EP3775333A2 - Procédé de fabrication d'une couche monocristalline de matériau ain et substrat pour croissance par épitaxie d'une couche monocristalline de matériau ain - Google Patents
Procédé de fabrication d'une couche monocristalline de matériau ain et substrat pour croissance par épitaxie d'une couche monocristalline de matériau ainInfo
- Publication number
- EP3775333A2 EP3775333A2 EP19759725.5A EP19759725A EP3775333A2 EP 3775333 A2 EP3775333 A2 EP 3775333A2 EP 19759725 A EP19759725 A EP 19759725A EP 3775333 A2 EP3775333 A2 EP 3775333A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- monocrystalline
- substrate
- sic
- layer
- support substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 107
- 239000000758 substrate Substances 0.000 title claims abstract description 104
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 239000013078 crystal Substances 0.000 title claims abstract 6
- 239000002210 silicon-based material Substances 0.000 claims abstract description 31
- 238000012546 transfer Methods 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 22
- 238000000407 epitaxy Methods 0.000 claims description 12
- 238000003486 chemical etching Methods 0.000 claims description 7
- 238000002513 implantation Methods 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 230000010070 molecular adhesion Effects 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 3
- 230000003313 weakening effect Effects 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 229910052710 silicon Inorganic materials 0.000 description 11
- 239000010703 silicon Substances 0.000 description 11
- 229910052594 sapphire Inorganic materials 0.000 description 6
- 239000010980 sapphire Substances 0.000 description 6
- 101150082201 ASIP gene Proteins 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- -1 hydrogen ions Chemical class 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 238000004377 microelectronic Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910002370 SrTiO3 Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 238000001534 heteroepitaxy Methods 0.000 description 1
- 238000001657 homoepitaxy Methods 0.000 description 1
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
- C30B23/025—Epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/183—Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/38—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
- C30B33/06—Joining of crystals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02441—Group 14 semiconducting materials
- H01L21/02447—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02598—Microstructure monocrystalline
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02658—Pretreatments
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02488—Insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/02543—Phosphides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/02546—Arsenides
Definitions
- the present invention relates to a method of manufacturing a monocrystalline layer of aluminum nitride material (AIN) and a substrate for the epitaxial growth of such a monocrystalline layer of AlN material.
- AIN aluminum nitride material
- Some materials are not currently available as a monocrystalline wafer substrate in large diameter. And some materials are possibly available in large diameter but not according to certain characteristics or specifications in terms of quality, particularly vis-à-vis the density of defects or the electrical or optical properties required.
- the present invention aims to overcome these limitations of the state of the art by providing a method of manufacturing a monocrystalline layer of AlN material and a substrate for the epitaxial growth of such a monocrystalline layer of AlN material. By this it is possible to overcome the size problem of the monocrystalline AIS material substrates currently available.
- the invention relates to a method for producing a monocrystalline layer of AlN material comprising transferring a monocrystalline seed layer of SiC-6H material to a substrate material support. silicon followed by epitaxial growth of the monocrystalline layer of AlN material.
- the monocrystalline seed layer has a thickness less than 10 ⁇ m, preferably less than 2 ⁇ m, and more preferably less than 0.2 ⁇ m.
- the transfer of the monocrystalline seed layer of SiC-6H material to the silicon material support substrate comprises a step of assembling a monocrystalline substrate of SiC-6H material on the support substrate followed by a step thinning said monocrystalline substrate of SiC-6H material.
- the thinning step comprises the formation of an embrittlement zone delimiting a portion of the monocrystalline substrate of SiC-6H material intended to be transferred onto the support substrate of silicon material.
- the formation of the embrittlement zone is obtained by implantation of atomic and / or ionic species.
- the thinning step comprises a detachment at the weakening zone so as to transfer said portion of the monocrystalline substrate of SiC-6H material to the silicon material support substrate, in particular the detachment comprises application of a thermal and / or mechanical stress.
- the assembly step is a molecular adhesion step.
- the monocrystalline seed layer of SiC-6H material is in the form of a plurality of blocks each transferred to the silicon material support substrate.
- the silicon material support substrate comprises a removable interface configured to be disassembled by laser peeling and / or chemical etching and / or mechanical biasing.
- the invention also relates to a substrate for epitaxial growth of a monocrystalline layer of AlN material, characterized in that it comprises a monocrystalline seed layer of SiC-6H material on a support substrate of silicon material.
- the monocrystalline seed layer of SiC-6H material is in the form of a plurality of cobblestones.
- the silicon material support substrate comprises a removable interface configured to be disassembled by laser peeling and / or chemical etching and / or mechanical biasing.
- the invention also relates to a method for manufacturing a monocrystalline layer of Al x ln y Ga z AsiP m Nn material having a mesh parameter close to that of the AlN material comprising the transfer of a monocrystalline seed layer of SrTiC> 3 material. on a support substrate of silicon material followed by growth by epitaxy of a monocrystalline layer of Al x ln y Ga z AsiP m N n material .
- the invention also relates to a method for manufacturing a monocrystalline layer of Al x ln y Ga z AsiP m N n material having a mesh parameter close to that of the AlN material comprising the transfer of a monocrystalline seed layer of YSZ material or Ce0 2 or MgO or Al 2 0 3 , on a support substrate of silicon material followed by growth by epitaxy of a monocrystalline layer of Al x ln y Ga z AsiPmNn material.
- the invention also relates to a substrate for growth by epitaxy of a monocrystalline layer of Al x ln y Ga z AsiP m N n material having a mesh parameter close to that of the AlN material, characterized in that it comprises a monocrystalline seed layer. of material SrTiO3 or YSZ or Ce0 2 or MgO or Al 2 0 3 on a support substrate of silicon material.
- FIG. 1 illustrates a method of manufacturing a monocrystalline layer of AlN material according to one embodiment of the invention as well as a substrate for the epitaxial growth of such a monocrystalline layer of AlN material according to this embodiment. of the invention
- FIG. 2 illustrates a method of manufacturing a monocrystalline layer of AlN material according to another embodiment of the invention as well as a substrate for growth by epitaxy. such a monocrystalline layer of AlN material according to this other embodiment of the invention;
- FIG. 3 illustrates a method of manufacturing a monocrystalline layer of AlN material according to yet another embodiment of the invention as well as a substrate for the epitaxial growth of such a monocrystalline layer of AlN material according to this other. embodiment of the invention
- FIG. 4 illustrates a method of manufacturing a monocrystalline layer of AlN material according to yet another embodiment of the invention as well as a substrate for the epitaxial growth of such a monocrystalline layer of AlN material according to this other. embodiment of the invention
- FIG. 5 illustrates a method for manufacturing a monocrystalline layer of AlN material according to yet another embodiment of the invention as well as a substrate for the epitaxial growth of such a monocrystalline layer of AlN material according to this other. embodiment of the invention
- FIG. 1 illustrates a support substrate 100 of silicon material on which a monocrystalline seed layer 200 of SiC-6H material is transferred.
- the support substrate 100 of silicon material can also be replaced by a support substrate 100 of sapphire material.
- the use of silicon has the advantage of opening up the field of application of AIN material films not only to large 300 mm equipment but also to make the microelectronics industry compatible for which the requirements in terms of acceptance on the production line of exotic material other than silicon, in particular AIN, are high.
- the assembly step 1 'of the monocrystalline seed layer 200 of SiC-6H material on the support substrate 100 of silicon material is preferentially done by a molecular bonding step.
- This molecular adhesion step comprises a bonding step, preferably at ambient temperature, and is followed by a consolidation annealing of the bonding interface which is usually carried out at elevated temperatures up to 900 ° C. or even 1100 ° C. for a period of a few minutes to a few hours.
- the assembly step 1 'of the monocrystalline seed layer on the support substrate is also preferentially by a molecular adhesion step using typical conditions of the same order of magnitude as mentioned. above.
- FIG. 1 schematically represents the assembly step 1 'of a monocrystalline substrate 20 of SIC-6H material on the support substrate 100 of silicon material. It follows a step of thinning 2 'of the monocrystalline substrate 20 of SiC-6H material after being assembled on the support substrate 100 of silicon material.
- FIG. 1 schematically represents the thinning step 2 'which can be implemented for example by chemical and / or mechanical etching (polishing, grinding, milling, etc.).
- the monocrystalline seed layer 200 of SiC-6H material can be obtained which will serve as the monocrystalline seed of a 3 'growth step by epitaxy of the monocrystalline layer 300 of AlN material made on the substrate for epitaxial growth of a layer.
- monocrystalline material INS 10 shown schematically in Figure 1.
- the skilled person could adjust the parameters used for a epitaxial growth of a monocrystalline layer of AIN material usually used during homoepitaxy or heteroepitaxy on a bulk monocrystalline substrate in order to optimize the 3 'growth step by epitaxy of the monocrystalline layer 300 of AIN material made on the substrate for epitaxial growth of a monocrystalline layer of AIN material 10 of the present invention.
- the epitaxy of the material AIN is therefore by MOCVD or MBE or HVPE known to those skilled in the art.
- the present invention is, moreover, not limited to an epitaxy of the AlN material but extends to certain Al x ln y Ga z AsiP m N n composites having a mesh parameter close to that of the AlN material.
- the thermal expansion coefficient of the support substrate 100 predominates the thermal behavior of the substrate for epitaxial growth of a monocrystalline layer of AlN material 10 during the 3 'epitaxial growth step of the monocrystalline layer 300. of AIN material. This is due to the thin thickness, preferably less than 1 miti, of the monocrystalline seed layer 200 of SiC-6H material relative to the total thickness of the substrate for epitaxial growth of a monocrystalline layer of AIN material 10 which is of the order of several tens to hundreds of pm.
- the SiC-6H material is also chosen to provide a monocrystalline seed layer having a mesh parameter as close as possible to the mesh parameter chosen for the monocrystalline layer 300 of AlN material, preferably the relaxed state mesh parameter in order to allow epitaxial growth inducing as few defects as possible in the monocrystalline layer 300 of AlN material.
- the material of the support substrate 100 advantageously also has a thermal expansion coefficient that is particularly close to the thermal expansion coefficient of the AlN material for the same reasons of reducing defects in the monocrystalline layer 300 obtained by epitaxy.
- a support substrate 100 of sapphire material for the present invention would be used.
- FIG. 2 diagrammatically represents an embodiment of the method for manufacturing a monocrystalline layer of AlN material that differs from the embodiment described with reference to FIG.
- the monocrystalline substrate 20 'of SiC-6H material is subjected to a 0 "implantation step of atomic and / or ionic species to form an embrittlement zone delimiting a portion 200 'of monocrystalline substrate 20' of SiC-6H material intended to be transferred onto the support substrate 100 'of silicon material
- the thinning step 2 "comprises a detachment at this embrittlement zone so as to transfer said portion 200 'of the monocrystalline substrate 20' of SiC-6H material to the support substrate 100 'of silicon material, in particular this detachment comprises the application of a thermal and / or mechanical stress.
- the advantage of this embodiment is thus to be able to recover the remaining portion 201 of the monocrystalline substrate 20 'of starting SiC-6H material that can be used again to undergo the same process again and thus reduce costs .
- the substrate for epitaxial growth of a monocrystalline layer of AlN material 10 'thus illustrated in FIG. 2 serves for the growth step 3 "of the monocrystalline layer 300' of AlN material as already described during the process described in connection with Figure 1.
- the implantation step 0 is done with hydrogen ions.
- An interesting alternative well known to those skilled in the art is to replace all or part of the hydrogen ions with helium ions.
- a hydrogen implantation dose will typically be between 6x10 16 cm 2 and 1x10 17 cm 2 .
- the implantation energy will typically be between 50 to 170 keV.
- the detachment is typically at temperatures between 550 and 750 ° C. Thicknesses of the monocrystalline seed layer of the order of 200 nm to 1.5 ⁇ m are thus obtained.
- additional technological steps are advantageously added in order to reinforce the interface of bonding, either to recover a good roughness, or to heal the defects possibly generated during the implantation step or to prepare the surface of the seed layer for epitaxial growth. These steps are, for example, polishing, chemical etching (wet or dry), annealing, chemical cleaning. They can be used alone or in combination that those skilled in the art can adjust.
- FIG. 3 differs from the embodiments described with reference to FIG. 1 and FIG. 2 in that the substrate for epitaxial growth of a monocrystalline layer of AIN material (10, 10 ') comprises a demountable interface 40' configured to to be dismantled.
- a support substrate 100 of silicon material it may be a rough surface, for example silicon material assembled with the monocrystalline seed layer during the assembly step. Or a rough interface may be present within the support substrate 100 of silicon material, the latter for example obtained by assembling two silicon wafers.
- Another embodiment would be to introduce at the level of the face to be assembled with the monocrystalline seed layer a porous silicon layer capable of fracturing during the application of a mechanical and / or thermal stress, for example by insertion of a plate edge blade known to those skilled in the art or by the application of annealing.
- this interface is chosen so as to withstand the other mechanical and / or thermal stresses undergone during the process of the present invention (eg detachment, growth by epitaxy, etc.).
- a sapphire material support substrate it may be a stack of silicon oxide, silicon nitride and silicon oxide (so-called ONO type structure) made on the face of the sapphire to assemble with the monocrystalline seed layer.
- Such a stack is susceptible to detachment at the level of the silicon nitride layer during a laser application passing through the sapphire support substrate (detachment or detachment type "laser lift off").
- detachment or detachment type "laser lift off” The skilled person will identify other methods of realization of this removable interface.
- FIG. 4 diagrammatically represents an embodiment of the method for manufacturing a monocrystalline layer of AlN material which differs from the embodiments described with reference to FIG. 1, FIG. 2 and FIG. 3 in that the seed layer
- the monocrystalline 2000 'material SiC-6H is in the form of a plurality of blocks (2001', 2002 ', 2003') each transferred to the support substrate 100 "of silicon material.
- the different pavers can be in any form (square, hexagonal, strips, ...) and with different sizes ranging from a few mm 2 to several cm 2 .
- the spacing between the chips may also vary significantly depending on whether a maximum density of coverage is sought (in this case preferentially a spacing of less than 0.2 mm will be chosen) or, on the contrary, maximum dissemination of the blocks within the substrate ( in this case the spacing may be several millimeters and even centimeters).
- a maximum density of coverage in this case preferentially a spacing of less than 0.2 mm will be chosen
- maximum dissemination of the blocks within the substrate in this case the spacing may be several millimeters and even centimeters.
- the skilled person could apply the transfer he wants and is not limited to a particular method. Thus one could consider applying the technical information described in connection with the method illustrated schematically in Figure 1 or the technical information described in connection with the method illustrated schematically in Figure 2, see even a combination of both.
- FIGS. 1 to 4 thus open the possibility of co-integration of components made in the monocrystalline layer of AlN material with components made in the support substrate of silicon material.
- the latter may simply be a silicon substrate, but it may also be an SOI type substrate comprising a silicon oxide layer separating a silicon substrate from a thin layer of silicon.
- access to the support substrate can be done simply by lithography and etching known to those skilled in the art.
- FIG. 5 diagrammatically represents an embodiment which differs from the embodiment described with reference to FIG. 4 in that the support substrate 100 "as well as subsequently the substrate for epitaxial growth of a monocrystalline layer of AIN material 10 "comprises a removable interface 40 configured to be disassembled, for example by a laser lift off technique and / or chemical etching and / or mechanical stressing. This would make it possible to remove a portion of the support substrate 100 "as already mentioned in connection with FIG. 3.
- An example would be the use of a support substrate 100 of the SOI type comprising a silicon oxide layer separating a silicon substrate. a thin layer of silicon.
- This oxide layer could be used as a removable interface 40 by selective etching of this oxide layer, for example by immersion in a hydrofluoric acid (HF) bath.
- HF hydrofluoric acid
- This option of dismantling by chemical etching of a buried layer is particularly advantageous when it comes in combination with the treatment of a plurality of small substrates. Indeed, the radius of action under-engraving is generally limited to a few centimeters or even a few millimeters if it is desired to maintain commercially reasonable conditions and processing times.
- the treatment of a plurality of small substrates allows the start of several chemical etching fronts thanks to possible access of the buried layer between each block, and no longer only on the extreme edges of the substrates which can be up to 300mm in diameter . In the case of an SOI support substrate it is thus possible to partially remove the thin layer of silicon between the blocks to allow the start of several etching fronts.
- the thin silicon layer having a predetermined thickness (which can vary between 5 nm and 600 nm, or even thicker depending on the intended application) could thus be used to form microelectronic components and thus enable the co-integration of components with base of AIN materials in the same substrate.
- the monocrystalline layer (3001, 3002, 3003) one could also imagine an assembly of this structure on a final substrate and dismount at the demountable interface 40 a portion of the support substrate 100 ".
- the final substrate can thus provide additional functionalities that are, for example, incompatible with growth parameters previously performed (for example, flexible plastic type end substrate or final substrate comprising metal lines).
- the removable interface is not necessarily located inside the support substrate but can also be at the interface with the seed layer of SiC-6H material assembled on this support substrate (for example a stack a layer of silicon nitride between two silicon oxide layers allows a laser detachment, particularly suitable for a sapphire-type support substrate) as already described in connection with FIG.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1800254A FR3079532B1 (fr) | 2018-03-28 | 2018-03-28 | Procede de fabrication d'une couche monocristalline de materiau ain et substrat pour croissance par epitaxie d'une couche monocristalline de materiau ain |
PCT/IB2019/000205 WO2019186266A2 (fr) | 2018-03-28 | 2019-03-26 | Procédé de fabrication d'une couche monocristalline de matériau ain et substrat pour croissance par épitaxie d'une couche monocristalline de matériau ain |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3775333A2 true EP3775333A2 (fr) | 2021-02-17 |
Family
ID=63834053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19759725.5A Pending EP3775333A2 (fr) | 2018-03-28 | 2019-03-26 | Procédé de fabrication d'une couche monocristalline de matériau ain et substrat pour croissance par épitaxie d'une couche monocristalline de matériau ain |
Country Status (8)
Country | Link |
---|---|
US (2) | US12071706B2 (fr) |
EP (1) | EP3775333A2 (fr) |
JP (1) | JP7451846B2 (fr) |
KR (1) | KR102640296B1 (fr) |
CN (1) | CN111902571A (fr) |
FR (1) | FR3079532B1 (fr) |
SG (1) | SG11202009411SA (fr) |
WO (1) | WO2019186266A2 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW202146677A (zh) * | 2020-04-14 | 2021-12-16 | 學校法人關西學院 | 氮化鋁基板的製造方法、氮化鋁基板以及氮化鋁層中的裂痕產生的抑制方法 |
TW202143303A (zh) * | 2020-04-14 | 2021-11-16 | 學校法人關西學院 | 半導體基板的製造方法、半導體基板以及成長層中的裂痕產生的抑制方法 |
FR3149424A1 (fr) * | 2023-06-05 | 2024-12-06 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procédé de fabrication d’un dispositif à base de carbure de silicium (SiC) cristallin |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1132223C (zh) * | 1995-10-06 | 2003-12-24 | 佳能株式会社 | 半导体衬底及其制造方法 |
SG54593A1 (en) * | 1996-11-15 | 1998-11-16 | Canon Kk | Method of manufacturing semiconductor article |
ATE261612T1 (de) * | 1996-12-18 | 2004-03-15 | Canon Kk | Vefahren zum herstellen eines halbleiterartikels unter verwendung eines substrates mit einer porösen halbleiterschicht |
FR2767604B1 (fr) | 1997-08-19 | 2000-12-01 | Commissariat Energie Atomique | Procede de traitement pour le collage moleculaire et le decollage de deux structures |
JP2001209981A (ja) * | 1999-02-09 | 2001-08-03 | Ricoh Co Ltd | 光ディスク基板成膜装置、光ディスク基板成膜方法、基板ホルダーの製造方法、基板ホルダー、光ディスクおよび相変化記録型光ディスク |
EP1482549B1 (fr) * | 2003-05-27 | 2011-03-30 | S.O.I. Tec Silicon on Insulator Technologies S.A. | Procédé pour la fabrication d'une microstructure heteroepitaxiale |
US7407869B2 (en) * | 2000-11-27 | 2008-08-05 | S.O.I.Tec Silicon On Insulator Technologies | Method for manufacturing a free-standing substrate made of monocrystalline semiconductor material |
US8507361B2 (en) * | 2000-11-27 | 2013-08-13 | Soitec | Fabrication of substrates with a useful layer of monocrystalline semiconductor material |
FR2817394B1 (fr) | 2000-11-27 | 2003-10-31 | Soitec Silicon On Insulator | Procede de fabrication d'un substrat notamment pour l'optique, l'electronique ou l'optoelectronique et substrat obtenu par ce procede |
FR2817395B1 (fr) * | 2000-11-27 | 2003-10-31 | Soitec Silicon On Insulator | Procede de fabrication d'un substrat notamment pour l'optique, l'electronique ou l'optoelectronique et substrat obtenu par ce procede |
FR2835096B1 (fr) * | 2002-01-22 | 2005-02-18 | Procede de fabrication d'un substrat auto-porte en materiau semi-conducteur monocristallin | |
FR2835097B1 (fr) * | 2002-01-23 | 2005-10-14 | Procede optimise de report d'une couche mince de carbure de silicium sur un substrat d'accueil | |
FR2857982B1 (fr) | 2003-07-24 | 2007-05-18 | Soitec Silicon On Insulator | Procede de fabrication d'une couche epitaxiee |
US7476594B2 (en) * | 2005-03-30 | 2009-01-13 | Cree, Inc. | Methods of fabricating silicon nitride regions in silicon carbide and resulting structures |
US20070069225A1 (en) * | 2005-09-27 | 2007-03-29 | Lumileds Lighting U.S., Llc | III-V light emitting device |
US8635214B2 (en) * | 2006-07-26 | 2014-01-21 | International Business Machines Corporation | Improving results from search providers using a browsing-time relevancy factor |
US9564320B2 (en) * | 2010-06-18 | 2017-02-07 | Soraa, Inc. | Large area nitride crystal and method for making it |
FR2963848B1 (fr) * | 2010-08-11 | 2012-08-31 | Soitec Silicon On Insulator | Procede de collage par adhesion moleculaire a basse pression |
KR102427272B1 (ko) * | 2014-12-22 | 2022-07-29 | 신에쓰 가가꾸 고교 가부시끼가이샤 | 복합 기판, 나노카본막의 제작 방법 및 나노카본막 |
FR3041364B1 (fr) * | 2015-09-18 | 2017-10-06 | Soitec Silicon On Insulator | Procede de transfert de paves monocristallins |
US10283463B2 (en) * | 2017-04-11 | 2019-05-07 | International Business Machines Corporation | Terahertz detector comprised of P-N junction diode |
-
2018
- 2018-03-28 FR FR1800254A patent/FR3079532B1/fr active Active
-
2019
- 2019-03-26 EP EP19759725.5A patent/EP3775333A2/fr active Pending
- 2019-03-26 JP JP2020549815A patent/JP7451846B2/ja active Active
- 2019-03-26 KR KR1020207030232A patent/KR102640296B1/ko active Active
- 2019-03-26 WO PCT/IB2019/000205 patent/WO2019186266A2/fr unknown
- 2019-03-26 CN CN201980021416.2A patent/CN111902571A/zh active Pending
- 2019-03-26 SG SG11202009411SA patent/SG11202009411SA/en unknown
- 2019-03-26 US US17/041,371 patent/US12071706B2/en active Active
-
2024
- 2024-07-29 US US18/787,009 patent/US20240384432A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2019186266A3 (fr) | 2019-11-21 |
FR3079532B1 (fr) | 2022-03-25 |
SG11202009411SA (en) | 2020-10-29 |
US20210032772A1 (en) | 2021-02-04 |
JP2021518324A (ja) | 2021-08-02 |
US20240384432A1 (en) | 2024-11-21 |
FR3079532A1 (fr) | 2019-10-04 |
JP7451846B2 (ja) | 2024-03-19 |
WO2019186266A2 (fr) | 2019-10-03 |
KR20200138284A (ko) | 2020-12-09 |
KR102640296B1 (ko) | 2024-02-22 |
CN111902571A (zh) | 2020-11-06 |
US12071706B2 (en) | 2024-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1324385B1 (fr) | Procédé de report de couches minces semi-conductrices à partir d'une plaquette donneuse. | |
EP1966821B1 (fr) | Procede de relaxation d'une couche mince contrainte | |
EP3775329A1 (fr) | Procédé de fabrication d'une couche monocristalline de matériau diamant ou iridium et substrat pour croissance par épitaxie d'une couche monocristalline de matériau diamant ou iridium | |
FR2857983A1 (fr) | Procede de fabrication d'une couche epitaxiee | |
FR2817394A1 (fr) | Procede de fabrication d'un substrat notamment pour l'optique, l'electronique ou l'optoelectronique et substrat obtenu par ce procede | |
FR2857982A1 (fr) | Procede de fabrication d'une couche epitaxiee | |
EP1344249A1 (fr) | Procede de fabrication d'une structure empilee comprenant une couche mince adherant a un substrat cible | |
EP2342744A1 (fr) | Procede de formation d'une couche monocristalline dans le domaine micro-electronique | |
EP1653504A1 (fr) | Structure composite à forte dissipation thermique | |
WO2019186266A2 (fr) | Procédé de fabrication d'une couche monocristalline de matériau ain et substrat pour croissance par épitaxie d'une couche monocristalline de matériau ain | |
EP4226416B1 (fr) | Procédé de fabrication d'un substrat pour la croissance épitaxiale d'une couche d'un alliage iii-n à base de gallium | |
EP3775330B1 (fr) | Procédé de fabrication d'une couche monocristalline de matériau gaas et substrat pour croissance par épitaxie d'une couche monocristalline de matériau gaas | |
EP3775331A1 (fr) | Procédé de fabrication d'une couche monocristalline de matériau lno et substrat pour croissance par épitaxie d'une couche monocristalline de matériau lno | |
EP3497711B1 (fr) | Procédé de fabrication d'une couche épitaxiée sur une plaque de croissance | |
EP3775332A1 (fr) | Procede de fabrication d'une couche cristalline de materiau pzt et substrat pour croissance par epitaxie d'une couche cristalline de materiau pzt | |
WO2006100301A1 (fr) | Procede de fabrication d'une hetero-structure comportant au moins une couche epaisse de materiau semi-conducteur | |
FR2866982A1 (fr) | Procede de fabrication de composants electroniques | |
FR2849714A1 (fr) | Recyclage par des moyens mecaniques d'une plaquette comprenant une structure multicouches apres prelevement d'une couche mince | |
WO2024134102A1 (fr) | Procede de fabrication d'une structure comprenant au moins deux paves sur un substrat | |
WO2024074797A1 (fr) | Procede de fabrication d'une structure composite comprenant des paves | |
WO2024134078A1 (fr) | Procédé de fabrication de deux substrats dits pseudo-substrats donneurs comprenant chacun au moins deux pavés sur un substrat support | |
WO2022074318A1 (fr) | Procédé de fabrication d'un substrat pour la croissance épitaxiale d'une couche d'un alliage iii-n à base de gallium | |
WO2025022069A1 (fr) | Procede de realisation d'un substrat multi-materiaux | |
FR3151939A1 (fr) | Procédé de fabrication d’une couche contrainte | |
EP4226417A1 (fr) | Procédé de fabrication d'un substrat pour la croissance épitaxiale d'une couche d'un alliage iii-n à base de gallium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200819 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20240319 |