[go: up one dir, main page]

EP2123786A1 - Verfahren zur Herstellung von kalt gewalzten Zweiphasen-Stahlblechen mit sehr hoher Festigkeit und so hergestellte Bleche - Google Patents

Verfahren zur Herstellung von kalt gewalzten Zweiphasen-Stahlblechen mit sehr hoher Festigkeit und so hergestellte Bleche Download PDF

Info

Publication number
EP2123786A1
EP2123786A1 EP08290474A EP08290474A EP2123786A1 EP 2123786 A1 EP2123786 A1 EP 2123786A1 EP 08290474 A EP08290474 A EP 08290474A EP 08290474 A EP08290474 A EP 08290474A EP 2123786 A1 EP2123786 A1 EP 2123786A1
Authority
EP
European Patent Office
Prior art keywords
product
temperature
steel sheet
rolled
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08290474A
Other languages
English (en)
French (fr)
Inventor
Catherine Vinci
Gloria Restrepo Garces
Antoine Moulin
Tom Waterschoot
Mohamed Goune
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal France SA
Original Assignee
ArcelorMittal France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal France SA filed Critical ArcelorMittal France SA
Priority to EP08290474A priority Critical patent/EP2123786A1/de
Priority to CA2725290A priority patent/CA2725290C/fr
Priority to JP2011510017A priority patent/JP5425896B2/ja
Priority to CN2009801183844A priority patent/CN102046827B/zh
Priority to RU2010152214/02A priority patent/RU2470087C2/ru
Priority to PL09761870T priority patent/PL2291547T3/pl
Priority to US12/993,498 priority patent/US20110168300A1/en
Priority to BRPI0912879-4A priority patent/BRPI0912879B1/pt
Priority to PCT/FR2009/000574 priority patent/WO2009150319A1/fr
Priority to EP09761870A priority patent/EP2291547B1/de
Priority to AT09761870T priority patent/ATE555225T1/de
Priority to ES09761870T priority patent/ES2386701T3/es
Priority to UAA201015426A priority patent/UA100056C2/ru
Priority to MX2010012584A priority patent/MX2010012584A/es
Priority to KR1020107028478A priority patent/KR101328768B1/ko
Publication of EP2123786A1 publication Critical patent/EP2123786A1/de
Priority to ZA2010/07964A priority patent/ZA201007964B/en
Priority to MA33333A priority patent/MA32294B1/fr
Priority to US15/097,039 priority patent/US10190187B2/en
Priority to US16/213,455 priority patent/US20190106765A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to the manufacture of cold-rolled and annealed sheets of so-called "dual-phase" steels having a very high strength and a deformability for the manufacture of parts by shaping, in particular in the automotive industry.
  • the dual-phase steels whose structure includes martensite, possibly bainite, in a ferritic matrix, have developed a great deal because they combine high resistance with significant possibilities of deformation.
  • their yield strength is relatively low compared to their breaking strength, which gives them a very favorable ratio (yield strength / strength) during forming operations.
  • Their consolidation capacity is very large, which allows a good distribution of deformations in the case of a collision and obtaining a significantly higher yield strength on the part after forming.
  • EP0796928A1 also describes cold-rolled Dual Phase steels with a resistance greater than 550 MPa, composition 0.05-0.3% C, 0.8-3% Mn, 0.4-2.5% Al, 0, 01 to 0.2% Si.
  • the ferritic matrix contains martensite, bainite and / or residual austenite.
  • the examples presented show that the resistance does not exceed 660 MPa, even for a high carbon content (0.20-0.21%)
  • the document JP11350038 describes Dual Phase steels with a strength greater than 980 MPa, composition 0.10-0.15% C, 0.8-1.5% Si, 1.5-2.0% Mn, 0.01-0 , 05% P, less than 0.005% S, 0.01-0.07% Al in solution, less than 0.01% N, additionally containing one or more elements: 0.001-0.02% Nb, 0.001-0 , 02% V, 0.001-0.02% Ti.
  • This high strength is, however, obtained at the cost of a significant addition of silicon which certainly allows the formation of martensite, but may nevertheless lead to the formation of surface oxides which deteriorate the coating on quenching.
  • the object of the present invention is to provide a method of manufacturing dual-phase steel plates very high strength, cold rolled, bare or coated, not having the disadvantages mentioned above.
  • the invention also aims to provide a manufacturing method in which small variations in the parameters do not lead to significant changes in the microstructure or mechanical properties.
  • the invention also aims to provide a sheet of steel easily fabricated by cold rolling, that is to say whose hardness after the hot rolling step is limited so that the rolling forces remain moderate during of the cold rolling step.
  • the invention also aims to provide an economical manufacturing process by avoiding the addition of expensive alloying elements.
  • the subject of the invention is a dual-phase cold-rolled and annealed steel sheet having a strength of between 980 and 1100 MPa, an elongation at break of greater than 9%, the composition of which comprises the contents being expressed in terms of weight: 0.055% ⁇ C ⁇ 0.095%, 2% ⁇ Mn ⁇ 2.6%, 0.005% ⁇ Si ⁇ 0.35%, S ⁇ 0.005%, P ⁇ 0.050%, 0.1 ⁇ Al ⁇ 0.3% , 0,05% ⁇ Mo ⁇ 0,25%, 0,2% ⁇ Cr ⁇ 0,5%, with the proviso that Cr + 2Mo ⁇ 0.6%, Ni ⁇ 0.1%, 0,010 ⁇ Nb ⁇ 0,040%, 0,010 ⁇ Ti ⁇ 0.050%, 0.0005 ⁇ B ⁇ 0.0025%, 0.002% ⁇ N ⁇ 0.007%, the balance of the composition consisting of iron and unavoidable impurities resulting from the preparation.
  • the composition of the steel contains, the content being expressed by weight: 0.12% ⁇ Al ⁇ 0.25%.
  • the composition of the steel contains, the content being expressed by weight: 0.10% ⁇ Si ⁇ 0.30%.
  • the composition of the steel preferably contains: 0.15% ⁇ Si ⁇ 0.28%.
  • the composition contains: P ⁇ 0.015%.
  • the microstructure of the sheet preferably contains 35 to 50% of martensite in surface proportion.
  • the complement of the microstructure consists of 50 to 65% of ferrite in surface proportion.
  • the complement of the microstructure consists of 1 to 10% of bainite and 40 to 64% of ferrite in surface proportion.
  • the surface fraction of non-recrystallized ferrite relative to the entire ferritic phase is preferably less than or equal to 15%.
  • the steel sheet preferably has a ratio between its elastic limit R e and its resistance R m such that: 0.6 RRe / R m ⁇ 0.8.
  • the sheet is galvanized continuously.
  • the sheet has a galvannealed coating.
  • the invention also relates to a manufacturing method according to one of the above characteristics , characterized in that the temperature T M is between 760 and 830 ° C.
  • the cooling rate V R is greater than or equal to 15 ° C / s.
  • the invention also relates to the use of a steel sheet according to any one of the above characteristics, or manufactured by a process according to any one of the above characteristics, for the manufacture of structures or safety for motor vehicles.
  • carbon plays an important role in the formation of the microstructure and in the mechanical properties: below 0.055% by weight, the resistance becomes insufficient. Beyond 0.095%, a lengthening of 9% can no longer be guaranteed. The weldability is also reduced.
  • manganese is an element that increases quenchability and reduces carbide precipitation. A minimum content of 2% by weight is necessary to obtain the desired mechanical properties. However, beyond 2.6%, its gammagenic character leads to the formation of a band structure too marked.
  • Silicon is a component involved in the deoxidation of liquid steel and hardening in solid solution. This element also plays an important role in the formation of the microstructure by preventing the precipitation of carbides and by promoting the formation of martensite which enters the structure of the Dual Phase steels. It plays an effective role beyond 0.005%.
  • an increase in the silicon content degrades the dip coating ability by promoting the formation of adherent oxides on the surface of the products: its content must be limited to 0.35% by weight, and preferably 0.30% to obtain a good coating.
  • the silicon decreases the weldability: a content of less than 0.28% makes it possible simultaneously to ensure very good weldability as well as good coating.
  • the ductility is reduced due to the excessive presence of sulfides such as MnS which decrease the ability to deform, especially during hole expansion tests.
  • Phosphorus is an element that hardens in solid solution but decreases spot weldability and hot ductility, particularly because of its ability to segregate at grain boundaries or co-segregate with manganese. For these reasons, its content must be limited to 0.050%, and preferably to 0.015% in order to obtain a good spot welding ability.
  • Aluminum plays an important role in the invention by preventing the precipitation of carbides and promoting the formation of martensitic constituents upon cooling. These effects are obtained when the aluminum content is greater than 0.1%, and preferably when the aluminum content is greater than 0.12%.
  • AlN aluminum limits grain growth during annealing after cold rolling.
  • This element is also used for the deoxidation of the liquid steel in an amount usually less than about 0.050%. It is usually considered that higher levels increase the erosion of refractories and the risk of plugging the nozzles. In excessive amounts, aluminum reduces hot ductility and increases the risk of defects in continuous casting. It is also sought to limit inclusions of alumina, in particular in the form of clusters, in order to ensure sufficient elongation properties.
  • the inventors have demonstrated, in connection with the other elements of the composition, that an amount of aluminum up to 0.3% by weight could be added without adverse effect vis-à-vis other properties required particularly with respect to the deformability, and also provided the desired microstructural and mechanical properties.
  • An aluminum content of up to 0.25% by weight makes it possible to ensure the formation of a fine microstructure without large martensitic islands which would play a detrimental role on the ductility.
  • the inventors have shown that, surprisingly, it was possible to obtain a high level of resistance, between 980 and 1100 MPa, even in spite of the limitation of additions of aluminum and silicon. This is achieved by the particular combination of the alloying or microalloying elements according to the invention, in particular by virtue of the additions of Mo, Cr, Nb, Ti, B.
  • molybdenum plays an effective role on quenchability and delays the enlargement of ferrite and the appearance of bainite.
  • a content greater than 0.25% excessively increases the cost of the additions.
  • chromium in an amount greater than 0.2%, chromium, by its role on quenchability, also contributes to delay the formation of proeutectoid ferrite. Beyond 0.5%, the cost of the addition is too excessive.
  • chromium and molybdenum contents are such that: Cr + (2 ⁇ Mo) ⁇ 0.6%.
  • the coefficients in this relation reflect the respective influence of these two elements on the quenchability in order to favor the obtaining of a fine ferritic structure.
  • the titanium and niobium contents above make it possible to ensure that the nitrogen is completely trapped in the form of nitrides or carbonitrides, so that the boron is in free form and can play an effective role on the quenchability.
  • the minimum boron content to ensure effective quenchability is 0.0005%. Above 0.0025%, the effect on the quenchability is saturated and there is a detrimental effect on the coating and hot ductility.
  • nitrides and carbonitrides In order to form a sufficient amount of nitrides and carbonitrides, a minimum content of 0.002% nitrogen is required. The nitrogen content is limited to 0.007% to avoid the formation of BN which would decrease the amount of free boron required for the hardening of the ferrite.
  • Ni may be performed to provide additional hardening of the ferrite. This addition is, however, limited to 0.1% for cost reasons.
  • the cast semi-finished products are first brought to a temperature T R greater than 1150 ° C. in order to reach at all points a temperature favorable to the high deformations which the steel will undergo during rolling.
  • T R a temperature favorable to the high deformations which the steel will undergo during rolling.
  • the temperature T R is too high, the austenitic grains increase undesirably.
  • the only precipitates that can effectively control the size of the austenitic grain are titanium nitrides, and the reheat temperature should be limited to 1250 ° C to maintain a fine austenitic grain at this stage.
  • the hot rolling step of these semi-finished products starting at more than 1150 ° C. can be done directly after casting so well. that an intermediate heating step is not necessary in this case.
  • the semi-finished product is hot-rolled in a temperature range where the structure of the steel is totally austenitic: if T FL is lower than the start-of-transformation temperature of the austenite at cooling A r3 , the ferrite grains are hardened by rolling and ductility is reduced.
  • a rolling end temperature of greater than 850 ° C. will be chosen.
  • the hot-rolled product is then rolled at a temperature T bob of between 500 and 570 ° C.
  • T bob of between 500 and 570 ° C. This temperature range makes it possible to obtain a complete bainitic transformation during the quasi-isothermal maintenance associated with the winding.
  • the winding temperature is too low, the hardness of the product is increased, which increases the efforts required during the subsequent cold rolling.
  • the hot-rolled product is pickled according to a method known per se, then cold rolling is carried out with a reduction ratio preferably comprised between 30 and 80%.
  • the cold-rolled product is then heated, preferably in a continuous annealing installation, with an average heating rate Vc of between 1 and 5 ° C./s.
  • Vc average heating rate
  • T M annealing temperature
  • the heating is carried out up to an annealing temperature T M between the temperature A c1 (allotropic transformation start temperature at heating) + 40 ° C, and A c3 (end of allotropic transformation temperature at heating) - 30 ° C, that is to say in a particular temperature range of the intercritical domain: when T M is less than (A c1 + 40 ° C), the structure may further comprise non-recrystallized ferrite zones, the surface fraction of which may reach 15%. This proportion of non-recrystallized ferrite is evaluated as follows: after having identified the ferritic phase within the microstructure, the surface percentage of non-recrystallized ferrite relative to the entire ferritic phase is quantified.
  • An annealing temperature T M makes it possible to obtain an amount of austenite sufficient to subsequently form the cooling of the martensite in an amount such that the desired characteristics are attained.
  • a temperature T M lower than (A c3 - 30 ° C) also makes it possible to ensure that the carbon content of the austenite islands formed at the temperature T M indeed leads to a subsequent martensitic transformation: when the annealing temperature is too high The carbon content of the austenite islands becomes too low, leading to subsequent transformation into bainite or unfavorable pearlite.
  • too high a temperature leads to an increase in the size of niobium precipitates which lose some of their curing ability. The final mechanical strength is then reduced.
  • a temperature T M of between 760 ° C. and 830 ° C. is preferably chosen for this purpose.
  • a minimum holding time t M of 30s at the temperature T M allows the dissolution of the carbides, a partial transformation into austenite is carried out. The effect is saturated beyond a duration of 300 s.
  • a holding time greater than 300s is also difficult to comply with the productivity requirements of continuous annealing equipment, in particular the speed of scrolling.
  • the holding time t M is between 30 and 300s.
  • This cooling can be carried out from the temperature T M in one or several steps and may involve in the latter case different cooling modes such as cold or boiling water baths, jets of water or gas . These possible accelerated cooling modes can be combined to obtain a complete martensitic transformation of the austenite. After this martensitic transformation, the sheet is cooled to room temperature.
  • the microstructure of steels whose matrix is ferritic, has also been determined.
  • the surface fractions of bainite and martensite have been quantified after Picral and LePera reagent attack respectively, followed by image analysis using Aphelion TM software.
  • the non-recrystallized ferrite surface fraction was also determined by optical and scanning electron microscopy observations in which the ferritic phase was identified and the recrystallized fraction within this ferritic phase quantified.
  • Non-recrystallized ferrite is generally in the form of elongated islands by rolling.
  • the folding ability was quantified as follows: sheets were folded in a block on themselves in several turns. In this way, the bending radius decreases each turn. The foldability is then evaluated by noting the presence of cracks on the surface of the folded block, the rating being expressed from 1 (low foldability) to 5 (very good ability). satisfactory.
  • the sheets according to the invention have good weldability, in particular resistance, the equivalent carbon being less than 0.25.
  • the steel plates IX3 (galvanized) and IX6 (galvannealed) were annealed at a temperature T M too low: consequently, the fraction of non-recrystallized ferrite is excessive as well as the martensite fraction.
  • T M temperature
  • the figure 2 illustrates the microstructure of the steel sheet IX3: note the presence of non-recrystallized ferrite in the form of elongate islands (marked (A)) coexisting with recrystallized ferrite and martensite, the latter constituting appearing darker on the micrograph.
  • a Micrograph in Scanning Electron Microscopy ( figure 3 ) makes it possible to finely distinguish the zones of non recrystallized ferrite (A) from those recrystallized (B).
  • Sheet IX5 is a galvannealed sheet annealed at a temperature T M too high: the carbon content of austenite at high temperature then becomes too low and the appearance of bainite is favored at the expense of the formation of martensite. Coalescence of niobium precipitates is also observed, which causes a loss of hardening. The resistance is then insufficient, the ratio Re / R m being too high.
  • IX7 galvannealed sheet was cooled at a speed V R too slow after the annealing step: the transformation of the austenite formed into ferrite then occurs in this cooling step excessively, the steel sheet containing at the stage final a proportion of bainite too important and a proportion of martensite too low, which leads to insufficient resistance.
  • the composition of the steel sheet R does not correspond to the invention, its carbon content being too high, and its content of manganese, aluminum, niobium, titanium, boron being too low. As a result, the martensite fraction is too weak so that the mechanical strength is insufficient.
  • the steel sheets according to the invention will be used profitably for the manufacture of structural parts or safety in the automotive industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)
EP08290474A 2008-05-21 2008-05-21 Verfahren zur Herstellung von kalt gewalzten Zweiphasen-Stahlblechen mit sehr hoher Festigkeit und so hergestellte Bleche Withdrawn EP2123786A1 (de)

Priority Applications (19)

Application Number Priority Date Filing Date Title
EP08290474A EP2123786A1 (de) 2008-05-21 2008-05-21 Verfahren zur Herstellung von kalt gewalzten Zweiphasen-Stahlblechen mit sehr hoher Festigkeit und so hergestellte Bleche
EP09761870A EP2291547B1 (de) 2008-05-21 2009-05-15 Verfahren zur herstellung von kaltgewalzten dualphasenstahlblechen mit sehr hoher festigkeit und so hergestellte bleche
AT09761870T ATE555225T1 (de) 2008-05-21 2009-05-15 Verfahren zur herstellung von kaltgewalzten dualphasenstahlblechen mit sehr hoher festigkeit und so hergestellte bleche
CN2009801183844A CN102046827B (zh) 2008-05-21 2009-05-15 非常高强度的冷轧双相钢片材的制造方法和这样生产的片材
RU2010152214/02A RU2470087C2 (ru) 2008-05-21 2009-05-15 Способ производства холоднокатаных листов из двухфазной стали, обладающей очень высокой прочностью, и полученные таким способом листы
PL09761870T PL2291547T3 (pl) 2008-05-21 2009-05-15 Sposób wytwarzania blach ze stali dwufazowej, walcowanych na zimno, o bardzo dużej wytrzymałości i blachy w ten sposób wytwarzane
US12/993,498 US20110168300A1 (en) 2008-05-21 2009-05-15 Manufacturing method for very high-strength cold-rolled dual-phase steel sheets and sheets so produced
BRPI0912879-4A BRPI0912879B1 (pt) 2008-05-21 2009-05-15 Chapa de aço bifásico laminada a frio e recozida e processo de fabricação de uma chapa de aço bifásico laminada a frio e recozida
PCT/FR2009/000574 WO2009150319A1 (fr) 2008-05-21 2009-05-15 Procede de fabrication de toles d'aciers dual phase laminees a froid a tres haute resistance et toles ainsi produites
CA2725290A CA2725290C (fr) 2008-05-21 2009-05-15 Procede de fabrication de toles d'aciers dual phase laminees a froid a tres haute resistance et toles ainsi produites
JP2011510017A JP5425896B2 (ja) 2008-05-21 2009-05-15 極めて高い強度の冷間圧延された二相鋼板を製造する方法およびこれにより製造された鋼板
ES09761870T ES2386701T3 (es) 2008-05-21 2009-05-15 Procedimiento de fabricación de chapas de acero de doble fase laminadas en frío con resistencia muy elevada y chapas así obtenidas
UAA201015426A UA100056C2 (ru) 2008-05-21 2009-05-15 Способ производства холоднокатаного и отожженного листа из двухфазной стали, полученный таким способом лист, способ производства холоднокатаного, отожженного и оцинкованного листа из двухфазной стали (варианты) и использование указанного стального листа
MX2010012584A MX2010012584A (es) 2008-05-21 2009-05-15 Metodo de fabricacion de chapas de acero de fase dual laminadas en frio de muy alta resistencia y laminas asi producidas.
KR1020107028478A KR101328768B1 (ko) 2008-05-21 2009-05-15 초고강도의 냉간 압연된 2 상 강판의 제조 방법 및 이에 의해 제조된 강판
ZA2010/07964A ZA201007964B (en) 2008-05-21 2010-11-08 Manufacturing method for very high-strength cold-rolled dual-phase steel sheets and sheets so produced
MA33333A MA32294B1 (fr) 2008-05-21 2010-11-11 Procede de fabrication de toles d'aciers dual phase laminees a froid a tres haute resistance et toles ainsi produites
US15/097,039 US10190187B2 (en) 2008-05-21 2016-04-12 Manufacturing method for very high-strength, cold-rolled, dual-phase steel sheets
US16/213,455 US20190106765A1 (en) 2008-05-21 2018-12-07 Very high-strength, cold-rolled, dual steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08290474A EP2123786A1 (de) 2008-05-21 2008-05-21 Verfahren zur Herstellung von kalt gewalzten Zweiphasen-Stahlblechen mit sehr hoher Festigkeit und so hergestellte Bleche

Publications (1)

Publication Number Publication Date
EP2123786A1 true EP2123786A1 (de) 2009-11-25

Family

ID=39855450

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08290474A Withdrawn EP2123786A1 (de) 2008-05-21 2008-05-21 Verfahren zur Herstellung von kalt gewalzten Zweiphasen-Stahlblechen mit sehr hoher Festigkeit und so hergestellte Bleche
EP09761870A Active EP2291547B1 (de) 2008-05-21 2009-05-15 Verfahren zur herstellung von kaltgewalzten dualphasenstahlblechen mit sehr hoher festigkeit und so hergestellte bleche

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP09761870A Active EP2291547B1 (de) 2008-05-21 2009-05-15 Verfahren zur herstellung von kaltgewalzten dualphasenstahlblechen mit sehr hoher festigkeit und so hergestellte bleche

Country Status (16)

Country Link
US (3) US20110168300A1 (de)
EP (2) EP2123786A1 (de)
JP (1) JP5425896B2 (de)
KR (1) KR101328768B1 (de)
CN (1) CN102046827B (de)
AT (1) ATE555225T1 (de)
BR (1) BRPI0912879B1 (de)
CA (1) CA2725290C (de)
ES (1) ES2386701T3 (de)
MA (1) MA32294B1 (de)
MX (1) MX2010012584A (de)
PL (1) PL2291547T3 (de)
RU (1) RU2470087C2 (de)
UA (1) UA100056C2 (de)
WO (1) WO2009150319A1 (de)
ZA (1) ZA201007964B (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016198906A1 (fr) * 2015-06-10 2016-12-15 Arcelormittal Acier a haute résistance et procédé de fabrication
CN109402525A (zh) * 2018-11-28 2019-03-01 北京首钢冷轧薄板有限公司 一种780MPa级屈服强度1000MPa级抗拉强度的双相钢加工方法
EP3730635A4 (de) * 2017-12-22 2020-10-28 Posco Hochfestes stahlblech mit ausgezeichneten schlageigenschaften und verformbarkeit und verfahren zur herstellung davon
EP3730636A4 (de) * 2017-12-22 2020-10-28 Posco Hochfestes stahlblech mit hervorragender verarbeitbarkeit und verfahren zu seiner herstellung
CN115612816A (zh) * 2022-09-30 2023-01-17 攀钢集团攀枝花钢铁研究院有限公司 含硼钢制备复相钢、热成形用钢镀层板的方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123786A1 (de) 2008-05-21 2009-11-25 ArcelorMittal France Verfahren zur Herstellung von kalt gewalzten Zweiphasen-Stahlblechen mit sehr hoher Festigkeit und so hergestellte Bleche
MX375399B (es) 2011-07-29 2025-03-06 Nippon Steel Corp Star Capa de revestimiento de zinc por inmersión en caliente aleada, lámina de acero que tiene la misma y método para producir la misma.
CN102618802B (zh) * 2012-03-20 2013-08-21 东北大学 一种超细晶粒双相钢材料及其制备方法
WO2014037627A1 (fr) 2012-09-06 2014-03-13 Arcelormittal Investigación Y Desarrollo Sl Procede de fabrication de pieces d'acier revêtues et durcies a la presse, et tôles prerevêtues permettant la fabrication de ces pieces
US9790567B2 (en) * 2012-11-20 2017-10-17 Thyssenkrupp Steel Usa, Llc Process for making coated cold-rolled dual phase steel sheet
JP6048123B2 (ja) * 2012-12-20 2016-12-21 新日鐵住金株式会社 耐酸性に優れた高強度鋼板及びその製造方法
CN103882202B (zh) * 2012-12-20 2016-03-30 上海梅山钢铁股份有限公司 一种连续退火高强热镀锌钢的制造方法
CN103060703B (zh) * 2013-01-22 2015-09-23 宝山钢铁股份有限公司 一种780MPa级冷轧双相带钢及其制造方法
US20140261919A1 (en) * 2013-03-14 2014-09-18 Thyssenkrupp Steel Usa, Llc Low carbon-high manganese steel and manufacturing process thereof
CN103469112A (zh) * 2013-09-29 2013-12-25 宝山钢铁股份有限公司 一种高成形性冷轧双相带钢及其制造方法
DE102013224851A1 (de) * 2013-12-04 2015-06-11 Schaeffler Technologies AG & Co. KG Kettenelement
WO2015088523A1 (en) 2013-12-11 2015-06-18 ArcelorMittal Investigación y Desarrollo, S.L. Cold rolled and annealed steel sheet
WO2015093043A1 (ja) * 2013-12-18 2015-06-25 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板及びその製造方法
WO2016016676A1 (fr) * 2014-07-30 2016-02-04 ArcelorMittal Investigación y Desarrollo, S.L. Procédé de fabrication de tôles d'acier, pour durcissement sous presse, et pièces obtenues par ce procédé
UA119189C2 (uk) * 2015-01-14 2019-05-10 Ейкей Стіл Пропертіс, Інк. Двофазна сталь з покращеними властивостями
CN104947023B (zh) * 2015-06-10 2017-08-08 武汉钢铁(集团)公司 无粉化厚规格锌铁合金化板的生产方法
WO2017006144A1 (en) 2015-07-09 2017-01-12 Arcelormittal Steel for press hardening and press hardened part manufactured from such steel
CN105950998B (zh) * 2016-07-11 2018-01-26 攀钢集团攀枝花钢铁研究院有限公司 一种1000MPa级低碳热镀锌双相钢及其制备方法
CN108642380B (zh) * 2018-05-15 2020-08-25 首钢集团有限公司 一种900MPa级别的抗冲击波钢板及其制造方法
RU2699480C1 (ru) * 2018-12-14 2019-09-05 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства холоднокатаного проката
CN109943778B (zh) * 2019-04-30 2020-08-11 马鞍山钢铁股份有限公司 一种扩孔性能优异的590MPa级冷轧双相钢及其生产方法
RU2718604C1 (ru) * 2019-11-05 2020-04-08 Публичное акционерное общество "Магнитогорский металлургический комбинат" Способ производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали
RU2743946C1 (ru) * 2019-11-05 2021-03-01 Публичное акционерное общество "Магнитогорский металлургический комбинат" Способ производства холоднокатаного высокопрочного проката из двухфазной ферритно-мартенситной стали
WO2021116741A1 (en) * 2019-12-13 2021-06-17 Arcelormittal Heat treated cold rolled steel sheet and a method of manufacturing thereof
WO2021130523A1 (en) 2019-12-24 2021-07-01 Arcelormittal Protective element for a battery pack of a hybrid or electric vehicle and process for the assembling of a reinforced battery pack
RU2751072C1 (ru) * 2020-09-02 2021-07-07 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Способ производства высокопрочной холоднокатаной стали
CN112176147B (zh) * 2020-10-13 2021-06-08 五矿营口中板有限责任公司 一种适合于大线能焊接的正火厚钢板的制造方法
CN115181840B (zh) * 2021-04-02 2024-08-09 宝山钢铁股份有限公司 780MPa级别高成形性热镀铝锌或热镀锌铝镁双相钢及快速热处理制造方法
CN113481435B (zh) * 2021-06-29 2022-09-16 鞍钢股份有限公司 一种900MPa级热轧复相钢及其生产方法
CN113817961B (zh) * 2021-08-26 2022-06-21 马鞍山钢铁股份有限公司 彩涂基料用热浸镀锌钢板及其制造方法
CN114107806A (zh) * 2021-10-29 2022-03-01 马鞍山钢铁股份有限公司 一种高加工硬化率及表面质量的450MPa级热镀锌双相钢及其生产方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0796928A1 (de) 1996-03-19 1997-09-24 Thyssen Stahl Aktiengesellschaft Mehrphasenstahl und Verfahren zu seiner Herstellung
JPH11350038A (ja) 1998-06-12 1999-12-21 Nkk Corp 延性及び伸びフランジ成形性に優れた複合組織型高張力冷延鋼板の製造方法
JP2000017385A (ja) * 1998-06-29 2000-01-18 Nippon Steel Corp 動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板とその製造方法
FR2790009A1 (fr) * 1999-02-22 2000-08-25 Lorraine Laminage Acier dual-phase a haute limite d'elasticite
EP1201780A1 (de) 2000-04-21 2002-05-02 Nippon Steel Corporation Stahlblech mit hervorragender gratbearbeitbarkeit bei gleichzeitiger hoher ermüdungsfestigeit und verfahren zu dessen herstellung
US20030091857A1 (en) * 2001-11-15 2003-05-15 Bethlehem Steel Corporation Method for coating a steel alloy and a product therefrom
US20030129444A1 (en) * 2000-11-28 2003-07-10 Saiji Matsuoka Composite structure type high tensile strength steel plate, plated plate of composite structure type high tensile strength steel and method for their production
EP1548142A1 (de) * 2003-12-25 2005-06-29 Kabushiki Kaisha Kobe Seiko Sho Hochfestes, Kaltgewalztes Stahlblech mit Ausgezeichneter Adhesion von Beschichtung
US20080099109A1 (en) * 2006-10-31 2008-05-01 Hyundai Motor Company High-strength steel sheets with excellent formability and method for manufacturing the same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545270A (en) 1994-12-06 1996-08-13 Exxon Research And Engineering Company Method of producing high strength dual phase steel plate with superior toughness and weldability
US5545269A (en) 1994-12-06 1996-08-13 Exxon Research And Engineering Company Method for producing ultra high strength, secondary hardening steels with superior toughness and weldability
DE10023036A1 (de) * 2000-05-11 2001-11-22 Siemens Ag Verfahren zum Kaltstart von Brennstoffzellen einer Brennstoffzellenanlage und zugehörige Brennstoffzellenanlage
RU2190685C1 (ru) * 2001-06-29 2002-10-10 Открытое акционерное общество "Новолипецкий металлургический комбинат" Сталь для производства листового проката
US6902829B2 (en) * 2001-11-15 2005-06-07 Isg Technologies Inc. Coated steel alloy product
FR2844281B1 (fr) 2002-09-06 2005-04-29 Usinor Acier a tres haute resistance mecanique et procede de fabrication d'une feuille de cet acier revetue de zinc ou d'alliage de zinc
JP4235030B2 (ja) * 2003-05-21 2009-03-04 新日本製鐵株式会社 局部成形性に優れ溶接部の硬さ上昇を抑制した引張強さが780MPa以上の高強度冷延鋼板および高強度表面処理鋼板
JP4214006B2 (ja) * 2003-06-19 2009-01-28 新日本製鐵株式会社 成形性に優れた高強度鋼板およびその製造方法
JP4635525B2 (ja) * 2003-09-26 2011-02-23 Jfeスチール株式会社 深絞り性に優れた高強度鋼板およびその製造方法
ES2391164T3 (es) * 2003-09-30 2012-11-22 Nippon Steel Corporation Chapa delgada de acero laminado en frío, de alta resistencia, con alto límite de elasticidad, y superior ductilidad y soldabilidad, chapa delgada de acero galvanizado por inmersión en caliente, de alta resistencia, con alto límite de elasticidad, chapa delgada de acero galvanizado y recocido por inmersión en caliente, de alta resistencia, con alto límite de eleasticidad, y métodos para la producción de las mismas
JP4380348B2 (ja) * 2004-02-09 2009-12-09 Jfeスチール株式会社 表面品質に優れる高強度溶融亜鉛めっき鋼板
JP4843982B2 (ja) * 2004-03-31 2011-12-21 Jfeスチール株式会社 高剛性高強度薄鋼板およびその製造方法
JP3889767B2 (ja) 2005-03-31 2007-03-07 株式会社神戸製鋼所 溶融亜鉛めっき用高強度鋼板
JP4959161B2 (ja) * 2005-09-05 2012-06-20 新日本製鐵株式会社 耐食性と伸びと穴拡げ性に優れた溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板
JP4665692B2 (ja) * 2005-09-29 2011-04-06 Jfeスチール株式会社 曲げ剛性に優れた高強度薄鋼板およびその製造方法
EP1990431A1 (de) * 2007-05-11 2008-11-12 ArcelorMittal France Verfahren zur Herstellung von kalt gewalzten und geglühten Stahlblechen mit sehr hoher Festigkeit und so hergestellte Bleche
EP2123786A1 (de) 2008-05-21 2009-11-25 ArcelorMittal France Verfahren zur Herstellung von kalt gewalzten Zweiphasen-Stahlblechen mit sehr hoher Festigkeit und so hergestellte Bleche

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0796928A1 (de) 1996-03-19 1997-09-24 Thyssen Stahl Aktiengesellschaft Mehrphasenstahl und Verfahren zu seiner Herstellung
JPH11350038A (ja) 1998-06-12 1999-12-21 Nkk Corp 延性及び伸びフランジ成形性に優れた複合組織型高張力冷延鋼板の製造方法
JP2000017385A (ja) * 1998-06-29 2000-01-18 Nippon Steel Corp 動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板とその製造方法
FR2790009A1 (fr) * 1999-02-22 2000-08-25 Lorraine Laminage Acier dual-phase a haute limite d'elasticite
EP1201780A1 (de) 2000-04-21 2002-05-02 Nippon Steel Corporation Stahlblech mit hervorragender gratbearbeitbarkeit bei gleichzeitiger hoher ermüdungsfestigeit und verfahren zu dessen herstellung
US20030129444A1 (en) * 2000-11-28 2003-07-10 Saiji Matsuoka Composite structure type high tensile strength steel plate, plated plate of composite structure type high tensile strength steel and method for their production
US20030091857A1 (en) * 2001-11-15 2003-05-15 Bethlehem Steel Corporation Method for coating a steel alloy and a product therefrom
EP1548142A1 (de) * 2003-12-25 2005-06-29 Kabushiki Kaisha Kobe Seiko Sho Hochfestes, Kaltgewalztes Stahlblech mit Ausgezeichneter Adhesion von Beschichtung
US20080099109A1 (en) * 2006-10-31 2008-05-01 Hyundai Motor Company High-strength steel sheets with excellent formability and method for manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016198906A1 (fr) * 2015-06-10 2016-12-15 Arcelormittal Acier a haute résistance et procédé de fabrication
WO2016198940A3 (fr) * 2015-06-10 2017-10-19 Arcelormittal Acier à haute résistance et procédé de fabrication
US10697052B2 (en) 2015-06-10 2020-06-30 Arcelormittal High strength steel and production method
EP3730635A4 (de) * 2017-12-22 2020-10-28 Posco Hochfestes stahlblech mit ausgezeichneten schlageigenschaften und verformbarkeit und verfahren zur herstellung davon
EP3730636A4 (de) * 2017-12-22 2020-10-28 Posco Hochfestes stahlblech mit hervorragender verarbeitbarkeit und verfahren zu seiner herstellung
US11345985B2 (en) 2017-12-22 2022-05-31 Posco High-strength steel sheet with excellent crashworthiness characteristics and formability and method of manufacturing the same
US11345984B2 (en) 2017-12-22 2022-05-31 Posco High-strength steel sheet with excellent crashworthiness characteristics and formability and method of manufacturing the same
US11519051B2 (en) 2017-12-22 2022-12-06 Posco Co., Ltd High-strength steel sheet having excellent processability and method for manufacturing same
US11827950B2 (en) 2017-12-22 2023-11-28 Posco Co., Ltd Method of manufacturing high-strength steel sheet having excellent processability
CN109402525A (zh) * 2018-11-28 2019-03-01 北京首钢冷轧薄板有限公司 一种780MPa级屈服强度1000MPa级抗拉强度的双相钢加工方法
CN115612816A (zh) * 2022-09-30 2023-01-17 攀钢集团攀枝花钢铁研究院有限公司 含硼钢制备复相钢、热成形用钢镀层板的方法
CN115612816B (zh) * 2022-09-30 2024-02-02 攀钢集团攀枝花钢铁研究院有限公司 含硼钢制备复相钢、热成形用钢镀层板的方法

Also Published As

Publication number Publication date
US20110168300A1 (en) 2011-07-14
CA2725290C (fr) 2015-10-13
MA32294B1 (fr) 2011-05-02
CN102046827A (zh) 2011-05-04
BRPI0912879A2 (pt) 2017-05-16
KR101328768B1 (ko) 2013-11-13
EP2291547A1 (de) 2011-03-09
US20160222486A1 (en) 2016-08-04
KR20110013490A (ko) 2011-02-09
WO2009150319A1 (fr) 2009-12-17
JP5425896B2 (ja) 2014-02-26
PL2291547T3 (pl) 2012-09-28
BRPI0912879B1 (pt) 2018-06-26
CA2725290A1 (fr) 2009-12-17
US10190187B2 (en) 2019-01-29
UA100056C2 (ru) 2012-11-12
CN102046827B (zh) 2013-03-06
MX2010012584A (es) 2011-04-05
ES2386701T3 (es) 2012-08-27
US20190106765A1 (en) 2019-04-11
JP2011523440A (ja) 2011-08-11
EP2291547B1 (de) 2012-04-25
ZA201007964B (en) 2011-07-27
ATE555225T1 (de) 2012-05-15
RU2010152214A (ru) 2012-06-27
RU2470087C2 (ru) 2012-12-20

Similar Documents

Publication Publication Date Title
EP2291547B1 (de) Verfahren zur herstellung von kaltgewalzten dualphasenstahlblechen mit sehr hoher festigkeit und so hergestellte bleche
CN110312813B (zh) 高强度钢板及其制造方法
EP3084014B1 (de) Hochfester stahl und herstellungsverfahren dafür
EP3307921B1 (de) Hochfester stahl und herstellungsverfahren
CA2838665C (fr) Tole d'acier laminee a froid et revetue de zinc ou d'alliage de zinc, procede de fabrication et utilisation d'une telle tole
CN101960034B (zh) 成形性和焊接性优良的高强度冷轧钢板、高强度镀锌钢板、高强度合金化热浸镀锌钢板、及它们的制造方法
EP3146083B1 (de) Doppelgeglühtes stahlblech mit hoher mechanischer festigkeit und duktilität, verfahren zur herstellung und verwendung solcher bleche
JP5041083B2 (ja) 加工性に優れた高張力溶融亜鉛めっき鋼板およびその製造方法
EP1913169B1 (de) Herstellungsprozess von stahlblechen mit hoher festigkeit und exzellenter dehnung und hergestellte produkte
JP4737319B2 (ja) 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
CN111433380A (zh) 高强度镀锌钢板及其制造方法
WO2017168962A1 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
TW201418480A (zh) 成形性優異之高強度熔融鍍鋅鋼板
EP2020451A1 (de) Verfahren zur Herstellung von Stahlblechen mit hoher Widerstandsfähigkeit und Duktilität und damit hergestellte Bleche
KR20190023093A (ko) 고강도 박강판 및 그 제조 방법
JP6409916B2 (ja) 熱延鋼板の製造方法および冷延フルハード鋼板の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20100525

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100927

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110208