[go: up one dir, main page]

EP4263630A1 - Verfahren zur herstellung von superabsorberpartikeln - Google Patents

Verfahren zur herstellung von superabsorberpartikeln

Info

Publication number
EP4263630A1
EP4263630A1 EP21823321.1A EP21823321A EP4263630A1 EP 4263630 A1 EP4263630 A1 EP 4263630A1 EP 21823321 A EP21823321 A EP 21823321A EP 4263630 A1 EP4263630 A1 EP 4263630A1
Authority
EP
European Patent Office
Prior art keywords
polymer gel
undersize
weight
polymer
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21823321.1A
Other languages
English (en)
French (fr)
Inventor
Ruediger Funk
Matthias Weismantel
Marcus MAEMECKE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP4263630A1 publication Critical patent/EP4263630A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/008Treatment of solid polymer wetted by water or organic solvents, e.g. coagulum, filter cakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/68Superabsorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels

Definitions

  • the present invention relates to a method for producing thermally surface-postcrosslinked superabsorbent particles, comprising polymerization of a monomer solution or suspension, static drying of the aqueous polymer gel obtained, comminution of the dried polymer gel, classification of the polymer particles obtained, with polymer particles that are too small being separated off as undersize, mixing the separated off Undersize with an aqueous solution, wherein the aqueous solution contains a crosslinker, and recycling of the polymer gel obtained from the undersize into the static drying.
  • Superabsorbents are used in the manufacture of diapers, tampons, sanitary napkins and other hygiene articles, but also as water-retaining agents in agricultural horticulture.
  • the superabsorbers are also referred to as water-absorbing polymers.
  • superabsorbent particles are generally surface postcrosslinked. This increases the degree of crosslinking of the particle surface, whereby the absorption under a pressure of 49.2 g/cm 2 (AUL0.7psi) and the centrifuge retention capacity (CRC) can be at least partially decoupled.
  • This surface post-crosslinking can be carried out in an aqueous gel phase.
  • dried, ground and sieved polymer particles base polymer
  • Crosslinkers suitable for this purpose are compounds which can form covalent bonds with at least two carboxylate groups of the polymer particles.
  • EP 0 789 047 A1 describes a process for producing superabsorbents, in which polymer particles are agglomerated with an aqueous solution and the aqueous solution contains a crosslinker.
  • WO 2019/221235 A1 and WO 2019/221236 A1 describe processes for producing superabsorbent particles, polymer particles being agglomerated with water and the polymer gel obtained being recycled.
  • the object of the present invention was to provide an improved process for producing superabsorbent particles, in particular for producing superabsorbent particles with a high absorption rate.
  • the object was achieved by a process for producing superabsorbent particles by polymerizing a monomer solution or suspension containing a) at least one ethylenically unsaturated, acid-group-carrying monomer which is at least partially neutralized, b) at least one crosslinker 1 and c) at least one initiator, comprising the steps i) polymerization of the monomer solution or suspension and optional extrusion of the resulting polymer gel 1, ii) drying of the polymer gel, iii) comminution of the dried polymer gel, iv) classification of the polymer particles obtained in step iii), with too small polymer particles separated as undersize 1 and optionally oversized polymer particles are recycled in step iii), and the remaining polymer particles are thermally surface post-crosslinked in a further step, v) mixing the separated undersize with an aqueous solution and optionally extrusion of the resulting polymer gel 2 and vi) recycling of the polymer rgels 2 in step ii),
  • the present invention is based on the finding that agglomerates produced from separated undersize increase the rate of absorption. It is important here that agglomeration takes place in the presence of a crosslinking agent and that the polymer gel 2 thus obtained is dried together with the rest of the polymer gel, with the two polymer gels not being mixed.
  • the crosslinking agent is distributed uniformly over the entire polymer gel and the concentration of crosslinking agent in polymer gel 2 is reduced. This leads to more unstable agglomerates. At the same time, the polymer gel 1 is additionally crosslinked. This leads to a lower absorption capacity.
  • the separated undersize in step v) is first mixed with water and optionally extruded and then mixed with the aqueous solution and optionally extruded.
  • the separated undersize is pre-swollen before the crosslinking agent 2 is actually added.
  • the separated undersize is pre-swollen with water before the addition of the aqueous solution, preferably at least 50% by weight, particularly preferably at least 70% by weight, very particularly preferably at least 90% by weight, of the total amount of in step v) added water used for pre-soaking.
  • the total amount of water added in step v) is the amount of water added and the water content of the aqueous solution added.
  • the separated undersize in step v) is first mixed with an aqueous base and optionally extruded and then mixed with the aqueous solution and optionally extruded.
  • the separated undersize is pretreated before the crosslinking agent 2 is actually added.
  • aqueous base preferably from 0.1 to 12% by weight of base, based on the undersize.
  • bases are sodium hydroxide, sodium carbonate and sodium hydroxide roe carbonate.
  • a 50% strength by weight sodium hydroxide solution can be used as the aqueous base.
  • the pretreatment of the undersize causes crosslinks in the undersize to be hydrolyzed and the centrifuge retention capacity (CRC) of the undersize to increase.
  • CRC centrifuge retention capacity
  • the temperature in step v) is preferably from 20 to 90°C, particularly preferably from 25 to 75°C, very particularly preferably from 30 to 60°C.
  • the aqueous solution in step v) preferably contains from 0.01 to 1.0% by weight, particularly preferably from 0.02 to 0.5% by weight, very particularly preferably from 0.05 to 0.2% by weight. -%, of the crosslinker 2, in each case based on the amount of separated undersize,
  • Suitable crosslinkers 2 which can be used in step v) are compounds which can form covalent bonds with at least two carboxylate groups of the polymer particles, for example ethylene carbonate and ethylene glycol diglycidyl ether. Such compounds are also known as surface post-crosslinkers and are described there in this document.
  • crosslinkers 2 are able to form ionic bonds with at least two carboxylate groups of the polymer particles. Such compounds are also used as salts of polyvalent cations in surface post-crosslinking and are described there in this document.
  • Particularly suitable crosslinkers 2 which can be used in step v) are compounds which contain at least two epoxide groups, for example ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether and polyglycerol polyglycidyl ether.
  • ethylene glycol diglycidyl ether diethylene glycol diglycidyl ether
  • polyethylene glycol diglycidyl ether polyethylene glycol diglycidyl ether
  • propylene glycol diglycidyl ether propylene glycol diglycidyl ether
  • polypropylene glycol diglycidyl ether polypropylene glycol diglycidyl ether
  • glycerol polyglycidyl ether dig
  • the moisture content of the polymer gel obtained in step v) is preferably from 30 to 70% by weight, particularly preferably from 35 to 65% by weight, very particularly preferably from 40 to 60% by weight, the moisture content being analogous to that of the EDANA recommended test method no. WSP 230.2-05 "Mass Loss Upon Heating".
  • 90% by weight of the undersize separated in step iv) has a particle size of preferably not more than 250 ⁇ m, particularly preferably not more than 200 ⁇ m, very particularly preferably 150 ⁇ m.
  • the amount of polymer gel 2 recycled in step vi) is preferably from 1 to 50% by weight, more preferably from 10 to 40% by weight, most preferably from 20 to 30% by weight, based in each case on the total amount of polymer gels to be dried in step ii).
  • the crosslinker 2 can hydrolyze, especially when it comes to compounds that contain at least two epoxide groups. Therefore the residence time of the polymer gel 2 between steps v) and ii) should not be too long.
  • the residence time of the polymer gel 2 between steps v) and ii) is therefore preferably at most 15 minutes, particularly preferably at most 10 minutes, very particularly preferably at most 5 minutes.
  • the crosslinking reaction of crosslinker 2 should take place during drying in step ii).
  • the residence time during drying in step ii) is preferably at least 120°C, particularly preferably at least 150°C, very particularly preferably at least 170°C.
  • the residence time during drying in step ii) is preferably at least 10 minutes, particularly preferably at least 20 minutes, very particularly preferably at least 30 minutes.
  • the mass of undersize 2 in relation to the total mass of undersize is preferably at most 10% by weight, particularly preferably at most 5% by weight, very particularly preferably at most 2% by weight.
  • the process according to the invention is preferably carried out continuously.
  • the superabsorbents are produced by polymerizing a monomer solution or suspension and are usually water-insoluble.
  • the monomers a) are preferably water-soluble, ie the solubility in water at 23° C. is typically at least 1 g/100 g water, preferably at least 5 g/100 g water, particularly preferably at least 25 g/100 g water, very particularly preferably at least 35g/100g water.
  • Suitable monomers a) are ethylenically unsaturated carboxylic acids, such as acrylic acid, methacrylic acid and itaconic acid. Particularly preferred monomers are acrylic acid and methacrylic acid. Acrylic acid is very particularly preferred.
  • the monomers a) usually contain polymerization inhibitors, preferably hydroquinone monoethers, as storage stabilizers.
  • Suitable crosslinkers b) are compounds having at least two groups suitable for crosslinking. Such groups are, for example, ethylenically unsaturated groups which can be radically polymerized into the polymer chain, and functional groups which can form covalent bonds with the acid groups of the monomer a). Furthermore, polyvalent metal salts which can form coordinate bonds with at least two acid groups of the monomer a) are also suitable as crosslinkers b).
  • Suitable crosslinkers b) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, polyethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallylammonium chloride, tetraallyloxyethane, as described in EP 0 530438 A1, di- and triacrylates, as described in EP 0 547 847 A1, EP 0 559476 A1, EP 0632 068 A1, WO 93/21237 A1, WO 03/104299 A1, WO 03/104300 A1, WO 03/104301 A1 and DE 103 31 450 A1 describe mixed acrylates which contain further ethylenically unsaturated groups in addition to acrylate groups, as described in DE 103 31 456 A1 and DE 103 55401 A1, or crosslinker mixtures as described, for example, in DE 19543 368 A1, DE 196 46484 A1, WO 90/15830 A
  • the amount of crosslinker b) is preferably from 0.05 to 1.5% by weight, particularly preferably from 0.1 to 1% by weight, very particularly preferably from 0.3 to 0.6% by weight, calculated in each case the total amount of monomer a) used.
  • the centrifuge retention capacity (CRC) decreases and the absorption under a pressure of 21.0 g/cm 2 (AUL0.3psi) passes through a maximum.
  • All compounds which generate free radicals under the polymerization conditions can be used as initiators c), for example thermal initiators, redox initiators, photoinitiators.
  • Suitable redox initiators are sodium peroxodisulfate/ascorbic acid, hydrogen peroxide/ascorbic acid, sodium peroxodisulfate/sodium bisulfite and hydrogen peroxide/sodium bisulfite.
  • Mixtures of thermal initiators and redox initiators are preferably used, such as sodium peroxodisulfate/hydrogen peroxide/ascorbic acid.
  • the disodium salt of 2-hydroxy-2-sulfonatoacetic acid or a mixture of the sodium salt of 2-hydroxy-2-sulfinatoacetic acid, the disodium salt of 2-hydroxy-2-sulfonatoacetic acid and sodium bisulfite is preferably used as the reducing component.
  • Such mixtures are available as Bruggolite® FF6 and Bruggolite® FF7 (Bruggemann Chemicals; Heilbronn; Germany).
  • aqueous monomer solution is usually used.
  • the water content of the monomer solution is preferably from 40 to 75% by weight, particularly preferably from 45 to 70% by weight, very particularly preferably from 50 to 65% by weight. It is also possible to use monomer suspensions, i.e. monomer solutions with monomer a) exceeding the solubility, for example sodium acrylate. As the water content increases, the energy required for the subsequent drying increases, and as the water content decreases, the heat of polymerization can only be dissipated insufficiently.
  • the preferred polymerization inhibitors require dissolved oxygen for optimal activity.
  • the monomer solution can therefore be freed from dissolved oxygen before the polymerization by rendering it inert, i.e. flowing through it with an inert gas, preferably nitrogen or carbon dioxide.
  • the oxygen content of the monomer solution is preferably reduced to less than 1 ppm by weight, more preferably to less than 0.5 ppm by weight, most preferably to less than 0.1 ppm by weight, before the polymerization.
  • Suitable reactors for the polymerization are, for example, kneading reactors or belt reactors.
  • the polymer gel formed during the polymerization of an aqueous monomer solution or suspension is continuously comminuted, for example by counter-rotating stirrer shafts, as described in WO 2001/038402 A1.
  • Polymerization on the belt is described, for example, in DE 3825 366 A1 and US Pat. No. 6,241,928.
  • Polymerization in a belt reactor produces a polymer gel that has to be comminuted, for example in an extruder or kneader.
  • the comminuted polymer gel obtained by means of a kneader can additionally be extruded.
  • the acid groups of the polymer gels obtained are usually partially neutralized.
  • the neutralization is preferably carried out at the monomer stage. This is usually done by mixing in the neutralizing agent as an aqueous solution or preferably also as a solid.
  • the degree of neutralization is preferably from 40 to 85 mol%, particularly preferably from 50 to 80 mol%, very particularly preferably from 60 to 75 mol%, it being possible to use the customary neutralizing agents, preferably alkali metal hydroxides, alkali metal oxides, alkali metal carbonates or alkali metal hydrogen carbonates as well their mixtures. Instead of alkali metal salts, ammonium salts can also be used.
  • Solid carbonates and hydrogen carbonates can also be used here in encapsulated form, preferably in the monomer solution directly before the polymerization, during or after the polymerization in the polymer gel and before it is dried.
  • the encapsulation is carried out by coating the surface with an insoluble or only slowly soluble material (e.g. using film-forming polymers, inert inorganic materials or fusible organic materials), which delays the solution and reaction of the solid carbonate or bicarbonate so that carbon dioxide is only released during drying is set and the resulting superabsorbent has a high internal porosity.
  • the polymer gel is then usually dried with a circulating air belt dryer until the residual moisture content is preferably 0.5 to 10% by weight, particularly preferably 1 to 7% by weight, very particularly preferably 2 to 5% by weight, with the residual moisture content according to the test method no. WSP 230.2-05 "Mass Loss Upon Heating" recommended by EDANA. If the residual moisture is too high, the dried polymer gel has a glass transition temperature T g that is too low and is difficult to process further. If the residual moisture content is too low, the dried polymer gel is too brittle and the subsequent comminution steps result in undesirably large amounts of polymer particles with too small a particle size (“fines”).
  • the solids content of the polymer gel is preferably from 25 to 90% by weight, particularly preferably from 35 to 70% by weight, very particularly preferably from 40 to 60% by weight.
  • the dried polymer gel is then broken up and optionally coarsely comminuted.
  • the dried polymer gel is then usually ground and classified, it being possible to use single-stage or multi-stage roller mills, preferably two-stage or three-stage roller mills, pinned mills, hammer mills or vibratory mills for the grinding.
  • the mean particle size of the polymer particles separated off as the product fraction is preferably from 150 to 850 ⁇ m, particularly preferably from 250 to 600 ⁇ m, very particularly from 300 to 500 ⁇ m.
  • the average particle size of the product fraction can be determined using the test method no. WSP 220.2 (05) "Particle Size Distribution” recommended by EDANA, whereby the mass fractions of the sieve fractions are applied cumulatively and the average particle size is determined graphically.
  • the mean particle size here is the value of the mesh size that results for a cumulative 50% by weight.
  • the polymer particles can be thermally surface post-crosslinked.
  • Suitable surface postcrosslinkers are compounds that contain groups that can form covalent bonds with at least two carboxylate groups of the polymer particles.
  • Suitable compounds are, for example, polyfunctional amines, polyfunctional amidoamines, polyfunctional epoxides, as described in EP 0 083 022 A2, EP 0 543 303 A1 and EP 0 937 736 A2, di- or polyfunctional alcohols, as described in DE 33 14 019 A1, DE 3523617 A1 and EP 0450 922 A2, or ⁇ -hydroxyalkylamides, as described in DE 102 04 938 A1 and US Pat. No. 6,239,230.
  • the amount of surface postcrosslinker is preferably from 0.001 to 2% by weight, particularly preferably from 0.02 to 1% by weight, very particularly preferably from 0.05 to 0.2% by weight, based in each case on the polymer particles.
  • polyvalent cations are applied to the particle surface in addition to the surface postcrosslinkers.
  • the polyvalent cations that can be used in the process according to the invention are, for example, divalent cations such as zinc, magnesium, calcium and strontium cations, trivalent cations such as aluminum, iron, chromium, rare earth and manganese cations, tetravalent cations such as titanium cations and Zirconium.
  • divalent cations such as zinc, magnesium, calcium and strontium cations
  • trivalent cations such as aluminum, iron, chromium, rare earth and manganese cations
  • tetravalent cations such as titanium cations and Zirconium.
  • chloride, bromide, hydroxide, sulfate, hydrogen sulfate, carbonate, hydrogen carbonate, nitrate, phosphate, hydrogen phosphate, dihydrogen phosphate and carboxylate such as acetate and lactate are possible.
  • Aluminum hydroxide, aluminum sulfate and aluminum lactate are preferred.
  • the surface postcrosslinking is usually carried out by spraying a solution of the surface postcrosslinker onto the dried polymer particles. After spraying, the polymer particles coated with surface post-crosslinking agent are thermally treated.
  • a solution of the surface postcrosslinker is preferably sprayed on in mixers with moving mixing tools, such as screw mixers, disk mixers and paddle mixers.
  • moving mixing tools such as screw mixers, disk mixers and paddle mixers.
  • Horizontal mixers, such as paddle mixers, are particularly preferred, and vertical mixers are very particularly preferred.
  • the distinction between horizontal mixers and vertical mixers is based on the mounting of the mixing shaft, i.e. horizontal mixers have a horizontally mounted mixing shaft and vertical mixers have a vertically mounted mixing shaft.
  • Suitable mixers are, for example, Horizontal Ploughshare® Mixer (Gebr.
  • the surface post-crosslinkers are typically used as an aqueous solution.
  • the depth of penetration of the surface postcrosslinker into the polymer particles can be adjusted via the content of nonaqueous solvent or the total amount of solvent.
  • the thermal treatment is preferably carried out in contact dryers, particularly preferably paddle dryers, very particularly preferably disk dryers.
  • Suitable dryers are, for example, Hosokawa Bepex® Horizontal Paddle Dryer (Hosokawa Micron GmbH; Leingart; Germany), Hosokawa Bepex® Disc Dryer (Hosokawa Micron GmbH; Leingart; Germany), Holo-Flite® dryers (Metso Minerals Industries Inc.; Danville; USA ) and Nara Paddle Dryer (NARA Machinery Europe; Frechen; Germany).
  • fluidized bed dryers can also be used.
  • the surface post-crosslinking can take place in the mixer itself, by heating the jacket or blowing in warm air.
  • a downstream dryer such as a tray dryer, a rotary kiln or a heatable screw, is also suitable.
  • the mixture is mixed in a fluidized bed dryer and the surface post-crosslinked thermally.
  • Preferred reaction temperatures are in the range from 100 to 250°C, preferably from 110 to 220°C, particularly preferably from 120 to 210°C, very particularly preferably from 130 to 200°C.
  • the preferred residence time at this temperature is preferably at least 10 minutes, more preferably at least 20 minutes, most preferably at least 30 minutes, and usually at most 60 minutes.
  • the surface-postcrosslinked polymer particles can then be reclassified, with polymer particles that are too small and/or too large being separated off and returned to the process.
  • the surface post-crosslinked polymer particles can be coated or post-moistened to further improve their properties.
  • the subsequent moistening is preferably carried out at 30 to 80.degree. C., particularly preferably at 35 to 70.degree. C., very particularly preferably at 40 to 60.degree.
  • the amount of water used for post-wetting is preferably from 1 to 10% by weight, particularly preferably from 2 to 8% by weight, very particularly preferably from 3 to 5% by weight.
  • the remoistening increases the mechanical stability of the polymer particles and reduces their tendency to static charging.
  • the post-wetting is carried out in the cooler after the thermal surface post-crosslinking.
  • suitable coatings for improving the swelling rate and the gel bed permeability are inorganic inert substances such as water-insoluble metal salts, organic polymers, cationic polymers and divalent or polyvalent metal cations.
  • suitable coatings for dust binding are, for example, polyols.
  • Suitable coatings to counteract the undesirable tendency of the polymer particles to cake are, for example, pyrogenic silica such as Aerosil® 200, precipitated silica such as Sipernat® D17, and surfactants such as Span® 20.
  • WSP Standard Test Methods described below, labeled "WSP" are described in: “Standard Test Methods for the Nonwovens Industry", Edition 2005, published jointly by “Worldwide Strategie Partners” EDANA (Herrmann-Debrouxlaan 46, 1160 Oudergem, Belgium, www.edana.org) and INDA (1100 Crescent Green, Suite 115, Cary, North Carolina 27518, USA, www.inda.org). This release is available from both EDANA and INDA.
  • the measurements should be carried out at an ambient temperature of 23 ⁇ 2 °C and a relative humidity of 50 ⁇ 10 %.
  • the super absorber particles are thoroughly mixed before the measurement.
  • the centrifuge retention capacity (CRC) is determined according to the EDANA recommended test method No. WSP 241.2 (05) "Fluid Retention Capacity in Saline, After Centrifugation".
  • the absorption under a pressure of 49.2 g/cm 2 (AU HL) is determined analogously to the test method no. WSP 242.2 (05) "Absorption Under Pressure, Gravimetric Determination" recommended by EDANA, whereby instead of a pressure of 21.0 g/cm 2 (0.3psi) a pressure of 49.2 g/cm 2 (0.7psi) is set.
  • An acrylic acid/sodium acrylate solution was prepared by continuously mixing deionized water, 50% strength by weight sodium hydroxide solution and acrylic acid, so that the degree of neutralization corresponded to 72.0 mol %.
  • the solids content of the monomer solution was 42.5% by weight.
  • the crosslinker 1 used was 3-tuply ethoxylated glycerol triacrylate (about 85% strength by weight). The amount used was 1.2 kg per t of monomer solution.
  • the throughput of the monomer solution was 20 t/h.
  • the reaction solution had a temperature of 23.5° C. at the inlet.
  • Type List Contikneter with a volume of 6.3m 3 (LIST AG, Arisdorf, Switzerland) metered:
  • the monomer solution was rendered inert with nitrogen between the point at which the crosslinker was added and the points at which the initiators were added.
  • polymer particles with a particle size of less than 150 ⁇ m (1000 kg/h) obtained from the manufacturing process by comminution and classification were additionally metered into the reactor.
  • the residence time of the reaction mixture in the reactor was 15 minutes.
  • the polymer gel obtained (polymer gel A) was placed on the conveyor belt of a circulating air belt dryer by means of an oscillating conveyor belt.
  • the circulating air belt dryer was 48 m long.
  • the conveyor belt of the circulating air belt dryer had an effective width of 4.4 m.
  • air/gas mixture (approx. 175° C.) flowed continuously around the aqueous polymer gel and dried.
  • the residence time in the circulating air belt dryer was 37 minutes.
  • the dried polymer gel was comminuted using a three-stage roller mill and sieved off to a particle size of 150 to 850 ⁇ m. Polymer particles with a particle size of less than 150 ⁇ m were separated (polymer particles B). Polymer particles with a particle size greater than 850 ⁇ m were returned to the comminution. Polymer particles with a particle size in the range from 150 to 850 ⁇ m (polymer particles A) were thermally surface post-crosslinked.
  • the polymer particles were coated with a surface postcrosslinker solution in a Schugi Flexomix® (Hosokawa Micron B.V., Doetinchem, Netherlands) and then dried in a NARA Paddle Dryer (GMF Gouda, Waddinxveen, Netherlands) at 176° C. for 45 minutes.
  • Schugi Flexomix® Hosokawa Micron B.V., Doetinchem, Netherlands
  • NARA Paddle Dryer GMF Gouda, Waddinxveen, Netherlands
  • the surface postcrosslinker solution contained 2.2% by weight of 2-hydroxyethyl-2-oxazolidone, 2.2% by weight of 1,3-propanediol, 29.0% by weight of 1,2-propanediol, 3.2% by weight aluminum sulfate, 56.9% by weight water and 6.5% by weight isopropanol.
  • the surface post-crosslinked polymer particles were cooled to about 60° C. in a NARA paddle cooler (GMF Gouda, Waddinxveen, Netherlands).
  • the surface post-crosslinked polymer particles were coated with 124.5 kg of a 2.4% strength by weight aqueous polyethylene glycol solution (polyethylene glycol with an average molar mass of 400 g/mol).
  • polymer gel B The polymer gel obtained in this way (polymer gel B) was immediately dried together with the polymer gel A in a circulating air drying cabinet at 170° C. for 60 minutes. For this purpose, polymer gel A was distributed on a drying tray and then polymer gel B was added. A total of 700 g of polymer gel were dried.
  • the dried polymer gel was crushed using a roller mill and sieved to a particle size of 300 to 600 ⁇ m.
  • the polymer particles were then thermally surface post-crosslinked.
  • the polymer particles were oxazolidone in a food processor with a mixture of 0.088 g of 2-hydroxyethyl-2, 0.088 g of 1,3-propanediol, 1.8 g of 1,2-propanediol, 0.88 g of a 26.8 wt Sprayed aluminum sulfate solution and 3.5 g of water and stirred for one minute.
  • the examples show a significant improvement in absorption speed (vortex) with increasing proportion of polymer gel B.
  • the examples show an improvement in absorption speed (vortex) with increasing proportion of polymer gel B.
  • Examples 9 to 12 show an improvement in absorption speed (vortex) with increasing proportion of polymer gel B.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Verfahren zur Herstellung von thermisch oberflächennachvernetzten Superabsorberpartikeln, umfassend Polymerisation einer Monomerlösung oder -suspension, statische Trocknung des erhaltenen wässrigen Polymergels, Zerkleinerung des getrockneten Polymergels, Klassierungder erhaltenen Polymerpartikel, wobei zu kleine Polymerpartikel als Unterkorn abgetrennt werden, Mischen des abgetrennten Unterkorns mit einer wässrigen Lösung, wobei die wässrige Lösung einen Vernetzer enthält, und Rückführung des aus dem Unterkorn erhaltenen Polymergels in die statische Trocknung.

Description

Verfahren zur Herstellung von Superabsorberpartikeln
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von thermisch oberflächennachvernetzten Superabsorberpartikeln, umfassend Polymerisation einer Monomerlösung oder -suspension, statische Trocknung des erhaltenen wässrigen Polymergels, Zerkleinerung des getrockneten Polymergels, Klassierung der erhaltenen Polymerpartikel, wobei zu kleine Polymerpartikel als Unterkorn abgetrennt werden, Mischen des abgetrennten Unterkorns mit einer wässrigen Lösung, wobei die wässrige Lösung einen Vernetzer enthält, und Rückführung des aus dem Unterkorn erhaltenen Polymergels in die statische Trocknung.
Superabsorber werden zur Herstellung von Windeln, Tampons, Damenbinden und anderen Hygieneartikeln, aber auch als wasserzurückhaltende Mittel im landwirtschaftlichen Gartenbau verwendet. Die Superabsorber werden auch als wasserabsorbierende Polymere bezeichnet.
Die Herstellung von Superabsorbern wird in der Monographie ’’Modern Superabsorbent Polymer Technology”, F.L. Buchholz und A.T. Graham, Wiley-VCH, 1998, Seiten 71 bis 103, beschrieben.
Zur Verbesserung der Anwendungseigenschaften, wie beispielsweise Gelbettpermeabilität (GBP) und Absorption unter einem Druck von 49,2 g/cm2 (AUL0.7psi), werden Superabsorberpartikel im allgemeinen oberflächennachvernetzt. Dadurch steigt der Vernetzungsgrad der Partikeloberfläche, wodurch die Absorption unter einem Druck von 49,2 g/cm2 (AUL0.7psi) und die Zentrifugenretentionskapazität (CRC) zumindest teilweise entkoppelt werden können. Diese Oberflächennachvernetzung kann in wässriger Gelphase durchgeführt werden. Vorzugsweise werden aber getrocknete, gemahlene und abgesiebte Polymerpartikel (Grundpolymer) an der Oberfläche mit einem Oberflächennachvernetzer beschichtet und thermisch oberflächennachvernetzt. Dazu geeignete Vernetzer sind Verbindungen, die mit mindestens zwei Carboxylat- gruppen der Polymerpartikel kovalente Bindungen bilden können.
EP 0 789 047 A1 beschreibt ein Verfahren zur Herstellung von Superabsorbern, wobei Polymerpartikel mit einer wässrigen Lösung agglomeriert werden und die wässrige Lösung einen Vernetzer enthält. WO 2019/221235 A1 und WO 2019/221236 A1 beschreiben Verfahren zur Herstellung von Superabsorberpartikeln, wobei Polymerpartikel mit Wasser agglomeriert werden und das erhaltene Polymergel rückgeführt wird.
Aufgabe der vorliegenden Erfindung war die Bereitstellung eines verbesserten Verfahrens zur Herstellung von Superabsorberpartikeln, insbesondere zur Herstellung von Superabsorberpartikeln mit hoher Absorptionsgeschwindigkeit.
Gelöst wurde die Aufgabe durch ein Verfahren zur Herstellung von Superabsorberpartikeln durch Polymerisation einer Monomerlösung oder -suspension, enthaltend a) mindestens ein ethylenisch ungesättigtes, säuregruppentragendes Monomer, das zumindest teilweise neutralisiert ist, b) mindestens einen Vernetzer 1 und c) mindestens einen Initiator, umfassend die Schritte i) Polymerisation der Monomerlösung oder -suspension und optional Extrusion des erhaltenen Polymergels 1, ii) Trocknung des Polymergels, iii) Zerkleinerung des getrockneten Polymergels, iv) Klassierung der in Schritt iii) erhaltenen Polymerpartikel, wobei zu kleine Polymerpartikel als Unterkorn 1 abgetrennt und optional zu große Polymerpartikel in Schritt iii) rückgeführt werden, sowie die übrigen Polymerpartikel in einem weiteren Schritt thermisch oberflächennachvernetzt werden, v) Mischen des abgetrennten Unterkorns mit einer wässrigen Lösung und optional Extrusion des erhaltenen Polymergels 2 und vi) Rückführung des Polymergels 2 in Schritt ii), dadurch gekennzeichnet, dass das Polymergel in Schritt ii) statisch getrocknet wird, der Feuchtegehalt des in Schritt v) erhaltenen Polymergels 2 von 20 bis 80 Gew.-% beträgt, die wässrige Lösung in Schritt v) mindestens einen Vernetzer 2 enthält und der Vernetzer 2 mit mindestens zwei Carboxylatgruppen der Polymerpartikel kovalente oder ionische Bindungen bilden kann. Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, dass aus abgetrenntem Unterkorn hergestellte Agglomerate die Absorptionsgeschwindigkeit erhöhen. Wichtig ist hierbei, dass in Gegenwart eines Vernetzers agglomeriert wird und dass das so erhaltene Polymergel 2 zusammen mit dem übrigen Polymergel getrocknet wird, wobei die beiden Polymergele nicht gemischt werden.
Werden die Polymergele gemischt, beispielsweise gemeinsam extrudiert, so wird der Vernetzer gleichmäßig über das gesamte Polymergel verteilt und die Konzentration an Vernetzer im Polymergel 2 gesenkt. Dies führt zu instabileren Agglomeraten. Gleichzeitig wird das Polymergel 1 zusätzlich vernetzt. Dies führt zu einen geringeren Absorptionskapazität.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird das abgetrennte Unterkorn in Schritt v) zunächst mit Wasser gemischt und optional extrudiert und anschließend mit der wässrigen Lösung gemischt und optional extrudiert. Dadurch wird das abgetrennte Unterkorn vor der eigentlichen Zugabe des Vernetzers 2 vorgequollen.
Wird das abgetrennte Unterkorn vor der Zugabe der wässrigen Lösung mit Wasser vorgequollen, zu wird vorzugsweise mindestens 50 Gew.-%, besonders bevorzugt mindestens 70 Gew.-%, ganz besonders bevorzugt mindestens 90 Gew.-%, der Gesamtmenge des in Schritt v) zugesetzten Wassers zum Vorquellen verwendet. Die Gesamtmenge des in Schritt v) zugesetzten Wassers ist hierbei die Menge an zugesetztem Wasser und der Wasseranteil der zugesetzten wässrigen Lösung.
Dieses Vorquellen des Unterkorns bewirkt, dass der mit der wässrigen Lösung aufgebrachte Vernetzer weniger tief in das Unterkorn eindringt. Dies führt zu einer besseren Vernetzung des Unterkorns untereinander und damit zu im nassen Zustand stabileren Agglomeraten.
In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung wird das abgetrennte Unterkorn in Schritt v) zunächst mit einer wässrigen Base gemischt und optional extrudiert und anschließend mit der wässrigen Lösung gemischt und optional extrudiert. Dadurch wird das abgetrennte Unterkorn vor der eigentlichen Zugabe des Vernetzers 2 vorbehandelt.
Wird das abgetrennte Unterkorn vor der Zugabe der wässrigen Lösung mit einer wässrigen Base vorbehandelt, so wird vorzugsweise vom 0,1 bis 12 Gew.-% Base, bezogen auf das Unterkorn, eingesetzt. Geeignete Basen sind Natriumhydroxid, Natriumcarbonat und Natriumhyd- rogencarbonat. Es kann beispielsweise eine 50 gew.-%ige Natronlauge als wässrige Base verwendet werden.
Die Vorbehandlung des Unterkorns bewirkt, dass Vernetzungsstellen im Unterkorn hydrolysiert und die Zentrifugenretentionskapazität (CRC) des Unterkorns erhöht werden.
Die Temperatur in Schritt v) beträgt vorzugsweise von 20 bis 90°C, besonders bevorzugt von 25 bis 75°VC ganz besonders bevorzugt von 30 bis 60°C.
Die wässrige Lösung in Schritt v) enthält vorzugsweise von 0,01 bis 1 ,0 Gew.-%, besonders bevorzugt von 0,02 bis 0,5 Gew.-%, ganz besonders bevorzugt von 0,05 bis 0,2 Gew.-%, des Vernetzers 2, jeweils bezogen auf die Menge an abgetrenntem Unterkorn,
Geeignete in Schritt v) einsetzbare Vernetzer 2 sind Verbindungen, die mit mindestens zwei Carboxylatgruppen der Polymerpartikel kovalente Bindungen bilden können, beispielsweise Ethylencarbonat und Ethylenglykoldiglycidylether. Derartige Verbindungen sind auch als Oberflächennachvernetzter bekannt und in dieser Schrift dort beschrieben.
Weitere geeignete Vernetzer 2 sind mit mindestens zwei Carboxylatgruppen der Polymerpartikel ionische Bindungen bilden können. Derartige Verbindungen werden auch als Salze polyvalenter Kationen bei der Oberflächennachvernetzung verwendet und in dieser Schrift dort beschrieben.
Besonders geeignete in Schritt v) einsetzbare Vernetzer 2 sind Verbindungen, die mindestens zwei Epoxid-Gruppen enthalten, beispielsweise Ethylenglykoldiglycidylether, Diethylenglykol- diglycidylether, Polyethylenglykoldiglycidylether, Propylenglykoldiglycidylether, Polypropylengly- koldiglycidylether, Glyzerinpolyglycidylether, Diglyzerinpolyglycidylether und Polyglyzerinpoly- glycidylether.
Der Feuchtegehalt des in Schritt v) erhaltenen Polymergels beträgt vorzugsweise von 30 bis 70 Gew.-%, besonders bevorzugt von 35 bis 65 Gew.-%, ganz besonders bevorzugt von 40 bis 60 Gew.-%, wobei der Feuchtegehalt analog der von der EDANA empfohlenen Testmethode Nr. WSP 230.2-05 "Mass Loss Upon Heating" bestimmt wird. 90 Gew.-% des in Schritt iv) abgetrennten Unterkorn weist eine Partikelgröße von vorzugsweise höchstens 250 pm, besonders bevorzugt von höchstens 200 pm, ganz besonders bevorzugt von 150 pm, auf.
Die Menge des in Schritt vi) rückgeführten Polymergels 2 beträgt vorzugsweise von 1 bis 50 Gew.-%, besonders bevorzugt 10 bis 40 Gew.-%, ganz besonders bevorzugt von 20 bis 30 Gew.-% beträgt, jeweils bezogen auf die Gesamtmenge des in Schritt ii) zu trocknenden Polymergels.
Der Vernetzer 2 können hydrolysieren, insbesondere wenn es sich um Verbindungen handelt, die mindestens zwei Epoxid-Gruppen enthalten. Daher sollte die Verweilzeit des Polymergels 2 zwischen den Schritten v) und ii) nicht zu lang sein. Die Verweilzeit des Polymergels 2 zwischen den Schritten v) und ii) beträgt deshalb vorzugsweise höchstens 15 Minuten, besonders bevorzugt höchstens 10 Minuten, ganz besonders bevorzugt höchstens 5 Minuten.
Die Vernetzungsreaktion des Vernetzers 2 sollte während der Trocknung in Schritt ii) stattfinden. Die Verweilzeit in der Trocknung in Schritt ii) beträgt vorzugsweise mindestens 120°C, besonders bevorzugt mindestens 150°C, ganz besonders bevorzugt mindestens 170°C. Die Verweilzeit bei der Trocknung in Schritt ii) beträgt vorzugsweise mindestens 10 Minuten, besonders bevorzugt mindestens 20 Minuten, ganz besonders bevorzugt mindestens 30 Minuten.
Es ist üblich thermisch oberflächennachvernetzte Polymerpartikel zu klassieren, wobei zu kleine Polymerpartikel als Unterkorn 2 abgetrennt werden und das abgetrennte Unterkorn 2 ebenfalls in Schritt v) rückzuführen. In diesem Fall beträgt die Masse an Unterkorn 2 an der Gesamtmasse an Unterkorn vorzugsweise höchstens 10 Gew.-%, besonders bevorzugt höchsten 5 Gew.- %, ganz besonders bevorzugt höchstens 2 Gew.-%.
Das erfindungsgemäße Verfahren wird vorzugsweise kontinuierlich durchgeführt.
Im Folgenden wird die Herstellung der Superabsorber näher erläutert:
Die Superabsorber werden durch Polymerisation einer Monomerlösung oder -suspension hergestellt und sind üblicherweise wasserunlöslich. Die Monomeren a) sind vorzugsweise wasserlöslich, d.h. die Löslichkeit in Wasser bei 23°C beträgt typischerweise mindestens 1 g/100 g Wasser, vorzugsweise mindestens 5 g/100 g Wasser, besonders bevorzugt mindestens 25 g/100 g Wasser, ganz besonders bevorzugt mindestens 35 g/100 g Wasser.
Geeignete Monomere a) sind beispielsweise ethylenisch ungesättigte Carbonsäuren, wie Acrylsäure, Methacrylsäure, und Itaconsäure. Besonders bevorzugte Monomere sind Acrylsäure und Methacrylsäure. Ganz besonders bevorzugt ist Acrylsäure.
Die Monomere a) enthalten üblicherweise Polymerisationsinhibitoren, vorzugsweise Hydrochinonhalbether, als Lagerstabilisator.
Geeignete Vernetzer b) sind Verbindungen mit mindestens zwei zur Vernetzung geeigneten Gruppen. Derartige Gruppen sind beispielsweise ethylenisch ungesättigte Gruppen, die in die Polymerkette radikalisch einpolymerisiert werden können, und funktionelle Gruppen, die mit den Säuregruppen des Monomers a) kovalente Bindungen ausbilden können. Weiterhin sind auch polyvalente Metallsalze, die mit mindestens zwei Säuregruppen des Monomeren a) koordinative Bindungen ausbilden können, als Vernetzer b) geeignet.
Geeignete Vernetzer b) sind beispielsweise Ethylenglykoldimethacrylat, Diethylenglykoldiac- rylat, Polyethylenglykoldiacrylat, Allylmethacrylat, Trimethylolpropantriacrylat, Triallylamin, Tetraallylammoniumchlorid, Tetraallyloxyethan, wie in EP 0 530438 A1 beschrieben, Di- und Triac- rylate, wie in EP 0 547 847 A1 , EP 0 559476 A1 , EP 0632 068 A1 , WO 93/21237 A1 , WO 03/104299 A1 , WO 03/104300 A1, WO 03/104301 A1 und DE 103 31 450 A1 beschrieben, gemischte Acrylate, die neben Acrylatgruppen weitere ethylenisch ungesättigte Gruppen enthalten, wie in DE 103 31 456 A1 und DE 103 55401 A1 beschrieben, oder Vernetzermischungen, wie beispielsweise in DE 19543 368 A1, DE 196 46484 A1 , WO 90/15830 A1 und WO 02/032962 A2 beschrieben.
Die Menge an Vernetzer b) beträgt vorzugsweise 0,05 bis 1 ,5 Gew.-%, besonders bevorzugt 0,1 bis 1 Gew.-%, ganz besonders bevorzugt 0,3 bis 0,6 Gew.-%, jeweils berechnet auf die Gesamtmenge an eingesetztem Monomer a). Mit steigendem Vernetzergehalt sinkt die Zentrifugenretentionskapazität (CRC) und die Absorption unter einem Druck von 21,0 g/cm2 (AUL0.3psi) durchläuft ein Maximum. Als Initiatoren c) können sämtliche unter den Polymerisationsbedingungen Radikale erzeugende Verbindungen eingesetzt werden, beispielsweise thermische Initiatoren, Redox-Initiatoren, Photoinitiatoren. Geeignete Redox-Initiatoren sind Natriumperoxodisulfat/Ascorbinsäure, Was- serstoffperoxid/Ascorbinsäure, Natriumperoxodisulfat/Natriumbisulfit und Wasserstoffper- oxid/Natriumbisulfit. Vorzugsweise werden Mischungen aus thermischen Initiatoren und Redox- Initiatoren eingesetzt, wie Natriumperoxodisulfat/Wasserstoffperoxid/Ascorbinsäure. Als reduzierende Komponente wird vorzugsweise das Dinatriumsalz der 2-Hydroxy-2-sulfonatoessig- säure oder ein Gemisch aus dem Natriumsalz der 2-Hydroxy-2-sulfinatoessigsäure, dem Dinatriumsalz der 2-Hydroxy-2-sulfonatoessigsäure und Natriumbisulfit eingesetzt. Derartige Gemische sind als Brüggolite® FF6 und Brüggolite® FF7 (Brüggemann Chemicals; Heilbronn; Deutschland) erhältlich.
Üblicherweise wird eine wässrige Monomerlösung verwendet. Der Wassergehalt der Monomerlösung beträgt vorzugsweise von 40 bis 75 Gew.-%, besonders bevorzugt von 45 bis 70 Gew.- %, ganz besonders bevorzugt von 50 bis 65 Gew.-%. Es ist auch möglich Monomersuspensionen, d.h. Monomerlösungen mit der Löslichkeit überschreitendem Monomer a), beispielsweise Natriumacrylat, einzusetzen. Mit steigendem Wassergehalt steigt der Energieaufwand bei der anschließenden Trocknung und mit sinkendem Wassergehalt kann die Polymerisationswärme nur noch ungenügend abgeführt werden.
Die bevorzugten Polymerisationsinhibitoren benötigen für eine optimale Wirkung gelösten Sauerstoff. Daher kann die Monomerlösung vor der Polymerisation durch Inertisierung, d.h. Durchströmen mit einem inerten Gas, vorzugsweise Stickstoff oder Kohlendioxid, von gelöstem Sauerstoff befreit werden. Vorzugsweise wird der Sauerstoffgehalt der Monomerlösung vor der Polymerisation auf weniger als 1 Gew.-ppm, besonders bevorzugt auf weniger als 0,5 Gew.-ppm, ganz besonders bevorzugt auf weniger als 0,1 Gew.-ppm, gesenkt.
Geeignete Reaktoren für die Polymerisation sind beispielsweise Knetreaktoren oder Bandreaktoren. Im Kneter wird das bei der Polymerisation einer wässrigen Monomerlösung oder - suspension entstehende Polymergel durch beispielsweise gegenläufige Rührwellen kontinuierlich zerkleinert, wie in WO 2001/038402 A1 beschrieben. Die Polymerisation auf dem Band wird beispielsweise in DE 3825 366 A1 und US 6,241,928 beschrieben. Bei der Polymerisation in einem Bandreaktor entsteht ein Polymergel, das zerkleinert werden muss, beispielsweise in einem Extruder oder Kneter. Zur Verbesserung der Trocknungseigenschaften kann das mittels eines Kneters erhaltene zerkleinerte Polymergel zusätzlich extrudiert werden.
Die Säuregruppen der erhaltenen Polymergele sind üblicherweise teilweise neutralisiert. Die Neutralisation wird vorzugsweise auf der Stufe der Monomeren durchgeführt. Dies geschieht üblicherweise durch Einmischung des Neutralisationsmittels als wässrige Lösung oder bevorzugt auch als Feststoff. Der Neutralisationsgrad beträgt vorzugsweise von 40 bis 85 mol-%, besonders bevorzugt von 50 bis 80 mol-%, ganz besonders bevorzugt von 60 bis 75 mol-%, wobei die üblichen Neutralisationsmittel verwendet werden können, vorzugsweise Alkalimetallhydroxide, Alkalimetalloxide, Alkalimetallkarbonate oder Alkalimetallhydrogenkarbonate sowie deren Mischungen. Statt Alkalimetallsalzen können auch Ammoniumsalze verwendet werden. Natrium und Kalium sind als Alkalimetalle besonders bevorzugt, ganz besonders bevorzugt sind jedoch Natriumhydroxid, Natriumkarbonat oder Natriumhydrogenkarbonat sowie deren Mischungen. Feste Carbonate und Hydrogencarbonate können hierbei auch in verkapselter Form eingesetzt werden, vorzugsweise in die Monomerlösung direkt vor der Polymerisation, während oder nach der Polymerisation ins Polymergel und vor dessen Trocknung. Die Verkapselung erfolgt durch Beschichtung der Oberfläche mit einem unlöslichen oder nur langsam löslichen Material (beispielsweise mittels filmbildender Polymere, inerter anorganischer Materialien oder schmelzbaren organischer Materialien), welches die Lösung und Reaktion des festen Carbonats oder Hydrogencarbonats so verzögert, dass erst während der Trocknung Kohlendioxid frei gesetzt wird und der entstehende Superabsorber eine hohe innere Porosität aufweist.
Das Polymergel wird dann üblicherweise mit einem Umluftbandtrockner getrocknet bis der Restfeuchtegehalt vorzugsweise 0,5 bis 10 Gew.-%, besonders bevorzugt 1 bis 7 Gew.-%, ganz besonders bevorzugt 2 bis 5 Gew.-%, beträgt, wobei der Restfeuchtegehalt gemäß der von der EDANA empfohlenen Testmethode Nr. WSP 230.2-05 "Mass Loss Upon Heating" bestimmt wird. Bei einer zu hohen Restfeuchte weist das getrocknete Polymergel eine zu niedrige Glasübergangstemperatur Tg auf und ist nur schwierig weiter zu verarbeiten. Bei einer zu niedrigen Restfeuchte ist das getrocknete Polymergel zu spröde und in den anschließenden Zerkleinerungsschritten fallen unerwünscht große Mengen an Polymerpartikeln mit zu niedriger Partikelgröße („fines“) an. Der Feststoffgehalt des Polymergels beträgt vor der Trocknung vorzugsweise von 25 und 90 Gew.-%, besonders bevorzugt von 35 bis 70 Gew.-%, ganz besonders bevorzugt von 40 bis 60 Gew.-%. Anschließend wird das getrocknete Polymergel gebrochen und optional grob zerkleinert. Das getrocknete Polymergel wird hiernach üblicherweise gemahlen und klassiert, wobei zur Mahlung üblicherweise ein- oder mehrstufige Walzenstühle, bevorzugt zwei- oder dreistufige Walzenstühle, Stiftmühlen, Hammermühlen oder Schwingmühlen, eingesetzt werden können.
Die mittlere Partikelgröße der als Produktfraktion abgetrennten Polymerpartikel beträgt vorzugsweise von 150 bis 850 pm, besonders bevorzugt von 250 bis 600 pm, ganz besonders von 300 bis 500 pm. Die mittlere Partikelgröße der Produktfraktion kann mittels der von der EDANA empfohlenen Testmethode Nr. WSP 220.2 (05) "Partikel Size Distribution" ermittelt werden, wobei die Massenanteile der Siebfraktionen kumuliert aufgetragen werden und die mittlere Partikelgröße graphisch bestimmt wird. Die mittlere Partikelgröße ist hierbei der Wert der Maschenweite, der sich für kumulierte 50 Gew.-% ergibt.
Die Polymerpartikel können zur weiteren Verbesserung der Eigenschaften thermisch oberflächennachvernetzt werden. Geeignete Oberflächennachvernetzer sind Verbindungen, die Gruppen enthalten, die mit mindestens zwei Carboxylatgruppen der Polymerpartikel kovalente Bindungen bilden können. Geeignete Verbindungen sind beispielsweise polyfunktionelle Amine, polyfunktionelle Amidoamine, polyfunktionelle Epoxide, wie in EP 0 083 022 A2, EP 0 543 303 A1 und EP 0 937 736 A2 beschrieben, di- oder polyfunktionelle Alkohole, wie in DE 33 14 019 A1, DE 3523617 A1 und EP 0450 922 A2 beschrieben, oder ß-Hydroxyalkylamide, wie in DE 102 04 938 A1 und US 6,239,230 beschrieben.
Die Menge an Oberflächennachvernetzer beträgt vorzugsweise 0,001 bis 2 Gew.-%, besonders bevorzugt 0,02 bis 1 Gew.-%, ganz besonders bevorzugt 0,05 bis 0,2 Gew.-%, jeweils bezogen auf die Polymerpartikel.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden zusätzlich zu den Oberflächennachvernetzern polyvalente Kationen auf die Partikeloberfläche aufgebracht.
Die im erfindungsgemäßen Verfahren einsetzbaren polyvalenten Kationen sind beispielsweise zweiwertige Kationen, wie die Kationen von Zink, Magnesium, Kalzium und Strontium, dreiwertige Kationen, wie die Kationen von Aluminium, Eisen, Chrom, Seltenerden und Mangan, vierwertige Kationen, wie die Kationen von Titan und Zirkonium. Als Gegenion sind Chlorid, Bromid, Hydroxid, Sulfat, Hydrogensulfat, Carbonat, Hydrogencarbonat, Nitrat, Phosphat, Hydrogenphosphat, Dihydrogenphosphat und Carboxylat, wie Acetat und Lactat, möglich. Aluminiumhydroxid, Aluminiumsulfat und Aluminiumlaktat sind bevorzugt. Die Einsatzmenge an polyvalentem Kation beträgt beispielsweise 0,001 bis 1 ,5 Gew.-%, vorzugsweise 0,005 bis 1 Gew.-%, besonders bevorzugt 0,02 bis 0,8 Gew.-%. jeweils bezogen auf das Polymer.
Die Oberflächennachvernetzung wird üblicherweise so durchgeführt, dass eine Lösung des Oberflächennachvernetzers auf die getrockneten Polymerpartikel aufgesprüht wird. Im Anschluss an das Aufsprühen werden die mit Oberflächennachvernetzer beschichteten Polymerpartikel thermisch behandelt.
Das Aufsprühen einer Lösung des Oberflächennachvernetzers wird vorzugsweise in Mischern mit bewegten Mischwerkzeugen, wie Schneckenmischer, Scheibenmischer und Schaufelmischer, durchgeführt. Besonders bevorzugt sind Horizontalmischer, wie Schaufelmischer, ganz besonders bevorzugt sind Vertikalmischer. Die Unterscheidung in Horizontalmischer und Vertikalmischer erfolgt über die Lagerung der Mischwelle, d.h. Horizontalmischer haben eine horizontal gelagerte Mischwelle und Vertikalmischer haben eine vertikal gelagerte Mischwelle. Geeignete Mischer sind beispielsweise Horizontale Pflugschar® Mischer (Gebr. Lödige Maschinenbau GmbH; Paderborn; Deutschland), Vrieco-Nauta Continuous Mixer (Hosokawa Micron BV; Doetinchem; Niederlande), Processall Mixmill Mixer (Processall Incorporated; Cincinnati; USA) und Schugi Flexomix® (Hosokawa Micron BV; Doetinchem; Niederlande). Es ist aber auch möglich die Oberflächennachvernetzerlösung in einem Wirbelbett aufzusprühen.
Die Oberflächennachvernetzer werden typischerweise als wässrige Lösung eingesetzt. Über den Gehalt an nichtwässrigem Lösungsmittel bzw. Gesamtlösungsmittelmenge kann die Eindringtiefe des Oberflächennachvernetzers in die Polymerpartikel eingestellt werden.
Die thermische Behandlung wird vorzugsweise in Kontakttrocknern, besonders bevorzugt Schaufeltrocknern, ganz besonders bevorzugt Scheibentrocknern, durchgeführt. Geeignete Trockner sind beispielsweise Hosokawa Bepex® Horizontal Paddle Dryer (Hosokawa Micron GmbH; Leingarten; Deutschland), Hosokawa Bepex® Disc Dryer (Hosokawa Micron GmbH; Leingarten; Deutschland), Holo-Flite® dryers (Metso Minerals Industries Inc.; Danville; USA) und Nara Paddle Dryer (NARA Machinery Europe; Frechen; Deutschland). Überdies können auch Wirbelschichttrockner eingesetzt werden.
Die Oberflächennachvernetzung kann im Mischer selbst erfolgen, durch Beheizung des Mantels oder Einblasen von Warmluft. Ebenso geeignet ist ein nachgeschalteter Trockner, wie beispielsweise ein Hordentrockner, ein Drehrohrofen oder eine beheizbare Schnecke. Besonders vorteilhaft wird in einem Wirbelschichttrockner gemischt und thermisch oberflächennachvernetzt.
Bevorzugte Reaktionstemperaturen liegen im Bereich 100 bis 250°C, bevorzugt 110 bis 220°C, besonders bevorzugt 120 bis 210°C, ganz besonders bevorzugt 130 bis 200°C. Die bevorzugte Verweilzeit bei dieser Temperatur beträgt vorzugsweise mindestens 10 Minuten, besonders bevorzugt mindestens 20 Minuten, ganz besonders bevorzugt mindestens 30 Minuten, und üblicherweise höchstens 60 Minuten.
Anschließend können die oberflächennachvernetzten Polymerpartikel erneut klassiert werden, wobei zu kleine und/oder zu große Polymerpartikel abgetrennt und in das Verfahren rückgeführt werden.
Die oberflächennachvernetzten Polymerpartikel können zur weiteren Verbesserung der Eigenschaften beschichtet oder nachbefeuchtet werden.
Die Nachbefeuchtung wird vorzugsweise bei 30 bis 80°C, besonders bevorzugt bei 35 bis 70°C, ganz besonders bevorzugt bei 40 bis 60°C, durchgeführt. Bei zu niedrigen Temperaturen neigen die Polymerpartikel zum Verklumpen und bei höheren Temperaturen verdampft bereits merklich Wasser. Die zur Nachbefeuchtung eingesetzte Wassermenge beträgt vorzugsweise von 1 bis 10 Gew.-%, besonders bevorzugt von 2 bis 8 Gew.-%, ganz besonders bevorzugt von 3 bis 5 Gew.-%. Durch die Nachbefeuchtung wird die mechanische Stabilität der Polymerpartikel erhöht und deren Neigung zur statischen Aufladung vermindert. Vorteilhaft wird die Nachbefeuchtung im Kühler nach der thermischen Oberflächennachvernetzung durchgeführt.
Geeignete Beschichtungen zur Verbesserung der Quellgeschwindigkeit sowie der Gelbettpermeabilität (GBP) sind beispielsweise anorganische inerte Substanzen, wie wasserunlösliche Metallsalze, organische Polymere, kationische Polymere sowie zwei- oder mehrwertige Metallkationen. Geeignete Beschichtungen zur Staubbindung sind beispielsweise Polyole. Geeignete Beschichtungen gegen die unerwünschte Verbackungsneigung der Polymerpartikel sind beispielsweise pyrogene Kieselsäure, wie Aerosil® 200, Fällungskieselsäure, wie Sipernat® D17, und Tenside, wie Span® 20. Methoden:
Die nachfolgend beschriebenen, mit „WSP“ bezeichneten Standard-Testmethoden werden beschrieben in: „Standard Test Methods for the Nonwovens Industry“, Ausgabe 2005, gemeinsam herausgegeben von den „Worldwide Strategie Partners“ EDANA (Herrmann-Debrouxlaan 46, 1160 Oudergem, Belgien, www.edana.org) und INDA (1100 Crescent Green, Suite 115, Cary, North Carolina 27518, USA, www.inda.org). Diese Veröffentlichung ist sowohl von EDANA als auch von INDA erhältlich.
Die Messungen sollten, wenn nicht anders angegeben, bei einer Umgebungstemperatur von 23 ± 2 °C und einer relativen Luftfeuchte von 50 ± 10 % durchgeführt werden. Die Superabsorberpartikel werden vor der Messung gut durchmischt.
Zentrifugenretentionskapazität (Centrifuge Retention Capacity)
Die Zentrifugenretentionskapazität (CRC) wird gemäß der von der EDANA empfohlenen Testmethode Nr. WSP 241.2 (05) "Fluid Retention Capacity in Saline, After Centrifugation" bestimmt.
Absorption unter einem Druck von 21 ,0 g/cm2 (Absorption under Load)
Die Absorption unter einem Druck von 21 ,0 g/cm2 (AUL) wird gemäß der von der EDANA empfohlenen Testmethode Nr. WSP 242.2 (05) "Absorption Under Pressure, Gravimetrie Determination" bestimmt.
Absorption unter einem Druck von 49,2 g/cm2 (Absorption under High Load)
Die Absorption unter einem Druck von 49,2 g/cm2 (AU HL) wird analog der von der EDANA empfohlenen Testmethode Nr. WSP 242.2 (05) "Absorption Under Pressure, Gravimetrie Determination" bestimmt, wobei statt eines Drucks von 21 ,0 g/cm2 (0.3psi) ein Druck von 49,2 g/cm2 (0.7psi) eingestellt wird.
Vortex-Test
In ein 100 ml-Becherglas, welches ein Magnetrührstäbchen der Größe 30 mm x 6 mm enthält, werden 50,0 ml ± 1 ,0 ml einer 0,9 Gew.-%igen wässrigen Kochsalzlösung gegeben. Mit Hilfe eines Magnetrührers wird die Kochsalzlösung bei 600 ± 10 llpm gerührt. Es werden dann möglichst schnell 2,000 g ± 0,010 g Superabsorberpartikel zugegeben, und die Zeit gemessen, die vergeht, bis die Rührtraube durch die Absorption der Kochsalzlösung durch die Superabsorberpartikel verschwindet. Dabei kann der ganze Inhalt des Becherglases sich als einheitliche Gelmasse immer noch drehen, aber die Oberfläche der gelierten Kochsalzlösung darf keine individuellen Turbulenzen mehr zeigen. Die benötigte Zeit wird als Vortex berichtet. Für eine Probe ist der Mittelwert aus zwei Messungen ausreichend, wenn die Messwerte nicht mehr als 5% voneinander abweichen.
Beispiele
Beispiele 1 bis 4
Herstellung der Superabsorberpartikel:
Durch kontinuierliches Mischen von entionisiertem Wasser, 50 gew.-%iger Natronlauge und Acrylsäure wurde eine Acrylsäure/Natriumacrylat-Lösung hergestellt, so dass der Neutralisationsgrad 72,0 mol-% entsprach. Der Feststoffgehalt der Monomerlösung betrug 42,5 Gew.-%.
Als Vernetzer 1 wurde 3-fach ethoxiliertes Glyzerintriacrylat (ca. 85 gew.-%ig) verwendet. Die Einsatzmenge betrug 1 ,2 kg pro t Monomerlösung.
Zur Initiierung der radikalischen Polymerisation wurden pro t Monomerlösung 1 ,39 kg einer 0,25gew.-%igen wässriger Wasserstoffperoxid-Lösung, 3,58 kg einer 15gew.-%igen wässrigen Natriumperoxodisulfat-Lösung und 1,28 kg einer 1gew.-%igen wässrigen Ascorbinsäure-Lösung eingesetzt.
Der Durchsatz der Monomerlösung betrug 20 t/h. Die Reaktionslösung hatte am Zulauf eine Temperatur von 23,5°C.
Die einzelnen Komponenten wurden in folgenden Mengen kontinuierlich in einen Reaktor vom
Typ List Contikneter mit einem Volumen 6,3m3 (LIST AG, Arisdorf, Schweiz) dosiert:
20 t/h Monomerlösung
24 kg/h 3-fach ethoxiliertes Glyzerintriacrylat (ca. 85 gew.-%ig) 99,4 kg/h Wasserstoffperoxid-Lösung/Natriumperoxodisulfat-Lösung
25,6 kg/h Ascorbinsäure-Lösung
Zwischen dem Zugabepunkt für den Vernetzer und den Zugabestellen für die Initiatoren wurde die Monomerlösung mit Stickstoff inertisiert.
Es fand nach ca. 50% der Verweilzeit zusätzlich eine Zudosierung von aus dem Herstellungsprozess durch Zerkleinerung und Klassierung anfallender Polymerpartikel mit einer Partikelgröße von weniger als 150 pm (1000 kg/h) in den Reaktor statt. Die Verweilzeit der Reaktionsmischung im Reaktor betrug 15 Minuten.
Das erhaltene Polymergel (Polymergel A) wurde mittels eines oszillierenden Förderbandes auf das Förderband eines Umluftbandtrockners aufgegeben. Der Umluftbandtrockner hatte eine Länge von 48 m. Das Förderband des Umluftbandtrockners hatte eine effektive Breite von 4,4 m. Auf dem Umluftbandtrockner wurde das wässrige Polymergel kontinuierlich mit Luft/Gasgemisch (ca. 175°C) umströmt und getrocknet. Die Verweilzeit im Umluftbandtrockner betrug 37 Minuten.
Das getrocknete Polymergel wurde mittels eines dreistufigen Walzenstuhls zerkleinert und auf eine Partikelgröße von 150 bis 850 pm abgesiebt. Polymerpartikel mit einer Partikelgröße von weniger als 150 pm wurden abgetrennt (Polymerpartikel B). Polymerpartikel mit einer Partikelgröße von größer 850 pm wurden in die Zerkleinerung zurückgeführt. Polymerpartikel mit einer Partikelgröße im Bereich von 150 bis 850 pm (Polymerpartikel A) wurden thermisch oberflächennachvernetzt.
Die Polymerpartikel wurden in einem Schugi Flexomix® (Hosokawa Micron B.V., Doetinchem, Niederlande mit einer Oberflächennachvernetzerlösung beschichtet und anschließend in einem NARA Paddle Dryer (GMF Gouda, Waddinxveen, Niederlande) 45 Minuten bei 176°C getrocknet.
Es wurden folgende Mengen in den Schugi Flexomix® dosiert:
7,5 t/h Polymerpartikel
348,75 kg/h Oberflächennachvernetzerlösung Die Oberflächennachvernetzerlösung enthielt 2,2 Gew.-% 2-Hydroxyethyl-2 oxazolidon, 2,2 Gew.-% 1 ,3-Propandiol, 29,0 Gew.-% 1 ,2-Propandiol, 3,2 Gew.-% Aluminiumsulfat, 56,9 Gew.-% Wasser und 6,5 Gew.-% Isopropanol.
Nach dem Trocken wurden die oberflächennachvernetzten Polymerpartikel in einem NARA Paddle-Cooler (GMF Gouda, Waddinxveen, Niederlande) auf ca. 60°C abgekühlt. Dabei wurden die oberflächennachvernetzten Polymerpartikel mit 124,5 kg einer 2,4 gew.-%igen wässrigen Polyethylenglykol-Lösung (Polyethylenglykol mit einer mittleren Molmasse von 400 g/mol) beschichtet.
Agglomeration des abgetrennten Unterkorns:
180,0 g Polymerpartikel B wurden mit 207,0 g Wasser versetzt und in einem Fleischwolf vom Typ X70 (Scharfen Slicing Machines GmbH, Witten, Deutschland) gewolft. Das erhaltene Polymergel wurde in eine Polyethylen-Wanne überführt, mit einer Mischung aus 0,18 g Ethylengly- koldiglycidylether (Vernetzer 2) und 13,0 g Wasser besprüht und zweimal gewolft.
Das so erhaltene Polymergel (Polymergel B) wurde sofort zusammen mit dem Polymergel A in einem Umlufttrockenschrank 60 Minuten bei 170°C getrocknet. Dazu wurde Polymergel A auf einem Trockenblech verteilt und anschließend Polymergel B hinzugefügt. Insgesamt wurden 700 g Polymergel getrocknet.
Das getrocknete Polymergel wurde mittels eines Walzenstuhls zerkleinert und auf eine Partikelgröße von 300 bis 600 pm abgesiebt. Anschließend wurden die Polymerpartikel thermisch oberflächennachvernetzt. Dazu wurden die Polymerpartikel in einer Küchenmaschine mit einer Mischung aus 0,088 g 2-Hydroxyethyl-2 oxazolidon, 0,088 g 1 ,3-Propandiol, 1 ,8 g 1 ,2-Propandiol, 0,88 g einer 26,8gew.-igen wässrigen Aluminiumsulfat-Lösung und 3,5 g Wasser besprüht und eine Minute nachgerührt.
Anschließend wurde 40 Minuten bei 180°C getrocknet und erneut auf eine Partikelgröße von 300 bis 600 pm abgesiebt. Die erhaltenen Superabsorberpartikel wurde analysiert. Tab. 1: Mischen mit Vorquellung
*) Vergleichsbeispiel
Die Beispiele zeigen eine deutliche Verbesserung der Absorptionsgeschwindigkeit (Vortex) mit steigendem Anteil an Polymergel B.
Beispiele 5 bis 8
Es wurde verfahren wie in den Beispielen 1 bis 4, wobei zur Herstellung des Polymergels B 180,0 g Polymerpartikel B mit einer Mischung aus 0,18 g Ethylenglykoldiglycidylether (Vernetzer 2) und 220,0 g Wasser besprüht und dreimal gewolft wurden.
Tab. 2: Versuchsergebnisse
*) Vergleichsbeispiel
Die Beispiele zeigen eine Verbesserung der Absorptionsgeschwindigkeit (Vortex) mit steigendem Anteil an Polymergel B. Beispiele 9 bis 12
Es wurde verfahren wie in den Beispielen 1 bis 4, wobei das Polymergel A und das Polymergel B gemeinsam zweimal gewolft wurde.
Tab. 3: Versuchsergebnisse
*) Vergleichsbeispiel
Die Beispiele zeigen insgesamt einen deutlichen Abfall von Zentrifugenretentionskapazität (CRC), Absorption unter einem Druck von 49,2 g/cm2 (AlIHL) und Absorption unter einem Druck von 21 ,0 g/cm2 (AUL). Ursache dafür ist vermutlich die zusätzliche Extrusion des Polymergels A in den Beispielen 9 bis 12.

Claims

Patentansprüche
1 . Verfahren zur Herstellung von oberflächennachvernetzten Superabsorberpartikeln durch Polymerisation einer Monomerlösung oder -suspension, enthaltend a) mindestens ein ethylenisch ungesättigtes, säuregruppentragendes Monomer, das zumindest teilweise neutralisiert ist, b) mindestens einen Vernetzer 1 und c) mindestens einen Initiator, umfassend die Schritte i) Polymerisation der Monomerlösung oder -suspension und optional Extrusion des erhaltenen Polymergels 1 , ii) Trocknung des Polymergels, iii) Zerkleinerung des getrockneten Polymergels, iv) Klassierung der in Schritt iii) erhaltenen Polymerpartikel, wobei zu kleine Polymerpartikel als Unterkorn 1 abgetrennt und optional zu große Polymerpartikel in Schritt iii) rückgeführt werden, sowie die übrigen Polymerpartikel in einem weiteren Schritt thermisch oberflächennachvernetzt werden, v) Mischen des abgetrennten Unterkorns mit einer wässrigen Lösung und optional Extrusion des erhaltenen Polymergels 2 und vi) Rückführung des Polymergels 2 in Schritt ii), dadurch gekennzeichnet, dass das Polymergel in Schritt ii) statisch getrocknet wird, der Feuchtegehalt des in Schritt v) erhaltenen Polymergels 2 von 20 bis 80 Gew.-% beträgt, die wässrige Lösung in Schritt v) mindestens einen Vernetzer 2 enthält und der Vernetzer 2 mit mindestens zwei Carboxylatgruppen der Polymerpartikel kovalente o- der ionische Bindungen bilden kann.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass in Schritt v) das abgetrennte Unterkorn zunächst mit Wasser und/oder einer wässrigen Base gemischt und optional extrudiert wird und anschließend mit der wässrigen Lösung gemischt und optional extrudiert wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die wässrige Lösung in Schritt v) von 0,01 bis 1 ,0 Gew.-% des Vernetzers 2, bezogen auf die Menge an abgetrenntem Unterkorn, enthält.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die wässrige Lösung in Schritt v) von 0,05 bis 0,2 Gew.-% des Vernetzers 2, bezogen auf die Menge an abgetrenntem Unterkorn, enthält.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der in Schritt v) eingesetzte Vernetzer 2 mit mindestens zwei Carboxylatgruppen der Polymerpartikel kovalente Bindungen bilden kann.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der in Schritt v) eingesetzte Vernetzer 2 mindestens zwei Epoxid-Gruppen enthält.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Feuchtegehalt des in Schritt v) erhaltenen Polymergels von 40 bis 60 Gew.-% beträgt.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass 90 Gew.- % des in Schritt iv) abgetrennten Unterkorns 1 eine Partikelgröße von höchstens 250 pm aufweist.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass 90 Gew.- % des in Schritt iv) abgetrennten Unterkorns 1 eine Partikelgröße von höchstens 150 pm aufweist.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Menge des in Schritt vi) rückgeführten Polymergels von 1 bis 50 Gew.-% beträgt, bezogen auf die Gesamtmenge des in Schritt ii) zu trocknenden Polymergels.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Menge des in Schritt vi) rückgeführten Polymergels von 20 bis 30 Gew.-% beträgt, bezogen auf die Gesamtmenge des in Schritt ii) zu trocknenden Polymergels.
12. Verfahren nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die Verweilzeit des Polymergels 2 zwischen den Schritten v) und ii) höchstens 5 Minuten beträgt.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die
Temperatur bei der Trocknung in Schritt ii) mindestens 120°C beträgt.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Verweilzeit bei der Trocknung in Schritt ii) mindestens 10 Minuten beträgt.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die oberflächennachvernetzten Polymerpartikel klassiert werden, wobei zu kleine Polymerpartikel als Unterkorn 2 abgetrennt werden, das abgetrennte Unterkorn 2 in Schritt v) rückgeführt wird, wobei die Masse an Unterkorn 2 an der Gesamtmasse an Unterkorn höchstens 10 Gew.-% beträgt.
EP21823321.1A 2020-12-16 2021-12-07 Verfahren zur herstellung von superabsorberpartikeln Pending EP4263630A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20214556 2020-12-16
PCT/EP2021/084567 WO2022128619A1 (de) 2020-12-16 2021-12-07 Verfahren zur herstellung von superabsorberpartikeln

Publications (1)

Publication Number Publication Date
EP4263630A1 true EP4263630A1 (de) 2023-10-25

Family

ID=73855069

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21823321.1A Pending EP4263630A1 (de) 2020-12-16 2021-12-07 Verfahren zur herstellung von superabsorberpartikeln

Country Status (5)

Country Link
US (1) US20240100506A1 (de)
EP (1) EP4263630A1 (de)
JP (1) JP2024503203A (de)
CN (1) CN116568732A (de)
WO (1) WO2022128619A1 (de)

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018690B2 (ja) 1981-12-30 1985-05-11 住友精化株式会社 吸水性樹脂の吸水性改良方法
JPS58180233A (ja) 1982-04-19 1983-10-21 Nippon Shokubai Kagaku Kogyo Co Ltd 吸収剤
US4734478A (en) 1984-07-02 1988-03-29 Nippon Shokubai Kagaku Kogyo Co., Ltd. Water absorbing agent
FI90554C (fi) 1987-07-28 1994-02-25 Dai Ichi Kogyo Seiyaku Co Ltd Menetelmä akryylipolymeerigeelin jatkuvaksi valmistamiseksi
WO1990015830A1 (en) 1989-06-12 1990-12-27 Weyerhaeuser Company Hydrocolloid polymer
AU637470B2 (en) 1990-04-02 1993-05-27 Nippon Shokubai Kagaku Kogyo Co. Ltd. Method for production of fluid stable aggregate
DE69217433T2 (de) 1991-09-03 1997-06-26 Hoechst Celanese Corp Superabsorbierendes Polymer mit verbesserten Absorbiereigenschaften
DE4138408A1 (de) 1991-11-22 1993-05-27 Cassella Ag Hydrophile, hochquellfaehige hydrogele
JP3045422B2 (ja) 1991-12-18 2000-05-29 株式会社日本触媒 吸水性樹脂の製造方法
EP0559476B1 (de) 1992-03-05 1997-07-16 Nippon Shokubai Co., Ltd. Verfahren zu Herstellung eines absorbierenden Harzes
GB9208449D0 (en) 1992-04-16 1992-06-03 Dow Deutschland Inc Crosslinked hydrophilic resins and method of preparation
DE69412547T2 (de) 1993-06-18 1999-04-22 Nippon Shokubai Co. Ltd., Osaka Verfahren zur Herstellung eines absorbierenden Harzes
GB9413619D0 (en) * 1994-07-06 1994-08-24 American Colloid Co Method of increasing the size and/or absorption under load of super-absorbent polymers by surface cross-linking
DE69534703T2 (de) 1994-10-26 2006-08-24 Nippon Shokubai Co. Ltd. Wasserabsorbierende harzzusammensetzung und verfahren zu ihrer herstellung
DE19646484C2 (de) 1995-11-21 2000-10-19 Stockhausen Chem Fab Gmbh Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung
DE19543368C2 (de) 1995-11-21 1998-11-26 Stockhausen Chem Fab Gmbh Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung
US6265488B1 (en) 1998-02-24 2001-07-24 Nippon Shokubai Co., Ltd. Production process for water-absorbing agent
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
DE19955861A1 (de) 1999-11-20 2001-05-23 Basf Ag Verfahren zur kontinuierlichen Herstellung von vernetzten feinteiligen gelförmigen Polymerisaten
US6979564B2 (en) 2000-10-20 2005-12-27 Millennium Pharmaceuticals, Inc. 80090, human fucosyltransferase nucleic acid molecules and uses thereof
DE10204938A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit beta-Hydroxyalkylamiden
DE10225943A1 (de) 2002-06-11 2004-01-08 Basf Ag Verfahren zur Herstellung von Estern von Polyalkoholen
DE50303213D1 (de) 2002-06-11 2006-06-08 Basf Ag (meth)acrylester von polyalkoxyliertem glycerin
US7199211B2 (en) 2002-06-11 2007-04-03 Basf Aktiengesellschaft (Meth)acrylic esters of polyalkoxylated trimethylolpropane
DE10331450A1 (de) 2003-07-10 2005-01-27 Basf Ag (Meth)acrylsäureester monoalkoxilierter Polyole und deren Herstellung
DE10331456A1 (de) 2003-07-10 2005-02-24 Basf Ag (Meth)acrylsäureester alkoxilierter ungesättigter Polyolether und deren Herstellung
DE10355401A1 (de) 2003-11-25 2005-06-30 Basf Ag (Meth)acrylsäureester ungesättigter Aminoalkohole und deren Herstellung
US9012356B2 (en) * 2011-11-16 2015-04-21 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water absorbent resin
WO2019221236A1 (ja) 2018-05-16 2019-11-21 株式会社日本触媒 吸水性樹脂粉末、及びその製造方法
WO2020025400A1 (en) * 2018-08-01 2020-02-06 Basf Se Feminine hygiene absorbent article

Also Published As

Publication number Publication date
JP2024503203A (ja) 2024-01-25
CN116568732A (zh) 2023-08-08
US20240100506A1 (en) 2024-03-28
WO2022128619A1 (de) 2022-06-23

Similar Documents

Publication Publication Date Title
EP2411422B2 (de) Verfahren zur herstellung oberflächennachvernetzter wasserabsorbierender polymerpartikel
EP2307062B2 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2014079785A2 (de) Verfahren zur herstellung von superabsorbern auf basis nachwachsender rohstoffe
EP3497141B1 (de) Verfahren zur herstellung von superabsorbern
EP2291416A1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP2870183B2 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit verbessertem eigenschaftsprofil
EP2550316A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2814854B1 (de) Wasserabsorbierende polymerpartikel mit hoher quellgeschwindigkeit und hoher permeabilität
EP4263630A1 (de) Verfahren zur herstellung von superabsorberpartikeln
EP2714104B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP3914400A1 (de) Verfahren zur herstellung von superabsorberpartikeln
EP3914628A1 (de) Verfahren zur herstellung von superabsorberpartikeln
WO2020151972A1 (de) Verfahren zur herstellung von superabsorberpartikeln
WO2024126174A1 (de) Verfahren zur herstellung von superabsorbern
WO2025040440A1 (de) Verfahren zur thermischen oberflächennachvernetzung von superabsorbern
EP2861631B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel in einem polymerisationsreaktor mit mindestens zwei achsparallel rotierenden wellen
WO2025040441A1 (de) Verfahren zur thermischen oberflächennachvernetzung von superabsorbern
WO2024132670A1 (de) Verfahren zur herstellung von superabsorbern
WO2024146792A1 (de) Verfahren zur herstellung von superabsorbern
WO2025061557A1 (de) Verfahren zur thermischen oberflächennachvernetzung von superabsorbern
WO2024132671A1 (de) Verfahren zur herstellung von superabsorbern
EP3755730B1 (de) Verfahren zur herstellung von superabsorberpartikeln
WO2024115160A1 (de) Verfahren zur herstellung von farbstabilen superabsorberpartikeln
WO2025040439A1 (de) Verfahren zur thermischen oberflächennachvernetzung von superabsorbern
WO2025040438A1 (de) Verfahren zur thermischen oberflächennachvernetzung von superabsorbern

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)