213 A JP2011132213 A JP 2011132213A JP 2011132213 A JP2011132213 A JP 2011132213A JP 2013001184 A JP2013001184 A JP 2013001184A
- Authority
- JP
- Japan
- Prior art keywords
- styrene
- maleic anhydride
- inner liner
- pneumatic tire
- anhydride copolymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Tires In General (AREA)
Abstract
【課題】耐空気透過性、屈曲疲労性、および耐クラック性を改善するインナーライナーを備えた空気入りタイヤを提供する。
【解決手段】空気入りタイヤ1は、タイヤ内側にインナーライナー9を備えたものであって、インナーライナー9は、スチレン−イソブチレン−スチレントリブロック共重合体99.5〜60質量%と、スチレン−無水マレイン酸共重合体0.5〜40質量%とを含有するポリマー混合物からなるポリマーシートで構成され、かつタイヤ最大幅位置からベルト層端の対応位置Luに亘るバットレス領域Rsの平均厚さGsと、タイヤ最大幅位置からビードトウに亘るビード領域Rbの平均厚さGbとの比(Gs/Gb)が0.3〜0.75である。
【選択図】図1
【解決手段】空気入りタイヤ1は、タイヤ内側にインナーライナー9を備えたものであって、インナーライナー9は、スチレン−イソブチレン−スチレントリブロック共重合体99.5〜60質量%と、スチレン−無水マレイン酸共重合体0.5〜40質量%とを含有するポリマー混合物からなるポリマーシートで構成され、かつタイヤ最大幅位置からベルト層端の対応位置Luに亘るバットレス領域Rsの平均厚さGsと、タイヤ最大幅位置からビードトウに亘るビード領域Rbの平均厚さGbとの比(Gs/Gb)が0.3〜0.75である。
【選択図】図1
Description
本発明は、インナーライナーを備えた空気入りタイヤに関する。
近年、車の低燃費化に対する強い社会的要請から、タイヤの軽量化が図られている。タイヤ部材のなかでも、タイヤ半径方向の内側に配置され、空気入りタイヤ内部から外部への空気の漏れの量(空気透過量)を低減して耐空気透過性を向上させる働きを有するインナーライナーにおいても、軽量化などが行なわれるようになってきた。
現在、インナーライナー用ゴム組成物として、ブチルゴム70〜100質量%および天然ゴム30〜0質量%を含むブチル系ゴムを使用することで、タイヤの耐空気透過性を向上させることが行なわれている。また、ブチル系ゴムはブチレン以外に約1質量%のイソプレンを含むが、このイソプレンが硫黄、加硫促進剤、亜鉛華と相まって、隣接ゴムとの共架橋を可能にしている。上記ブチル系ゴムは、通常の配合では乗用車用タイヤでは0.6〜1.0mm、トラック・バス用タイヤでは1.0〜2.0mm程度の厚みが必要となる。
そこで、タイヤの軽量化を図るために、ブチル系ゴムより耐空気透過性に優れ、インナーライナーの厚みを薄くすることができる熱可塑性エラストマーを、インナーライナーに用いることが提案されている。しかし、熱可塑性エラストマーを用いたインナーライナーをブチル系ゴムよりも薄い厚みにすると、空気透過性と軽量化との両立を達成することができなくなるとともに、インナーライナーの強度が低下し、加硫工程時のプラダーの熱と圧力でインナーライナーが破れてしまうことがある。さらに、比較的強度が低い熱可塑性エラストマーは、タイヤ走行中の特に大きな繰り返しせん断変形を受けるバットレス部において、インナーライナーにクラックが発生しやすいという問題があった。
特許文献1には、インナーライナーとゴム層の接着性を改善するための積層体が開示されている。これはインナーライナーの両側に接着層を設けることで、インナーライナーの重ね合わせ部において接着層同士が接触するようになり、加熱によって強固に接着されるので、空気圧保持性を向上させている。しかし、このインナーライナーの重ね合わせのための接着層は、加硫工程においてブラダーと加熱状態で接触することになり、ブラダーに粘着、接着するという問題がある。
特許文献2は、空気透過性の良好なナイロン樹脂とブチルゴムを動的架橋により混合物を作成し、厚み100μmのインナーライナーを作製している。しかしナイロン樹脂は室温では硬くタイヤ用インナーライナーとしては不向きである。また、この動的架橋による混合物だけではゴム層との加硫接着はしないため、インナーライナーとは別に加硫用接着層を必要とするため、インナーライナー部材としては構造が複雑で工程が多くなり、生産性の観点から不利である。
特許文献3は、空気遮断性の良好なエチレン−ビニルアルコール共重合体中に無水マレイン酸変性水素添加スチレン−エチレン−ブタジエン−スチレンブロック共重合体を分散させ、柔軟なガスバリア層を作製している。また、熱可塑性ポリウレタン層では挟み込みサンドイッチ構造、さらにタイヤゴムと接着する面にゴム糊(ブチルゴム/天然ゴムの70/30をトルエンに溶解させる)を塗布させてインナーライナーを作製している。しかし、柔軟樹脂分散の変性エチレン−ビニルアルコール共重合体は接着力が低く、熱可塑性ポリウレタン層と剥離するおそれがある。また柔軟樹脂分散の変性エチレン−ビニルアルコール共重合体は柔軟樹脂が分散されているが、マトリックスのEVOHは屈曲疲労性に乏しく、タイヤ走行中に破壊してしまう。さらにタイヤゴムと接着する面にゴム糊を塗布しているが、通常のインナーライナー工程とは別の工程が必要となり生産性が劣ることになる。
特許文献4には、空気圧低下の抑制、耐久性の向上および燃費の向上を同時に実現することが可能な空気入りタイヤとして、天然ゴムおよび/または合成ゴムからなるゴム成分の100質量部に対して、下記の一般式(I)、
(式中、mおよびnはそれぞれ独立して1〜100であり、xは1〜1000である。)で表されるエチレン−ビニルアルコ−ル共重合体が15〜30質量部の範囲内で少なくとも含有されたインナーライナー用ゴム組成物をインナーライナー層に用いてなる空気入りタイヤが提案されている。しかし、特許文献4の技術においては、該ゴム組成物を用いたゴムシートの厚みは1mmであり、タイヤの軽量化という点で改善の余地がある。
特許文献5は、カーカス層の内側に熱可塑性樹脂または熱可塑性樹脂とエラストマーとを含む熱可塑性エラストマー組成物の空気透過防止層を有する空気入りタイヤにおいて、ベルト層の最大幅端部近傍からタイヤ最大幅の領域Tsにおける空気透過防止層の平均厚さGsを、タイヤ最大幅とビードトゥの領域Tfにおける空気透過防止層の平均厚さGfよりも薄くし、屈曲耐久性を改善することが提案されている。しかし、この構成では、カーカスプライのゴム層と空気透過防止層の間の剥離が生じることがある。
本発明は、耐空気透過性、屈曲疲労性、および耐クラック性を改善するインナーライナーを備えた空気入りタイヤを提供することを目的とする。
本発明の空気入りタイヤは、タイヤ内側にインナーライナーを備えたものであって、インナーライナーは、スチレン−イソブチレン−スチレントリブロック共重合体99.5〜60質量%と、スチレン−無水マレイン酸共重合体0.5〜40質量%とを含有するポリマー混合物からなるポリマーシートで構成され、かつタイヤ最大幅位置からベルト層端の対応位置Luに亘るバットレス領域Rsの平均厚さGsと、タイヤ最大幅位置からビードトウに亘るビード領域Rbの平均厚さGbとの比(Gs/Gb)が0.3〜0.75であることを特徴とする。
上記スチレン−イソブチレン−スチレントリブロック共重合体がスチレン成分を10〜30質量%の範囲で含み、重量平均分子量が50,000〜400,000であることが好ましい。スチレン−無水マレイン酸共重合体は、スチレン成分/無水マレイン酸成分のモル比が50/50〜90/10であり、重量平均分子量が4,000〜20,000であり、さらに無水マレイン酸成分の酸価が50〜600であるスチレン−無水マレイン酸共重合体ベースレジンを含むことが好ましい。
スチレン−無水マレイン酸共重合体は、スチレン−無水マレイン酸共重合体ベースレジンがエステル化されて得られた、モノエステル基およびモノカルボン酸基を有するスチレン−無水マレイン酸共重合体のエステルレジンを含むことが好ましい。
スチレン−無水マレイン酸共重合体は、スチレン−無水マレイン酸共重合体ベースレジンがアンモニウム塩に溶解した、スチレン−無水マレイン酸共重合体アンモニウム塩水溶液を含むことが好ましい。
インナーライナーのバットレス領域の平均厚さGsは、0.05〜0.45mmであることが好ましい。
本発明によれば、耐空気透過性、屈曲疲労性および耐クラック性を改善するインナーライナーを備えた空気入りタイヤを提供することができる。
<空気入りタイヤ>
本発明は、タイヤ内側にインナーライナーを備えた空気入りタイヤであって、該インナーライナーは、スチレン−イソブチレン−スチレントリブロック共重合体(以下、「SIBS」ともいう)99.5〜60質量%と、スチレン−無水マレイン酸共重合体(以下、SMAともいう)0.5〜40質量%とを含有するポリマー混合物からなるポリマーシートで構成される。SIBSからなるポリマー組成物は、ゴムとの加硫接着性に劣るが、SIBSのイソブチレンブロック由来により、空気遮断性が非常に優れている。一方、スチレン−無水マレイン酸共重合体は、空気遮断性に劣るが、ゴムとの加硫接着性が非常に優れている。したがって、SIBSとSMAとを含むポリマーフィルムをインナーライナーに用いた場合、耐空気透過性および加硫接着性に優れた空気入りタイヤを得ることができる。
本発明は、タイヤ内側にインナーライナーを備えた空気入りタイヤであって、該インナーライナーは、スチレン−イソブチレン−スチレントリブロック共重合体(以下、「SIBS」ともいう)99.5〜60質量%と、スチレン−無水マレイン酸共重合体(以下、SMAともいう)0.5〜40質量%とを含有するポリマー混合物からなるポリマーシートで構成される。SIBSからなるポリマー組成物は、ゴムとの加硫接着性に劣るが、SIBSのイソブチレンブロック由来により、空気遮断性が非常に優れている。一方、スチレン−無水マレイン酸共重合体は、空気遮断性に劣るが、ゴムとの加硫接着性が非常に優れている。したがって、SIBSとSMAとを含むポリマーフィルムをインナーライナーに用いた場合、耐空気透過性および加硫接着性に優れた空気入りタイヤを得ることができる。
本発明の空気入りタイヤ1は、乗用車用、トラック・バス用、重機用等として用いることができる。本発明の空気入りタイヤの実施形態を図1に基づき説明する。図1は、本発明の一実施の形態における空気入りタイヤの右半分を示す模式的断面図である。空気入りタイヤ1は、トレッド部2と、該トレッド部両端からトロイド形状を形成するようにサイドウォール部3とビード部4とを有している。さらに、ビード部4にはビードコア5が埋設される。また、一方のビード部4から他方のビード部に亘って設けられ、両端をビードコア5のまわりに折り返して係止されるカーカスプライ6と、該カーカスプライ6のクラウン部外側には、少なくとも2枚のプライよりなるベルト層7とが配置されている。
上記のベルト層7は、通常、スチールコードまたはアラミド繊維等のコードよりなるプライの2枚をタイヤ周方向に対して、コードが通常5〜30°の角度になるようにプライ間で相互に交差するように配置される。なお、ベルト層の両端外側には、トッピングゴム層を設け、ベルト層両端の剥離を軽減することができる。また、カーカスプライは、ポリエステル、ナイロン、アラミド等の有機繊維コードがタイヤ周方向にほぼ90°に配列されており、カーカスプライとその折り返し部に囲まれる領域には、ビードコア5の上端からサイドウォール方向に延びるビードエーペックス8が配置される。また、カーカスプライ6のタイヤ半径方向内側には一方のビード部4から他方のビード部4に亘るインナーライナー9が配置される。
本発明において、タイヤ最大幅位置Leからベルト層端の対応位置Luに亘るバットレス領域Rsのインナーライナー9の平均厚さGsと、タイヤ最大幅位置LeからビードトウLtに亘るビード領域Rbのインナーライナー9の平均厚さGbとの比(Gs/Gb)は、0.3〜0.75であることを特徴とする。
このようにバットレス領域Rsにおけるインナーライナーの厚さを薄くすることで、タイヤ走行時に、この領域での繰り返し屈曲変形に伴うせん断変形が生じても、その応力を緩和することができ、クラックの発生を防止することができる。さらに、上記のようなインナーライナーの平均厚さとすることにより、屈曲変形による応力を効果的に緩和することができる。上記のインナーライナーのバットレス領域Rsの平均厚さGsと、ビード領域Rbの平均厚さGbの比(Gs/Gb)は、0.5〜0.7であることが好ましい。また空気圧保持性能を維持し、バットレス領域の応力を緩和する効果を兼備するには、インナーライナーのバットレス領域Rsの平均厚さGsは、0.05〜0.45mmであることが望ましい。
<ポリマーシート>
本発明の一実施の形態において、インナーライナーは、スチレン−イソブチレン−スチレントリブロック共重合体99.5〜60質量%と、スチレン−無水マレイン酸共重合体0.5〜40質量%とを含有するポリマー混合物からなるポリマーシートからなる。
本発明の一実施の形態において、インナーライナーは、スチレン−イソブチレン−スチレントリブロック共重合体99.5〜60質量%と、スチレン−無水マレイン酸共重合体0.5〜40質量%とを含有するポリマー混合物からなるポリマーシートからなる。
さらに、SIBSは芳香族以外の分子構造が完全飽和であることにより、劣化硬化が抑制され、優れた耐久性を有する。
本発明の一実施の形態において、該ポリマー混合物からなる未加硫ポリマーシートをインナーライナーに使用する場合、SIBSを含有させることにより耐空気透過性を確保するため、たとえばハロゲン化ブチルゴム等の、従来耐空気透過性を付与するために使用されてきた高比重のハロゲン化ゴムを使用しないか、使用する場合にも使用量の低減が可能である。これによってタイヤの軽量化が可能であり、燃費の向上効果が得られる。さらに該ハロゲン化ゴムは、ゴム中のハロゲンにより空気入りタイヤのプライコードとゴムとの間の接着性を悪化させるという問題点を有しているが、本発明においては該ハロゲン化ゴムの使用量を低減できるため、プライコードと該ポリマー混合物との間の接着性の向上による空気入りタイヤの耐久性の向上効果も得られる。
上記のポリマーシートの厚さは、0.05〜0.6mmであることが好ましい。ポリマーシートの厚さが0.05mm未満であると、ポリマーシートをインナーライナーに適用した生タイヤの加硫時に、ポリマーシートがプレス圧力で破れてしまい、得られたタイヤにおいてエアーリーク現象が生じる恐れがある。一方、ポリマーシートの厚さが0.6mmを超えると、タイヤ重量が増加し、低燃費性能が低下する。ポリマーシートの厚さは、さらに0.05〜0.4mmであることが好ましい。ポリマーシートは、SIBSを押出成形、カレンダー成形といった熱可塑性樹脂、熱可塑性エラストマーをフィルム化する通常の方法によってフィルム化して得ることができる。
<スチレン‐イソブチレン‐スチレントリブロック共重合体(SIBS)>
本発明の一実施の形態におけるポリマー組成物において、ポリマー混合物中のSIBSの含有量は99.5〜60質量%とされる。SIBSの含有量が60質量%以上であることにより、優れた耐空気透過性と耐久性を有するインナーライナーを得ることができる。またSIBSの含有量が99.5質量%以下であることにより、隣接ゴムとの接着性が優れたインナーライナーを得ることができる。耐空気透過性と耐久性がより良好になる点で、該含有量は98〜70質量%であることが好ましい。
本発明の一実施の形態におけるポリマー組成物において、ポリマー混合物中のSIBSの含有量は99.5〜60質量%とされる。SIBSの含有量が60質量%以上であることにより、優れた耐空気透過性と耐久性を有するインナーライナーを得ることができる。またSIBSの含有量が99.5質量%以下であることにより、隣接ゴムとの接着性が優れたインナーライナーを得ることができる。耐空気透過性と耐久性がより良好になる点で、該含有量は98〜70質量%であることが好ましい。
SIBSは一般的にスチレンを10〜40質量%含む。耐空気透過性と耐久性がより良好になる点で、SIBS中のスチレンの含有量は10〜30質量%であることが好ましい。
SIBSは、イソブチレンとスチレンのモル比(イソブチレン/スチレン)が、該共重合体のゴム弾性の点から40/60〜95/5であることが好ましい。SIBSにおいて、各ブロックの重合度は、ゴム弾性と取り扱い(重合度が10,000未満では液状になる)の点からイソブチレンでは10,000〜150,000程度、またスチレンでは10,000〜30,000程度であることが好ましい。
上記のSIBSの分子量は、特に制限はないが、流動性、成形化工程、ゴム弾性などの観点から、GPC測定による重量平均分子量が50,000〜400,000であることが好ましい。重量平均分子量が50,000未満であると引張強度、引張伸びが低下するおそれがあり、400,000を超えると押出加工性が悪くなるおそれがあるため好ましくない。SIBSは耐空気透過性と耐久性をより良好にする観点から、SIBS中のスチレン成分の含有量は10〜30質量%、好ましくは14〜23質量%であることが好ましい。
SIBSは、一般的なビニル系化合物の重合法により得ることができ、例えば、リビングカチオン重合法により得ることができる。
例えば、特開昭62−48704号公報および特開昭64−62308号公報には、イソブチレンと他のビニル化合物とのリビングカチオン重合が可能であり、ビニル化合物にイソブチレンと他の化合物を用いることでポリイソブチレン系のブロック共重合体を製造できることが開示されている。この他にも、リビングカチオン重合法によるビニル化合物重合体の製造法が、例えば、米国特許第4,946,899号、米国特許第5,219,948号、特開平3−174403号公報などに記載されている。
SIBSは分子内に芳香族以外の二重結合を有していないために、ポリブタジエンなどの分子内に二重結合を有している重合体に比べて紫外線に対する安定性が高く、従って耐候性が良好である。さらに分子内に二重結合を有しておらず、飽和系のゴム状ポリマーであるにも関わらず、波長589nmの光の20℃での屈折率(nD)は、ポリマーハンドブック(1989年:ワイリー(Polymer Handbook, Willy,1989))によると、1.506である。これは他の飽和系のゴム状ポリマー、例えば、エチレン−ブテン共重合体に比べて有意に高い。
<スチレン−無水マレイン酸共重合体>
本明細書において、スチレン−無水マレイン酸共重合体とは、スチレン−無水マレイン酸共重合体ベースレジン(以下、「SMAベースレジン」ともいう)、スチレン−無水マレイン酸共重合体ベースレジンがエステル化されて得られた、モノエステル基およびモノカルボン酸基を有するスチレン−無水マレイン酸共重合体のエステルレジン(以下、SMAエステルレジンともいう)およびスチレン−無水マレイン酸共重合体ベースレジンがアンモニウム塩に溶解した、スチレン−無水マレイン酸共重合体アンモニウム塩水溶液(以下、SMAレジンアンモニウム塩水溶液ともいう)を含む概念として記載する。
本明細書において、スチレン−無水マレイン酸共重合体とは、スチレン−無水マレイン酸共重合体ベースレジン(以下、「SMAベースレジン」ともいう)、スチレン−無水マレイン酸共重合体ベースレジンがエステル化されて得られた、モノエステル基およびモノカルボン酸基を有するスチレン−無水マレイン酸共重合体のエステルレジン(以下、SMAエステルレジンともいう)およびスチレン−無水マレイン酸共重合体ベースレジンがアンモニウム塩に溶解した、スチレン−無水マレイン酸共重合体アンモニウム塩水溶液(以下、SMAレジンアンモニウム塩水溶液ともいう)を含む概念として記載する。
スチレン−無水マレイン酸共重合体は、分散、乳化における高分子界面活性剤、高機能性架橋剤として使用されており、ゴムとの加硫接着性が非常に優れている。また、ゴムにぬれ性を与えるため、粘着効果も優れている。
本発明の一実施の形態において、インナーライナー用ポリマー組成物は、SIBSにSMAを配合することで、空気遮断性を保持しつつ、ゴムとの加硫接着性を向上させることができる。
インナーライナー用ポリマー組成物のポリマー成分において、SMAの含有量は0.5〜40質量%である。SMAの含有量が0.5質量%以上であることにより、隣接ゴムとの接着性が優れたインナーライナーを得ることができる。またSMAの含有量が40質量%以下であることにより、優れた耐空気透過性と耐久性を有するインナーライナーを得ることができる。ポリマー成分中のSMAの含有量は、2〜30質量%がさらに好ましい。
(スチレン−無水マレイン酸共重合体ベースレジン)
本発明の一実施の形態において、SMAはSMAベースレジンを含むことが未加硫粘着性および加硫後接着性の観点から好ましい。
本発明の一実施の形態において、SMAはSMAベースレジンを含むことが未加硫粘着性および加硫後接着性の観点から好ましい。
SMAベースレジンは、スチレン成分/無水マレイン酸成分のモル比が50/50〜90/10であることが、高軟化点および高い熱安定性の観点から好ましい。
SMAベースレジンは、重量平均分子量が4,000〜20,000であることが、加硫後接着性および流動性の観点から好ましい。さらに重量平均分子量は、5,000〜15,000であることがより好ましい。
SMAベースレジンは、スチレン−無水マレイン酸共重合体中の無水マレイン酸成分の酸価が50〜600であることが、未加硫粘着性の観点から好ましい。さらに無水マレイン酸成分の酸価は、95〜500であることがより好ましい。
(スチレン−無水マレイン酸共重合体のエステルレジン)
本発明の一実施の形態において、スチレン−無水マレイン酸共重合体は、スチレン−無水マレイン酸共重合体ベースレジンがエステル化されて得られた、モノエステル基およびモノカルボン酸基を有するスチレン−無水マレイン酸共重合体のエステルレジン(以下、SMAエステルレジンともいう)を含むことが好ましい。
本発明の一実施の形態において、スチレン−無水マレイン酸共重合体は、スチレン−無水マレイン酸共重合体ベースレジンがエステル化されて得られた、モノエステル基およびモノカルボン酸基を有するスチレン−無水マレイン酸共重合体のエステルレジン(以下、SMAエステルレジンともいう)を含むことが好ましい。
SMAエステルレジンは、加硫接着性に優れるという特性を有する。したがって、SIBSにSMAエステルレジンを配合することで、ゴム層との加硫接着性に優れたインナーライナー用ポリマー組成物を得ることができる。
SMAエステルレジンは、スチレン成分/無水マレイン酸成分のモル比が50/50〜90/10であることが、加硫接着性の観点から好ましい。
SMAエステルレジンは、重量平均分子量が5,000〜12,000であることが、加硫後接着性および流動性の観点から好ましい。さらに重量平均分子量は、6,000〜11,000であることがより好ましい。
SMAエステルレジンは、無水マレイン酸成分の酸価が50〜400であることが、未加硫ゴムへの粘着性の観点から好ましい。さらに無水マレイン酸成分の酸価は、95〜290であることがより好ましい。
SMAエステルレジンは例えば反応容器にベースレジンとアルコールを導入し、不活性ガス雰囲気下で加熱攪拌することによって製造することができる。
(スチレン−無水マレイン酸共重合体アンモニウム塩水溶液)
本発明の一実施の形態において、スチレン−無水マレイン酸共重合体は、SMAベースレジンがアンモニウム塩に溶解した、スチレン−無水マレイン酸共重合体アンモニウム塩水溶液(以下、SMAアンモニウム塩水溶液ともいう)を含むことが好ましい。
本発明の一実施の形態において、スチレン−無水マレイン酸共重合体は、SMAベースレジンがアンモニウム塩に溶解した、スチレン−無水マレイン酸共重合体アンモニウム塩水溶液(以下、SMAアンモニウム塩水溶液ともいう)を含むことが好ましい。
SMAアンモニウム塩水溶液は、ぬれ性に優れているという特性を有する。したがって、SIBSにSMAアンモニウム塩水溶液を配合することで、粘着性に優れたインナーライナー用ポリマー組成物を得ることができる。
SMAアンモニウム塩水溶液は、固形分濃度が10.0〜45.0%であることが、未加硫ゴムへの粘着性と成形加工性の観点から好ましい。
SMAアンモニウム塩水溶液は、pHが8.0〜9.5であることが粘着性の観点から好ましい。
SMAアンモニウム塩水溶液は例えば反応容器に水を入れ、激しく攪拌しながらベースレジンを加え、徐々に水酸化アンモニウムを加えると発熱反応が起こる。その後、所定の温度まで加熱し、溶解が完了するまで攪拌を続けることによって製造することができる。
<ポリマー組成物の添加剤>
本発明の一実施の形態におけるポリマー組成物には、その他の補強剤、加硫剤、加硫促進剤、各種オイル、老化防止剤、軟化剤、可塑剤、カップリング剤などのタイヤ用または一般のポリマー組成物に配合される各種配合剤および添加剤を配合することができる。これらの添加剤としては、たとえばステアリン酸、酸化亜鉛、老化防止剤、加硫促進剤などを挙げることができる。
本発明の一実施の形態におけるポリマー組成物には、その他の補強剤、加硫剤、加硫促進剤、各種オイル、老化防止剤、軟化剤、可塑剤、カップリング剤などのタイヤ用または一般のポリマー組成物に配合される各種配合剤および添加剤を配合することができる。これらの添加剤としては、たとえばステアリン酸、酸化亜鉛、老化防止剤、加硫促進剤などを挙げることができる。
<空気入りタイヤの製造方法>
空気入りタイヤに含まれるインナーライナーに用いるポリマー組成物は、従来から公知の方法で製造することができ、たとえば上記各材料を所定の配合割合となるように秤量した後、オープンロール、バンバリーミキサー等のゴム混練装置を用いて、100〜250℃で5〜60分間混練する方法などがある。
空気入りタイヤに含まれるインナーライナーに用いるポリマー組成物は、従来から公知の方法で製造することができ、たとえば上記各材料を所定の配合割合となるように秤量した後、オープンロール、バンバリーミキサー等のゴム混練装置を用いて、100〜250℃で5〜60分間混練する方法などがある。
具体的には、SIBS、SMA、SMAベースレジン、SMAエステルレジン、SMAアンモニウム塩水溶液、および必要に応じて各種添加剤を2軸押出機に投入して約100〜250℃、50〜300rpmの条件下で混練することにより、これらの各成分が動的架橋されたポリマー組成物のペレットを得る。
2軸押出機中では、熱可塑性エラストマー組成物であるSIBSがマトリックス相となり、ゴム成分が島相となり分散する。さらに、2軸押出機中で、ゴム成分と添加剤成分とが反応し、島相であるゴム成分が架橋反応する。ゴム成分が2軸押出機中で動的に架橋されることから動的架橋と呼ばれている。2軸押出機中でゴム成分が架橋しても、系のマトリックス相は熱可塑性エラストマー成分からなるため、系全体のせん断粘度が低く、押出加工が可能となる。
2軸押出機で得られた動的架橋されたポリマー組成物のペレットは、ゴム成分は架橋しているが、マトリックス相の熱可塑性エラストマー成分は可塑性を保持しており、系全体の可塑性を生み出す役割を果たしている。そのため、Tダイ押出においても可塑性を示すため、シート状に成形することが可能になる。
さらに、動的架橋されたポリマー組成物のペレットはゴム成分が架橋しているため、該ペレットを用いて作製されたポリマー積層体をインナーライナーに適用して空気入りタイヤを製造する際に空気入りタイヤを加熱しても、カーカス層へのインナーライナーのポリマー組成物の侵入を防止することができる。
上記で作製したポリマー組成物を空気入りタイヤ1の生タイヤのインナーライナーに適用して他の部材とともに加硫成形することによって製造することができる。得られた空気入りタイヤは、インナーライナーとカーカスプライのゴム層とが良好に接着しているため、優れた耐空気透過性および耐久性を有する。
なお、インナーライナーの厚さをビード領域Rbとバットレス領域Rsで調整するには、例えば、ポリマーシートの押し出し口にプロファイルをつけて、バットレス領域の厚さGsを薄くした一体物のシートを作成して、これをインナーライナーとしてタイヤ内面に配置する。
本発明の空気入りタイヤに用いられるカーカスプライのゴム層の配合は、一般に用いられるゴム成分、例えば、天然ゴム、ポリイソプレン、スチレンーブタジエンゴム、ポリブタジエンゴムなどに、カーボンブラック、シリカなどの充填剤を配合したものを用いることができる。
次に、生タイヤを金型に装着し、ブラダーにより150〜180℃で3〜50分間、加圧しつつ加熱して加硫タイヤを得る。次に、得られた加硫タイヤを50〜120℃で10〜300秒間冷却することが好ましい。
本発明に係るポリマーフィルムをインナーライナーに用いて空気入りタイヤを作製する。該ポリマーフィルムを構成するSIBS、SMAなどは熱可塑性エラストマーであるため、加硫タイヤを得る工程において、たとえば150〜180℃に加熱されると、金型内で軟化状態となる。ここでの軟化状態とは、分子運動性が向上し、固体と液体との中間状態にあることをいう。軟化状態の熱可塑性エラストマーは、固体状態よりも反応性が向上するため、隣接部材に融着する。
すなわち、膨張したブラダーの外側表面と接するインナーライナーは、加熱により軟化してブラダーに融着してしまう。インナーライナーとブラダーの外側表面が融着した状態で加硫タイヤを金型から取り出そうとすると、インナーライナーが、隣接するインスレーションやカーカスから剥離してしまい、エアーイン現象が生じてしまう。また、タイヤの形状自体が変形してしまう場合もある。
そこで、得られた加硫タイヤを直ちに120℃以下で10秒以上急冷することにより、インナーライナーに用いられている熱可塑性エラストマーを固化させることができる。熱可塑性エラストマーが固化すると、インナーライナーとブラダーとの融着が解消し、加硫タイヤを金型から取り出す際の離型性が向上する。
冷却温度は50〜120℃が好ましい。冷却温度が50℃より低いと、特別な冷却媒体を準備する必要があり、生産性を悪化させるおそれがある。冷却温度が120℃を超えると、熱可塑性エラストマーが十分に冷却されず、金型開放時にインナーライナーがブラダーに融着したままとなり、エアーイン現象が発生するおそれがある。冷却温度は、70〜100℃であることがさらに好ましい。
冷却時間は10〜300秒間が好ましい。冷却時間が10秒より短いと熱可塑性エラストマーが十分に冷却されず、金型開放時にインナーライナーがブラダーに融着したままとなり、エアーイン現象が発生する恐れがある。冷却時間が300秒を超えると生産性が悪くなる。冷却時間は、30〜180秒であることがさらに好ましい。
加硫タイヤを冷却する工程は、ブラダー内を冷却して行なうことが好ましい。ブラダー内は空洞であるため、加硫工程終了後にブラダー内に前記冷却温度に調整された冷却媒体を導入することができる。
なお、加硫タイヤを冷却する工程は、ブラダー内を冷却することと併せて、金型に冷却構造を設置して実施することも可能である。
冷却媒体としては、空気、水蒸気、水およびオイルよりなる群から選択される1種以上を用いることが好ましい。なかでも、冷却効率に優れている水を用いることが好ましい。
<実施例1〜18および比較例1〜16>
(ポリマーシートの作製)
表1および表2に示す配合処方にしたがって各配合剤を2軸押出機(スクリュ径:φ50mm、L/D:30、シリンダ温度:220℃)に投入してペレット化した。得られたペレットをTダイ押出機(スクリュ径:φ80mm、L/D:50、ダイリップ幅:500mm、シリンダ温度:220℃、フィルムゲージ:0.3mm)、またはインフレーション共押出機にてポリマーシートからなるインナーライナーを作製した。
(ポリマーシートの作製)
表1および表2に示す配合処方にしたがって各配合剤を2軸押出機(スクリュ径:φ50mm、L/D:30、シリンダ温度:220℃)に投入してペレット化した。得られたペレットをTダイ押出機(スクリュ径:φ80mm、L/D:50、ダイリップ幅:500mm、シリンダ温度:220℃、フィルムゲージ:0.3mm)、またはインフレーション共押出機にてポリマーシートからなるインナーライナーを作製した。
(空気入りタイヤの作製)
得られたポリマーシートをタイヤのインナーライナー部分に適用して生タイヤを準備した。該生タイヤを金型内で170℃で20分間プレス成形して、195/65R15サイズの加硫タイヤを作製した。
得られたポリマーシートをタイヤのインナーライナー部分に適用して生タイヤを準備した。該生タイヤを金型内で170℃で20分間プレス成形して、195/65R15サイズの加硫タイヤを作製した。
ここで、インナーライナーのビード領域Rbとバットレス領域Rsで厚さを調整するために、ポリマーシートの押し出し口にプロファイルをつけて、バットレス領域の厚さGsを薄くした一体物のシートを作製して、これをインナーライナーとしてタイヤ内面に配置した。
なお、実施例1〜6においては、Gs/Gbの値を0.75とし、ポリマー成分にSMAエステルレジンまたはSMAアンモニウム塩水溶液を含むものを用いた。実施例7〜10においては、SIBSにSMAベースレジンをブレンドし、Gs/Gbの値を0.75〜0.33に調整した。実施例11〜14においては、SIBSにSMAベースレジンおよびSMAエステルレジンをブレンドし、Gs/Gbの値を0.75〜0.33に調整した。実施例15〜18においては、SIBSにSMAベースレジンおよびSMAアンモニウム塩水溶液をブレンドし、Gs/Gbの値を0.75〜0.33に調整した。
比較例1においては、クロロブチル(IIR)を80質量部と、NRを20質量部と、フィラーを20質量部とをそれぞれバンバリーミキサーで混合し、カレンダロールにて厚さ0.1mmのポリマーフィルムを得た。このポリマーフィルムのGs/Gbの値を1とした。
比較例2〜16においては、表2に示す配合のポリマーフィルムをインナーライナーとして用いた。このポリマーフィルムのGs/Gbの値は表2に示すとおりである。
<性能試験>
各実施例および各比較例のポリマー積層体をインナーライナーに用いて空気入りタイヤを製造し、以下の性能試験を行なった。
各実施例および各比較例のポリマー積層体をインナーライナーに用いて空気入りタイヤを製造し、以下の性能試験を行なった。
<剥離試験>
インナーライナー(ポリマーシート)と、厚さ2mmのカーカス用ゴムシート(配合:NR/BR/SBR=40/30/30)および補強キャンバス生地を、この順番で重ねて170℃の条件下で12分間加圧加熱することによって剥離用試験片を作製した。得られた試験片を用いて、JIS K 6256「加硫ゴム及び熱可塑性ゴムの接着性の求め方」にしたがって、23℃の室温条件下で剥離試験を行ない、インナーライナー用ポリマーシートとゴムシートの接着力を測定した。得られた数値を比較例1を基準(100)として以下の計算式により剥離力指数を算出した。インナーライナーとカーカス剥離力の数値が大きいほど接着性に優れている。
(剥離力指数)=(各配合の接着力)/(比較例1の接着力)×100
<屈曲疲労性試験>
JIS K 6260「加硫ゴム及び熱可塑性ゴムのデマチャ屈曲亀裂試験方法」に準じて、中央に溝のある所定の試験片を作製した。インナーライナーは、厚さ0.3mmシートをゴムに貼り付けて加硫し、所定の試験片を作製した。試験片の溝の中心にあらかじめ切り込みを入れ、繰り返し屈曲変形を与え亀裂成長を測定する試験を行なった。雰囲気温度23℃、歪30%、周期5Hzで、70万回、140万回、210万回時に亀裂長さを測定し、亀裂が1mm成長するのに要した屈曲変形の繰り返し回数を算出した。比較例1の値を基準(100)として、各実施例および各比較例のポリマー積層体の屈曲疲労性について指数で示した。数値が大きい方が、亀裂が成長しにくく良好といえる。例えば、実施例1の指数は以下の式で求められる。
(屈曲疲労性指数)=(実施例1の屈曲変形の繰り返し回数)/(比較例1の屈曲変形の繰り返し回数)×100
<静的空気圧低下率試験:タイヤエアリーク試験>
上述の方法で製造した195/65R15スチールラジアルPCタイヤをJIS規格リム15×6JJに組み付け、初期空気圧300kPaを封入し、90日間室温で放置し、空気圧の低下率を計算した。空気圧の低下が小さいほど、空気圧が低下しにくく良好といえる。
インナーライナー(ポリマーシート)と、厚さ2mmのカーカス用ゴムシート(配合:NR/BR/SBR=40/30/30)および補強キャンバス生地を、この順番で重ねて170℃の条件下で12分間加圧加熱することによって剥離用試験片を作製した。得られた試験片を用いて、JIS K 6256「加硫ゴム及び熱可塑性ゴムの接着性の求め方」にしたがって、23℃の室温条件下で剥離試験を行ない、インナーライナー用ポリマーシートとゴムシートの接着力を測定した。得られた数値を比較例1を基準(100)として以下の計算式により剥離力指数を算出した。インナーライナーとカーカス剥離力の数値が大きいほど接着性に優れている。
(剥離力指数)=(各配合の接着力)/(比較例1の接着力)×100
<屈曲疲労性試験>
JIS K 6260「加硫ゴム及び熱可塑性ゴムのデマチャ屈曲亀裂試験方法」に準じて、中央に溝のある所定の試験片を作製した。インナーライナーは、厚さ0.3mmシートをゴムに貼り付けて加硫し、所定の試験片を作製した。試験片の溝の中心にあらかじめ切り込みを入れ、繰り返し屈曲変形を与え亀裂成長を測定する試験を行なった。雰囲気温度23℃、歪30%、周期5Hzで、70万回、140万回、210万回時に亀裂長さを測定し、亀裂が1mm成長するのに要した屈曲変形の繰り返し回数を算出した。比較例1の値を基準(100)として、各実施例および各比較例のポリマー積層体の屈曲疲労性について指数で示した。数値が大きい方が、亀裂が成長しにくく良好といえる。例えば、実施例1の指数は以下の式で求められる。
(屈曲疲労性指数)=(実施例1の屈曲変形の繰り返し回数)/(比較例1の屈曲変形の繰り返し回数)×100
<静的空気圧低下率試験:タイヤエアリーク試験>
上述の方法で製造した195/65R15スチールラジアルPCタイヤをJIS規格リム15×6JJに組み付け、初期空気圧300kPaを封入し、90日間室温で放置し、空気圧の低下率を計算した。空気圧の低下が小さいほど、空気圧が低下しにくく良好といえる。
<平均厚さの測定>
195/65R15スチールラジアルPCタイヤを周方向に8等分し、それぞれの箇所で、幅20mmでタイヤ径方向に沿って切断した8個のカットサンプルを作成し、この8個のカットサンプルについて、それぞれのバットレス領域Rsとビード領域Rbにおいて等間隔に5等分した5点についてインナーライナーの厚さを測定した。それぞれ測定した合計40点の測定値の算術平均値をGs、Gbとした。
195/65R15スチールラジアルPCタイヤを周方向に8等分し、それぞれの箇所で、幅20mmでタイヤ径方向に沿って切断した8個のカットサンプルを作成し、この8個のカットサンプルについて、それぞれのバットレス領域Rsとビード領域Rbにおいて等間隔に5等分した5点についてインナーライナーの厚さを測定した。それぞれ測定した合計40点の測定値の算術平均値をGs、Gbとした。
<耐クラック性能>
195/65R15スチールラジアルPCタイヤをJIS規格リム15×6JJに組み付け、正規の空気圧を充填し、JATMA YEAR BOOKで空気圧−付加能力対応表より、この空気圧に対応する最大荷重を負荷し、速度80km/hでドラム上で走行し、外観目視にて確認可能な損傷が発生した時点で走行を終了し走行距離を求めた。比較例1の走行距離を100とし指数で示す。指数が大きいほど、耐クラック性が優れている。
195/65R15スチールラジアルPCタイヤをJIS規格リム15×6JJに組み付け、正規の空気圧を充填し、JATMA YEAR BOOKで空気圧−付加能力対応表より、この空気圧に対応する最大荷重を負荷し、速度80km/hでドラム上で走行し、外観目視にて確認可能な損傷が発生した時点で走行を終了し走行距離を求めた。比較例1の走行距離を100とし指数で示す。指数が大きいほど、耐クラック性が優れている。
(評価結果)
試験結果を表1および表2に示す。
試験結果を表1および表2に示す。
(注1)SIBS:カネカ(株)社製の「シブスターSIBSTAR 102T」(ショアA硬度25、スチレン含量25質量%)。
(注2)SMAベースレジン:サートマー社製の「SMA1000」(スチレン成分/無水マレイン酸成分:50/50、重量平均分子量:5,500、無水マレイン酸の酸価:490)。
(注3)SMAエステルレジン:サートマー社製の「SMA1440」(スチレン成分/無水マレイン酸成分:80/20、重量平均分子量:7,000、無水マレイン酸の酸価:200)。
(注4)SMAアンモニウム塩水溶液:サートマー社製の「SMA1000H」(pH9.0)。
(注5)クロロブチル:エクソンモービル(株)社製の「エクソンクロロブチル 1068」。
(注6)NR(天然ゴム):TSR20。
(注7)フィラー:東海カーボン(株)製の「シーストV」(N660、N2SA:2
7m2/g)。
(注2)SMAベースレジン:サートマー社製の「SMA1000」(スチレン成分/無水マレイン酸成分:50/50、重量平均分子量:5,500、無水マレイン酸の酸価:490)。
(注3)SMAエステルレジン:サートマー社製の「SMA1440」(スチレン成分/無水マレイン酸成分:80/20、重量平均分子量:7,000、無水マレイン酸の酸価:200)。
(注4)SMAアンモニウム塩水溶液:サートマー社製の「SMA1000H」(pH9.0)。
(注5)クロロブチル:エクソンモービル(株)社製の「エクソンクロロブチル 1068」。
(注6)NR(天然ゴム):TSR20。
(注7)フィラー:東海カーボン(株)製の「シーストV」(N660、N2SA:2
7m2/g)。
表1および表2における「SIBS/SMA層」の層厚は、Gs以外の領域の厚さを示しており、各実施例および各比較例(比較例1を除く)のGbは0.6mmの厚さである。
(評価結果の考察)
<実施例1〜6と比較例1〜13との対比>
実施例1〜6の空気入りタイヤは、インナーライナーがスチレン−イソブチレン−スチレントリブロック共重合体99.5〜60質量%と、スチレン−無水マレイン酸共重合体0.5〜40質量%とを含有するポリマー混合物からなるポリマーシートで構成され、かつバットレス領域Rsの平均厚さGsと、ビード領域Rbの平均厚さGbとの比(Gs/Gb)が0.3〜0.75であった。このため、実施例1〜6の空気入りタイヤは、耐空気透過性、屈曲疲労性および耐クラック性を改善するインナーライナーを備えたものであった。
<実施例1〜6と比較例1〜13との対比>
実施例1〜6の空気入りタイヤは、インナーライナーがスチレン−イソブチレン−スチレントリブロック共重合体99.5〜60質量%と、スチレン−無水マレイン酸共重合体0.5〜40質量%とを含有するポリマー混合物からなるポリマーシートで構成され、かつバットレス領域Rsの平均厚さGsと、ビード領域Rbの平均厚さGbとの比(Gs/Gb)が0.3〜0.75であった。このため、実施例1〜6の空気入りタイヤは、耐空気透過性、屈曲疲労性および耐クラック性を改善するインナーライナーを備えたものであった。
これに対し、比較例1、3および4の空気入りタイヤは、SIBSの含有量が60質量%未満のインナーライナーであったため、耐空気透過性、屈曲疲労性および耐クラック性を改善できなかった。また、比較例2の空気入りタイヤは、SIBSの含有量が99.5質量%を超えるインナーライナーであったため、耐空気透過性、屈曲疲労性および耐クラック性を改善できなかった。また、比較例5〜13の空気入りタイヤは、バットレス領域Rsの平均厚さGsと、ビード領域Rbの平均厚さGbとの比(Gs/Gb)が0.75を超えるもの(1.0)であったため、耐空気透過性、屈曲疲労性および耐クラック性を改善できなかった。
<実施例7〜10と比較例14との対比>
実施例7〜10の空気入りタイヤは、バットレス領域Rsの平均厚さGsと、ビード領域Rbの平均厚さGbとの比(Gs/Gb)が0.3〜0.75であるインナーライナーであったのに対し、比較例14の空気入りタイヤは、バットレス領域Rsの平均厚さGsと、ビード領域Rbの平均厚さGbとの比(Gs/Gb)が0.3未満(0.25)であった。このため、実施例7〜10の空気入りタイヤは、比較例14のそれに比して、耐空気透過性、屈曲疲労性および耐クラック性に優れたものであった。
実施例7〜10の空気入りタイヤは、バットレス領域Rsの平均厚さGsと、ビード領域Rbの平均厚さGbとの比(Gs/Gb)が0.3〜0.75であるインナーライナーであったのに対し、比較例14の空気入りタイヤは、バットレス領域Rsの平均厚さGsと、ビード領域Rbの平均厚さGbとの比(Gs/Gb)が0.3未満(0.25)であった。このため、実施例7〜10の空気入りタイヤは、比較例14のそれに比して、耐空気透過性、屈曲疲労性および耐クラック性に優れたものであった。
<実施例11〜14と比較例15との対比>
実施例11〜14の空気入りタイヤは、バットレス領域Rsの平均厚さGsと、ビード領域Rbの平均厚さGbとの比(Gs/Gb)が0.3〜0.75であるインナーライナーであったのに対し、比較例15の空気入りタイヤは、バットレス領域Rsの平均厚さGsと、ビード領域Rbの平均厚さGbとの比(Gs/Gb)が0.3未満(0.25)であった。このため、実施例11〜14の空気入りタイヤは、比較例15のそれに比して、耐空気透過性、屈曲疲労性および耐クラック性に優れたものであった。
実施例11〜14の空気入りタイヤは、バットレス領域Rsの平均厚さGsと、ビード領域Rbの平均厚さGbとの比(Gs/Gb)が0.3〜0.75であるインナーライナーであったのに対し、比較例15の空気入りタイヤは、バットレス領域Rsの平均厚さGsと、ビード領域Rbの平均厚さGbとの比(Gs/Gb)が0.3未満(0.25)であった。このため、実施例11〜14の空気入りタイヤは、比較例15のそれに比して、耐空気透過性、屈曲疲労性および耐クラック性に優れたものであった。
<実施例15〜18と比較例16との対比>
実施例15〜18の空気入りタイヤは、バットレス領域Rsの平均厚さGsと、ビード領域Rbの平均厚さGbとの比(Gs/Gb)が0.3〜0.75であるインナーライナーであったのに対し、比較例16の空気入りタイヤは、バットレス領域Rsの平均厚さGsと、ビード領域Rbの平均厚さGbとの比(Gs/Gb)が0.3未満(0.25)であった。このため、実施例15〜18の空気入りタイヤは、比較例16のそれに比して、耐空気透過性、屈曲疲労性および耐クラック性に優れたものであった。
実施例15〜18の空気入りタイヤは、バットレス領域Rsの平均厚さGsと、ビード領域Rbの平均厚さGbとの比(Gs/Gb)が0.3〜0.75であるインナーライナーであったのに対し、比較例16の空気入りタイヤは、バットレス領域Rsの平均厚さGsと、ビード領域Rbの平均厚さGbとの比(Gs/Gb)が0.3未満(0.25)であった。このため、実施例15〜18の空気入りタイヤは、比較例16のそれに比して、耐空気透過性、屈曲疲労性および耐クラック性に優れたものであった。
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 空気入りタイヤ、2 トレッド部、3 サイドウォール部、4 ビード部、5 ビードコア、6 カーカスプライ、7 ベルト層、8 ビードエーペックス、9 インナーライナー、Rb ビード領域、Rs バットレス領域、Le タイヤ最大幅位置、Lt ビードトウ、Lu ベルト層端の対応位置。
Claims (6)
- タイヤ内側にインナーライナーを備えた空気入りタイヤであって、
前記インナーライナーは、スチレン−イソブチレン−スチレントリブロック共重合体99.5〜60質量%と、スチレン−無水マレイン酸共重合体0.5〜40質量%とを含有するポリマー混合物からなるポリマーシートで構成され、かつタイヤ最大幅位置からベルト層端の対応位置Luに亘るバットレス領域Rsの平均厚さGsと、タイヤ最大幅位置からビードトウに亘るビード領域Rbの平均厚さGbとの比(Gs/Gb)が0.3〜0.75である、空気入りタイヤ。 - 前記スチレン−イソブチレン−スチレントリブロック共重合体がスチレン成分を10〜30質量%の範囲で含み、重量平均分子量が50,000〜400,000である、請求項1記載の空気入りタイヤ。
- 前記スチレン−無水マレイン酸共重合体は、スチレン成分/無水マレイン酸成分のモル比が50/50〜90/10であり、重量平均分子量が4,000〜20,000であり、さらに無水マレイン酸成分の酸価が50〜600であるスチレン−無水マレイン酸共重合体ベースレジンを含む、請求項1または2に記載の空気入りタイヤ。
- 前記スチレン−無水マレイン酸共重合体は、前記スチレン−無水マレイン酸共重合体ベースレジンがエステル化されて得られた、モノエステル基およびモノカルボン酸基を有するスチレン−無水マレイン酸共重合体のエステルレジンを含む、請求項1〜3のいずれかに記載の空気入りタイヤ。
- 前記スチレン−無水マレイン酸共重合体は、前記スチレン−無水マレイン酸共重合体ベースレジンがアンモニウム塩に溶解した、スチレン−無水マレイン酸共重合体アンモニウム塩水溶液を含む、請求項1〜4のいずれかに記載の空気入りタイヤ。
- 前記インナーライナーのバットレス領域の平均厚さGsは、0.05〜0.45mmである、請求項1〜5のいずれかに記載の空気入りタイヤ。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011132213A JP2013001184A (ja) | 2011-06-14 | 2011-06-14 | 空気入りタイヤ |
PCT/JP2012/055688 WO2012157322A1 (ja) | 2011-05-13 | 2012-03-06 | 空気入りタイヤ |
RU2013149326/11A RU2013149326A (ru) | 2011-05-13 | 2012-03-06 | Пневматическая шина |
BR112013029031A BR112013029031A2 (pt) | 2011-05-13 | 2012-03-06 | pneumático |
KR1020137032618A KR20140032423A (ko) | 2011-05-13 | 2012-03-06 | 공기 타이어 |
CN201510942933.7A CN105539012B (zh) | 2011-05-13 | 2012-03-06 | 充气轮胎 |
CN201280023747.8A CN103534104B (zh) | 2011-05-13 | 2012-03-06 | 充气轮胎 |
EP12786784.4A EP2708379A4 (en) | 2011-05-13 | 2012-03-06 | PNEUMATIC |
US14/114,687 US20140060719A1 (en) | 2011-05-13 | 2012-03-06 | Pneumatic tire |
US15/588,284 US20170239993A1 (en) | 2011-05-13 | 2017-05-05 | Pneumatic tire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011132213A JP2013001184A (ja) | 2011-06-14 | 2011-06-14 | 空気入りタイヤ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013001184A true JP2013001184A (ja) | 2013-01-07 |
Family
ID=47670214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011132213A Pending JP2013001184A (ja) | 2011-05-13 | 2011-06-14 | 空気入りタイヤ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013001184A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014218217A (ja) * | 2013-05-10 | 2014-11-20 | 横浜ゴム株式会社 | タイヤ |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005103760A (ja) * | 2003-09-26 | 2005-04-21 | Yokohama Rubber Co Ltd:The | 積層体及びそれを用いた空気入りタイヤ |
WO2006121140A1 (ja) * | 2005-05-09 | 2006-11-16 | The Yokohama Rubber Co., Ltd. | 積層体及びそれを用いた空気入りタイヤ |
JP2008174037A (ja) * | 2007-01-17 | 2008-07-31 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2010527839A (ja) * | 2007-05-29 | 2010-08-19 | ソシエテ ド テクノロジー ミシュラン | 熱可塑性エラストマーを含む気密性層を有する空気式物品 |
JP2010195969A (ja) * | 2009-02-26 | 2010-09-09 | Kaneka Corp | イソブチレン系ブロック共重合体 |
JP2011051320A (ja) * | 2009-09-04 | 2011-03-17 | Sumitomo Rubber Ind Ltd | ポリマー積層体およびそれをインナーライナーに用いた空気入りタイヤ |
JP2011074309A (ja) * | 2009-10-01 | 2011-04-14 | Sumitomo Rubber Ind Ltd | インナーライナー用ポリマー組成物およびそれを用いた空気入りタイヤ |
-
2011
- 2011-06-14 JP JP2011132213A patent/JP2013001184A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005103760A (ja) * | 2003-09-26 | 2005-04-21 | Yokohama Rubber Co Ltd:The | 積層体及びそれを用いた空気入りタイヤ |
WO2006121140A1 (ja) * | 2005-05-09 | 2006-11-16 | The Yokohama Rubber Co., Ltd. | 積層体及びそれを用いた空気入りタイヤ |
JP2008174037A (ja) * | 2007-01-17 | 2008-07-31 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2010527839A (ja) * | 2007-05-29 | 2010-08-19 | ソシエテ ド テクノロジー ミシュラン | 熱可塑性エラストマーを含む気密性層を有する空気式物品 |
JP2010195969A (ja) * | 2009-02-26 | 2010-09-09 | Kaneka Corp | イソブチレン系ブロック共重合体 |
JP2011051320A (ja) * | 2009-09-04 | 2011-03-17 | Sumitomo Rubber Ind Ltd | ポリマー積層体およびそれをインナーライナーに用いた空気入りタイヤ |
JP2011074309A (ja) * | 2009-10-01 | 2011-04-14 | Sumitomo Rubber Ind Ltd | インナーライナー用ポリマー組成物およびそれを用いた空気入りタイヤ |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014218217A (ja) * | 2013-05-10 | 2014-11-20 | 横浜ゴム株式会社 | タイヤ |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4831706B2 (ja) | ポリマー積層体およびそれをインナーライナーに用いた空気入りタイヤ | |
JP5300679B2 (ja) | インナーライナー用ポリマー組成物およびそれを用いた空気入りタイヤ | |
JP5330350B2 (ja) | インナーライナー用ポリマーシートおよびそれを用いた空気入りタイヤ | |
JP5342684B1 (ja) | インナーライナーを備えた空気入りタイヤ | |
JP2011074309A (ja) | インナーライナー用ポリマー組成物およびそれを用いた空気入りタイヤ | |
JP5004196B2 (ja) | 空気入りタイヤの製造方法 | |
JP5443554B2 (ja) | インナーライナーを備えた空気入りタイヤ | |
JP5676230B2 (ja) | 空気入りタイヤ | |
CN105539012B (zh) | 充气轮胎 | |
JP5913796B2 (ja) | インナーライナー用ポリマー積層体を用いた空気入りタイヤ | |
JP5763388B2 (ja) | 空気入りタイヤ | |
JP6144575B2 (ja) | 空気入りタイヤ | |
JP5632686B2 (ja) | 空気入りタイヤ | |
JP5566430B2 (ja) | 空気入りタイヤ | |
JP2013001184A (ja) | 空気入りタイヤ | |
JP5466288B1 (ja) | 空気入りタイヤ | |
JP5575056B2 (ja) | 空気入りタイヤ | |
JP5342683B1 (ja) | 空気入りタイヤ | |
JP5809118B2 (ja) | 空気入りタイヤ | |
JP5342636B2 (ja) | 空気入りタイヤ | |
WO2012157310A1 (ja) | 空気入りタイヤの製造方法 | |
JP5575054B2 (ja) | 空気入りタイヤ | |
JP6262646B2 (ja) | 空気入りタイヤ | |
JP5053452B1 (ja) | 空気入りタイヤ | |
JP2014040217A (ja) | 空気入りタイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130205 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130325 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20130408 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20130705 |