[go: up one dir, main page]

EP4157837B1 - Anellierte 2-amino-3-cyano-thiophene und derivate zur behandlung von krebs - Google Patents

Anellierte 2-amino-3-cyano-thiophene und derivate zur behandlung von krebs Download PDF

Info

Publication number
EP4157837B1
EP4157837B1 EP21729877.7A EP21729877A EP4157837B1 EP 4157837 B1 EP4157837 B1 EP 4157837B1 EP 21729877 A EP21729877 A EP 21729877A EP 4157837 B1 EP4157837 B1 EP 4157837B1
Authority
EP
European Patent Office
Prior art keywords
alkyl
group
cycloalkyl
haloalkyl
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21729877.7A
Other languages
English (en)
French (fr)
Other versions
EP4157837A1 (de
Inventor
Jason ABBOTT
Joachim BROEKER
Jianwen Cui
Stephen W. Fesik
Andreas Gollner
Tim HODGES
Jale KAROLYI-OEZGUER
Andrew Little
Andreas Mantoulidis
Jason Phan
Dhruba Sarkar
Christian Alan Paul Smethurst
Qi Sun
Matthias Treu
Alex WATERSON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehringer Ingelheim International GmbH
Vanderbilt University
Original Assignee
Boehringer Ingelheim International GmbH
Vanderbilt University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Ingelheim International GmbH, Vanderbilt University filed Critical Boehringer Ingelheim International GmbH
Publication of EP4157837A1 publication Critical patent/EP4157837A1/de
Application granted granted Critical
Publication of EP4157837B1 publication Critical patent/EP4157837B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/10Spiro-condensed systems

Definitions

  • the present invention relates to annulated 2-amino-3-cyano thiophenes and derivatives of formula (I) wherein R 1a , R 1b , R 2a , R 2b , Z, R 3 , R 5 , A, U, V, W, L and E have the meanings given in the claims and specification, their use as inhibitors of mutant Ras family proteins, pharmaceutical compositions and preparations containing such compounds and their use as medicaments/medical uses, especially as agents for treatment and/or prevention of oncological diseases, e.g. cancer.
  • Ras family proteins including KRAS (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog), NRAS (neuroblastoma RAS viral oncogene homolog) and HRAS (Harvey murine sarcoma virus oncogene) and any mutants thereof are small GTPases that exist in cells in either GTP-bound or GDP-bound states ( McCormick et al., J. Mol. Med. (Berl)., 2016, 94(3):253-8 ; Nimnual et al., Sci. STKE., 2002, 2002(145):pe36 ).
  • the Ras family proteins have a weak intrinsic GTPase activity and slow nucleotide exchange rates ( Hunter et al., Mol. Cancer Res., 2015, 13(9):1325-35 ). Binding of GTPase activating proteins (GAPs) such as NF1 increases the GTPase activity of Ras family proteins.
  • GAPs GTPase activating proteins
  • Ras family proteins When in the GTP-bound state, Ras family proteins are active and engage effector proteins including C-RAF and phosphoinositide 3-kinase (PI3K) to promote the RAF/mitogen or extracellular signal-regulated kinases (MEK/ERK) pathway, PI3K/AKT/mammalian target of rapamycin (mTOR) pathway and RaIGDS (Ral guanine nucleotide dissociation stimulator) pathway ( McCormick et al., J. Mol. Med. (Berl)., 2016, 94(3):253-8 ; Rodriguez-Viciana et al., Cancer Cell. 2005, 7(3):205-6 ).
  • PI3K C-RAF and phosphoinositide 3-kinase
  • MEK/ERK extracellular signal-regulated kinases
  • mTOR PI3K/AKT/mammalian target of rapamycin
  • RaIGDS Ra guanine nucleotide dissociation stimulator
  • Ras-associated mutations in Ras family proteins suppress their intrinsic and GAP-induced GTPase activity leading to an increased population of GTP-bound/active mutant Ras family proteins ( McCormick et al., Expert Opin. Ther. Targets., 2015, 19(4):451-4 ; Hunter et al., Mol. Cancer Res., 2015, 13(9):1325-35 ). This in turn leads to persistent activation of effector pathways (e.g. RAF/MEK/ERK, PI3K/AKT/mTOR, RalGDS pathways) downstream of mutant Ras family proteins.
  • KRAS mutations e.g.
  • amino acids G12, G13, Q61, A146 are found in a variety of human cancers including lung cancer, colorectal cancer and pancreatic cancer ( Cox et al., Nat. Rev. Drug Discov., 2014, 13(11):828-51 ).
  • Mutations in HRAS e.g . amino acids G12, G13, Q61
  • NRAS e.g . amino acids G12, G13, Q61, A146
  • Alterations e.g .
  • Ras family proteins/Ras genes have also been described as a resistance mechanism against cancer drugs such as the EGFR antibodies cetuximab and panitumumab ( Leto et al., J. Mol. Med. (Berl). 2014 Jul;92(7):709-22 ) and the EGFR tyrosine kinase inhibitor osimertinib/AZD9291 ( Ortiz-Cuaran et al., Clin. Cancer Res., 2016, 22(19):4837-47 ; Eberlein et al., Cancer Res., 2015, 7 5(12):2489-500 ).
  • cancer drugs such as the EGFR antibodies cetuximab and panitumumab ( Leto et al., J. Mol. Med. (Berl). 2014 Jul;92(7):709-22 ) and the EGFR tyrosine kinase inhibitor osimertinib/AZD9291 ( Ortiz-Cuaran e
  • Glycine to cysteine mutations at residue 12 of Ras family proteins (the G12C mutation, e.g. KRAS G12C, NRAS G12C and HRAS G12C) is generated from a G.C to T.A base transversion at codon 12, a mutation commonly found in RAS genes that accounts for 14 % of all KRAS, 2 % of all NRAS and 2 % of all HRAS mutations across cancer types.
  • the G12C mutation is particularly enriched in KRAS mutant non-small cell lung cancer with approximately half carrying this mutation, which has been associated with the DNA adducts formed by tobacco smoke.
  • the G12C mutation is not exclusively associated with lung cancer and is found in other RAS mutant cancer types including, e.g ., 3-5 % of all KRAS mutant colorectal cancer.
  • Inhibitors of such G12C mutant Ras family proteins which are capable to covalently bind to these proteins are expected to inhibit signaling in cells downstream of Ras family proteins (e.g . ERK phosphorylation).
  • Ras family proteins e.g . ERK phosphorylation
  • binders/inhibitors are expected to deliver anti-cancer efficacy (e.g . inhibition of proliferation, survival, metastasis etc. ) .
  • the compounds according to the invention interact with, and then covalently bind to, G12C mutant Ras family proteins, in particular KRAS G12C, via an electrophilic moiety (e.g . a MICHAEL acceptor) present in compounds of formula (I) (confirmed by means of crystallography for KRAS G12C).
  • an electrophilic moiety e.g . a MICHAEL acceptor
  • the compounds impair or substantially eliminate the ability of the G12C Ras family proteins to access their active, pro-proliferative/pro-survival conformation.
  • the binding of the compounds of formula (I) according to the invention may lead to selective and very strong antiproliferative cellular effects in G12C mutant KRAS cell lines and large selectivity windows compared to KRAS wild type cells.
  • This excellent potency can potentially lead to lower systemic exposures and/or doses needed for full efficacy in humans and therefore to good/better tolerability (e.g. a lower risk of idiosyncratic toxicities), may allow to hit the pathway harder if necessary and may also turn out to be beneficial and bring increased flexibility in case of combination treatments.
  • the compounds show strong biomarker modulation, e.g. pERK in G12C mutant KRAS cell lines. Selected compounds were tested in selectivity panels and show good selectivity against other human targets, e.g. kinases. Last but not least, selected compounds disclosed herein were tested and show good permeability, excellent solubility and have fine-tuned PK properties.
  • references to methods of treatment in the subsequent paragraphs of this description are to be interpreted as references to the compounds, pharmaceutical compositions and medicaments of the present invention for use in a method for treatment of the human (or animal) body by therapy (or for diagnosis).
  • the present invention relates to a compound of formula (I) wherein
  • the present invention relates to a compound of formula (I*) or a salt thereof wherein R 1a , R 1b , R 2a , R 2b , Z, R 3 , ring A, U, V, W, R 5 , L and E are defined as in formula (I) in the first aspect.
  • the present invention relates to a compound of formula (Ia) or a salt thereof wherein R 1a , R 1b , R 2a , R 2b , Z, R 3 , U, V, W, R 5 , L and E are defined as in formula (I) in the first aspect.
  • the present invention relates to a compound of formula (Ia*) or a salt thereof wherein R 1a , R 1b , R 2a , R 2b , Z, R 3 , U, V, W, R 5 , L and E are defined as in formula (I) in the first aspect.
  • the following structural aspects represent preferred embodiments [A1] to [A3], [B1] to [B5], [C1] to [C5], [D1] to [D2], [E1] to [E9], [F1] to [F8], [G1] to [G3] and [H1] to [H8] of the corresponding structural aspects [A0], [B0], [C0], [D0], [E0], [F0], [G0] and [H0] , respectively.
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein R 1a , R 1b , R 2a and R 2b are hydrogen.
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein Z is -CH 2 -.
  • the invention relates to a compound of formula (I), (I*) , (Ia) or (Ia*) or a salt thereof, wherein
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein Z is -CH 2 -CH 2 -.
  • the invention in another aspect [C1] relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein R 3 is selected from the group consisting of hydrogen, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 haloalkoxy, cyano-C 1-4 alkyl, halogen, -OH, -NH 2 , -NH(C 1-4 alkyl), -N(C 1-4 alkyl) 2 and -CN.
  • the invention in another aspect [C2] relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein R 3 is selected from the group consisting of hydrogen, methyl, ethyl, -CF 3 , -CHF 2 , methoxy, trifluormethoxy, cyanomethyl, -OH and -CN.
  • the invention in another aspect [C3] relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein R 3 is hydrogen.
  • the invention in another aspect [C4] relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein R 3 is C 1-4 alkyl.
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein R 3 is methyl.
  • the invention relates to a compound of formula (I) or (I*) or a salt thereof, wherein ring A is selected from the group consisting of
  • the invention relates to a compound of formula (I) or (I*) or a salt thereof, wherein ring A is
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein R 5 is selected from the group consisting of R a1 and R b1 ;
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein R 5 is R a1 selected from the group consisting of wherein each R a1 is optionally substituted with one or more, identical or different of
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein R 5 is selected from the group consisting of and
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein R 5 is R b1 ;
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein R 5 is R b1 ;
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia* ) or a salt thereof, wherein R 5 is selected from the group consisting of
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein L is selected from the group consisting of
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein
  • the invention relates to a compound of formula (I) , (I*) , (Ia) or (Ia*) or a salt thereof, wherein
  • the invention relates to a compound of formula (I) , (I*) , (Ia) or (Ia*) or a salt thereof, wherein
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) or a salt thereof, wherein E is selected from the group consisting of
  • the invention relates to a compound of formula (I) , (I*) , (Ia) or (Ia*) or a salt thereof, wherein
  • the invention relates to a compound of formula (I) , (I*) , (Ia) or (Ia*) or a salt thereof, wherein
  • the invention relates to a compound of formula (I) , (I*) , (Ia) or (Ia*) or a salt thereof, wherein E is selected from the group consisting of
  • the invention relates to a compound of formula (I) , (I*) , (Ia) or (Ia*) or a salt thereof, wherein E is selected from the group consisting of
  • Each such combination [A][B][C][D][E][F][G][H] represents and defines individual embodiments or generic subsets of compounds (I) and (I*) according to the invention.
  • Each such combination [A][B][C][E][F][G][H] represents and defines individual embodiments or generic subsets of compounds (Ia) and (Ia*) according to the invention.
  • Preferred embodiments of the invention of formula (Ia) are example compounds Ia-1 to Ia-170 and any subset thereof.
  • the present invention further relates to hydrates, solvates, polymorphs, metabolites, derivatives, stereoisomers and prodrugs of a compound of formula (I) , (I*) , (Ia) and (Ia*) (including all its embodiments).
  • the present invention further relates to a hydrate of a compound of formula (I) , (I*) , (Ia) and (Ia*) (including all its embodiments).
  • the present invention further relates to a solvate of a compound of formula (I) , (I*) , (Ia) and (Ia*) (including all its embodiments).
  • the present invention further relates to a pharmaceutically acceptable salt of a compound of formula (I) , (I*) , (Ia) and (Ia*) (including all its embodiments).
  • the present invention further relates to a pharmaceutically acceptable salt of a compound of formula (I) , (I*) , (Ia) and (Ia*) (including all its embodiments) with anorganic or organic acids or bases.
  • the present invention relates to a compound of formula (II) or a salt thereof wherein R 1a , R 1b , R 2a , R 2b , Z, R 3 , ring A, U, V, W, R 5 and L are defined as in formula (I) in the first aspect, wherein L 1 in -L 1 -L 2 -L 3 - is linked to the hydrogen (H) of residue H-L-.
  • the present invention relates to a compound of formula (II*) or a salt thereof wherein R 1a , R 1b , R 2a , R 2b , Z, R 3 , ring A, U, V, W, R 5 and L are defined as in formula (I) in the first aspect, wherein L 1 in -L 1 -L 2 -L 3 - is linked to the hydrogen (H) of residue H-L-.
  • the present invention relates to a compound of formula (B-5) or a salt thereof wherein R 1a , R 1b , R 2a , R 2b , Z, R 3 , U, V, W, R 5 and L are defined as in formula (I) in the first aspect, wherein L 1 in -L 1 -L 2 -L 3 - is linked to the hydrogen (H) of residue H-L-.
  • the present invention relates to a compound of formula (B-5*) or a salt thereof wherein R 1a , R 1b , R 2a , R 2b , Z, R 3 , U, V, W, R 5 and L are defined as in formula (I) in the first aspect, wherein L 1 in -L 1 -L 2 -L 3 - is linked to the hydrogen (H) of residue H-L-.
  • compounds (II*) , (B-5) and (B-5*) each are a subset of compounds (II) and that whenever it is referred to compounds (II) this is meant to also refer to and include compounds (II*) , (B-5) and (B-5*) unless stated otherwise.
  • Each such combination [A][B][C][D][E][F][G] represents and defines individual embodiments or generic subsets of compounds of formula (II) and (II*) .
  • Each such combination [A][B][C][E][F][G] represents and defines individual embodiments or generic subsets of compounds of formula (B-5) and (B-5*).
  • compositions for administering the compounds of formula (I) , (I*), (Ia) or (Ia*) according to the invention will be apparent to those with ordinary skill in the art and include for example tablets, pills, capsules, suppositories, lozenges, troches, solutions - particularly solutions for injection (s.c., i.v., i.m.) and infusion (injectables) - elixirs, syrups, sachets, emulsions, inhalatives or dispersible powders.
  • the content of the compounds (I) , (I*) , (Ia) or (Ia*) should be in the range from 0.1 to 90 wt.-%, preferably 0.5 to 50 wt.-% of the composition as a whole, i.e. in amounts which are sufficient to achieve the dosage range specified below.
  • the doses specified may, if necessary, be given several times a day.
  • Suitable tablets may be obtained, for example, by mixing the compounds (I) , (I*) , (Ia) or (Ia*) with known pharmaceutically acceptable excipients, for example inert diluents, carriers, disintegrants, adjuvants, surfactants, binders and/or lubricants.
  • the tablets may also comprise several layers.
  • Coated tablets may be prepared accordingly by coating cores produced analogously to the tablets with excipients normally used for tablet coatings, for example collidone or shellac, gum arabic, talc, titanium dioxide or sugar.
  • excipients normally used for tablet coatings for example collidone or shellac, gum arabic, talc, titanium dioxide or sugar.
  • the core may also consist of a number of layers.
  • the tablet coating may consist of a number of layers to achieve delayed release, possibly using the excipients mentioned above for the tablets.
  • Syrups or elixirs containing one or more compounds (I), (I*) , (Ia) or (Ia*) or combinations with one or more other pharmaceutically active substance(s) may additionally contain excipients like a sweetener such as saccharine, cyclamate, glycerol or sugar and a flavour enhancer, e.g. a flavouring such as vanillin or orange extract. They may also contain excipients like suspension adjuvants or thickeners such as sodium carboxymethyl cellulose, wetting agents such as, for example, condensation products of fatty alcohols with ethylene oxide, or preservatives such as p-hydroxybenzoates.
  • excipients like a sweetener such as saccharine, cyclamate, glycerol or sugar and a flavour enhancer, e.g. a flavouring such as vanillin or orange extract. They may also contain excipients like suspension adjuvants or thickeners such as sodium carboxymethyl cellulose, wetting agents
  • Solutions for injection and infusion are prepared in the usual way, e.g. with the addition of excipients like isotonic agents, preservatives such as p-hydroxybenzoates, or stabilisers such as alkali metal salts of ethylenediamine tetraacetic acid, optionally using emulsifiers and/or dispersants, whilst if water is used as the diluent, for example, organic solvents may optionally be used as solvating agents or dissolving aids, and transferred into injection vials or ampoules or infusion bottles.
  • excipients like isotonic agents, preservatives such as p-hydroxybenzoates, or stabilisers such as alkali metal salts of ethylenediamine tetraacetic acid, optionally using emulsifiers and/or dispersants, whilst if water is used as the diluent, for example, organic solvents may optionally be used as solvating agents or dissolving aids, and transferred
  • Capsules containing one or more compounds (I), (I*) , (Ia) or (Ia*) or combinations with one or more other pharmaceutically active substance(s) may for example be prepared by mixing the compounds/active substance(s) with inert excipients such as lactose or sorbitol and packing them into gelatine capsules.
  • Suitable suppositories may be made for example by mixing with excipients provided for this purpose such as neutral fats or polyethyleneglycol or the derivatives thereof.
  • Excipients which may be used include, for example, water, pharmaceutically acceptable organic solvents such as paraffins (e.g. petroleum fractions), vegetable oils (e.g. groundnut or sesame oil), mono- or polyfunctional alcohols (e.g. ethanol or glycerol), carriers such as e.g. natural mineral powders ( e.g. kaolins, clays, talc, chalk), synthetic mineral powders ( e.g. highly dispersed silicic acid and silicates), sugars ( e.g. cane sugar, lactose and glucose), emulsifiers (e.g.
  • pharmaceutically acceptable organic solvents such as paraffins (e.g. petroleum fractions), vegetable oils (e.g. groundnut or sesame oil), mono- or polyfunctional alcohols (e.g. ethanol or glycerol), carriers such as e.g. natural mineral powders ( e.g. kaolins, clays, talc, chalk), synthetic mineral powders ( e.
  • lignin e.g. lignin, spent sulphite liquors, methylcellulose, starch and polyvinylpyrrolidone
  • lubricants e.g. magnesium stearate, talc, stearic acid and sodium lauryl sulphate.
  • the pharmaceutical compositions are administered by the usual methods, preferably by oral or transdermal route, most preferably by oral route.
  • the tablets may of course contain, apart from the above-mentioned excipients, additional excipients such as sodium citrate, calcium carbonate and dicalcium phosphate together with various excipients such as starch, preferably potato starch, gelatine and the like.
  • additional excipients such as sodium citrate, calcium carbonate and dicalcium phosphate together with various excipients such as starch, preferably potato starch, gelatine and the like.
  • lubricants such as magnesium stearate, sodium lauryl sulphate and talc may be used at the same time for the tabletting process.
  • the active substances may be combined with various flavour enhancers or colourings in addition to the excipients mentioned above.
  • solutions of the active substances with suitable liquid excipients may be used.
  • the dosage range of the compounds of formula (I), (I*) , (Ia) or (Ia*) applicable per day is usually from 1 mg to 2000 mg, preferably from 250 to 1250 mg.
  • the invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising at least one (preferably one) compound of formula (I), (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - and one or more pharmaceutically acceptable excipient(s).
  • the compounds of formula (I), (I*), (Ia) or (Ia*) - or the pharmaceutically acceptable salts thereof - and the pharmaceutical compositions comprising such compound and salts may also be co-administered with other pharmacologically active substances, e.g. with other anti-neoplastic compounds (e.g. chemotherapy), i.e. used in combination (see combination treatment further below).
  • other pharmacologically active substances e.g. with other anti-neoplastic compounds (e.g. chemotherapy), i.e. used in combination (see combination treatment further below).
  • the elements of such combinations may be administered (whether dependently or independently) by methods customary to the skilled person and as they are used in monotherapy, e.g. by oral, enterical, parenteral (e.g., intramuscular, intraperitoneal, intravenous, transdermal or subcutaneous injection, or implant), nasal, vaginal, rectal, or topical routes of administration and may be formulated, alone or together, in suitable dosage unit formulations containing conventional non-toxic pharmaceutically acceptable excipients appropriate for each route of administration.
  • the combinations may be administered at therapeutically effective single or divided daily doses.
  • the active components of the combinations may be administered in such doses which are therapeutically effective in monotherapy, or in such doses which are lower than the doses used in monotherapy, but when combined result in a desired (joint) therapeutically effective amount.
  • the invention also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of formula (I), (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - and one or more (preferably one or two, most preferably one) other pharmacologically active substance(s).
  • the invention also relates to a pharmaceutical preparation
  • a pharmaceutical preparation comprising a compound of formula (I), (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - and one or more (preferably one or two, most preferably one) other pharmacologically active substance(s).
  • compositions to be co-administered or used in combination can also be provided in the form of a kit.
  • the invention also relates to a kit comprising
  • such kit comprises a third pharmaceutical composition or dosage form comprising still another pharmacologically active substance and, optionally, one or more pharmaceutically acceptable excipient(s).
  • the present invention is mainly directed to RAS G12C inhibitors, in particular compounds of formula (I), (I*) , (Ia) and (Ia*) (including all its embodiments), which are potentially useful in the treatment and/or prevention of diseases and/or conditions mediated by RAS G12C mutations, e.g. and preferably KRAS G12C, NRAS G12C and HRAS G12C.
  • RAS G12C mutations e.g. and preferably KRAS G12C, NRAS G12C and HRAS G12C.
  • the invention relates to a compound of formula (I), (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - for use as a medicament.
  • the invention relates to a compound of formula (I), (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - for use in a method of treatment of the human or animal body.
  • the invention relates to a compound of formula (I), (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - for use in the treatment and/or prevention of a disease and/or condition mediated by RAS G12C mutations.
  • the invention relates to the use of a compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - in the manufacture of a medicament for the treatment and/or prevention of a disease and/or condition mediated by RAS G12C mutations.
  • the invention relates to a method for the treatment and/or prevention of a disease and/or condition mediated by RAS G12C mutations comprising administering a therapeutically effective amount of a compound of formula (I), (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - to a human being.
  • the invention relates to a compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - for use in the treatment and/or prevention of cancer.
  • the invention relates to a compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - for use in a method of treatment and/or prevention of cancer in the human or animal body.
  • the invention relates to the use of a compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - in the manufacture of a medicament for the treatment and/or prevention of cancer.
  • the invention relates to a method for the treatment and/or prevention of cancer comprising administering a therapeutically effective amount of a compound of formula (I), (I*), (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - to a human being.
  • the invention relates to a compound of formula (I), (I*), (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof- for use in providing an inhibitory effect on G12C mutant RAS.
  • the invention relates to the use of a compound of formula (I), (I*), (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - in the manufacture of a medicament for use in providing an inhibitory effect on G12C mutant RAS.
  • the invention relates to a method for providing an inhibitory effect on G12C mutant RAS comprising administering a therapeutically effective amount of a compound of formula (I), (I*), (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - to a human being.
  • Another aspect is based on identifying a link between the G12C mutation status of a patient and potential susceptibility to treatment with a compound of formula (I), (I*), (Ia) or (Ia*) .
  • a RAS G12C inhibitor such as a compound of formula (I), (I*), (Ia) or (Ia*) may then advantageously be used to treat patients with KRAS G12C, HRAS G12C or NRAS G12C mutations who may be resistant to other therapies. This therefore provides opportunities, methods and tools for selecting patients for treatment with a compound of formula (I), (I*), (Ia) or (Ia*), particularly cancer patients.
  • the selection is based on whether the tumor cells to be treated possess wild-type or G12C mutant KRAS, HRAS or NRAS gene.
  • the G12C KRAS, HRAS or NRAS gene status could therefore be used as a biomarker to indicate that selecting treatment with a compound of formula (I), (I*), (Ia) or (Ia*) may be advantageous.
  • the method may include or exclude the actual patient sample isolation step.
  • the patient is selected for treatment with a compound of formula (I) , (I*) , (Ia) or (Ia*) if the tumor cell DNA has a G12C mutant KRAS gene.
  • the patient is selected for treatment with a compound of formula (I) , (I*) , (Ia) or (Ia*) if the tumor cell DNA has a G12C mutant HRAS gene.
  • the patient is selected for treatment with a compound of formula (I) , (I*) , (Ia) or (Ia*) if the tumor cell DNA has a G12C mutant NRAS gene.
  • a compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - for use in treating a cancer with tumor cells harbouring a G12C mutant RAS gene.
  • a compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - for use in treating a cancer with tumor cells harbouring a G12C mutant KRAS gene.
  • a compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - for use in treating a cancer with tumor cells harbouring a G12C mutant HRAS gene.
  • a compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - for use in treating a cancer with tumor cells harbouring a G12C mutant NRAS gene.
  • a method of treating a cancer with tumor cells harbouring a G12C mutant RAS gene comprising administering an effective amount of a compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - to a human being.
  • a method of treating a cancer with tumor cells harbouring a G12C mutant KRAS, HRAS or NRAS gene comprising administering an effective amount of a compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof.
  • Determining whether a tumor or cancer comprises a G12C KRAS, HRAS or NRAS mutation can be undertaken by assessing the nucleotide sequence encoding the KRAS, HRAS or NRAS protein, by assessing the amino acid sequence of the KRAS, HRAS or NRAS protein, or by assessing the characteristics of a putative KRAS, HRAS or NRAS mutant protein.
  • the sequence of wild-type human KRAS, HRAS or NRAS is known in the art.
  • Methods for detecting a mutation in a KRAS, HRAS or NRAS nucleotide sequence are known by those of skill in the art.
  • PCR-RFLP polymerase chain reaction-restriction fragment length polymorphism
  • PCR-SSCP polymerase chain reaction-single strand conformation polymorphism
  • MASA mutant allele-specific PCR amplification
  • direct sequencing primer extension reactions
  • electrophoresis oligonucleotide ligation assays
  • hybridization assays TaqMan assays
  • SNP genotyping assays high resolution melting assays and microarray analyses.
  • samples are evaluated for G12C KRAS, HRAS or NRAS mutations by real-time PCR.
  • fluorescent probes specific for the KRAS, HRAS or NRAS G12C mutation are used. When a mutation is present, the probe binds and fluorescence is detected.
  • the KRAS, HRAS or NRAS G12C mutation is identified using a direct sequencing method of specific regions (e.g. exon 2 and/or exon 3) in the KRAS, HRAS or NRAS gene. This technique will identify all possible mutations in the region sequenced.
  • Methods for detecting a mutation in a KRAS, HRAS or NRAS protein are known by those of skill in the art. These methods include, but are not limited to, detection of a KRAS, HRAS or NRAS mutant using a binding agent (e.g. an antibody) specific for the mutant protein, protein electrophoresis, Western blotting and direct peptide sequencing.
  • Methods for determining whether a tumor or cancer comprises a G12C KRAS, HRAS or NRAS mutation can use a variety of samples.
  • the sample is taken from a subject having a tumor or cancer.
  • the sample is a fresh tumor/cancer sample.
  • the sample is a frozen tumor/cancer sample.
  • the sample is a formalin-fixed paraffin-embedded sample.
  • the sample is processed to a cell lysate.
  • the sample is processed to DNA or RNA.
  • the sample is a liquid biopsy and the test is done on a sample of blood to look for cancer cells from a tumor that are circulating in the blood or for pieces of DNA from tumor cells that are in the blood.
  • the disease/condition/cancer/tumors/cancer cells to be treated/prevented with a compound of formula (I), (I*), (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - is selected from the group consisting of pancreatic cancer, lung cancer, colorectal cancer, cholangiocarcinoma, appendiceal cancer, multiple myeloma, melanoma, uterine cancer, endometrial cancer, thyroid cancer, acute myeloid leukaemia, bladder cancer, urothelial cancer, gastric cancer, cervical cancer, head and neck squamous cell carcinoma, diffuse large B cell lymphoma, oesophageal cancer, chronic lymphocytic leukaemia, hepatocellular cancer, breast cancer, ovarian cancer, prostate cancer, glioblastoma, renal cancer and sarcomas.
  • the disease/condition/cancer/tumors/cancer cells to be treated/ prevented with a compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - is selected from the group consisting of pancreatic cancer, lung cancer (preferably non-small cell lung cancer (NSCLC)), cholangiocarcinoma and colorectal cancer.
  • a compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - is selected from the group consisting of pancreatic cancer, lung cancer (preferably non-small cell lung cancer (NSCLC)), cholangiocarcinoma and colorectal cancer.
  • NSCLC non-small cell lung cancer
  • the cancer to be treated/prevented with a compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - is selected from the group consisting of:
  • the following cancers, tumors and other proliferative diseases may be treated with compounds of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - without being restricted thereto.
  • the methods of treatment, methods, uses, compounds for use and pharmaceutical compositions for use as disclosed herein are applied in treatments of diseases/conditions/cancers/tumors which (i.e. the respective cells) harbour a RAS G12C mutation (preferably a KRAS G12C mutation) or have been identified to harbour a RAS G12C mutation (preferably a KRAS G12C mutation) as herein described and/or referred:
  • All cancers/tumors/carcinomas mentioned above which are characterized by their specific location/origin in the body are meant to include both the primary tumors and the metastatic tumors derived therefrom.
  • the compounds of the invention may be used in therapeutic regimens in the context of first line, second line, or any further line treatments.
  • the compounds of the invention may be used for the prevention, short-term or long-term treatment of the above-mentioned diseases/conditions/cancers/tumors, optionally also in combination with radiotherapy and/or surgery.
  • the methods of treatment, methods, uses and compounds for use as disclosed herein can be performed with any compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - as disclosed or defined herein and with any pharmaceutical composition or kit comprising a compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof (each including all individual embodiments or generic subsets of compounds (I) , (I*) , (Ia) or (Ia*) ).
  • the compounds of formula (I) , (I*) , (Ia) or (Ia*) - or the pharmaceutically acceptable salts thereof - and the pharmaceutical compositions comprising such compound and salts may also be co-administered with other pharmacologically active substances, e.g. with other anti-neoplastic compounds (e.g. chemotherapy), or used in combination with other treatments, such as radiation or surgical intervention, either as an adjuvant prior to surgery or post-operatively.
  • the pharmacologically acive substance(s) for coadministration is/are (an) anti-neoplastic compound(s).
  • the invention relates to a compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - for use as hereinbefore defined wherein said compound is administered before, after or together with one or more other pharmacologically active substance(s).
  • the invention relates to a compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - for use as hereinbefore defined, wherein said compound is administered in combination with one or more other pharmacologically active substance(s).
  • the invention relates to the use of a compound of formula (I) , (I*) , (Ia) or (la*) - or a pharmaceutically acceptable salt thereof - as hereinbefore defined wherein said compound is to be administered before, after or together with one or more other pharmacologically active substance(s).
  • the invention relates to a method (e.g. a method for the treatment and/or prevention) as hereinbefore defined wherein the compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - is administered before, after or together with a therapeutically effective amount of one or more other pharmacologically active substance(s).
  • the invention relates to a method (e.g. a method for the treatment and/or prevention) as hereinbefore defined wherein the compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - is administered in combination with a therapeutically effective amount of one or more other pharmacologically active substance(s).
  • the invention relates to a method for the treatment and/or prevention of cancer comprising administering to a patient in need thereof a therapeutically effective amount of a compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - and a therapeutically effective amount of one or more other pharmacologically active substance(s), wherein the compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - is administered simultaneously, concurrently, sequentially, successively, alternately or separately with the one or more other pharmacologically active substance(s).
  • the invention relates to a method for the treatment and/or prevention of cancer comprising administering to a patient in need thereof a therapeutically effective amount of a RAS G12C inhibitor (preferably a KRAS G12C inhibitor) - or a pharmaceutically acceptable salt thereof - and a therapeutically effective amount of one or more other pharmacologically active substance(s), wherein the RAS G12C inhibitor (preferably a KRAS G12C inhibitor) - or a pharmaceutically acceptable salt thereof - is administered in combination with the one or more other pharmacologically active substance(s).
  • a RAS G12C inhibitor preferably a KRAS G12C inhibitor
  • a pharmaceutically acceptable salt thereof is administered in combination with the one or more other pharmacologically active substance(s).
  • the invention relates to a compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - for use in the treatment and/or prevention of cancer, wherein the compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - is administered simultaneously, concurrently, sequentially, successively, alternately or separately with the one or more other pharmacologically active substance(s).
  • the invention relates to a RAS G12C inhibitor (preferably a KRAS G12C inhibitor) - or a pharmaceutically acceptable salt thereof - for use in the treatment and/or prevention of cancer, wherein the RAS G12C inhibitor (preferably a KRAS G12C inhibitor) - or a pharmaceutically acceptable salt thereof - is administered in combination with the one or more other pharmacologically active substance(s).
  • a RAS G12C inhibitor preferably a KRAS G12C inhibitor
  • a pharmaceutically acceptable salt thereof - for use in the treatment and/or prevention of cancer
  • the invention relates to a kit comprising
  • kit for said use comprises a third pharmaceutical composition or dosage form comprising a third pharmaceutical composition or dosage form comprising still another pharmacologically active substance, and, optionally, one or more pharmaceutically acceptable excipient(s)
  • the components (i.e. the combination partners) of the combinations, kits, uses, methods and compounds for use according to the invention are administered simultaneously.
  • the components (i.e. the combination partners) of the combinations, kits, uses, methods and compounds for use according to the invention are administered concurrently.
  • the components (i.e. the combination partners) of the combinations, kits, uses, methods and compounds for use according to the invention are administered sequentially.
  • the components (i.e . the combination partners) of the combinations, kits, uses, methods and compounds for use according to the invention are administered successively.
  • the components (i.e. the combination partners) of the combinations, kits, uses, methods and compounds for use according to the invention are administered alternately.
  • the components (i.e. the combination partners) of the combinations, kits, uses, methods and compounds for use according to the invention are administered separately.
  • the pharmacologically active substance(s) to be used together/in combination with the RAS G12C inhibitor preferably a KRAS G12C inhibitor
  • the RAS G12C inhibitor preferably a KRAS G12C inhibitor
  • to be used together/in combination with the compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - can be selected from any one or more of the following (preferably there is one or two additional pharmacologically active substance used in all these embodiments):
  • one other pharmacologically active substance is to be administered before, after or together with the compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - wherein said one other pharmacologically active substance is
  • one other pharmacologically active substance is to be administered in combination with the compound of formula (I), (I*), (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - wherein said one other pharmacologically active substance is
  • two other pharmacologically active substances are to be administered before, after or together with the compound of formula (I), (I*), (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - wherein said two other pharmacologically active substances are
  • two other pharmacologically active substances are to be administered in combination with the compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof-wherein said two other pharmacologically active substances are
  • Additional pharmacologically active substance(s) which can also be used together/in combination with the compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - (including all individual embodiments or generic subsets of compounds (I) , (I*) , (Ia) or (Ia*) ) or in the medical uses, uses, methods of treatment and/or prevention as herein (above and below) defined include, without being restricted thereto, hormones, hormone analogues and antihormones (e.g.
  • tamoxifen toremifene, raloxifene, fulvestrant, megestrol acetate, flutamide, nilutamide, bicalutamide, aminoglutethimide, cyproterone acetate, finasteride, buserelin acetate, fludrocortisone, fluoxymesterone, medroxyprogesterone, octreotide), aromatase inhibitors (e.g. anastrozole, letrozole, liarozole, vorozole, exemestane, atamestane), LHRH agonists and antagonists (e.g.
  • growth factors such as for example platelet derived growth factor (PDGF), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), insuline-like growth factors (IGF), human epidermal growth factor (HER, e.g.
  • growth factors such as for example platelet derived growth factor (PDGF), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), insuline-like growth factors (IGF), human epidermal growth factor (HER, e.g.
  • PDGF platelet derived growth factor
  • FGF fibroblast growth factor
  • VEGF vascular endothelial growth factor
  • EGF epidermal growth factor
  • IGF insuline-like growth factors
  • HER human epidermal growth factor
  • inhibitors are for example ( anti -)growth factor antibodies, ( anti- )growth factor receptor antibodies and tyrosine kinase inhibitors, such as for example cetuximab, gefitinib, afatinib, nintedanib, imatinib, lapatinib, bosutinib, bevacizumab and trastuzumab); antimetabolites (e.g.
  • antifolates such as methotrexate, raltitrexed, pyrimidine analogues such as 5-fluorouracil (5-FU), ribonucleoside and deoxyribonucleoside analogues, capecitabine and gemcitabine, purine and adenosine analogues such as mercaptopurine, thioguanine, cladribine and pentostatin, cytarabine (ara C), fludarabine); antitumor antibiotics ( e . g .
  • anthracyclins such as doxorubicin, doxil (pegylated liposomal doxorubicin hydrochloride, myocet (non-pegylated liposomal doxorubicin), daunorubicin, epirubicin and idarubicin, mitomycin-C, bleomycin, dactinomycin, plicamycin, streptozocin); platinum derivatives (e.g. cisplatin, oxaliplatin, carboplatin); alkylation agents (e.g.
  • epipodophyllotoxins such as for example etoposide and etopophos, teniposide, amsacrin, topotecan, irinotecan, mitoxantrone), serine/threonine kinase inhibitors (e.g.
  • PDK 1 inhibitors Raf inhibitors, A-Raf inhibitors, B-Raf inhibitors, C-Raf inhibitors, mTOR inhibitors, mTORC1/2 inhibitors, PI3K inhibitors, PI3K ⁇ inhibitors, dual mTOR/PI3K inhibitors, STK 33 inhibitors, AKT inhibitors, PLK 1 inhibitors, inhibitors of CDKs, Aurora kinase inhibitors), tyrosine kinase inhibitors (e.g. PTK2/FAK inhibitors), protein protein interaction inhibitors (e.g.
  • IAP inhibitors/SMAC mimetics Mcl-1, MDM2/MDMX
  • MEK inhibitors ERK inhibitors
  • FLT3 inhibitors BRD4 inhibitors
  • IGF-1R inhibitors TRAILR2 agonists
  • Bcl-xL inhibitors Bcl-2 inhibitors (e.g. venetoclax)
  • Bcl-2/Bcl-xL inhibitors ErbB receptor inhibitors
  • BCR-ABL inhibitors e.g.
  • immune checkpont inhibitors e.g. CTLA4, PD1, PD-L1, PD-L2, LAG3, and TIM3 binding molecules/immunoglobulins, such as e.g.
  • ipilimumab e.g. ipilimumab, nivolumab, pembrolizumab
  • ADCC antibody-dependent cell-mediated cytotoxicity
  • enhancers e.g. anti-CD33 antibodies, anti-CD37 antibodies, anti-CD20 antibodies
  • t-cell engagers e.g. bi-specific T-cell engagers (BiTEs ® ) like e.g.
  • chemotherapeutic agents such as amifostin, anagrelid, clodronat, filgrastin, interferon, interferon alpha, leucovorin, procarbazine, levamisole, mesna, mitotane, pamidronate and porfimer.
  • compositions, kits, methods, uses or compounds for use according to this invention may envisage the simultaneous, concurrent, sequential, successive, alternate or separate administration of the active ingredients or components.
  • compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - and the one or more other pharmacologically active substance(s) can be administered formulated either dependently or independently, such as e.g.
  • the compound of formula (I) , (I*) , (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - and the one or more other pharmacologically active substance(s) may be administered either as part of the same pharmaceutical composition/dosage form or, preferably, in separate pharmaceutical compositions/dosage forms.
  • “combination” or “combined” within the meaning of this invention includes, without being limited, a product that results from the mixing or combining of more than one active ingredient and includes both fixed and non-fixed (e.g. free) combinations (including kits) and uses, such as e.g. the simultaneous, concurrent, sequential, successive, alternate or separate use of the components or ingredients.
  • the term “fixed combination” means that the active ingredients are administered to a patient simultaneously in the form of a single entity or dosage.
  • non-fixed combination means that the active ingredients are administered to a patient as separate entities either simultaneously, concurrently or sequentially with no specific time limits, wherein such administration provides therapeutically effective levels of the compounds in the body of the patient.
  • the administration of the compound of formula (I), (I*), (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - and the one or more other pharmacologically active substance(s) may take place by co-administering the active components or ingredients, such as e.g. by administering them simultaneously or concurrently in one single or in two or more separate formulations or dosage forms.
  • the administration of the compound of formula (I), (I*), (Ia) or (Ia*) - or a pharmaceutically acceptable salt thereof - and the one or more other pharmacologically active substance(s) may take place by administering the active components or ingredients sequentially or in alternation, such as e.g. in two or more separate formulations or dosage forms.
  • simultaneous administration includes administration at substantially the same time.
  • This form of administration may also be referred to as "concomitant" administration.
  • Concurrent administration includes administering the active agents within the same general time period, for example on the same day(s) but not necessarily at the same time.
  • Alternate administration includes administration of one agent during a time period, for example over the course of a few days or a week, followed by administration of the other agent(s) during a subsequent period of time, for example over the course of a few days or a week, and then repeating the pattern for one or more cycles.
  • Sequential or successive administration includes administration of one agent during a first time period (for example over the course of a few days or a week) using one or more doses, followed by administration of the other agent(s) during a second and/or additional time period (for example over the course of a few days or a week) using one or more doses.
  • An overlapping schedule may also be employed, which includes administration of the active agents on different days over the treatment period, not necessarily according to a regular sequence. Variations on these general guidelines may also be employed, e.g. according to the agents used and the condition of the subject.
  • the indication of the number of members in groups that contain one or more heteroatom(s) relates to the total number of atoms of all the ring members or the total of all the ring and carbon chain members.
  • the indication of the number of carbon atoms in groups that consist of a combination of carbon chain and carbon ring structure e.g. cycloalkylalkyl, arylalkyl
  • a ring structure has at least three members.
  • aryl-C 1-6 alkyl means an aryl group which is bound to a C 1-6 alkyl group, the latter of which is bound to the core or to the group to which the substituent is attached.
  • Alkyl denotes monovalent, saturated hydrocarbon chains, which may be present in both straight-chain (unbranched) and branched form. If an alkyl is substituted, the substitution may take place independently of one another, by mono- or polysubstitution in each case, on all the hydrogen-carrying carbon atoms.
  • C 1-5 alkyl includes for example H 3 C-, H 3 C-CH 2 -, H 3 C-CH 2 -CH 2 -, H 3 C-CH(CH 3 )-, H 3 C-CH 2 -CH 2 -CH 2 -, H 3 C-CH 2 -CH(CH 3 )-, H 3 C-CH(CH 3 )-CH 2 -, H 3 C-C(CH 3 ) 2 -, H 3 C-CH 2 -CH 2 -CH 2 -CH 2 -, H 3 C-CH 2 -CH 2 -CH(CH 3 )-, H 3 C-CH 2 -CH(CH 3 )-CH 2 -, H 3 C-CH(CH 3 )-CH 2 -, H 3 C-CH(CH 3 )-CH 2 -, H 3 C-CH(CH 3 )-CH 2 -, H 3 C-CH 2 -C(CH 3 ) 2 -, H 3 C-C(CH 3 ) 2 -CH 2
  • alkyl are methyl (Me; -CH 3 ), ethyl (Et; -CH 2 CH 3 ), 1-propyl ( n -propyl; n -Pr; -CH 2 CH 2 CH 3 ), 2-propyl ( i -Pr; iso -propyl; -CH(CH 3 ) 2 ), 1-butyl ( n -butyl; n -Bu; -CH 2 CH 2 CH 2 CH 3 ), 2-methyl-1-propyl ( iso -butyl; i -Bu; -CH 2 CH(CH 3 ) 2 ), 2-butyl ( sec- butyl; sec-Bu; -CH(CH 3 )CH 2 CH 3 ), 2-methyl-2-propyl ( tert -butyl; t -Bu; -C(CH 3 ) 3 ), 1-pentyl ( n -pentyl; -CH 2 CH 2 CH 2 CH 3 ),
  • alkyl also applies if alkyl is a part of another (combined) group such as for example C x-y alkyl amino or C x-y alkyl oxy.
  • alkylene can also be derived from alkyl.
  • Alkylene is bivalent, unlike alkyl , and requires two binding partners. Formally, the second valency is produced by removing a hydrogen atom in an alkyl .
  • Corresponding groups are for example -CH 3 and -CH 2 -, -CH 2 CH 3 and -CH 2 CH 2 - or >CHCH 3 etc.
  • C 1-4 alkylene includes for example -(CH 2 )-, -(CH 2 -CH 2 )-, -(CH(CH 3 ))-, -(CH 2 -CH 2 -CH 2 )-, -(C(CH 3 ) 2 )-, -(CH(CH 2 CH 3 ))-, -(CH(CH 3 )-CH 2 )-, -(CH 2 -CH(CH 3 ))-, -(CH 2 -CH 2 -CH 2 -CH 2 )-, -(CH 2 -CH 2 -CH(CH 3 ))-, -(CH(CH 3 )-CH 2 -CH 2 )-, -(CH 2 -CH(CH 3 )-CH 2 -CH 2 )-, -(CH 2 -CH(CH 3 )-CH 2 )-, -(CH 2 -CH(CH 3 )-CH 2 )-, -(CH 2 -CH(
  • alkylene examples include methylene, ethylene, propylene, 1-methylethylene, butylene, 1-methylpropylene, 1,1-dimethylethylene, 1,2-dimethylethylene, pentylene, 1,1-dimethylpropylene, 2,2-dimethylpropylene, 1,2-dimethylpropylene, 1,3-dimethylpropylene, hexylene etc.
  • propylene includes 1-methylethylene and butylene includes 1-methylpropylene, 2-methylpropylene, 1,1-dimethylethylene and 1,2-dimethylethylene.
  • alkylene also applies if alkylene is part of another (combined) group such as for example in HO-C x-y alkylene amino or H 2 N-C x-y alkylene oxy.
  • alkenyl consists of at least two carbon atoms, wherein at least two adjacent carbon atoms are joined together by a C-C double bond and a carbon atom can only be part of one C-C double bond. If in an alkyl as hereinbefore defined having at least two carbon atoms, two hydrogen atoms on adjacent carbon atoms are formally removed and the free valencies are saturated to form a second bond, the corresponding alkenyl is formed.
  • alkenyl examples include vinyl (ethenyl), prop-1-enyl, allyl (prop-2-enyl), isopropenyl, but-1-enyl, but-2-enyl, but-3-enyl, 2-methyl-prop-2-enyl, 2-methyl-prop-1-enyl, 1-methyl-prop-2-enyl, 1-methyl-prop-1-enyl, 1-methylidenepropyl, pent-1-enyl, pent-2-enyl, pent-3-enyl, pent-4-enyl, 3-methyl-but-3-enyl, 3-methyl-but-2-enyl, 3-methyl-but-1-enyl, hex-1-enyl, hex-2-enyl, hex-3-enyl, hex-4-enyl, hex-5-enyl, 2,3-dimethyl-but-3-enyl, 2,3-dimethyl-but-2-enyl, 2-methylidene-3-methylbuty
  • propenyl includes prop-1-enyl and prop-2-enyl
  • butenyl includes but-1-enyl, but-2-enyl, but-3-enyl, 1-methyl-prop-1-enyl, 1-methyl-prop-2-enyl etc.
  • Alkenyl may optionally be present in the cis or trans or E or Z orientation with regard to the double bond(s).
  • alkenyl also applies when alkenyl is part of another (combined) group such as for example in C x-y alkenyl amino or C x-y alkenyl oxy.
  • alkenylene consists of at least two carbon atoms, wherein at least two adjacent carbon atoms are joined together by a C-C double bond and a carbon atom can only be part of one C-C double bond. If in an alkylene as hereinbefore defined having at least two carbon atoms, two hydrogen atoms at adjacent carbon atoms are formally removed and the free valencies are saturated to form a second bond, the corresponding alkenylene is formed.
  • alkenylene examples include ethenylene, propenylene, 1-methylethenylene, butenylene, 1-methylpropenylene, 1,1-dimethylethenylene, 1,2-dimethylethenylene, pentenylene, 1,1-dimethylpropenylene, 2,2-dimethylpropenylene, 1,2-dimethylpropenylene, 1,3-dimethylpropenylene, hexenylene etc.
  • propenylene includes 1-methylethenylene and butenylene includes 1-methylpropenylene, 2-methylpropenylene, 1,1-dimethylethenylene and 1,2-dimethylethenylene.
  • Alkenylene may optionally be present in the cis or trans or E or Z orientation with regard to the double bond(s).
  • alkenylene also applies when alkenylene is a part of another (combined) group as for example in HO-C x-y alkenylene amino or H 2 N-C x-y alkenylene oxy.
  • alkynyl consists of at least two carbon atoms, wherein at least two adjacent carbon atoms are joined together by a C-C triple bond. If in an alkyl as hereinbefore defined having at least two carbon atoms, two hydrogen atoms in each case at adjacent carbon atoms are formally removed and the free valencies are saturated to form two further bonds, the corresponding alkynyl is formed.
  • alkynyl examples include ethynyl, prop-1-ynyl, prop-2-ynyl, but-1-ynyl, but-2-ynyl, but-3-ynyl, 1-methyl-prop-2-ynyl, pent-1-ynyl, pent-2-ynyl, pent-3-ynyl, pent-4-ynyl, 3-methyl-but-1-ynyl, hex-1-ynyl, hex-2-ynyl, hex-3-ynyl, hex-4-ynyl, hex-5-ynyl etc.
  • propynyl includes prop-1-ynyl and prop-2-ynyl
  • butynyl includes but-1-ynyl, but-2-ynyl, but-3-ynyl, 1-methyl-prop-1-ynyl, 1-methyl-prop-2-ynyl, etc.
  • hydrocarbon chain carries both at least one double bond and also at least one triple bond, by definition it belongs to the alkynyl subgroup.
  • alkynyl also applies if alkynyl is part of another (combined) group, as for example in C x-y alkynyl amino or C x-y alkynyl oxy.
  • alkynylene consists of at least two carbon atoms, wherein at least two adjacent carbon atoms are joined together by a C-C triple bond. If in an alkylene as hereinbefore defined having at least two carbon atoms, two hydrogen atoms in each case at adjacent carbon atoms are formally removed and the free valencies are saturated to form two further bonds, the corresponding alkynylene is formed.
  • alkynylene examples include ethynylene, propynylene, 1-methylethynylene, butynylene, 1-methylpropynylene, 1,1-dimethylethynylene, 1,2-dimethylethynylene, pentynylene, 1,1-dimethylpropynylene, 2,2-dimethylpropynylene, 1,2-dimethylpropynylene, 1,3-dimethylpropynylene, hexynylene etc.
  • propynylene includes 1-methylethynylene and butynylene includes 1-methylpropynylene, 2-methylpropynylene, 1,1-dimethylethynylene and 1,2-dimethylethynylene.
  • alkynylene also applies if alkynylene is part of another (combined) group, as for example in HO-C x-y alkynylene amino or H 2 N-C x-y alkynylene oxy.
  • heteroatoms oxygen, nitrogen and sulphur atoms.
  • Haloalkyl (haloalkenyl, haloalkynyl) is derived from the previously defined alkyl (alkenyl, alkynyl) by replacing one or more hydrogen atoms of the hydrocarbon chain independently of one another by halogen atoms, which may be identical or different. If a haloalkyl (haloalkenyl, haloalkynyl) is to be further substituted, the substitutions may take place independently of one another, in the form of mono- or polysubstitutions in each case, on all the hydrogen-carrying carbon atoms.
  • haloalkyl haloalkenyl, haloalkynyl
  • haloalkyl haloalkenyl, haloalkynyl
  • -CCl CH 2
  • -CBr CH 2 , -C ⁇ C-CF 3 , -CHFCH 2 CH 3 , -CHFCH 2 CF 3 etc.
  • haloalkyl haloalkenyl, haloalkynyl
  • haloalkynylene haloalkenylene, haloalkynylene
  • Haloalkylene haloalkenylene, haloalkynylene
  • haloalkenyl, haloalkynyl is bivalent and requires two binding partners.
  • the second valency is formed by removing a hydrogen atom from a haloalkyl (haloalkenyl, haloalkynyl).
  • Corresponding groups are for example -CH 2 F and -CHF-, -CHFCH 2 F and -CHFCHF- or >CFCH 2 F etc.
  • Halogen relates to fluorine, chlorine, bromine and/or iodine atoms.
  • Cycloalkyl is made up of the subgroups monocyclic cycloalkyl, bicyclic cycloalkyl and spiro-cycloalkyl.
  • the ring systems are saturated and formed by linked carbon atoms.
  • bicyclic cycloalkyl two rings are joined together so that they have at least two carbon atoms in common.
  • spiro-cycloalkyl one carbon atom (spiroatom) belongs to two rings together. If a cycloalkyl is to be substituted, the substitutions may take place independently of one another, in the form of mono- or polysubstitutions in each case, on all the hydrogen-carrying carbon atoms.
  • Cycloalkyl itself may be linked as a substituent to the molecule via every suitable position of the ring system.
  • cycloalkyl examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, bicyclo[2.2.0]hexyl, bicyclo[3.2.0]heptyl, bicyclo[3.2.1]octyl, bicyclo[2.2.2]octyl, bicyclo[4.3.0]nonyl (octahydroindenyl), bicyclo[4.4.0]decyl (decahydronaphthyl), bicyclo[2.2.1]heptyl (norbornyl), bicyclo[4.1.0]heptyl (norcaranyl), bicyclo[3.1.1]heptyl (pinanyl), spiro[2.5]octyl, spiro[3.3]heptyl etc.
  • cycloalkyl also applies if cycloalkyl is part of another (combined) group as for example in C x-y cycloalkyl amino, C x-y cycloalkyl oxy or C x-y cycloalkyl alkyl.
  • cycloalkylene can thus be derived from the previously defined cycloalkyl.
  • Cycloalkylene unlike cycloalkyl, is bivalent and requires two binding partners. Formally, the second valency is obtained by removing a hydrogen atom from a cycloalkyl.
  • Corresponding groups are for example: cyclohexyl and (cyclohexylene).
  • cycloalkylene also applies if cycloalkylene is part of another (combined) group as for example in HO-C x-y cycloalkylene amino or H 2 N-C x-y cycloalkylene oxy.
  • Cycloalkenyl is made up of the subgroups monocyclic cycloalkenyl, bicyclic cycloalkeny and spiro-cycloalkenyl. However, the systems are unsaturated, i.e. there is at least one C-C double bond but no aromatic system. If in a cycloalkyl as hereinbefore defined two hydrogen atoms at adjacent cyclic carbon atoms are formally removed and the free valencies are saturated to form a second bond, the corresponding cycloalkenyl is obtained.
  • a cycloalkenyl is to be substituted, the substitutions may take place independently of one another, in the form of mono- or polysubstitutions in each case, on all the hydrogen-carrying carbon atoms. Cycloalkenyl itself may be linked as a substituent to the molecule via every suitable position of the ring system.
  • cycloalkenyl examples include cycloprop-1-enyl, cycloprop-2-enyl, cyclobut-1-enyl, cyclobut-2-enyl, cyclopent-1-enyl, cyclopent-2-enyl, cyclopent-3-enyl, cyclohex-1-enyl, cyclohex-2-enyl, cyclohex-3-enyl, cyclohept-1-enyl, cyclohept-2-enyl, cyclohept-3-enyl, cyclohept-4-enyl, cyclobuta-1,3-dienyl, cyclopenta-1,4-dienyl, cyclopenta-1,3-dienyl, cyclopenta-2,4-dienyl, cyclohexa-1,3-dienyl, cyclohexa-1,5-dienyl, cyclohexa-2,4-dien
  • cycloalkenyl also applies when cycloalkenyl is part of another (combined) group as for example in C x-y cycloalkenyl amino, C x-y cycloalkenyl oxy or C x-y cycloalkenyl alkyl.
  • cycloalkenylene can thus be derived from the previously defined cycloalkenyl.
  • Cycloalkenylene unlike cycloalkenyl, is bivalent and requires two binding partners. Formally, the second valency is obtained by removing a hydrogen atom from a cycloalkenyl.
  • Corresponding groups are for example: cyclopentenyl and (cyclopentenylene) etc.
  • cycloalkenylene also applies if cycloalkenylene is part of another (combined) group as for example in HO-C x-y cycloalkenylene amino or H 2 N-C x-y cycloalkenylene oxy.
  • Aryl denotes mono-, bi- or tricyclic carbocycles with at least one aromatic carbocycle. Preferably, it denotes a monocyclic group with six carbon atoms (phenyl) or a bicyclic group with nine or ten carbon atoms (two six-membered rings or one six-membered ring with a five-membered ring), wherein the second ring may also be aromatic or, however, may also be partially saturated.
  • substitutions may take place independently of one another, in the form of mono- or polysubstitutions in each case, on all the hydrogen-carrying carbon atoms.
  • Aryl itself may be linked as a substituent to the molecule via every suitable position of the ring system.
  • aryl examples include phenyl, naphthyl, indanyl (2,3-dihydroindenyl), indenyl, anthracenyl, phenanthrenyl, tetrahydronaphthyl (1,2,3,4-tetrahydronaphthyl, tetralinyl), dihydronaphthyl (1,2- dihydronaphthyl), fluorenyl etc. Most preferred is phenyl.
  • aryl also applies if aryl is part of another (combined) group as for example in arylamino, aryloxy or arylalkyl.
  • arylene can also be derived from the previously defined aryl.
  • Arylene unlike aryl, is bivalent and requires two binding partners. Formally, the second valency is formed by removing a hydrogen atom from an aryl.
  • Corresponding groups are for example:
  • arylene also applies if arylene is part of another (combined) group as for example in HO- arylene amino or H 2 N- arylene oxy.
  • Heteroatoms may optionally be present in all the possible oxidation stages (sulphur ⁇ sulphoxide -SO-, sulphone -SO 2 -; nitrogen ⁇ N-oxide).
  • oxidation stages sulphur ⁇ sulphoxide -SO-, sulphone -SO 2 -; nitrogen ⁇ N-oxide.
  • heterocyclyl there is no heteroaromatic ring, i.e. no heteroatom is part of an aromatic system.
  • heterocyclyl is made up of the subgroups monocyclic heterocyclyl, bicyclic heterocyclyl, tricyclic heterocyclyl and spiro-heterocyclyl, which may be present in saturated or unsaturated form.
  • unsaturated is meant that there is at least one double bond in the ring system in question, but no heteroaromatic system is formed.
  • bicyclic heterocyclyl two rings are linked together so that they have at least two (hetero)atoms in common.
  • spiro-heterocyclyl one carbon atom (spiroatom) belongs to two rings together.
  • heterocyclyl is substituted, the substitutions may take place independently of one another, in the form of mono- or polysubstitutions in each case, on all the hydrogen-carrying carbon and/or nitrogen atoms.
  • Heterocyclyl itself may be linked as a substituent to the molecule via every suitable position of the ring system. Substituents on heterocyclyl do not count for the number of members of a heterocyclyl.
  • heterocyclyl examples include tetrahydrofuryl, pyrrolidinyl, pyrrolinyl, imidazolidinyl, thiazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperidinyl, piperazinyl, oxiranyl, aziridinyl, azetidinyl, 1,4-dioxanyl, azepanyl, diazepanyl, morpholinyl, thiomorpholinyl, homomorpholinyl, homopiperidinyl, homopiperazinyl, homothiomorpholinyl, thiomorpholinyl-S-oxide, thiomorpholinyl-S,S-dioxide, 1,3-dioxolanyl, tetrahydropyranyl, tetrahydrothiopyranyl, [1,4]-oxazepanyl, tetrahydrothien
  • Preferred monocyclic heterocyclyl is 4 to 7 membered and has one or two heteroatoms independently selected from oxygen, nitrogen and sulfur.
  • Preferred monocyclic heterocyclyls are: piperazinyl, piperidinyl, morpholinyl, pyrrolidinyl, and azetidinyl.
  • Preferred bicyclic heterocyclyl is 6 to 10 membered and has one or two heteroatoms independently selected from oxygen, nitrogen and sulfur.
  • Preferred tricyclic heterocyclyl is 9 membered and has one or two heteroatoms independently selected from oxygen, nitrogen and sulfur.
  • Preferred spiro-heterocyclyl is 7 to 11 membered and has one or two heteroatoms independently selected from oxygen, nitrogen and sulfur.
  • heterocyclyl also applies if heterocyclyl is part of another (combined) group as for example in heterocyclylamino, heterocyclyloxy or heterocyclylalkyl.
  • heterocyclylene is also derived from the previously defined heterocyclyl.
  • Heterocyclylene unlike heterocyclyl, is bivalent and requires two binding partners. Formally, the second valency is obtained by removing a hydrogen atom from a heterocyclyl.
  • Corresponding groups are for example: piperidinyl and 2,3-dihydro-1 H -pyrrolyl and etc.
  • heterocyclylene also applies if heterocyclylene is part of another (combined) group as for example in HO- heterocyclylene amino or H 2 N- heterocyclylene oxy.
  • Heteroaryl denotes monocyclic heteroaromatic rings or polycyclic rings with at least one heteroaromatic ring, which compared with the corresponding aryl or cycloalkyl (cycloalkenyl) contain, instead of one or more carbon atoms, one or more identical or different heteroatoms, selected independently of one another from among nitrogen, sulphur and oxygen, wherein the resulting group must be chemically stable.
  • the prerequisite for the presence of heteroaryl is a heteroatom and a heteroaromatic system.
  • heteroaryl If a heteroaryl is to be substituted, the substitutions may take place independently of one another, in the form of mono- or polysubstitutions in each case, on all the hydrogen-carrying carbon and/or nitrogen atoms. Heteroaryl itself may be linked as a substituent to the molecule via every suitable position of the ring system, both carbon and nitrogen. Substituents on heteroaryl do not count for the number of members of a heteroaryl.
  • heteroaryl examples include furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, pyrazolyl, imidazolyl, triazolyl, tetrazolyl, oxadiazolyl, thiadiazolyl, pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, triazinyl, pyridyl- N -oxide, pyrrolyl- N -oxide, pyrimidinyl- N- oxide, pyridazinyl- N -oxide, pyrazinyl- N -oxide, imidazolyl- N -oxide, isoxazolyl- N -oxide, oxazolyl- N -oxide, thiazolyl- N -oxide, oxadiazolyl- N -oxide, thiadia
  • heteroaryls are 5-6 membered monocyclic or 9-10 membered bicyclic, each with 1 to 4 heteroatoms independently selected from oxygen, nitrogen and sulfur.
  • heteroaryl also applies if heteroaryl is part of another (combined) group as for example in heteroaryl amino, heteroaryl oxy or heteroaryl alkyl.
  • heteroarylene is also derived from the previously defined heteroaryl.
  • Heteroarylene unlike heteroaryl, is bivalent and requires two binding partners. Formally, the second valency is obtained by removing a hydrogen atom from a heteroaryl.
  • Corresponding groups are for example: pyrrolyl and etc.
  • heteroarylene also applies if heteroarylene is part of another (combined) group as for example in HO- heteroaryle neamino or H 2 N- heteroarylene oxy.
  • substituted By substituted is meant that a hydrogen atom which is bound directly to the atom under consideration, is replaced by another atom or another group of atoms (substituent). Depending on the starting conditions (number of hydrogen atoms) mono- or polysubstitution may take place on one atom. Substitution with a particular substituent is only possible if the permitted valencies of the substituent and of the atom that is to be substituted correspond to one another and the substitution leads to a stable compound ( i.e . to a compound which is not converted spontaneously, e.g . by rearrangement, cyclisation or elimination).
  • substitution may be carried out by a bivalent substituent only at ring systems and requires replacement of two geminal hydrogen atoms, i.e. hydrogen atoms that are bound to the same carbon atom that is saturated prior to the substitution.
  • Stereochemistry/solvates/hydrates Unless specifically indicated, throughout the specification and appended claims, a given chemical formula or name shall encompass tautomers and all stereo, optical and geometrical isomers (e.g. enantiomers, diastereomers, E / Z isomers, etc. ) and racemates thereof as well as mixtures in different proportions of the separate enantiomers, mixtures of diastereomers, or mixtures of any of the foregoing forms where such isomers and enantiomers exist, as well as salts, including pharmaceutically acceptable salts thereof and solvates thereof such as for instance hydrates including solvates and hydrates of the free compound or solvates and hydrates of a salt of the compound.
  • a given chemical formula or name shall encompass tautomers and all stereo, optical and geometrical isomers (e.g. enantiomers, diastereomers, E / Z isomers, etc. ) and racemates thereof as well as mixtures in different proportions of the separate
  • substantially pure stereoisomers can be obtained according to synthetic principles known to a person skilled in the field, e.g. by separation of corresponding mixtures, by using stereochemically pure starting materials and/or by stereoselective synthesis. It is known in the art how to prepare optically active forms, such as by resolution of racemic forms or by synthesis, e.g . starting from optically active starting materials and/or by using chiral reagents.
  • Enantiomerically pure compounds of this invention or intermediates may be prepared via asymmetric synthesis, for example by preparation and subsequent separation of appropriate diastereomeric compounds or intermediates which can be separated by known methods (e.g. by chromatographic separation or crystallization) and/or by using chiral reagents, such as chiral starting materials, chiral catalysts or chiral auxiliaries.
  • salts The phrase "pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgement, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, and commensurate with a reasonable benefit/risk ratio.
  • pharmaceutically acceptable salts refers to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base salts thereof.
  • pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like.
  • such salts include salts from benzenesulfonic acid, benzoic acid, citric acid, ethanesulfonic acid, fumaric acid, gentisic acid, hydrobromic acid, hydrochloric acid, maleic acid, malic acid, malonic acid, mandelic acid, methanesulfonic acid, 4-methylbenzenesulfonic acid, phosphoric acid, salicylic acid, succinic acid, sulfuric acid and tartaric acid.
  • salts can be formed with cations from ammonia, L-arginine, calcium, 2,2'-iminobisethanol, L-lysine, magnesium, N-methyl-D-glucamine, potassium, sodium and tris(hydroxymethyl)-aminomethane.
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base form of these compounds with a sufficient amount of the appropriate base or acid in water or in an organic diluent like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile, or a mixture thereof.
  • Salts of other acids than those mentioned above which for example are useful for purifying or isolating the compounds of the present invention e.g. trifluoro acetate salts
  • Salts of other acids than those mentioned above which for example are useful for purifying or isolating the compounds of the present invention also comprise a part of the invention.
  • the letter A has the function of a ring designation in order to make it easier, for example, to indicate the attachment of the ring in question to other rings.
  • Groups or substituents are frequently selected from among a number of alternative groups/substituents with a corresponding group designation (e.g. R a , R b etc). If such a group is used repeatedly to define a compound according to the invention in different parts of the molecule, it is pointed out that the various uses are to be regarded as totally independent of one another.
  • a therapeutically effective amount for the purposes of this invention is meant a quantity of substance that is capable of obviating symptoms of illness or of preventing or alleviating these symptoms, or which prolong the survival of a treated patient.
  • Ras family proteins as used herein is meant to include KRAS (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog), NRAS (neuroblastoma RAS viral oncogene homolog) and HRAS (Harvey murine sarcoma virus oncogene) and any mutants thereof.
  • the compounds of the invention may selectively react with KRAS G12C and/or HRAS G12C and/or NRAS G12C proteins (preferably with KRAS G12C) by forming a covalent bond with the cysteine at the 12 position of KRAS G12C and/or HRAS G12C and/or NRAS G12C (preferably of KRAS G12C) resulting in the modulation/inhibition of the enzymatic activity of these mutant Ras proteins.
  • KRAS G12C and/or HRAS G12C and/or NRAS G12C proteins preferably with KRAS G12C
  • Microwave reactions are carried out in an initiator/reactor made by Biotage or in an Explorer made by CEM or in Synthos 3000 or Monowave 3000 made by Anton Paar in sealed containers (preferably 2, 5 or 20 mL), preferably with stirring.
  • the thin layer chromatography is carried out on ready-made silica gel 60 TLC plates on glass (with fluorescence indicator F-254) made by Merck.
  • the preparative high pressure chromatography (RP HPLC) of the example compounds according to the invention is carried out on Agilent or Gilson systems with columns made by Waters (names: SunFire TM Prep C18, OBD TM 10 ⁇ m, 50 x 150 mm or SunFire TM Prep C18 OBD TM 5 ⁇ m, 30 ⁇ 50 mm or XBridge TM Prep C18, OBD TM 10 ⁇ m, 50 ⁇ 150 mm or XBridge TM Prep C18, OBD TM 5 ⁇ m, 30 ⁇ 150 mm or XBridge TM Prep C18, OBD TM 5 ⁇ m, 30 ⁇ 50 mm) and YMC (names: Actus-Triart Prep C18, 5 ⁇ m, 30 ⁇ 50 mm).
  • Waters names: SunFire TM Prep C18, OBD TM 10 ⁇ m, 50 x 150 mm or SunFire TM Prep C18 OBD TM 5 ⁇ m,
  • the supercritical fluid chromatography (SFC) of the intermediates and example compounds according to the invention is carried out on a JASCO SFC-system with the following colums: Chiralcel OJ (250 ⁇ 20 mm, 5 ⁇ m), Chiralpak AD (250 ⁇ 20 mm, 5 ⁇ m), Chiralpak AS (250 ⁇ 20 mm, 5 ⁇ m), Chiralpak IC (250 ⁇ 20 mm, 5 ⁇ m), Chiralpak IA (250 ⁇ 20 mm, 5 ⁇ m), Chiralcel OJ (250 ⁇ 20 mm, 5 ⁇ m), Chiralcel OD (250 ⁇ 20 mm, 5 ⁇ m), Phenomenex Lux C2 (250 ⁇ 20 mm, 5 ⁇ m).
  • SFC supercritical fluid chromatography
  • the analytical HPLC (reaction control) of intermediate and final compounds is carried out using columns made by Waters (names: XBridge TM C18, 2.5 ⁇ m, 2.1 ⁇ 20 mm or XBridge TM C18, 2.5 ⁇ m, 2.1 ⁇ 30 mm orAquity UPLC BEH C18, 1.7 ⁇ m, 2.1 ⁇ 50mm) and YMC (names: Triart C18, 3.0 ⁇ m, 2.0 ⁇ 30 mm) and Phenomenex (names: Luna C18, 5.0 ⁇ m, 2.0 ⁇ 30 mm).
  • the analytical equipment is also equipped with a mass detector in each case.
  • Preparative SFC is performed in Waters Thar SFC 80 system Column: Chiralpak AD-H (21 ⁇ 250 mm), 5 ⁇ m Flow: 25 g/min Mobile Phase: 75 % CO 2 + 25 % MeOH ( 0.5 % isopropylamine) ABPR: 120 bar Temp: 35 °C UV: 220 nm Stack Time: 8 min
  • both configurations shall be deemed to be included and disclosed in such a representation.
  • the representation of a stereo center in racemic form shall always deem to include and disclose both enantiomers (if no other defined stereo center exists) or all other potential diastereomers and enantiomers (if additional, defined or undefined, stereo centers exist).
  • A-4a (78.0 mg, 0.3 mmol, 1.0 eq.) is dissolved in EtOH (1.5 mL) and potassium hydroxide (4 M in water, 0.37 mL, 1.5 mmol, 5.0 eq.) is added. The mixture is stirred for 16 h at 78 °C. After complete conversion, water and EtOAc is added to the mixture, the pH of the aqueous phase is set to pH 4 using KHSO 4 solution (10 % in water), and the product is extracted using EtOAc. The combined organic layers are dried, filtered and concentrated. The crude product is purified via acidic reversed phase chromatography (gradient elution: 20 % to 90 % acetonitrile in water) yielding A-5a.
  • E-3a (3.50 g, 15.9 mmol) is dissolved in DMF (10 mL). 2-dimethylaminoethyl chloride HCl salt (6.87 g, 47.72 mmol) is added and the mixture stirred for 25 min at 150 °C. The mixture is cooled to rt and filtered through a glass frit then washed with EtOAc. The solvent is removed by lyophilization. The residue is purified by normal phase chromatography (gradient elution: 0 % to 20 % MeOH in DCM) yielding E-2b.
  • E-1d (1.00 g, 6.62 mmol), piperazine-1-carboxylic acid tert-butyl ester (724.6 mg, 3.70 mmol, 0.8 eq.), sodium tert-butoxide (915.4 mg, 9.24 mmol, 2.0 eq.), 2-(di- tert- butylphosphino)biphenyl (275.7 mg, 0.92 mmol, 0.20 eq.), and tris(dibenzylideneacetone)dipalladium(0) (211.5 mg, 0.23 mmol, 0.05 eq.) are combined in dry dioxane (9.00 mL) and the mixture is stirred for 1 h at rt.
  • E-1b 500 mg, 2.83 mmol, 1.0 eq.
  • cesium fluoride (1.72 g, 11.33 mmol, 4.0 eq.
  • DMA 5 mL
  • the mixture is filtered and the solid is washed with a small amount of DMA to give a crude solution of E-5a in DMA.
  • E-1b (267 mg, 1.54 mmol, 1.0 eq.) and cesium fluoride (937 mg, 6.17 mmol, 4.0 eq.) are dissolved in DMA (3 mL) and heated to 110 °C by microwave irradiation. The mixture is filtered and the solid is washed with a small amount of DMA to give a crude solution of E-5a in DMA.
  • Tert -butyl 5,8-diazaspiro[3.5]nonane-4-carboxylate (349 mg, 1.54 mmol, 1.0 eq.) and DIPEA (0.667 mL, 3.86 mmol, 2.5 eq.) are added to the mixture which is stirred at 60 °C for 30 min. The mixture is filtered and the filtrate purified by basic reversed phase chromatography to give the desired product E-6d.
  • G-3a (4.0 g, 16.12 mmol) is dissolved in dry DCM (50.00 mL) and treated with formaldehyde (37 % in water, 1.21 mL, 16.12 mmol, 1.00 eq.) and acetic acid (92 ⁇ L, 1.61 mmol, 0.10 eq.). The mixture is stirred for 15 min and then sodium triacetoxyborohydride (6.335 g, 29.00 mmol, 1.80 eq.) is added and the mixture is stirred for 1 h at rt. After complete conversion water is added to the mixture and the product is extracted with DCM and the combined extracts are dried, filtered and concentrated. The crude product is purified via normal phase chromatography (DCM/MeOH).
  • tert-butyl (R)-3-methylpiperazine-1-carboxylate (1.50 mg, 97 % purity, 7.25 mmol, 1.3 eq.) and DIPEA (0.97 mL, 5.58 mmol, 1 eq.) are added to the mixture.
  • the mixture is stirred at 60 °C for 60 min and DIPEA (0.97 mL, 5.58 mmol, 1 eq.) is added.
  • the mixture is stirred at 70 °C for 50 min and at rt over night.
  • the reaction is diluted with water and DCM and the phases are separated. The aqueous phase is extracted with DCM (3 x) and the organic phases are combined.
  • the solvent is removed under vacuum to give the crude product E-8a.
  • the crude product is dissolved in acetonitrile and water, filtered and purified by basic reversed phase chromatography (gradient elution: 35 % to 95 % acetonitrile in water) to give the desired purified product E-8b.
  • E-4f (50.0 mg, 0.148 mmol), G-5a (115 mg, 0.740 mmol, 5.0 eq.) and DIPEA (25.78 ⁇ L, 0.15 mmol, 1.0 eq.) are combined with dry NMP (10 ⁇ L) and the mixture is stirred in a closed vessel for 1 h at 120 °C.
  • the product is isolated via basic reversed phase chromatography (gradient elution: 40 % to 98 % acetonitrile in water) yielding E-8g.
  • E-4e (400.0 mg, 1.24 mmol), N-methylpiperazine (352.1 mg, 3.48 mmol, 2.8 eq.), sodium tert-butoxide (246.3 mg, 2.49 mmol, 2.0 eq.), 2-(di- tert -butylphosphino)biphenyl (74.18 mg, 0.25 mmol, 0.20 eq.), and tris(dibenzylideneacetone)dipalladium(0) (56.9 mg, 0.062 mmol, 0.05 eq.) are combined in dry dioxane (2.50 mL) and the mixture is stirred for 1 h at 110 °C.
  • E-4b (1.00 g, 3.10 mmol), (S)-1,3-dimethylpiperazine (0.99 g, 8.67 mmol, 2.80 eq.), tris(dibenzylideneacetone)dipalladium(0) (141.85 mg, 0.154 mmol, 0.05 eq.), xantphos (184.80 mg, 0.31 mmol, 0.10 eq.), cesium carbonate (2.019 g, 6.196 mmol, 2.00 eq.) and dry dioxane (8.00 mL) are combined and stirred in a closed vessel under argon atmosphere for 16 h at 110 °C. After complete conversion brine is added to the mixture and the product is extracted with DCM. The combined organic phases are dried, filtered and concentrated under reduced pressure. The crude product is purified via basic reversed phase chromatography (gradient elution: 30 % to 98 % acetonitrile in water) yielding E-8i.
  • E-4b 400 mg, 1.239 mmol
  • 1-(1-methylpiperidin-4-yl)piperazine (273.0 mg, 1.49 mmol, 1.20 eq.)
  • RuPhos Pd G3 106.0 mg, 0.120 mmol, 0.10 eq.
  • potassium phosphate tribasic 553.0 mg, 2.605 mmol, 2.10 eq.
  • dry dioxane 3.10 mL
  • E-4b (100 mg, 0.31 mmol), pyridine-4-boronic acid (45.70 mg, 0.37 mmol, 1.20 eq.), RuPhos Pd G3 (27.3 mg, 0.031 mmol, 0.10 eq.), potassium phosphate tribasic (138.1 mg, 0.65 mmol, 2.10 eq.) and dry dioxane (0.9 mL) are combined and stirred in a closed vessel under argon atmosphere for 1 h at 80 °C. After complete conversion the mixture is concentrated. The crude product is purified via basic reversed phase chromatography yielding E-8I.
  • the mixture is cooled to rt, diluted with acetonitrile and water, filtered and purified by acidic reversed phase chromatography (gradient elution: 10 % to 98 % acetonitrile in water) to give the desired product E-8m.
  • E-8p J 0.46 431 F E-8q C 0.90 533 B E-8r C 0.82 413 B E-8s C 0.66 429 B E-8t D 1.55 473 A E-8u C 0.91 533 B E-8v B 1.23 387 A E-8w E 0.70 457 D E-8x E 0.77 472 D E-8y E 0.84 429 D E-8z E 0.73 456 D E-8aa E 0.50 455 F E-8ab G n.a. n.a.
  • E-6h (100.0 mg, 0.31 mmol, 1.0 eq.) and (S)-1,3-dimethylpiperazine (42.5 mg, 0.37 mmol, 1.2 eq.) are dissolved in DMSO (1 mL) at rt and DIPEA (115.0 ⁇ L, 0.62 mmol, 2.0 eq.) is added and the mixture is stirred for 1 h. The mixture is diluted with acetonitrile and water and purified by acidic reversed phase chromatography to give E-8ch.
  • E-8j (2.404 g, 4.50 mmol) in DCM (41 mL) is treated with HCl (4 M in dioxane, 8.33 mL, 33.31 mmol, 7.4 eq.) and the mixture is stirred for 5 h at rt. After complete conversion, the mixture is concentrated and the crude product is purified via basic reversed phase chromatography (gradient elution: 25 % to 100 % acetonitrile in water) yielding E-8cn.
  • E-8cn (231 mg, 0.532 mmol) in DCM (10.72 mL) is treated with formaldehyde (37 % in water, 79.89 ⁇ L, 1.06 mmol, 2.0 eq.), acetic acid (304.0 ⁇ L, 5.32 mmol, 10.0 eq.), and a small amount of molecular sieves and the mixture is stirred for 15 min.
  • Sodium triacetoxyborohydride (232.3 mg, 1.06 mmol, 2.0 eq.) is added and the mixture ist stirred for 2 h at rt. After complete conversion the mixture is diluted with brine and the product is extracted with DCM. The combined organic extracts are dried, filtered and concentrated and the crude product is purified via basic reversed phase chromatography (gradient elution: 35 % to 98 % acetonitrile in water) yielding E-8cq.
  • E-8i 240.0 mg, 0.60 mmol
  • hydroxylamine hydrochloride 110.48 mg, 1.56 mmol, 2.60 eq.
  • sodium carbonate 81.79 mg 0.78 mmol, 1.30 eq.
  • reaction here can also be performed using enantiopure starting material A-5 yielding enantiopure products B-1.
  • reaction is carried out under argon atmosphere.
  • To a stirred mixture of zinc powder (497.22 mg, 7.60 mmol, 8.0 eq.) and dry DMA (1.24 mL) is added 160 ⁇ L of a 7:5 (v/v) mixture of chlorotrimethylsilane (0.730 mL) and 1,2-dibromoethane (0.520 mL) dropwise over a period of 10 min at rt and the resulting mixture is stirred for addidional 15 min at rt.
  • B-3a (200.0 mg, 0.360 mmol) is treated with 1-methylpiperazine (799.30 ⁇ L, 7.21 mmol, 20 eq.) and DIPEA (92.99 ⁇ L, 0.54 mmol, 1.5 eq.) and stirred for 16 h at 80 °C in a closed vessel. After complete conversion, DCM, water, and brine are added, the layers are separated and the aqueous layer is extracted with DCM. The organic layers are combined, dried, filtered and concentrated under reduced pressure yielding B-4a which is used for the following step without further purification.
  • B-3b (100.0 mg, 0.18 mmol) is treated with 1-pyrrolidin-3-yl-piperidine (277.39 mg, 1.80 mmol, 10 eq.) and DIPEA (154.7 ⁇ L, 0.90 mmol, 5.0 eq.) and stirred for 16 h at 100 °C in a closed vessel. After complete conversion, DCM, water, and brine are added, the layers are separated and the aqueous layer is extracted with DCM. The organic layers are combined, dried, filtered and concentrated under reduced pressure yielding B-4c which is used for the following step without further purification.
  • B-4a (111.5 mg, 0.18 mmol) in DCM (2.00 mL) is treated with HCl (4 M in dioxane, 900.8 ⁇ L, 3.60 mmol, 20.0 eq.) and the mixture is stirred for 1 h at rt. After complete conversion, the mixture is concentrated and the crude product is purified via basic reversed phase chromatography (gradient elution: 15 % to 90 % acetonitrile in water) yielding B-5a.
  • B-8a (112.2 mg, 0.16 mmol) is dissolved in EtOH (2.75 mL) and treated with conc. HCl (37 % in water, 94.1 ⁇ L, 1.137 mmol, 7.0 eq.). The mixture is stirred for 1 h at 100 °C and after complete conversion the mixture is concentrated and the crude product is purified via basic reversed phase chromatography (gradient elution: 15 % to 98 % acetonitrile in water) yielding B-5c.
  • A-5a (67.09 mg, 0.28 mmol, 0.90 eq.) in DMSO (1.0 mL) is treated with HATU (125.9 mg, 0.32 mmol, 1.05 eq.) and TEA (89.2 ⁇ L, 0.62 mmol, 2.0 eq.) and the mixture is stirred for 20 min at rt.
  • E-16a (110.0 mg, 0.31 mmol, 1.0 eq.) is added and the mixture is stirred for 2 h at rt.
  • the mixture is poured into water and the precipitate is collected, washed with water, and dried, yielding B-9a which is used for the next step without further purification.
  • reaction can also be performed using enantiopure starting material A-5 yielding a single stereoisomer of product B-9.
  • B-8c (140.0 mg, 0.195 mmol) is dissolved in EtOH (3mL) and concentrated aqueous HCl (134 mg, 1.36 mmol) is added. The mixture is stirred for 2 h at 100 °C under an inert atmosphere. The reaction mixture is concentrated in vacuo and the crude product is purified via basic reversed phase chromatography (gradient elution: 30 % to 90 % acetonitrile in water) yielding B-5e.
  • A-5a (454.0 mg, 1.91 mmol, 1.0 eq.) in DMF (11.8 mL) is treated with HATU (724.5 mg, 1.91 mmol, 1.0 eq.) and DIPEA (0.923 mL, 5.72 mmol, 3.0 eq.) and the mixture is stirred for 20 min at rt. Then E-14a (874.8 mg, 1.48 mmol, 0.78 eq.) is added and the mixture is stirred for 16 h at rt. The crude mixture is purified via basic reversed phase chromatography (gradient elution: 30 % to 98 % acetonitrile in water) yielding B-11a.
  • reaction can also be performed using enantiopure starting material A-5 yielding a single stereoisomer of product B-11.
  • This assay can be used to examine the potency with which compounds according to the invention binding to KRAS G12C inhibit the protein-protein interaction between SOS1 and KRAS G12C. This inhibits the GEF functionality of SOS1 and locks KRAS G12C in its inactive, GDP-bound state. Low IC 50 values in this assay setting are indicative of strong inhibition of protein-protein interaction between SOS1 and KRAS:
  • the assay is run using a fully automated robotic system in a darkened room below 100 Lux. 10 ⁇ L of KRAS::SOS1 GDP mix is added into columns 1-24 to the 150 nL of compound solution (final dilution in the assay 1:100, final DMSO concentration 1 %).
  • IC 50 values are calculated and analyzed using a 4 parametric logistic model.
  • Tables of example compounds disclosed herein contain IC 50 values determined using the above assay.
  • Ba/F3 cells were ordered from DSMZ (ACC300, Lot17) and grown in RPMI-1640 (ATCC 30-2001) + 10 % FCS + 10 ng/mL IL-3 at 37 °C in 5 % CO 2 atmosphere. Plasmids containing KRASG12 mutants were obtained from GeneScript. To generate KRASG12-dependent Ba/F3 models, Ba/F3 cells were transduced with retroviruses containing vectors that harbor KRASG12 isoforms. Platinum-E cells (Cell Biolabs) were used for retrovirus packaging. Retrovirus was added to Ba/F3 cells. To ensure infection, 4 ⁇ g/mL polybrene was added and cells were spinfected.
  • Infection efficiency was confirmed by measuring GFP-positive cells using a cell analyzer. Cells with an infection efficiency of 10 % to 20 % were further cultivated and puromycin selection with 1 ⁇ g/mL was initiated. As a control, parental Ba/F3 cells were used to show selection status. Selection was considered successful when parental Ba/F3 cells cultures died. To evaluate the transforming potential of KRASG12 mutations, the growth medium was no longer supplemented with IL-3. Ba/F3 cells harboring the empty vector were used as a control. Approximately ten days before conducting the experiments, puromycin was left out.
  • Ba/F3 cells were seeded into 384-well plates at 1 ⁇ 10 3 cells / 60 ⁇ L in growth media (RPMI-1640 + 10 % FCS). Compounds were added using an Access Labcyte Workstation with a Labcyte Echo 550 or 555 accoustic dispenser. All treatments were performed in technical duplicates.
  • the assay is run using a fully automated robotic system. Treated cells were incubated for 72 h at 37 °C with 5 % CO 2 . AlamarBlue TM (ThermoFisher), a viability stain, was added and fluorescence measured in the PerkinElmer Envision HTS Multilabel Reader. The raw data were imported into and analyzed with the Boehringer Ingelheim proprietary software MegaLab (curve fitting based on the program PRISM, GraphPad Inc.).
  • IC 50 values of representative compounds (I) according to the invention measured with this assay are presented in table 41.
  • SW837 cells (ATCC #CCL-235) were grown in cell culture flasks (175 cm 2 ) using L-15 10 % FCS, 1 % L-Glu, 1xNEAA and 1x Na- Pyrovat. Cultures were incubated at 37 °C and 0 % CO 2 in a humidified atmosphere, with medium change or subcultivation 2-3 times a week. Materials used for the assay were CulturPlate-384, White Opaque 384-well Microplate, Sterile and Tissue Culture Treated (Perkin Elmer #6007680), Leibovitz L15 Medium and FBS # SH30071.03 (HyClone).
  • the proliferation assays started (day1) with seeding cells in flat bottom 384 well microtiter plates in 90 ⁇ L L-15 10 % FCS, 1 % L-Glu, 1xNEAA and 1x Na-Pyrovat at a density of 500 cells/well. Any other luminescence compatible plate format is possible.
  • 10 ⁇ L dilutions of the test compounds covering a concentration range between app. 0,1 and 10.000 nM were added to the cells.
  • Cells were incubated for 5 days in a humidified, CO 2 controlled (no CO 2 ) incubator at 37 °C.
  • 100 ⁇ L of Cell Titer Glow reagent Cell titer Glo Luminescent Cat. No.
  • Luminescence was measured on a Wallac Victor using standard luminescence read out. IC 50 values were calculated using standard Levenburg Marquard algorithms (GraphPad Prism).
  • MiaPaCa-2 cells (ATCC ® CRM-CRL-1420 TM ) were grown in cell culture flasks (175 cm 2 ) using DMEM medium supplemented with 10 % fetal bovine serum. Cultures were incubated at 37 °C and 5 % CO 2 in a humidified atmosphere, with medium change or subcultivation 2-3 times a week. Materials used for the assay were CulturPlate-384, White Opaque 384-well microplate, Sterile and Tissue Culture Treated (Perkin Elmer #6007680), DMEM medium and FBS # SH30071.03 (HyClone).
  • the proliferation assays started (day1) with seeding cells in flat bottom 384 well microtiter plates in 90 ⁇ L DMEM medium supplemented with 10 % FBS at a density of 500 cells/well. Any other luminescence compatible plate format is possible.
  • 10 ⁇ L dilutions of the test compounds covering a concentration range between app. 0,1 and 10.000 nM were added to the cells.
  • Cells were incubated for 5 days in a humidified, incubator with 5 % CO 2 at 37°C.
  • 100 ⁇ l of Cell Titer Glow reagent Cell titer Glo Luminescent Cat. No. G7571, Promega
  • Luminescence was measured on a Wallac Victor using standard luminescence read out.
  • IC 50 values were calculated using standard Levenburg Marquard algorithms (GraphPad Prism).
  • NCI-H358 cells (ATCC No. CRL-5807) were dispensed into white bottom opaque 96 well plates (Perkin Elmer cat no. 5680) at a density of 2000 cells per well in 100 ⁇ L RPMI-1640 ATCC-Formulation (Gibco # A10491) + 10 % FCS. Cells were incubated overnight at 37 °C in a humidified tissue culture incubator at 5 % CO 2 . Compounds (10 mM stock in DMSO) were added at logarithmic dose series using the HP Digital Dispenser D300 (Tecan), normalizing for added DMSO. For the T0 time point measurement, untreated cells were analyzed at the time of compound addition.
  • Viability (stated as percent of control) is defined as relative luminescence units RLU of each well divided by the RLU of cells in DMSO controls. IC 50 values were determined from viability measurements by non-linear regression using a four parameter model.
  • the CTG assay is designed to measure quantitatively the proliferation of NCI-H2122 cells (ATCC CRL-5985), using the CellTiter Glow Assay Kit (Promega G7571).
  • Cells are grown in RPMI medium (ATCC) supplemented with Fetal Calf Serum (Life Technologies, Gibco BRL, Cat. No. 10270-106).
  • ATCC RPMI medium
  • Fetal Calf Serum Life Technologies, Gibco BRL, Cat. No. 10270-106.
  • On "day 0" 1000 NCI-H2122 cells are seeded in 60 ⁇ L RPMI ATCC+10 % FCS+ Penstrep in a 384-well plate, flat bottom. Cells are then incubated in the plates at 37 °C in a CO 2 incubator overnight.
  • ECHO acoustic liquid handler system (Beckman Coulter), including DMSO controls. Plates were incubated for 120 hours, and cell viability was measured using CellTiter-Glo luminescent cell viability reagent (Promega product code G7570). Viability (stated as percent of control) is defined as relative luminescence units RLU of each well divided by the RLU of cells in DMSO controls. IC 50 values were determined from viability measurements by non-linear regression using a four parameter model.
  • ERK phosphorylation assays are used to examine the potency with which compounds inhibit the KRAS G12C-mediated signal transduction in a KRAS G12C mutant human cancer cell line in vitro. This demonstrates the molecular mode of action of compounds according to the invention by interfering with the RAS G12C protein signal transduction cascade. Low IC 50 values in this assay setting are indicative of high potency of the compounds according to the invention. It is observed that compounds according to the invention demonstrate an inhibitory effect on ERK phosphorylation in a KRAS G12C mutant human cancer cell line, thus confirming the molecular mode of action of the compounds on RAS G12C protein signal transduction.
  • ERK phosphorylation assays are performed using the following human cell lines: NCI-H358 (ATCC (ATCC CRL-5807): human lung cancer with a KRAS G12C mutation ( ⁇ assay 1) and NCI-H358_Cas9_SOS2, i.e. the same cell line, in which SOS2 was knocked ( ⁇ assay 2).
  • Vectors containing the designed DNA sequences for the production of gRNA for SOS2 protein knock-out were obtained from Sigma-Aldrich.
  • NCI-H358 SOS2 knock-out cell line NCI-H358 cells expressing Cas9 endonuclease were transfected with XtremeGene9 reagent and the correspondent plasmids.
  • GFP-positive cells were collected and further expanded. These GFP-positive cell pools were single-cell diluted and SOS2 knock-out clones were identified via Western-blot and genomic DNA sequencing analysis.
  • Cells are seeded at 40,000 cells per well in /60 ⁇ L of RPMI with 10 % FBS, non-essential amino acids, pyruvate and glutamax in Greiner TC 384 plates. The cells are incubated for 1 h at room temperature and then incubated overnight in an incubator at 37 °C and 5 % CO 2 in a humidified atmosphere. 60 nL compound solution (10 mM DMSO stock solution) is then added using a Labcyte Echo 550 device.
  • 3 ⁇ L Acceptor Mix and 3 ⁇ L Donor Mix are added under subdued light and incubated for 2 h at room temperature in the dark, before the signal is measured on a PerkinElmer Envision HTS Multilabel Reader.
  • the raw data were imported into and analyzed with the Boehringer Ingelheim proprietary software MegaLab (curve fitting based on the program PRISM, GraphPad Inc.).
  • IC 50 values of representative compounds (I) according to the invention measured with this assay are presented in table 57 (IC 50 s from assay 2 are marked with *, all others are from assay 1).
  • the active substance is dissolved in water at its own pH or optionally at pH 5.5 to 6.5 and sodium chloride is added to make it isotonic.
  • the solution obtained is filtered free from pyrogens and the filtrate is transferred under aseptic conditions into ampoules which are then sterilised and sealed by fusion.
  • the ampoules contain 5 mg, 25 mg and 50 mg of active substance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Claims (16)

  1. Verbindung der Formel (I)
    Figure imgb1499
    wobei
    R1a und R 1b beide unabhängig ausgewählt sind aus der Gruppe, bestehend aus Wasserstoff, C1-4-Alkyl, C1-4-Haloalkyl, C1-4-Alkoxy, C1-4-Haloalkoxy, Halogen, -NH2, -NH(C1-4-Alkyl), -N(C1-4-Alkyl)2, C3-5-Cycloalkyl und 3- bis 5-gliedrigem Heterocyclyl;
    R2a und R2b beide unabhängig ausgewählt sind aus der Gruppe, bestehend aus Wasserstoff, C1-4-Alkyl, C1-4-Haloalkyl, C1-4-Alkoxy, C1-4-Haloalkoxy, Halogen, -NH2, -NH(C1-4-Alkyl), -N(C1-4-Alkyl)2, C3-5-Cycloalkyl und 3- bis 5-gliedrigem Heterocyclyl;
    und/oder gegebenenfalls eines von R1a oder R1b und eines von R2a oder R2b zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen Cyclopropanring bilden;
    Z ist -(CR6aR6b)n-;
    jedes R6a und R6b ist unabhängig ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-4-Alkyl, C1-4-Haloalkyl, C1-4-Alkoxy, C1-4-Haloalkoxy, Halogen, -NH2, -NH(C1-4-Alkyl), -N(C1-4-Alkyl)2, C3-5-Cycloalkyl und 3- bis 5-gliedrigem Heterocyclyl;
    n ist ausgewählt aus der Gruppe, bestehend aus 0, 1 und 2;
    R3 ist ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Alkyl, C1-6-Haloalkyl, C1-6-Alkoxy, C1-6-Haloalkoxy, Cyano-C1-6-alkyl, Halogen, -OH, -NH2, -NH(C1-4-Alkyl), -N(C1-4-Alkyl)2, -CN, C3-5-Cycloalkyl und 3- bis 5-gliedrigem Heterocyclyl;
    Ring A ist ein Oxadiazol oder ein Thiadiazol;
    U ist ausgewählt aus der Gruppe, bestehend aus Stickstoff (=N-) und mit RA substituiertem Kohlenstoff (=C(RA)-);
    V ist ausgewählt aus der Gruppe, bestehend aus Stickstoff (=N-) und mit RB substituiertem Kohlenstoff (=C(RB)-);
    W ist ausgewählt aus der Gruppe, bestehend aus Stickstoff (=N-) und mit RC substituiertem Kohlenstoff (=C(RC)-);
    RA , RB und RC sind jeweils unabhängig ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Haloalkyl, C2-6-Alkinyl, gegebenenfalls substituiert mit C3-5-Cycloalkyl, C1-6-Alkoxy, C1-6-Haloalkoxy, Halogen, -CN, -OH, -NH2, -NH(C1-4-Alkyl), -N(C1-4-Alkyl)2, -C(=O)NH2, -C(=O)NH(C1-4-Alkyl), -C(=O)N(C1-4-Alkyl)2, -S-C1-6-Alkyl, -S(=O)2 -C1-6-Alkyl, C3-5-Cycloalkyl, 3-bis 5-gliedrigem Heterocyclyl und C1-6-Alkyl, gegebenenfalls substituiert mit einem Substituenten, ausgewählt aus der Gruppe, bestehend aus C1-6-Alkoxy, -CN, -OH, -NH2, -NH(C1-4-Alkyl), -N(C1-4-Alkyl)2, -C(=O)NH2, -C(=O)NH(C1-4-Alkyl) und -C(=O)N(C1-4-Alkyl)2;
    R5 ist ausgewählt aus der Gruppe, bestehend aus Ra1 und Rb1;
    Ra1 ist ausgewählt aus der Gruppe, bestehend aus C1-6-Alkyl, C1-6-Haloalkyl, C2-6-Alkenyl, C2-6-Alkinyl, C3-10-Cycloalkyl, C4-10-Cycloalkenyl, 3- bis 11-gliedrigem Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrigem Heteroaryl, wobei das C1-6-Alkyl, C1-6-Haloalkyl, C2-6-Alkenyl, C2-6-Alkinyl, C3-10-Cycloalkyl, C4-10-Cycloalkenyl, 3- bis 11-gliedrige Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrige Heteroaryl jeweils gegebenenfalls mit einem oder mehreren, gleichen oder verschiedenen Rb1 und/oder Rc1 substituiert ist;
    jedes Rb1 ist unabhängig ausgewählt aus der Gruppe, bestehend aus -ORc1, -NRc1Rc1, Halogen, -CN, -C(=O)Rc1, -C(=O)ORc1, -C(=O)NRc1Rc1, -S(=O)2Rc1, -S(=O)2NRc1Rc1, -NHC(=O)Rc1, -N(C1-4-Alkyl)C(=O)Rc1, -NHS(=O)2Rc1, -N(C1-4-Alkyl)S(=O)2Rc1, -NHC(=O)ORc1, -N(C1-4-Alkyl)C(=O)ORc1 und dem bivalenten Substituenten =O;
    jedes Rc1 ist unabhängig ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Alkyl, C1-6-Haloalkyl, C2-6-Alkenyl, C2-6-Alkinyl, C3-10-Cycloalkyl, C4-10-Cycloalkenyl, 3- bis 11-gliedrigem Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrigem Heteroaryl, wobei das C1-6-Alkyl, C1-6-Haloalkyl, C2-6-Alkenyl, C2-6-Al-kinyl, C3-10-Cycloalkyl, C4-10-Cycloalkenyl, 3- bis 11-gliedrige Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrige Heteroaryl jeweils gegebenenfalls mit einem oder mehreren, gleichen oder verschiedenen Rd1 und/oder Re1 substituiert ist; jedes Rd1 ist unabhängig ausgewählt aus der Gruppe, bestehend aus -ORe1, -NRe1Re1, Halogen, -CN, -C(=O)Re1, -C(=O)ORe1, -C(=O)NRe1Re1, -S(=O)2Re1, -S(=O)2NRe1Re1, -NHC(=O)Re1, -N(C1-4-Alkyl)C(=O)Re1, -NHS(=O)2Rc1, -N(C1-4-Alkyl)S(=O)2Rc1, -NHC(=O)ORe1, -N(C1-4-Alkyl)C(=O)ORe1 und dem bivalenten Substituenten =O;
    jedes Re1 ist unabhängig ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Alkyl, C1-6-Haloalkyl, C2-6-Alkenyl, C2-6-Alkinyl, C3-10-Cycloalkyl, C4-10-Cycloalkenyl, 3- bis 11-gliedrigem Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrigem Heteroaryl, wobei die C1-6-Alkyl, C1-6-Haloalkyl, C2-6-Alkenyl, C2-6-Alkinyl, C3-10-Cycloalkyl, C4-10-Cycloalkenyl, 3- bis 11-gliedrige Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrige Heteroaryl jeweils gegebenenfalls mit einem oder mehreren, gleichen oder verschiedenen Substituenten substituiert ist, ausgewählt aus der Gruppe, bestehend aus C1-6-Alkyl, C1-6-Haloalkyl, C3-10-Cycloalkyl, 3- bis 11-gliedrigem Heterocyclyl, gegebenenfalls substituiert mit einem oder mehreren, gleichem oder verschiedenem C1-4-Alkyl, C6-10-Aryl, 5- bis 10-gliedrigem Heteroaryl, -OH, C1-6-Alkoxy, C1-4-Alkoxy-C1-4-alkyl, Hydroxy-C1-4-alkyl, Halogen, -CN, -NH2, -C(=O)C1-4-Alkyl, -NH(C1-4-Alkyl), -N(C1-4-Alkyl)2 und dem bivalenten Substituenten =O;
    L ist -L1-L2-L3-, wobei L1 mit E verbunden ist;
    L1 ist ausgewählt aus der Gruppe, bestehend aus einer Bindung, -NH-, -N(C1-4-Alkyl)-, -O-, -C(=O)-, -NH-C(=O)-, -N(C1-4-Alkyl)-C(=O)-, -C(=O)-NH-, -C(=O)-N(C1-4-Alkyl)-, -C(=O)-, C1-6-Alkylen, C3-7-Cycloalkylen, Phenylen, 4- bis 12-gliedrigem Heterocyclylen und 5- bis 10-gliedrigem Heteroarylen;
    L2 ist ausgewählt aus der Gruppe, bestehend aus C1-6-Alkylen, C3-7-Cycloalkylen, Phenylen, 4- bis 12-gliedrigem Heterocyclylen und 5- bis 10-gliedrigem Heteroarylen;
    L3 ist ausgewählt aus der Gruppe, bestehend aus einer Bindung, -NH-, -N(C1-4-Alkyl)-, -O-, -C(=O)-, -NH-C(=O)-, -N(C1-4-Alkyl)-C(=O)-, -C(=O)-NH-, -C(=O)-N(C1-4-Alkyl)-, -C(=O)-, C1-6-Alkylen, C3-7-Cycloalkylen, Phenylen, 4- bis 12-gliedrigem Heterocyclylen und 5- bis 10-gliedrigem Heteroarylen;
    wobei jedes C1-6-Alkylen, C3-7-Cycloalkylen, Phenylen, 4- bis 12-gliedrige Heterocyclylen und 5- bis 10-gliedrige Heteroarylen in L1, L2 und L3 gegebenenfalls und unabhängig mit einem oder mehreren, gleichen oder verschiedenen Substituenten substituiert ist, ausgewählt aus der Gruppe, bestehend aus C2-6-Alkinyl, C1-6-Haloalkyl, C3-7-Cycloalkyl, Phenyl, 5- bis 6-gliedrigem Heteroaryl, Halogen, -OH, -CN, C1-6-Alkoxy, -NH2, -NH(C1-4-Alkyl), -N(C1-4-Alkyl)2, -C(=O)OH, -C(=O)-OC1-6-Alkyl, -C(=O)NH2, -C(=O)NH(C1-4-Alkyl), -C(=O)N(C1-4-Alkyl)2, wobei der bivalente Substituent =O und C1-6-Alkyl gegebenenfalls mit einem oder mehreren, gleichen oder verschiedenen Substituenten substituiert ist, ausgewählt aus der Gruppe, bestehend aus Halogen, -OH, -CN, C1-4-Alkoxy, -NH2, -NH(C1-4-Alkyl), -N(C1-4-Alkyl)2, -C(=O)OH, -C(=O)-OC1-6-Alkyl, -C(=O)NH2, -C(=O)NH(C1-4-Alkyl) und -C(=O)N(C1-4-Alkyl)2;
    E ist
    Figure imgb1500
    wobei
    Figure imgb1501
    eine Doppel- oder Dreifachbindung darstellt;
    wobei Q1 ausgewählt ist aus der Gruppe, bestehend aus einer Bindung, -CH2-, -CH(OH)-, -C(=O)-, -C(=O)N(RG1)-, -C(=O)O-, -S(=O)2-, -S(=O)2N(RG1)- und -C(=NRH1)-;
    jedes RG1 ist unabhängig ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Alkyl, C1-6-Haloalkyl, Hydroxy-C1-6-alkyl, H2N-C1-6-Alkyl, Cyano-C1-6-alkyl, (C1-4-Alkyl)HN-C1-6-alkyl, (C1-4-Alkyl)2N-C1-6-alkyl, C1-6-Alkoxy-C1-6-alkyl, C3-7-Cycloalkyl und 3- bis 11-gliedrigem Heterocyclyl;
    jedes RH1 ist unabhängig ausgewählt aus der Gruppe, bestehend aus Wasserstoff, -OH, C1-6-Alkoxy, -CN und C1-6-Alkyl;
    wenn
    Figure imgb1501
    eine Doppelbindung darstellt, dann
    ist RD ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C3-7-Cycloalkyl, Phenyl, Halogen, -CN, C1-6-Alkoxy, -C(=O)O-C1-6-Alkyl, -NHC(=O)-C1-6-Alkyl und C1-6-Alkyl, gegebenenfalls substituiert mit einem oder mehreren, gleichen oder verschiedenen Substituenten, ausgewählt aus der Gruppe, bestehend aus Phenyl, 3- bis 11-gliedrigem Heterocyclyl, C1-6-Alkoxy, Halogen, -OH, -NH2, -NH(C1-6-Alkyl), -N(C1-6-Alkyl)2, -C(=O)OH, -C(=O)O-C1-6-Alkyl, -C(=O)NH(C1-6-alkyl), -NHC(=O)-C1-6-Alkyl, -OC(=O)-C1-6-Alkyl und Phenyl-C1-6-alkoxy;
    RE und RF sind jeweils unabhängig ausgewählt aus der Gruppe, bestehend aus
    Ra2 und Rb2;
    Ra2 ist ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Alkyl, C1-6-Haloalkyl, C3-10-Cycloalkyl, 3- bis 11-gliedrigem Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrigem Heteroaryl, wobei das C1-6-Alkyl, C1-6-Haloalkyl, C3-10-Cycloalkyl, 3- bis 11-gliedrige Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrige Heteroaryl jeweils gegebenenfalls mit einem oder mehreren, gleichen oder verschiedenen Rb2 und/oder Rc2 substituiert ist;
    jedes Rb2 ist unabhängig ausgewählt aus der Gruppe, bestehend aus -ORc2, -NRc2Rc2, Halogen, -CN, -C(=O)Rc2-, C(=O)ORc2-, C(=O)NRc2Rc2, -S(=O)2Rc2, -S(=O)2NRc2Rc2, -NHC(=O)Rc2, -N(C1-4-Alkyl)C(=O)Rc2, -NHC(=O)ORc2, -N(C1-4-Alkyl)C(=O)ORc2 und dem bivalenten Substituenten =O;
    jedes Rc2 ist unabhängig ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Alkyl, C1-6-Haloalkyl, C2-6-Alkenyl, C2-6-Alkinyl, C3-10-Cycloalkyl, C4-10-Cycloalkenyl, 3- bis 11-gliedrigem Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrigem Heteroaryl, wobei das C1-6-Alkyl, C1-6-Haloalkyl, C2-6-Alkenyl, C2-6-Alkinyl, C3-10-Cycloalkyl, C4-10-Cycloalkenyl, 3- bis 11-gliedrige Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrige Heteroaryl jeweils gegebenenfalls mit einem oder mehreren, gleichen oder verschiedenen Substituenten substituiert ist, ausgewählt aus der Gruppe, bestehend aus C1-6-Alkyl, C1-6-Alkoxy, Halogen, -OH, -C(=O)OH, -C(=O)O-C1-6-Alkyl, -C(=O)C1-6-Alkyl, -C(=O)NH2, -C(=O)NH(C1-6-Alkyl), -C(=O)N(C1-6-Alkyl)2 und dem bivalenten Substituenten =O;
    oder
    RD und RE bilden zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen 4- bis 7-gliedrigen ungesättigten Alicyclus oder 4- bis 7-gliedrigen ungesättigten Heterocyclus, wobei dieser 4- bis 7-gliedrige ungesättigte Alicyclus oder 4- bis 7-gliedrige ungesättigte Heterocyclus gegebenenfalls, zusätzlich zu RF , mit einem oder mehreren, gleichen oder verschiedenen Substituenten substituiert ist, ausgewählt aus der Gruppe, bestehend aus C1-6-Alkyl, C1-6-Haloalkyl, -OH, C1-6-Alkoxy, C1-4-Alkoxy-C1-4-alkyl, -NH2, -CN, -NH(C1-4-Alkyl), -N(C1-4-Alkyl)2, Halogen, -C(=O)O-C1-6-Alkyl und dem bivalenten Substituenten =O;
    oder
    wenn Q1 -C(=O)N(RG1)- darstellt, dann bilden RG1 von -C(=O)N(RG1)- und RF zusammen einen Linker, ausgewählt aus der Gruppe, bestehend aus -C(=O)-, -CH2-, -CH2-C(=O)-, -C(=O)-CH2- und -C2H4-;
    wenn
    Figure imgb1501
    eine Dreifachbindung darstellt, dann
    sind RD und RE beide nicht vorhanden;
    RF ist Ra2;
    Ra2 ist ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Alkyl, C1-6-Haloalkyl, C3-10-Cycloalkyl, 3- bis 11-gliedrigem Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrigem Heteroaryl, wobei das C1-6-Alkyl, C1-6-Haloalkyl, C3-10-Cycloalkyl, 3- bis 11-gliedrige Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrige Heteroaryl jeweils gegebenenfalls mit einem oder mehreren, gleichen oder verschiedenen Rb2 und/oder Rc2 substituiert ist;
    jedes Rb2 ist unabhängig ausgewählt aus der Gruppe, bestehend aus -ORc2, -NRc2Rc2, Halogen, -CN, -C(=O)Rc2, -C(=O)ORc2, -C(=O)NRc2Rc2, -S(=O)2Rc2, -S(=O)2NRc2Rc2, -NHC(=O)Rc2, -N(C1-4-Alkyl)C(=O)Rc2, -NHC(=O)ORc2, -N(C1-4-Alkyl)C(=O)ORc2 und dem bivalenten Substituenten =O;
    jedes Rc2 ist unabhängig ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Alkyl, C1-6-Haloalkyl, C3-10-Cycloalkyl, 3- bis 11-gliedrigem Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrigem Heteroaryl;
    oder
    E ist
    Figure imgb1504
    wobei Q2 ausgewählt ist aus der Gruppe, bestehend aus einer Bindung, -CH2-, -CH(OH)-, -C(=O)-, -C(=O)N(RG2)-, -C(=O)O-, -S(=O)2-, -S(=O)2N(RG2)- und -C(=NRH2)-;
    jedes RG2 ist unabhängig ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Alkyl, C1-6-Haloalkyl, Hydroxy-C1-6-alkyl, H2N-C1-6-Alkyl, Cyano-C1-6-alkyl, (C1-4-Alkyl)HN-C1-6-alkyl, (C1-4-Alkyl)2N-C1-6-alkyl, C1-6-Alkoxy-C1-6-alkyl, C3-7-Cycloalkyl und 3- bis 11-gliedrigem Heterocyclyl;
    jedes RH2 ist unabhängig ausgewählt aus der Gruppe, bestehend aus Wasserstoff, -OH, C1-6-Alkoxy, -CN und C1-6-Alkyl,
    RI ist ausgewählt aus der Gruppe, bestehend aus Wasserstoff und Halogen;
    RJ ist Wasserstoff; oder
    RI und RJ bilden zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen Cyclopropan- oder Oxiranring;
    RK ist ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Alkyl, -CN und Halogen;
    RL ist ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Alkyl, -CN, Halogen und -C(=O)-C1-6-Alkyl;
    oder
    E ist
    Figure imgb1505
    wobei Q3 ausgewählt ist aus der Gruppe, bestehend aus -C(=O)-, -C(=O)N(RG3)-, -C(=O)O-, -S(=O)2-, -S(=O)2N(RG3)- und -C(=NRH3)-;
    jedes RG3 ist unabhängig ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Alkyl, C1-6-Haloalkyl, Hydroxy-C1-6-alkyl, H2N-C1-6-Alkyl, Cyano-C1-6-alkyl, (C1-4-Alkyl)HN-C1-6-alkyl, (C1-4-Alkyl)2N-C1-6-alkyl, C1-6-Alkoxy-C1-6-alkyl, C3-7-Cycloalkyl und 3- bis 11-gliedrigem Heterocyclyl;
    jedes RH3 ist unabhängig ausgewählt aus der Gruppe, bestehend aus Wasserstoff, -OH, C1-6-Alkoxy, -CN und C1-6-Alkyl,
    RM ist ausgewählt aus der Gruppe, bestehend aus Halogen, -CN und -O-C(=O)-C1-6-Alkyl;
    oder
    E ist
    Figure imgb1506
    wobei Q4 ausgewählt ist aus der Gruppe, bestehend aus einer Bindung, -C(=O)-, -C(=O)O-, -C(=O)NH-, -C(=O)N(C1-4-Alkyl)-, -S(=O)2- und -S(=O)2NH-;
    Ring B ist ausgewählt aus der Gruppe, bestehend aus Phenyl, Pyridyl, Pyrimidyl, Pyridazinyl, Pyrazinyl und 5-gliedrigem Heteroaryl;
    q ist ausgewählt aus der Gruppe, bestehend aus 1, 2, 3 und 4;
    jedes RN ist unabhängig ausgewählt aus der Gruppe, bestehend aus C1-4-Alkyl, C1-4-Haloalkyl, Vinyl, Ethinyl, Halogen, -CN, Nitro und C1-4-Alkoxy,
    oder ein Salz hiervon.
  2. Verbindung oder Salz nach Anspruch 1 mit der Formel (Ia)
    Figure imgb1507
    wobei R1a, R1b, R2a , R2b, Z, R3, U, V, W, R5, L und E wie in Anspruch 1 definiert sind.
  3. Verbindung der Formel (II)
    Figure imgb1508
    wobei
    R1a, R1b, R2a , R2b, Z, R3, Ring A, U, V, W, R5 und L wie in Formel (I) in Anspruch 1 definiert sind, wobei L1 in -L1-L2-L3- mit dem Wasserstoff (H) des Restes H-L-verbunden ist;
    oder ein Salz hiervon.
  4. Verbindung oder Salz nach einem der Ansprüche 1 bis 3, wobei
    R1a und R1b beide unabhängig ausgewählt sind aus der Gruppe, bestehend aus Wasserstoff und C1-4-Alkyl;
    R2a und R2b beide unabhängig ausgewählt sind aus der Gruppe, bestehend aus Wasserstoff und Halogen.
  5. Verbindung oder Salz nach einem der Ansprüche 1 bis 4, wobei R3 ist ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-4-Alkyl, C1-4-Haloalkyl, C1-4-Alkoxy, C1-4-Haloalkoxy, Cyano-C1-4-alkyl, Halogen, -OH, -NH2, -NH(C1-4-Alkyl), -N(C1-4-Alkyl)2 und -CN.
  6. Verbindung oder Salz nach einem der Ansprüche 1 bis 5, wobei
    Ring A ist ausgewählt aus der Gruppe, bestehend aus
    Figure imgb1509
  7. Verbindung oder Salz nach einem der Ansprüche 1 bis 6, wobei
    U einen mit RA substituierten Kohlenstoff (=C(RA)-) darstellt;
    V einen mit RB substituierten Kohlenstoff (=C(RB)-) darstellt;
    W Stickstoff (=N-) darstellt;
    RA und RB jeweils unabhängig ausgewählt sind aus der Gruppe, bestehend aus Wasserstoff, C1-6-Haloalkyl, C2-6-Alkinyl, gegebenenfalls substituiert mit Cs-s-Cycloalkyl, C1-6-Alkoxy, C1-6-Haloalkoxy, Halogen, -CN, -OH, -NH2, -NH(C1-4-Alkyl), -N(C1-4-Alkyl)2, -C(=O)NH2, -C(=O)NH(C1-4-Alkyl), -C(=O)N(C1-4-Alkyl)2, C3-5-Cycloalkyl, 3- bis 5-gliedrigem Heterocyclyl und C1-6-Alkyl, gegebenenfalls substituiert mit einem Substituenten, ausgewählt aus der Gruppe, bestehend aus C1-6-Alkoxy, -CN, -OH, -NH2, -NH(C1-4-Alkyl), -N(C1-4-Alkyl)2, -C(=O)NH2, -C(=O)NH(C1-4-Alkyl) und -C(=O)N(C1-4-Alkyl)2;
    oder
    U einen mit RA substituierten Kohlenstoff (=C(RA)-) darstellt;
    V einen mit RB substituierten Kohlenstoff (=C(RB)-) darstellt;
    W einen mit RC (=C(RC)-) substituierten Kohlenstoff darstellt;
    RA , RB und RC sind jeweils unabhängig ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Haloalkyl, C2-6-Alkinyl, gegebenenfalls substituiert mit Cs-s-Cycloalkyl, C1-6-Alkoxy, C1-6-Haloalkoxy, Halogen, -CN, -OH, -NH2, -NH(C1-4-Alkyl), -N(C1-4-Alkyl)2, -C(=O)NH2, -C(=O)NH(C1-4-Alkyl), -C(=O)N(C1-4-Alkyl)2, C3-5-Cycloalkyl, 3- bis 5-gliedrigem Heterocyclyl und C1-6-Alkyl, gegebenenfalls substituiert mit einem Substituenten, ausgewählt aus der Gruppe, bestehend aus C1-6-Alkoxy, -CN, -OH, -NH2, -NH(C1-4-Alkyl), -N(C1-4-Alkyl)2, -C(=O)NH2, -C(=O)NH(C1-4-Alkyl) und -C(=O)N(C1-4-Alkyl)2;
    oder
    U ist Stickstoff (=N-);
    V ist ein mit RB substituierter Kohlenstoff (=C(RB)-);
    W ist Stickstoff (=N-);
    RB ist ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Haloalkyl, C2-6-Alkinyl, gegebenenfalls substituiert mit C3-5-Cycloalkyl, C1-6-Alkoxy, C1-6-Haloalkoxy, Halogen, -CN, -OH, -NH2, -NH(C1-4-Alkyl), -N(C1-4-Alkyl)2, -C(=O)NH2, -C(=O)NH(C1-4-Alkyl), -C(=O)N(C1-4-Alkyl)2, C3-5-Cycloalkyl, 3- bis 5-gliedrigem Heterocyclyl und C1-6-Alkyl, gegebenenfalls substituiert mit einem Substituenten, ausgewählt aus der Gruppe, bestehend aus C1-6-Alkoxy, -CN, -OH, -NH2, -NH(C1-4-Alkyl), -N(C1-4-Alkyl)2, -C(=O)NH2, -C(=O)NH(C1-4-Alkyl) und -C(=O)N(C1-4-Alkyl)2;
    oder
    U einen mit RA substituierten Kohlenstoff (=C(RA)-) darstellt;
    V Stickstoff (=N-) darstellt;
    W Stickstoff (=N-) darstellt;
    RA ist ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Haloalkyl, C2-6-Alkinyl, gegebenenfalls substituiert mit C3-5-Cycloalkyl, C1-6-Alkoxy, C1-6-Haloalkoxy, Halogen, -CN, -OH, -NH2, -NH(C1-4-Alkyl), -N(C1-4-Alkyl)2, -C(=O)NH2, -C(=O)NH(C1-4-Alkyl), -C(=O)N(C1-4-Alkyl)2, C3-5-Cycloalkyl, 3- bis 5-gliedrigem Heterocyclyl und C1-6-Alkyl, gegebenenfalls substituiert mit einem Substituenten, ausgewählt aus der Gruppe, bestehend aus C1-6-Alkoxy, -CN, -OH, -NH2, -NH(C1-4-Alkyl), -N(C1-4-Alkyl)2, -C(=O)NH2, -C(=O)NH(C1-4-Alkyl) und -C(=O)N(C1-4-Alkyl)2;
    oder
    U Stickstoff (=N-) darstellt;
    V Stickstoff (=N-) darstellt;
    W Stickstoff (=N-) darstellt.
  8. Verbindung oder Salz nach einem der Ansprüche 1 bis 7, wobei
    R5 ausgewählt ist aus der Gruppe, bestehend aus Ra1 und Rb1;
    Ra1 ist ausgewählt aus der Gruppe, bestehend aus C1-6-Alkyl, C1-6-Haloalkyl, C2-6-Alkinyl, C3-10-Cycloalkyl, 3- bis 11-gliedrigem Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrigem Heteroaryl, wobei das C1-6-Alkyl, C1-6 -Haloalkyl, C2-6-Alkinyl, C3-10-Cycloalkyl, 3- bis 11-gliedrige Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrige Heteroaryl jeweils gegebenenfalls mit einem oder mehreren, gleichen oder verschiedenen Rb1 und/oder Rc1 substituiert ist;
    jedes Rb1 ist unabhängig ausgewählt aus der Gruppe, bestehend aus -ORc1, -NRc1Rc1, Halogen, -CN, -C(=O)Rc1, -C(=O)ORc1, -C(=O)NRc1Rc1, -S(=O)2Rc1, -S(=O)2NRc1Rc1, -NHC(=O)Rc1, -N(C1-4-Alkyl)C(=O)Rc1 und dem bivalenten Substituenten =O;
    jedes Rc1 ist unabhängig ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Alkyl, C1-6-Haloalkyl, C3-10-Cycloalkyl, 3- bis 11-gliedrigem Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrigem Heteroaryl, wobei das C1-6-Alkyl, C1-6-Haloalkyl, C3-10-Cycloalkyl, 3- bis 11-gliedrige Heterocyclyl, C6-10-Aryl und 5-bis 10-gliedrige Heteroaryl jeweils gegebenenfalls mit einem oder mehreren, gleichen oder verschiedenen Rd1 und/oder Re1 substituiert ist;
    jedes Rd1 ist unabhängig ausgewählt aus der Gruppe, bestehend aus -ORe1, -NRe1Re1, Halogen, -CN, -C(=O)Re1, -C(=O)NRe1Re1 und dem bivalenten Substituenten =O;
    jedes Re1 ist unabhängig ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Alkyl, C1-6-Haloalkyl, C3-10-Cycloalkyl, 3- bis 11-gliedrigem Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrigem Heteroaryl, wobei das C1-6-Alkyl, C1-6-Haloalkyl, C3-10-Cycloalkyl, 3- bis 11-gliedrige Heterocyclyl, C6-10-Aryl und 5-bis 10-gliedrige Heteroaryl jeweils gegebenenfalls mit einem oder mehreren, gleichen oder verschiedenen Substituenten substituiert ist, ausgewählt aus der Gruppe, bestehend aus C1-6-Alkyl, C1-6-Haloalkyl, C3-10-Cycloalkyl, 3- bis 11-gliedrigem Heterocyclyl, gegebenenfalls substituiert mit einem oder mehreren, gleichem oder verschiedenem C1-4-Alkyl, C6-10-Aryl, 5- bis 10-gliedrigem Heteroaryl, -OH, C1-6-Alkoxy, C1-4-Alkoxy-C1-4-alkyl, Hydroxy-C1-4-alkyl, Halogen, -CN, -NH2, -C(=O)C1-4-Alkyl, -NH(C1-4-Alkyl), -N(C1-4-Alkyl)2 und dem bivalenten Substituenten =O;
    wobei R5 vorzugsweise Ra1 darstellt;
    Ra1 ist ausgewählt aus der Gruppe, bestehend aus 3- bis 11-gliedrigem Heterocyclyl und 5- bis 10-gliedrigem Heteroaryl, wobei das 3- bis 11-gliedrige Heterocyclyl und das 5- bis 10-gliedrige Heteroaryl jeweils gegebenenfalls mit einem oder mehreren, gleichen oder verschiedenen Rb1 und/oder Rc1 substituiert ist;
    jedes Rb1 ist unabhängig ausgewählt aus der Gruppe, bestehend aus -ORc1, -NRc1Rc1, Halogen, -C(=O)ORc1 und dem bivalenten Substituenten =O;
    jedes Rc1 ist unabhängig ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Alkyl, C1-6-Haloalkyl, C3-10-Cycloalkyl und 3- bis 11-gliedrigem Heterocyclyl, wobei das C1-6-Alkyl, C1-6-Haloalkyl, C3-10-Cycloalkyl und 3- bis 11-gliedrige Heterocyclyl jeweils gegebenenfalls mit einem oder mehreren, gleichen oder verschiedenen Rd1 und/oder Re1 substituiert ist;
    jedes Rd1 ist unabhängig ausgewählt aus der Gruppe, bestehend aus -ORe1, -NRe1Re1 und Halogen;
    jedes Re1 ist unabhängig ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Alkyl, C3-10-Cycloalkyl und 3- bis 11-gliedrigem Heterocyclyl, wobei das C1-6-Alkyl, C3-10-Cycloalkyl und 3- bis 11-gliedrige Heterocyclyl jeweils gegebenenfalls mit einem oder mehreren, gleichen oder verschiedenen Substituenten substituiert ist, ausgewählt aus der Gruppe, bestehend aus C1-6-Alkyl und 3- bis 11-gliedrigem Heterocyclyl, gegebenenfalls substituiert mit einem oder mehreren, gleichen oder verschiedenen C1-4-Alkyl,
    oder
    wobei R5 Rb1 darstellt;
    Rb1 ist unabhängig ausgewählt aus der Gruppe, bestehend aus -ORc1 und -NRc1Rc1;
    jedes Rc1 ist unabhängig ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Alkyl, C3-10-Cycloalkyl, 3- bis 11-gliedrigem Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrigem Heteroaryl, wobei das C1-6-Alkyl, C3-10-Cycloalkyl, 3- bis 11-gliedrige Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrige Heteroaryl jeweils gegebenenfalls mit einem oder mehreren, gleichen oder verschiedenen Rd1 und/oder Re1 substituiert ist;
    jedes Rd1 ist unabhängig ausgewählt aus der Gruppe, bestehend aus -ORe1, -NRe1Re1, Halogen, -C(=O)Re1 und -C(=O)NRe1Re1;
    jedes Re1 ist unabhängig ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Alkyl, C3-10-Cycloalkyl, 3- bis 11-gliedrigem Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrigem Heteroaryl, wobei das C1-6-Alkyl, C3-10-Cycloalkyl, 3- bis 11-gliedrige Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrige Heteroaryl jeweils gegebenenfalls mit einem oder mehreren, gleichen oder verschiedenen Substituenten substituiert ist, ausgewählt aus der Gruppe, bestehend aus C1-6-Alkyl, C1-6-Haloalkyl, 3- bis 11-gliedrigem Heterocyclyl, gegebenenfalls substituiert mit einem oder mehreren, gleichen oder verschiedenen C1-4-Alkyl, C1-6-Alkoxy, Halogen und dem bivalenten Substituenten =O.
  9. Verbindung oder Salz nach einem der Ansprüche 1, 2 und 4 bis 8, wobei
    L -L1-L2-L3- darstellt, wobei L1 mit E verbunden ist;
    L1 ist ausgewählt aus der Gruppe, bestehend aus einer Bindung, C1-6-Alkylen und 4- bis 12-gliedrigem Heterocyclylen;
    L2 ist ausgewählt aus der Gruppe, bestehend aus C1-6-Alkylen, Phenylen und 4- bis 12-gliedrigem Heterocyclylen;
    L3 ist ausgewählt aus der Gruppe, bestehend aus einer Bindung, -NH-, -N(C1-4-Alkyl)- und -O-;
    wobei jedes C1-6-Alkylen, Phenylen und 4- bis 12-gliedrige Heterocyclylen in L1 und L2 gegebenenfalls und unabhängig mit einem oder mehreren, gleichen oder verschiedenen Substituenten substituiert ist, ausgewählt aus der Gruppe, bestehend aus C2-6-Alkinyl, C1-6-Haloalkyl, C3-7-Cycloalkyl, Phenyl, 5-6-gliedrigem Heteroaryl, Halogen, -OH, -CN, C1-6-Alkoxy, -NH2, -NH(C1-4-Alkyl), -N(C1-4-Alkyl)2, -C(=O)OH, -C(=O)-OC1-6-Alkyl, -C(=O)NH2, -C(=O)NH(C1-4-Alkyl), -C(=O)N(C1-4-Alkyl)2, wobei der bivalente Substituent =O und C1-6-Alkyl gegebenenfalls mit einem oder mehreren, gleichen oder verschiedenen Substituenten substituiert ist, ausgewählt aus der Gruppe, bestehend aus Halogen, -OH, -CN, -NH2, C1-4-Alkoxy, -NH(C1-4-Alkyl), -N(C1-4-Alkyl)2, -C(=O)OH, -C(=O)-OC1-6-Alkyl, -C(=O)NH2, -C(=O)NH(C1-4-Alkyl) und -C(=O)N(C1-4-Alkyl)2;
    wobei L vorzugsweise ausgewählt ist aus der Gruppe, bestehend aus
    Figure imgb1510
    Figure imgb1511
    Figure imgb1512
    Figure imgb1513
    Figure imgb1514
    Figure imgb1515
    Figure imgb1516
    Figure imgb1517
    Figure imgb1518
    Figure imgb1519
    Figure imgb1520
    Figure imgb1521
    Figure imgb1522
    Figure imgb1523
    Figure imgb1524
    Figure imgb1525
    Figure imgb1526
  10. Verbindung oder Salz nach einem der Ansprüche 1, 2 und 4 bis 9, wobei
    E
    Figure imgb1527
    darstellt;
    wobei Q1 ausgewählt ist aus der Gruppe, bestehend aus -CH2-, -C(=O)-, -C(=O)N(RG1)-, -C(=O)O-, -S(=O)2-, -S(=O)2N(RG1)- und -C(=NRH1)-;
    jedes RG1 ist unabhängig ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Alkyl, C1-6-Haloalkyl und Hydroxy-C1-6-alkyl,
    jedes RH1 ist unabhängig ausgewählt aus der Gruppe, bestehend aus Wasserstoff, -OH, C1-6-Alkoxy, -CN und C1-6-Alkyl,
    RD ist ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C3-7-Cycloalkyl, Phenyl, Halogen, -CN, C1-6-Alkoxy, -C(=O)O-C1-6-Alkyl und C1-6-Alkyl, gegebenenfalls substituiert mit einem oder mehreren, gleichen oder verschiedenen Substituenten, ausgewählt aus der Gruppe, bestehend aus Phenyl, 3- bis 11-gliedrigem Heterocyclyl, C1-6-Alkoxy, Halogen, -OH, -N(C1-6-Alkyl)2, -C(=O)OH, -C(=O)O-C1-6-Alkyl, -C(=O)NH(C1-6-Alkyl), -NHC(=O)-C1-6-Alkyl, -OC(=O)-C1-6-Alkyl und Phenyl-C1-6-alkoxy;
    RE und RF sind jeweils unabhängig ausgewählt aus der Gruppe, bestehend aus Ra2 und Rb2;
    Ra2 ist ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Alkyl, C1-6-Haloalkyl, C3-10-Cycloalkyl, 3- bis 11-gliedrigem Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrigem Heteroaryl, wobei das C1-6-Alkyl, C1-6-Haloalkyl, C3-10-Cycloalkyl, 3- bis 11-gliedrige Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrige Heteroaryl jeweils gegebenenfalls mit einem oder mehreren, gleichen oder verschiedenen Rb2 und/oder Rc2 substituiert ist;
    jedes Rb2 ist unabhängig ausgewählt aus der Gruppe, bestehend aus -ORc2, -Nc2Rc2, Halogen, -CN, -C(=O)ORc2, -C(=O)NRc2Rc2, -NHC(=O)Rc2, -N(C1-4-Alkyl)C(=O)Rc2, -NHC(=O)ORc2 und -N(C1-4-Alkyl)C(=O)ORc2;
    jedes Rc2 ist unabhängig ausgewählt aus der Gruppe, bestehend aus Wasserstoff, C1-6-Alkyl, C1-6-Haloalkyl, 3- bis 11-gliedrigem Heterocyclyl, C6-10-Aryl und 5-bis 10-gliedrigem Heteroaryl, wobei das C1-6-Alkyl, C1-6-Haloalkyl, 3- bis 11-gliedrige Heterocyclyl, C6-10-Aryl und 5- bis 10-gliedrige Heteroaryl jeweils gegebenenfalls mit einem oder mehreren, gleichen oder verschiedenen Substituenten substituiert ist, ausgewählt aus der Gruppe, bestehend aus C1-6-Alkyl, C1-6-Alkoxy, Halogen, -OH, -C(=O)OH, -C(=O)O-C1-6-Alkyl, -C(=O)C1-6-Alkyl, -C(=O)NH2, -C(=O)NH(C1-6-Alkyl), -C(=O)N(C1-6-Alkyl)2 und dem bivalenten Substituenten =O;
    wobei E vorzugsweise ausgewählt ist aus der Gruppe, bestehend aus
    Figure imgb1528
    Figure imgb1529
    Figure imgb1530
    Figure imgb1531
    Figure imgb1532
    Figure imgb1533
    Figure imgb1534
    Figure imgb1535
    Figure imgb1536
    Figure imgb1537
    Figure imgb1538
    Figure imgb1539
    Figure imgb1540
    Figure imgb1541
    Figure imgb1542
    Figure imgb1543
    Figure imgb1544
    Figure imgb1545
    Figure imgb1546
    Figure imgb1547
    Figure imgb1548
    Figure imgb1549
    Figure imgb1550
    Figure imgb1551
    Figure imgb1552
    Figure imgb1553
    Figure imgb1554
    Figure imgb1555
    Figure imgb1556
    Figure imgb1557
    Figure imgb1558
    Figure imgb1559
    Figure imgb1560
    Figure imgb1561
    Figure imgb1562
    Figure imgb1563
    Figure imgb1564
    Figure imgb1565
    Figure imgb1566
    Figure imgb1567
    Figure imgb1568
    Figure imgb1569
    Figure imgb1570
    Figure imgb1571
    Figure imgb1572
    Figure imgb1573
    Figure imgb1574
    Figure imgb1575
    Figure imgb1576
    Figure imgb1577
    Figure imgb1578
    Figure imgb1579
    Figure imgb1580
    Figure imgb1581
  11. Verbindung nach Anspruch 1, ausgewählt aus der Gruppe, bestehend aus Ia-1
    Figure imgb1582
    Ia-2
    Figure imgb1583
    Ia-3
    Figure imgb1584
    Ia-4
    Figure imgb1585
    Ia-5
    Figure imgb1586
    Ia-6
    Figure imgb1587
    Ia-7
    Figure imgb1588
    Ia-8
    Figure imgb1589
    Ia-9
    Figure imgb1590
    Ia-10
    Figure imgb1591
    Ia-11
    Figure imgb1592
    Ia-12
    Figure imgb1593
    Ia-13
    Figure imgb1594
    Ia-14
    Figure imgb1595
    Ia-15
    Figure imgb1596
    Ia-16
    Figure imgb1597
    Ia-17
    Figure imgb1598
    Ia-18
    Figure imgb1599
    Ia-19
    Figure imgb1600
    Ia-20
    Figure imgb1601
    Ia-21
    Figure imgb1602
    Ia-22
    Figure imgb1603
    Ia-23
    Figure imgb1604
    Ia-24
    Figure imgb1605
    Ia-25
    Figure imgb1606
    Ia-26
    Figure imgb1607
    Ia-27
    Figure imgb1608
    Ia-28
    Figure imgb1609
    Ia-29
    Figure imgb1610
    Ia-30
    Figure imgb1611
    Ia-31
    Figure imgb1612
    Ia-32
    Figure imgb1613
    Ia-33
    Figure imgb1614
    Ia-34
    Figure imgb1615
    Ia-35
    Figure imgb1616
    Ia-36
    Figure imgb1617
    Ia-37
    Figure imgb1618
    Ia-38
    Figure imgb1619
    Ia-39
    Figure imgb1620
    Ia-40
    Figure imgb1621
    Ia-41
    Figure imgb1622
    Ia-42
    Figure imgb1623
    Ia-43
    Figure imgb1624
    Ia-44
    Figure imgb1625
    Ia-45
    Figure imgb1626
    Ia-46
    Figure imgb1627
    Ia-47
    Figure imgb1628
    Ia-48
    Figure imgb1629
    Ia-49
    Figure imgb1630
    Ia-50
    Figure imgb1631
    Ia-51
    Figure imgb1632
    Ia-52
    Figure imgb1633
    Ia-53
    Figure imgb1634
    Ia-54
    Figure imgb1635
    Ia-55
    Figure imgb1636
    Ia-56
    Figure imgb1637
    Ia-57
    Figure imgb1638
    Ia-58
    Figure imgb1639
    Ia-59
    Figure imgb1640
    Ia-60
    Figure imgb1641
    Ia-61
    Figure imgb1642
    Ia-62
    Figure imgb1643
    Ia-63
    Figure imgb1644
    Ia-64
    Figure imgb1645
    Ia-65
    Figure imgb1646
    Ia-66
    Figure imgb1647
    Ia-67
    Figure imgb1648
    Ia-68
    Figure imgb1649
    Ia-69
    Figure imgb1650
    Ia-70
    Figure imgb1651
    Ia-71
    Figure imgb1652
    Ia-72
    Figure imgb1653
    Ia-73
    Figure imgb1654
    Ia-74
    Figure imgb1655
    Ia-75
    Figure imgb1656
    Ia-76
    Figure imgb1657
    Ia-77
    Figure imgb1658
    Ia-78
    Figure imgb1659
    Ia-79
    Figure imgb1660
    Ia-80
    Figure imgb1661
    Ia-81
    Figure imgb1662
    Ia-82
    Figure imgb1663
    Ia-83
    Figure imgb1664
    Ia-84
    Figure imgb1665
    Ia-85
    Figure imgb1666
    Ia-86
    Figure imgb1667
    Ia-87
    Figure imgb1668
    Ia-88
    Figure imgb1669
    Ia-89
    Figure imgb1670
    Ia-90
    Figure imgb1671
    Ia-91
    Figure imgb1672
    Ia-92
    Figure imgb1673
    Ia-93
    Figure imgb1674
    Ia-94
    Figure imgb1675
    Ia-95
    Figure imgb1676
    Ia-96
    Figure imgb1677
    Ia-97
    Figure imgb1678
    Ia-98
    Figure imgb1679
    Ia-99
    Figure imgb1680
    Ia-100
    Figure imgb1681
    Ia-101
    Figure imgb1682
    Ia-102
    Figure imgb1683
    Ia-103
    Figure imgb1684
    Ia-104
    Figure imgb1685
    Ia-105
    Figure imgb1686
    Ia-106
    Figure imgb1687
    Ia-107
    Figure imgb1688
    Ia-108
    Figure imgb1689
    Ia-109
    Figure imgb1690
    Ia-110
    Figure imgb1691
    Ia-111
    Figure imgb1692
    Ia-112
    Figure imgb1693
    Ia-113
    Figure imgb1694
    Ia-114
    Figure imgb1695
    Ia-115
    Figure imgb1696
    Ia-116
    Figure imgb1697
    Ia-117
    Figure imgb1698
    Ia-118
    Figure imgb1699
    Ia-119
    Figure imgb1700
    Ia-120
    Figure imgb1701
    Ia-121
    Figure imgb1702
    Ia-122
    Figure imgb1703
    Ia-123
    Figure imgb1704
    Ia-124
    Figure imgb1705
    Ia-125
    Figure imgb1706
    Ia-126
    Figure imgb1707
    Ia-127
    Figure imgb1708
    Ia-128
    Figure imgb1709
    Ia-129
    Figure imgb1710
    Ia-130
    Figure imgb1711
    Ia-131
    Figure imgb1712
    Ia-132
    Figure imgb1713
    Ia-133
    Figure imgb1714
    Ia-134
    Figure imgb1715
    Ia-135
    Figure imgb1716
    Ia-136
    Figure imgb1717
    Ia-137
    Figure imgb1718
    Ia-138
    Figure imgb1719
    Ia-139
    Figure imgb1720
    Ia-140
    Figure imgb1721
    Ia-141
    Figure imgb1722
    Ia-142
    Figure imgb1723
    Ia-143
    Figure imgb1724
    Ia-144
    Figure imgb1725
    Ia-145
    Figure imgb1726
    Ia-146
    Figure imgb1727
    Ia-147
    Figure imgb1728
    Ia-148
    Figure imgb1729
    Ia-149
    Figure imgb1730
    Ia-150
    Figure imgb1731
    Ia-151
    Figure imgb1732
    Ia-152
    Figure imgb1733
    Ia-153
    Figure imgb1734
    Ia-154
    Figure imgb1735
    Ia-155
    Figure imgb1736
    Ia-156
    Figure imgb1737
    Ia-156*
    Figure imgb1738
    Ia-157
    Figure imgb1739
    Ia-158
    Figure imgb1740
    Ia-159
    Figure imgb1741
    Ia-160
    Figure imgb1742
    Ia-161
    Figure imgb1743
    Ia-162
    Figure imgb1744
    Ia-163
    Figure imgb1745
    Ia-164
    Figure imgb1746
    Ia-165
    Figure imgb1747
    Ia-166
    Figure imgb1748
    Ia-167
    Figure imgb1749
    Ia-168
    Figure imgb1750
    Ia-169
    Figure imgb1751
    Ia-170
    Figure imgb1752
    oder ein Salz hiervon.
  12. Verbindung nach Anspruch 3, ausgewählt aus der Gruppe, bestehend aus B-5a
    Figure imgb1753
    B-5b
    Figure imgb1754
    B-5c
    Figure imgb1755
    B-5d
    Figure imgb1756
    B-5e
    Figure imgb1757
    B-5f
    Figure imgb1758
    B-5g
    Figure imgb1759
    B-5h
    Figure imgb1760
    B-5i
    Figure imgb1761
    B-5j
    Figure imgb1762
    B-5k
    Figure imgb1763
    B-5l
    Figure imgb1764
    B-5m
    Figure imgb1765
    B-5n
    Figure imgb1766
    B-5o
    Figure imgb1767
    B-5p
    Figure imgb1768
    B-5q
    Figure imgb1769
    B-5r
    Figure imgb1770
    B-5s
    Figure imgb1771
    B-5t
    Figure imgb1772
    B-5u
    Figure imgb1773
    B-5v
    Figure imgb1774
    B-5w
    Figure imgb1775
    B-5x
    Figure imgb1776
    B-5y
    Figure imgb1777
    B-5z
    Figure imgb1778
    B-5aa
    Figure imgb1779
    B-5ab
    Figure imgb1780
    B-5ac
    Figure imgb1781
    B-5ad
    Figure imgb1782
    B-5ae
    Figure imgb1783
    B-5af
    Figure imgb1784
    B-5ag
    Figure imgb1785
    B-5ah
    Figure imgb1786
    B-5ai
    Figure imgb1787
    B-5aj
    Figure imgb1788
    B-5ak
    Figure imgb1789
    B-5al
    Figure imgb1790
    B-Sam
    Figure imgb1791
    B-5an
    Figure imgb1792
    B-5ao
    Figure imgb1793
    B-5ap
    Figure imgb1794
    B-5aq
    Figure imgb1795
    B-5ar
    Figure imgb1796
    B-5as
    Figure imgb1797
    B-5at
    Figure imgb1798
    B-5au
    Figure imgb1799
    B-5ar
    Figure imgb1800
    B-5av
    Figure imgb1801
    B-5aw
    Figure imgb1802
    B-5ax
    Figure imgb1803
    B-5ay
    Figure imgb1804
    B-5az
    Figure imgb1805
    B-5ba
    Figure imgb1806
    B-5bb
    Figure imgb1807
    B-5bc
    Figure imgb1808
    B-5bd
    Figure imgb1809
    B-5be
    Figure imgb1810
    B-5bf
    Figure imgb1811
    B-5bg
    Figure imgb1812
    B-5bh
    Figure imgb1813
    B-5bi
    Figure imgb1814
    B-5bj
    Figure imgb1815
    B-5bk
    Figure imgb1816
    B-5bl
    Figure imgb1817
    B-5bm
    Figure imgb1818
    B-5bn
    Figure imgb1819
    B-5bo
    Figure imgb1820
    B-5bp
    Figure imgb1821
    B-5bq
    Figure imgb1822
    B-5br
    Figure imgb1823
    B-5bs
    Figure imgb1824
    B-5bt
    Figure imgb1825
    B-5bu
    Figure imgb1826
    B-5bv
    Figure imgb1827
    B-5bw
    Figure imgb1828
    B-5bx
    Figure imgb1829
    B-5by
    Figure imgb1830
    B-5bz
    Figure imgb1831
    B-5ca
    Figure imgb1832
    B-5cb
    Figure imgb1833
    B-5cc
    Figure imgb1834
    B-5cd
    Figure imgb1835
    B-5ce
    Figure imgb1836
    B-5cf
    Figure imgb1837
    B-5cg
    Figure imgb1838
    B-5ch
    Figure imgb1839
    B-5ci
    Figure imgb1840
    B-5cj
    Figure imgb1841
    B-5ck
    Figure imgb1842
    B-5cl
    Figure imgb1843
    B-5cm
    Figure imgb1844
    B-5cn
    Figure imgb1845
    B-5co
    Figure imgb1846
    B-5cp
    Figure imgb1847
    B-5cq
    Figure imgb1848
    B-5cr
    Figure imgb1849
    B-5cs
    Figure imgb1850
    B-5ct
    Figure imgb1851
    B-5cu
    Figure imgb1852
    B-5cv
    Figure imgb1853
    B-5cw
    Figure imgb1854
    B-5cx
    Figure imgb1855
    B-5cy
    Figure imgb1856
    B-5cz
    Figure imgb1857
    B-5da
    Figure imgb1858
    B-5db
    Figure imgb1859
    B-5dc
    Figure imgb1860
    B-5dd
    Figure imgb1861
    B-5de
    Figure imgb1862
    B-5df
    Figure imgb1863
    B-5dg
    Figure imgb1864
    B-5dh
    Figure imgb1865
    B-5di
    Figure imgb1866
    B-5dj
    Figure imgb1867
    B-5dk
    Figure imgb1868
    B-5dl
    Figure imgb1869
    B-5dm
    Figure imgb1870
    B-5dn
    Figure imgb1871
    B-5do
    Figure imgb1872
    B-5dp
    Figure imgb1873
    B-5dq
    Figure imgb1874
    B-5dr
    Figure imgb1875
    B-5ds
    Figure imgb1876
    B-5dt
    Figure imgb1877
    B-5du
    Figure imgb1878
    B-5dv
    Figure imgb1879
    B-5dw
    Figure imgb1880
    B-5dx
    Figure imgb1881
    B-5dy
    Figure imgb1882
    B-5dz
    Figure imgb1883
    B-5ea
    Figure imgb1884
    B-5eb
    Figure imgb1885
    B-5ec
    Figure imgb1886
    B-5ed
    Figure imgb1887
    B-5ef
    Figure imgb1888
    B-5eg
    Figure imgb1889
    B-5eh
    Figure imgb1890
    B-5ei
    Figure imgb1891
    B-5ej
    Figure imgb1892
    B-5ek
    Figure imgb1893
    B-5el
    Figure imgb1894
    B-Sem
    Figure imgb1895
    B-5en
    Figure imgb1896
    B-5eo
    Figure imgb1897
    B-5ep
    Figure imgb1898
    oder ein Salz hiervon.
  13. Verbindung nach einem der Ansprüche 1, 2 und 4 bis 12 - oder ein pharmazeutisch akzeptables bzw. annehmbares Salz hiervon - zur Verwendung als Medikament.
  14. Verbindung nach einem der Ansprüche 1, 2 und 4 bis 12 - oder ein pharmazeutisch akzeptables bzw. annehmbares Salz hiervon - zur Verwendung in der Behandlung und/oder Vorbeugung bzw. Prävention von Krebs; wobei der Krebs vorzugsweise ausgewählt ist aus der Gruppe, bestehend aus Bauchspeicheldrüsenkrebs, Lungenkrebs, Darmkrebs, Gallengangkarzinom, Blinddarmkrebs, multiplem Myelom, Melanom, Gebärmutterkrebs, Endometriumkrebs, Schilddrüsenkrebs, akuter myeloischer Leukämie, Blasenkrebs, Urothelkarzinom, Magenkrebs, Gebärmutterhalskrebs, Plattenepithelkarzinom im Kopf- und Halsbereich, diffuses großzelligem B-Zell-Lymphom, Speiseröhrenkrebs, chronischer lymphatischer Leukämie, Leberzellkrebs, Brustkrebs, Eierstockkrebs, Prostatakrebs, Glioblastom, Nierenkrebs und Sarkom.
  15. Verbindung - oder ein pharmazeutisch akzeptables bzw. annehmbares Salz hiervon - zur Verwendung nach einem der Ansprüche 13 und 14, wobei die Verbindung oder das Salz vor, nach oder zusammen mit einer oder mehreren anderen pharmakologisch aktiven bzw. wirksamen Substanz(en) verabreicht wird.
  16. Pharmazeutische Zusammensetzung, umfassend eine Verbindung nach einem der Ansprüche 1, 2 und 4 bis 12 - oder ein pharmazeutisch akzeptables bzw. annehmbares Salz hiervon - und einen oder mehrere pharmazeutisch akzeptable(n) bzw. annehmbare(n) Hilfsstoff(e) oder eine oder mehrere andere pharmakologisch aktive bzw. wirksame Substanz(en).
EP21729877.7A 2020-06-02 2021-06-01 Anellierte 2-amino-3-cyano-thiophene und derivate zur behandlung von krebs Active EP4157837B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063033505P 2020-06-02 2020-06-02
EP20212067 2020-12-05
PCT/EP2021/064616 WO2021245055A1 (en) 2020-06-02 2021-06-01 Annulated 2-amino-3-cyano thiophenes and derivatives for the treatment of cancer

Publications (2)

Publication Number Publication Date
EP4157837A1 EP4157837A1 (de) 2023-04-05
EP4157837B1 true EP4157837B1 (de) 2024-12-18

Family

ID=76269742

Family Applications (2)

Application Number Title Priority Date Filing Date
EP21729877.7A Active EP4157837B1 (de) 2020-06-02 2021-06-01 Anellierte 2-amino-3-cyano-thiophene und derivate zur behandlung von krebs
EP21729875.1A Pending EP4157836A1 (de) 2020-06-02 2021-06-01 Anellierte 2-amino-3-cyanothiophene und derivate zur behandlung von krebs

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP21729875.1A Pending EP4157836A1 (de) 2020-06-02 2021-06-01 Anellierte 2-amino-3-cyanothiophene und derivate zur behandlung von krebs

Country Status (18)

Country Link
US (3) US20230212164A1 (de)
EP (2) EP4157837B1 (de)
JP (2) JP2023527891A (de)
KR (1) KR20230019462A (de)
CN (2) CN116234806A (de)
AU (1) AU2021285032A1 (de)
BR (1) BR112022023462A2 (de)
CA (1) CA3183656A1 (de)
CL (1) CL2022003289A1 (de)
CO (1) CO2022017049A2 (de)
CR (1) CR20220614A (de)
DO (1) DOP2022000266A (de)
EC (1) ECSP22089077A (de)
IL (1) IL298633A (de)
MX (1) MX2022015260A (de)
PE (1) PE20240493A1 (de)
TW (1) TW202210474A (de)
WO (2) WO2021245055A1 (de)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019217307A1 (en) 2018-05-07 2019-11-14 Mirati Therapeutics, Inc. Kras g12c inhibitors
EP3849536A4 (de) 2018-09-10 2022-06-29 Mirati Therapeutics, Inc. Kombinationstherapien
WO2020146613A1 (en) 2019-01-10 2020-07-16 Mirati Therapeutics, Inc. Kras g12c inhibitors
PH12022550469A1 (en) 2019-08-29 2023-02-27 Array Biopharma Inc Kras g12d inhibitors
US11890285B2 (en) 2019-09-24 2024-02-06 Mirati Therapeutics, Inc. Combination therapies
MX2022007515A (es) 2019-12-20 2022-09-19 Mirati Therapeutics Inc Inhibidores de sos1.
CN116234806A (zh) 2020-06-02 2023-06-06 勃林格殷格翰国际有限公司 用于治疗癌症的环状2-氨基-3-氰基噻吩及其衍生物
KR20230094198A (ko) 2020-09-23 2023-06-27 에라스카, 아이엔씨. 3환식 피리돈 및 피리미돈
WO2022133345A1 (en) 2020-12-18 2022-06-23 Erasca, Inc. Tricyclic pyridones and pyrimidones
CN118561952A (zh) 2021-05-05 2024-08-30 锐新医药公司 Ras抑制剂
MX2023013084A (es) 2021-05-05 2023-11-17 Revolution Medicines Inc Inhibidores de ras para el tratamiento del cancer.
CN118591540A (zh) * 2021-12-01 2024-09-03 勃林格殷格翰国际有限公司 包含环状2-氨基-3-氰基噻吩的kras降解化合物
TW202340209A (zh) 2021-12-01 2023-10-16 德商百靈佳殷格翰國際股份有限公司 用於治療癌症之環狀2-胺基-3-氰基噻吩及衍生物
WO2023099624A1 (en) 2021-12-01 2023-06-08 Boehringer Ingelheim International Gmbh Annulated 2-amino-3-cyano thiophenes and derivatives for the treatment of cancer
WO2023099608A1 (en) * 2021-12-01 2023-06-08 Boehringer Ingelheim International Gmbh Annulated 2-amino-3-cyano thiophenes and derivatives for the treatment of cancer
JP2024543976A (ja) * 2021-12-01 2024-11-26 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 癌の処置のための環化2-アミノ-3-シアノチオフェン及び誘導体
JP2024546642A (ja) * 2021-12-22 2024-12-26 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング がんの処置のための複素芳香族化合物
JP2025503511A (ja) 2021-12-28 2025-02-04 アストラゼネカ ユーケー リミテッド 抗体-薬物コンジュゲート及びrasg12c阻害剤の組み合わせ
AU2023218370B2 (en) 2022-02-09 2024-11-28 Quanta Therapeutics, Inc. Kras modulators and uses thereof
WO2023172940A1 (en) 2022-03-08 2023-09-14 Revolution Medicines, Inc. Methods for treating immune refractory lung cancer
IL317601A (en) 2022-05-25 2025-02-01 Quanta Therapeutics Inc Pyrimidine-based modulators and their uses
AU2023285116A1 (en) 2022-06-10 2024-12-19 Revolution Medicines, Inc. Macrocyclic ras inhibitors
WO2023244599A1 (en) * 2022-06-15 2023-12-21 Mirati Therapeutics, Inc. Pan-kras inhibitors
WO2024206858A1 (en) 2023-03-30 2024-10-03 Revolution Medicines, Inc. Compositions for inducing ras gtp hydrolysis and uses thereof
WO2024211663A1 (en) 2023-04-07 2024-10-10 Revolution Medicines, Inc. Condensed macrocyclic compounds as ras inhibitors
WO2024211712A1 (en) 2023-04-07 2024-10-10 Revolution Medicines, Inc. Condensed macrocyclic compounds as ras inhibitors
WO2024216016A1 (en) 2023-04-14 2024-10-17 Revolution Medicines, Inc. Crystalline forms of a ras inhibitor
WO2024216048A1 (en) 2023-04-14 2024-10-17 Revolution Medicines, Inc. Crystalline forms of ras inhibitors, compositions containing the same, and methods of use thereof
WO2024229406A1 (en) 2023-05-04 2024-11-07 Revolution Medicines, Inc. Combination therapy for a ras related disease or disorder
WO2024246099A1 (en) * 2023-05-30 2024-12-05 Boehringer Ingelheim International Gmbh Spirocyclic annulated 2-amino-3-cyano thiophenes and derivatives for the treatment of cancer
WO2024246114A1 (en) 2023-05-31 2024-12-05 Boehringer Ingelheim International Gmbh Survivin as a biomarker for predicting the responsiveness of cancer treatment
WO2025016899A1 (en) * 2023-07-19 2025-01-23 Bayer Aktiengesellschaft Spirocyclic compounds for the treatment of cancer
WO2025030006A2 (en) 2023-08-02 2025-02-06 Nerio Therapeutics, Inc. Protein tyrosine phosphatase degraders and uses thereof
US20250049810A1 (en) 2023-08-07 2025-02-13 Revolution Medicines, Inc. Methods of treating a ras protein-related disease or disorder

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE383360T1 (de) * 2004-06-11 2008-01-15 Japan Tobacco Inc 5-amino-2,4,7-trioxo-3,4,7,8-tetrahydro-2h- pyrido(2,3-d)pyrimidinderivate und verwandte verbindungen zur behandlung von krebs
EP2376116B1 (de) 2008-12-12 2015-12-09 Boehringer Ingelheim International GmbH Anti-igf-antikörper
AR090151A1 (es) 2012-03-07 2014-10-22 Lilly Co Eli Compuestos inhibidores de raf
US9573944B2 (en) 2012-03-14 2017-02-21 Lupin Limited Heterocyclyl compounds
US9242969B2 (en) 2013-03-14 2016-01-26 Novartis Ag Biaryl amide compounds as kinase inhibitors
SG11201602662YA (en) * 2013-10-10 2016-05-30 Araxes Pharma Llc Inhibitors of kras g12c
EP3129380B1 (de) 2014-04-11 2018-11-28 Boehringer Ingelheim International Gmbh Spiro[3h-indol-3,2'-pyrrolidin]-2(1h)-on-derivate und deren verwendung als mdm2-p53-hemmer
EP3164401B1 (de) 2014-07-03 2018-12-26 Boehringer Ingelheim International GmbH Neue spiro[3h-indole-3,2´-pyrrolidin]-2(1h)-one verbindungen und deren derivate als mdm2-p53 inhibitoren
BR112017002942B1 (pt) 2014-08-21 2022-10-18 Boehringer Ingelheim International Gmbh Compostos e derivados de espiro[3h-indol-3,2'- pirrolidin]2(1h)-ona, composição farmacêutica que os compreende, intermediário sintético, uso destes compostos e método para sintetizar o intermediário
UA123905C2 (uk) 2015-10-09 2021-06-23 Бьорінгер Інгельхайм Інтернаціональ Гмбх Спіро[3h-індол-3,2'-піролідин]-2(1h)-онові сполуки та похідні як інгібітори мdm2-p53
SG11201810171SA (en) 2016-05-18 2018-12-28 Mirati Therapeutics Inc Kras g12c inhibitors
CN110603254B (zh) * 2016-11-30 2024-04-12 班塔姆制药有限责任公司 被取代的吡唑化合物以及使用其治疗过度增生性疾病的方法
JP7219218B2 (ja) 2016-12-22 2023-02-07 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 新規のベンジルアミノ置換キナゾリンおよびsos1阻害剤としての誘導体
PT3558955T (pt) * 2016-12-22 2021-10-19 Amgen Inc Derivados de benzisotiazol, isotiazolo[3,4-b]piridina, quinazolina, ftalazina, pirido[2,3-d]piridazima e pirido[2,3-d]pirimidina como inibidores de kras g12c para tratamento de cancro de pulmão, pancreático ou colorretal
US11358959B2 (en) 2017-01-26 2022-06-14 Araxes Pharma Llc Benzothiophene and benzothiazole compounds and methods of use thereof
WO2018172250A1 (en) 2017-03-21 2018-09-27 Bayer Pharma Aktiengesellschaft 2-methyl-quinazolines
JOP20190272A1 (ar) 2017-05-22 2019-11-21 Amgen Inc مثبطات kras g12c وطرق لاستخدامها
FI3710439T3 (fi) 2017-11-15 2023-05-02 Mirati Therapeutics Inc Kras g12c:n estäjiä
FI3728254T3 (fi) 2017-12-21 2023-05-05 Boehringer Ingelheim Int Bentsyyliaminosubstituoidut pyridopyrimidinonit ja johdannaiset SOS1-estäjinä
EP3781565A1 (de) 2018-04-18 2021-02-24 Bayer Pharma Aktiengesellschaft 2-methyl-aza-chinazoline
AU2019312670B2 (en) * 2018-08-01 2025-01-02 Araxes Pharma Llc Heterocyclic spiro compounds and methods of use thereof for the treatment of cancer
JP7516029B2 (ja) 2018-11-16 2024-07-16 アムジエン・インコーポレーテツド Kras g12c阻害剤化合物の重要な中間体の改良合成法
WO2020177629A1 (zh) 2019-03-01 2020-09-10 劲方医药科技(上海)有限公司 螺环取代的嘧啶并环类化合物,其制法与医药上的用途
JP2022522778A (ja) 2019-03-01 2022-04-20 レボリューション メディシンズ インコーポレイテッド 二環式ヘテロシクリル化合物及びその使用
US20230148450A9 (en) 2019-03-01 2023-05-11 Revolution Medicines, Inc. Bicyclic heteroaryl compounds and uses thereof
CA3141604A1 (en) 2019-05-20 2020-11-26 1200 Pharma Llc Kras g12c inhibitors and uses thereof
US11731984B2 (en) 2019-12-11 2023-08-22 Eli Lilly And Company KRas G12C inhibitors
WO2021120890A1 (en) 2019-12-20 2021-06-24 Novartis Ag Pyrazolyl derivatives useful as anti-cancer agents
CN113087700B (zh) 2020-01-08 2023-03-14 苏州亚盛药业有限公司 螺环四氢喹唑啉
US11530218B2 (en) 2020-01-20 2022-12-20 Incyte Corporation Spiro compounds as inhibitors of KRAS
CN113683616A (zh) 2020-05-18 2021-11-23 广州百霆医药科技有限公司 Kras g12c突变蛋白抑制剂
CN116234806A (zh) 2020-06-02 2023-06-06 勃林格殷格翰国际有限公司 用于治疗癌症的环状2-氨基-3-氰基噻吩及其衍生物
WO2023099608A1 (en) 2021-12-01 2023-06-08 Boehringer Ingelheim International Gmbh Annulated 2-amino-3-cyano thiophenes and derivatives for the treatment of cancer
CN118574836A (zh) 2021-12-01 2024-08-30 勃林格殷格翰国际有限公司 用于治疗癌症的环状2-胺基-3-氰基噻吩及衍生物
US20230227470A1 (en) 2021-12-01 2023-07-20 Boehringer Ingelheim International Gmbh Annulated 2-amino-3-cyano thiophenes and derivatives for the treatment of cancer
CN118591540A (zh) 2021-12-01 2024-09-03 勃林格殷格翰国际有限公司 包含环状2-氨基-3-氰基噻吩的kras降解化合物
JP2024543976A (ja) 2021-12-01 2024-11-26 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 癌の処置のための環化2-アミノ-3-シアノチオフェン及び誘導体
TW202340209A (zh) 2021-12-01 2023-10-16 德商百靈佳殷格翰國際股份有限公司 用於治療癌症之環狀2-胺基-3-氰基噻吩及衍生物

Also Published As

Publication number Publication date
TW202210474A (zh) 2022-03-16
CO2022017049A2 (es) 2023-02-06
US20210380574A1 (en) 2021-12-09
DOP2022000266A (es) 2023-01-15
US20230212164A1 (en) 2023-07-06
US20250002485A1 (en) 2025-01-02
CN116034106A (zh) 2023-04-28
JP2023527891A (ja) 2023-06-30
CA3183656A1 (en) 2021-12-09
CN116234806A (zh) 2023-06-06
AU2021285032A1 (en) 2022-12-08
US11945812B2 (en) 2024-04-02
KR20230019462A (ko) 2023-02-08
MX2022015260A (es) 2023-01-11
EP4157837A1 (de) 2023-04-05
EP4157836A1 (de) 2023-04-05
IL298633A (en) 2023-01-01
ECSP22089077A (es) 2022-12-30
WO2021245051A1 (en) 2021-12-09
CL2022003289A1 (es) 2023-04-14
CR20220614A (es) 2023-05-08
PE20240493A1 (es) 2024-03-15
BR112022023462A2 (pt) 2022-12-20
WO2021245055A1 (en) 2021-12-09
JP2023528623A (ja) 2023-07-05

Similar Documents

Publication Publication Date Title
EP4157837B1 (de) Anellierte 2-amino-3-cyano-thiophene und derivate zur behandlung von krebs
AU2018390927B2 (en) Novel benzylamino substituted pyridopyrimidinones and derivatives as SOS1 inhibitors
WO2023099612A1 (en) Annulated 2-amino-3-cyano thiophenes and derivatives for the treatment of cancer
EP3867263B1 (de) Auf proteolyse gerichtete chimäre (protacs) als abbauer von smarca2 und/oder smarca4
WO2023099624A1 (en) Annulated 2-amino-3-cyano thiophenes and derivatives for the treatment of cancer
EP4441056A1 (de) Anellierte 2-amino-3-cyanothiophene und derivate zur behandlung von krebs
WO2023099623A1 (en) Annulated 2-amino-3-cyano thiophenes and derivatives for the treatment of cancer
EP4441050A1 (de) Anellierte 2-amino-3-cyanothiophene und derivate zur behandlung von krebs
EP3986408A1 (de) Kombinationstherapie gegen krebs

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240125

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240711

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

P01 Opt-out of the competence of the unified patent court (upc) registered

Free format text: CASE NUMBER: APP_59763/2024

Effective date: 20241105

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602021023571

Country of ref document: DE